Home | History | Annotate | Download | only in pathops
      1 /*
      2  * Copyright 2012 Google Inc.
      3  *
      4  * Use of this source code is governed by a BSD-style license that can be
      5  * found in the LICENSE file.
      6  */
      7 #include "SkOpAngle.h"
      8 #include "SkOpSegment.h"
      9 #include "SkPathOpsCurve.h"
     10 #include "SkTSort.h"
     11 
     12 /* Angles are sorted counterclockwise. The smallest angle has a positive x and the smallest
     13    positive y. The largest angle has a positive x and a zero y. */
     14 
     15 #if DEBUG_ANGLE
     16     static bool CompareResult(const char* func, SkString* bugOut, SkString* bugPart, int append,
     17              bool compare) {
     18         SkDebugf("%s %c %d\n", bugOut->c_str(), compare ? 'T' : 'F', append);
     19         SkDebugf("%sPart %s\n", func, bugPart[0].c_str());
     20         SkDebugf("%sPart %s\n", func, bugPart[1].c_str());
     21         SkDebugf("%sPart %s\n", func, bugPart[2].c_str());
     22         return compare;
     23     }
     24 
     25     #define COMPARE_RESULT(append, compare) CompareResult(__FUNCTION__, &bugOut, bugPart, append, \
     26             compare)
     27 #else
     28     #define COMPARE_RESULT(append, compare) compare
     29 #endif
     30 
     31 /*             quarter angle values for sector
     32 
     33 31   x > 0, y == 0              horizontal line (to the right)
     34 0    x > 0, y == epsilon        quad/cubic horizontal tangent eventually going +y
     35 1    x > 0, y > 0, x > y        nearer horizontal angle
     36 2                  x + e == y   quad/cubic 45 going horiz
     37 3    x > 0, y > 0, x == y       45 angle
     38 4                  x == y + e   quad/cubic 45 going vert
     39 5    x > 0, y > 0, x < y        nearer vertical angle
     40 6    x == epsilon, y > 0        quad/cubic vertical tangent eventually going +x
     41 7    x == 0, y > 0              vertical line (to the top)
     42 
     43                                       8  7  6
     44                                  9       |       5
     45                               10         |          4
     46                             11           |            3
     47                           12  \          |           / 2
     48                          13              |              1
     49                         14               |               0
     50                         15 --------------+------------- 31
     51                         16               |              30
     52                          17              |             29
     53                           18  /          |          \ 28
     54                             19           |           27
     55                               20         |         26
     56                                  21      |      25
     57                                      22 23 24
     58 */
     59 
     60 // return true if lh < this < rh
     61 bool SkOpAngle::after(SkOpAngle* test) {
     62     SkOpAngle* lh = test;
     63     SkOpAngle* rh = lh->fNext;
     64     SkASSERT(lh != rh);
     65 #if DEBUG_ANGLE
     66     SkString bugOut;
     67     bugOut.printf("%s [%d/%d] %d/%d tStart=%1.9g tEnd=%1.9g"
     68                   " < [%d/%d] %d/%d tStart=%1.9g tEnd=%1.9g"
     69                   " < [%d/%d] %d/%d tStart=%1.9g tEnd=%1.9g ", __FUNCTION__,
     70             lh->segment()->debugID(), lh->debugID(), lh->fSectorStart, lh->fSectorEnd,
     71             lh->fStart->t(), lh->fEnd->t(),
     72             segment()->debugID(), debugID(), fSectorStart, fSectorEnd, fStart->t(), fEnd->t(),
     73             rh->segment()->debugID(), rh->debugID(), rh->fSectorStart, rh->fSectorEnd,
     74             rh->fStart->t(), rh->fEnd->t());
     75     SkString bugPart[3] = { lh->debugPart(), this->debugPart(), rh->debugPart() };
     76 #endif
     77     if (lh->fComputeSector && !lh->computeSector()) {
     78         return COMPARE_RESULT(1, true);
     79     }
     80     if (fComputeSector && !this->computeSector()) {
     81         return COMPARE_RESULT(2, true);
     82     }
     83     if (rh->fComputeSector && !rh->computeSector()) {
     84         return COMPARE_RESULT(3, true);
     85     }
     86 #if DEBUG_ANGLE  // reset bugOut with computed sectors
     87     bugOut.printf("%s [%d/%d] %d/%d tStart=%1.9g tEnd=%1.9g"
     88                   " < [%d/%d] %d/%d tStart=%1.9g tEnd=%1.9g"
     89                   " < [%d/%d] %d/%d tStart=%1.9g tEnd=%1.9g ", __FUNCTION__,
     90             lh->segment()->debugID(), lh->debugID(), lh->fSectorStart, lh->fSectorEnd,
     91             lh->fStart->t(), lh->fEnd->t(),
     92             segment()->debugID(), debugID(), fSectorStart, fSectorEnd, fStart->t(), fEnd->t(),
     93             rh->segment()->debugID(), rh->debugID(), rh->fSectorStart, rh->fSectorEnd,
     94             rh->fStart->t(), rh->fEnd->t());
     95 #endif
     96     bool ltrOverlap = (lh->fSectorMask | rh->fSectorMask) & fSectorMask;
     97     bool lrOverlap = lh->fSectorMask & rh->fSectorMask;
     98     int lrOrder;  // set to -1 if either order works
     99     if (!lrOverlap) {  // no lh/rh sector overlap
    100         if (!ltrOverlap) {  // no lh/this/rh sector overlap
    101             return COMPARE_RESULT(4,  (lh->fSectorEnd > rh->fSectorStart)
    102                     ^ (fSectorStart > lh->fSectorEnd) ^ (fSectorStart > rh->fSectorStart));
    103         }
    104         int lrGap = (rh->fSectorStart - lh->fSectorStart + 32) & 0x1f;
    105         /* A tiny change can move the start +/- 4. The order can only be determined if
    106            lr gap is not 12 to 20 or -12 to -20.
    107                -31 ..-21      1
    108                -20 ..-12     -1
    109                -11 .. -1      0
    110                  0          shouldn't get here
    111                 11 ..  1      1
    112                 12 .. 20     -1
    113                 21 .. 31      0
    114          */
    115         lrOrder = lrGap > 20 ? 0 : lrGap > 11 ? -1 : 1;
    116     } else {
    117         lrOrder = (int) lh->orderable(rh);
    118         if (!ltrOverlap) {
    119             return COMPARE_RESULT(5, !lrOrder);
    120         }
    121     }
    122     int ltOrder;
    123     SkASSERT((lh->fSectorMask & fSectorMask) || (rh->fSectorMask & fSectorMask));
    124     if (lh->fSectorMask & fSectorMask) {
    125         ltOrder = (int) lh->orderable(this);
    126     } else {
    127         int ltGap = (fSectorStart - lh->fSectorStart + 32) & 0x1f;
    128         ltOrder = ltGap > 20 ? 0 : ltGap > 11 ? -1 : 1;
    129     }
    130     int trOrder;
    131     if (rh->fSectorMask & fSectorMask) {
    132         trOrder = (int) orderable(rh);
    133     } else {
    134         int trGap = (rh->fSectorStart - fSectorStart + 32) & 0x1f;
    135         trOrder = trGap > 20 ? 0 : trGap > 11 ? -1 : 1;
    136     }
    137     if (lrOrder >= 0 && ltOrder >= 0 && trOrder >= 0) {
    138         return COMPARE_RESULT(7, lrOrder ? (ltOrder & trOrder) : (ltOrder | trOrder));
    139     }
    140     SkASSERT(lrOrder >= 0 || ltOrder >= 0 || trOrder >= 0);
    141 // There's not enough information to sort. Get the pairs of angles in opposite planes.
    142 // If an order is < 0, the pair is already in an opposite plane. Check the remaining pairs.
    143     // FIXME : once all variants are understood, rewrite this more simply
    144     if (ltOrder == 0 && lrOrder == 0) {
    145         SkASSERT(trOrder < 0);
    146         // FIXME : once this is verified to work, remove one opposite angle call
    147         SkDEBUGCODE(bool lrOpposite = lh->oppositePlanes(rh));
    148         bool ltOpposite = lh->oppositePlanes(this);
    149         SkASSERT(lrOpposite != ltOpposite);
    150         return COMPARE_RESULT(8, ltOpposite);
    151     } else if (ltOrder == 1 && trOrder == 0) {
    152         SkASSERT(lrOrder < 0);
    153         SkDEBUGCODE(bool ltOpposite = lh->oppositePlanes(this));
    154         bool trOpposite = oppositePlanes(rh);
    155         SkASSERT(ltOpposite != trOpposite);
    156         return COMPARE_RESULT(9, trOpposite);
    157     } else if (lrOrder == 1 && trOrder == 1) {
    158         SkASSERT(ltOrder < 0);
    159         SkDEBUGCODE(bool trOpposite = oppositePlanes(rh));
    160         bool lrOpposite = lh->oppositePlanes(rh);
    161         SkASSERT(lrOpposite != trOpposite);
    162         return COMPARE_RESULT(10, lrOpposite);
    163     }
    164     if (lrOrder < 0) {
    165         if (ltOrder < 0) {
    166             return COMPARE_RESULT(11, trOrder);
    167         }
    168         return COMPARE_RESULT(12, ltOrder);
    169     }
    170     return COMPARE_RESULT(13, !lrOrder);
    171 }
    172 
    173 // given a line, see if the opposite curve's convex hull is all on one side
    174 // returns -1=not on one side    0=this CW of test   1=this CCW of test
    175 int SkOpAngle::allOnOneSide(const SkOpAngle* test) {
    176     SkASSERT(!fIsCurve);
    177     SkASSERT(test->fIsCurve);
    178     const SkDPoint& origin = test->fCurvePart[0];
    179     SkVector line;
    180     if (segment()->verb() == SkPath::kLine_Verb) {
    181         const SkPoint* linePts = segment()->pts();
    182         int lineStart = fStart->t() < fEnd->t() ? 0 : 1;
    183         line = linePts[lineStart ^ 1] - linePts[lineStart];
    184     } else {
    185         SkPoint shortPts[2] = { fCurvePart[0].asSkPoint(), fCurvePart[1].asSkPoint() };
    186         line = shortPts[1] - shortPts[0];
    187     }
    188     float crosses[3];
    189     SkPath::Verb testVerb = test->segment()->verb();
    190     int iMax = SkPathOpsVerbToPoints(testVerb);
    191 //    SkASSERT(origin == test.fCurveHalf[0]);
    192     const SkDCurve& testCurve = test->fCurvePart;
    193     for (int index = 1; index <= iMax; ++index) {
    194         float xy1 = (float) (line.fX * (testCurve[index].fY - origin.fY));
    195         float xy2 = (float) (line.fY * (testCurve[index].fX - origin.fX));
    196         crosses[index - 1] = AlmostEqualUlps(xy1, xy2) ? 0 : xy1 - xy2;
    197     }
    198     if (crosses[0] * crosses[1] < 0) {
    199         return -1;
    200     }
    201     if (SkPath::kCubic_Verb == testVerb) {
    202         if (crosses[0] * crosses[2] < 0 || crosses[1] * crosses[2] < 0) {
    203             return -1;
    204         }
    205     }
    206     if (crosses[0]) {
    207         return crosses[0] < 0;
    208     }
    209     if (crosses[1]) {
    210         return crosses[1] < 0;
    211     }
    212     if (SkPath::kCubic_Verb == testVerb && crosses[2]) {
    213         return crosses[2] < 0;
    214     }
    215     fUnorderable = true;
    216     return -1;
    217 }
    218 
    219 bool SkOpAngle::checkCrossesZero() const {
    220     int start = SkTMin(fSectorStart, fSectorEnd);
    221     int end = SkTMax(fSectorStart, fSectorEnd);
    222     bool crossesZero = end - start > 16;
    223     return crossesZero;
    224 }
    225 
    226 // loop looking for a pair of angle parts that are too close to be sorted
    227 /* This is called after other more simple intersection and angle sorting tests have been exhausted.
    228    This should be rarely called -- the test below is thorough and time consuming.
    229    This checks the distance between start points; the distance between
    230 */
    231 void SkOpAngle::checkNearCoincidence() {
    232     SkOpAngle* test = this;
    233     do {
    234         SkOpSegment* testSegment = test->segment();
    235         double testStartT = test->start()->t();
    236         SkDPoint testStartPt = testSegment->dPtAtT(testStartT);
    237         double testEndT = test->end()->t();
    238         SkDPoint testEndPt = testSegment->dPtAtT(testEndT);
    239         double testLenSq = testStartPt.distanceSquared(testEndPt);
    240         if (0) {
    241             SkDebugf("%s testLenSq=%1.9g id=%d\n", __FUNCTION__, testLenSq, testSegment->debugID());
    242         }
    243         double testMidT = (testStartT + testEndT) / 2;
    244         SkOpAngle* next = test;
    245         while ((next = next->fNext) != this) {
    246             SkOpSegment* nextSegment = next->segment();
    247             double testMidDistSq = testSegment->distSq(testMidT, next);
    248             double testEndDistSq = testSegment->distSq(testEndT, next);
    249             double nextStartT = next->start()->t();
    250             SkDPoint nextStartPt = nextSegment->dPtAtT(nextStartT);
    251             double distSq = testStartPt.distanceSquared(nextStartPt);
    252             double nextEndT = next->end()->t();
    253             double nextMidT = (nextStartT + nextEndT) / 2;
    254             double nextMidDistSq = nextSegment->distSq(nextMidT, test);
    255             double nextEndDistSq = nextSegment->distSq(nextEndT, test);
    256             if (0) {
    257                 SkDebugf("%s distSq=%1.9g testId=%d nextId=%d\n", __FUNCTION__, distSq,
    258                         testSegment->debugID(), nextSegment->debugID());
    259                 SkDebugf("%s testMidDistSq=%1.9g\n", __FUNCTION__, testMidDistSq);
    260                 SkDebugf("%s testEndDistSq=%1.9g\n", __FUNCTION__, testEndDistSq);
    261                 SkDebugf("%s nextMidDistSq=%1.9g\n", __FUNCTION__, nextMidDistSq);
    262                 SkDebugf("%s nextEndDistSq=%1.9g\n", __FUNCTION__, nextEndDistSq);
    263                 SkDPoint nextEndPt = nextSegment->dPtAtT(nextEndT);
    264                 double nextLenSq = nextStartPt.distanceSquared(nextEndPt);
    265                 SkDebugf("%s nextLenSq=%1.9g\n", __FUNCTION__, nextLenSq);
    266                 SkDebugf("\n");
    267             }
    268         }
    269         test = test->fNext;
    270     } while (test->fNext != this);
    271 }
    272 
    273 bool SkOpAngle::checkParallel(SkOpAngle* rh) {
    274     SkDVector scratch[2];
    275     const SkDVector* sweep, * tweep;
    276     if (!this->fUnorderedSweep) {
    277         sweep = this->fSweep;
    278     } else {
    279         scratch[0] = this->fCurvePart[1] - this->fCurvePart[0];
    280         sweep = &scratch[0];
    281     }
    282     if (!rh->fUnorderedSweep) {
    283         tweep = rh->fSweep;
    284     } else {
    285         scratch[1] = rh->fCurvePart[1] - rh->fCurvePart[0];
    286         tweep = &scratch[1];
    287     }
    288     double s0xt0 = sweep->crossCheck(*tweep);
    289     if (tangentsDiverge(rh, s0xt0)) {
    290         return s0xt0 < 0;
    291     }
    292     // compute the perpendicular to the endpoints and see where it intersects the opposite curve
    293     // if the intersections within the t range, do a cross check on those
    294     bool inside;
    295     if (!fCurvePart[SkPathOpsVerbToPoints(this->segment()->verb())].approximatelyEqual(
    296             rh->fCurvePart[SkPathOpsVerbToPoints(rh->segment()->verb())])) {
    297         if (this->endToSide(rh, &inside)) {
    298             return inside;
    299         }
    300         if (rh->endToSide(this, &inside)) {
    301             return !inside;
    302         }
    303     }
    304     if (this->midToSide(rh, &inside)) {
    305         return inside;
    306     }
    307     if (rh->midToSide(this, &inside)) {
    308         return !inside;
    309     }
    310     // compute the cross check from the mid T values (last resort)
    311     SkDVector m0 = segment()->dPtAtT(this->midT()) - this->fCurvePart[0];
    312     SkDVector m1 = rh->segment()->dPtAtT(rh->midT()) - rh->fCurvePart[0];
    313     double m0xm1 = m0.crossCheck(m1);
    314     if (m0xm1 == 0) {
    315         this->fUnorderable = true;
    316         rh->fUnorderable = true;
    317         return true;
    318     }
    319     return m0xm1 < 0;
    320 }
    321 
    322 // the original angle is too short to get meaningful sector information
    323 // lengthen it until it is long enough to be meaningful or leave it unset if lengthening it
    324 // would cause it to intersect one of the adjacent angles
    325 bool SkOpAngle::computeSector() {
    326     if (fComputedSector) {
    327         return !fUnorderable;
    328     }
    329     fComputedSector = true;
    330     bool stepUp = fStart->t() < fEnd->t();
    331     const SkOpSpanBase* checkEnd = fEnd;
    332     if (checkEnd->final() && stepUp) {
    333         fUnorderable = true;
    334         return false;
    335     }
    336     do {
    337 // advance end
    338         const SkOpSegment* other = checkEnd->segment();
    339         const SkOpSpanBase* oSpan = other->head();
    340         do {
    341             if (oSpan->segment() != segment()) {
    342                 continue;
    343             }
    344             if (oSpan == checkEnd) {
    345                 continue;
    346             }
    347             if (!approximately_equal(oSpan->t(), checkEnd->t())) {
    348                 continue;
    349             }
    350             goto recomputeSector;
    351         } while (!oSpan->final() && (oSpan = oSpan->upCast()->next()));
    352         checkEnd = stepUp ? !checkEnd->final()
    353                 ? checkEnd->upCast()->next() : NULL
    354                 : checkEnd->prev();
    355     } while (checkEnd);
    356 recomputeSector:
    357     SkOpSpanBase* computedEnd = stepUp ? checkEnd ? checkEnd->prev() : fEnd->segment()->head()
    358             : checkEnd ? checkEnd->upCast()->next() : fEnd->segment()->tail();
    359     if (checkEnd == fEnd || computedEnd == fEnd || computedEnd == fStart) {
    360         fUnorderable = true;
    361         return false;
    362     }
    363     if (stepUp != (fStart->t() < computedEnd->t())) {
    364         fUnorderable = true;
    365         return false;
    366     }
    367     SkOpSpanBase* saveEnd = fEnd;
    368     fComputedEnd = fEnd = computedEnd;
    369     setSpans();
    370     setSector();
    371     fEnd = saveEnd;
    372     return !fUnorderable;
    373 }
    374 
    375 int SkOpAngle::convexHullOverlaps(const SkOpAngle* rh) const {
    376     const SkDVector* sweep = this->fSweep;
    377     const SkDVector* tweep = rh->fSweep;
    378     double s0xs1 = sweep[0].crossCheck(sweep[1]);
    379     double s0xt0 = sweep[0].crossCheck(tweep[0]);
    380     double s1xt0 = sweep[1].crossCheck(tweep[0]);
    381     bool tBetweenS = s0xs1 > 0 ? s0xt0 > 0 && s1xt0 < 0 : s0xt0 < 0 && s1xt0 > 0;
    382     double s0xt1 = sweep[0].crossCheck(tweep[1]);
    383     double s1xt1 = sweep[1].crossCheck(tweep[1]);
    384     tBetweenS |= s0xs1 > 0 ? s0xt1 > 0 && s1xt1 < 0 : s0xt1 < 0 && s1xt1 > 0;
    385     double t0xt1 = tweep[0].crossCheck(tweep[1]);
    386     if (tBetweenS) {
    387         return -1;
    388     }
    389     if ((s0xt0 == 0 && s1xt1 == 0) || (s1xt0 == 0 && s0xt1 == 0)) {  // s0 to s1 equals t0 to t1
    390         return -1;
    391     }
    392     bool sBetweenT = t0xt1 > 0 ? s0xt0 < 0 && s0xt1 > 0 : s0xt0 > 0 && s0xt1 < 0;
    393     sBetweenT |= t0xt1 > 0 ? s1xt0 < 0 && s1xt1 > 0 : s1xt0 > 0 && s1xt1 < 0;
    394     if (sBetweenT) {
    395         return -1;
    396     }
    397     // if all of the sweeps are in the same half plane, then the order of any pair is enough
    398     if (s0xt0 >= 0 && s0xt1 >= 0 && s1xt0 >= 0 && s1xt1 >= 0) {
    399         return 0;
    400     }
    401     if (s0xt0 <= 0 && s0xt1 <= 0 && s1xt0 <= 0 && s1xt1 <= 0) {
    402         return 1;
    403     }
    404     // if the outside sweeps are greater than 180 degress:
    405         // first assume the inital tangents are the ordering
    406         // if the midpoint direction matches the inital order, that is enough
    407     SkDVector m0 = this->segment()->dPtAtT(this->midT()) - this->fCurvePart[0];
    408     SkDVector m1 = rh->segment()->dPtAtT(rh->midT()) - rh->fCurvePart[0];
    409     double m0xm1 = m0.crossCheck(m1);
    410     if (s0xt0 > 0 && m0xm1 > 0) {
    411         return 0;
    412     }
    413     if (s0xt0 < 0 && m0xm1 < 0) {
    414         return 1;
    415     }
    416     if (tangentsDiverge(rh, s0xt0)) {
    417         return s0xt0 < 0;
    418     }
    419     return m0xm1 < 0;
    420 }
    421 
    422 // OPTIMIZATION: longest can all be either lazily computed here or precomputed in setup
    423 double SkOpAngle::distEndRatio(double dist) const {
    424     double longest = 0;
    425     const SkOpSegment& segment = *this->segment();
    426     int ptCount = SkPathOpsVerbToPoints(segment.verb());
    427     const SkPoint* pts = segment.pts();
    428     for (int idx1 = 0; idx1 <= ptCount - 1; ++idx1) {
    429         for (int idx2 = idx1 + 1; idx2 <= ptCount; ++idx2) {
    430             if (idx1 == idx2) {
    431                 continue;
    432             }
    433             SkDVector v;
    434             v.set(pts[idx2] - pts[idx1]);
    435             double lenSq = v.lengthSquared();
    436             longest = SkTMax(longest, lenSq);
    437         }
    438     }
    439     return sqrt(longest) / dist;
    440 }
    441 
    442 bool SkOpAngle::endsIntersect(SkOpAngle* rh) {
    443     SkPath::Verb lVerb = this->segment()->verb();
    444     SkPath::Verb rVerb = rh->segment()->verb();
    445     int lPts = SkPathOpsVerbToPoints(lVerb);
    446     int rPts = SkPathOpsVerbToPoints(rVerb);
    447     SkDLine rays[] = {{{this->fCurvePart[0], rh->fCurvePart[rPts]}},
    448             {{this->fCurvePart[0], this->fCurvePart[lPts]}}};
    449     if (rays[0][1] == rays[1][1]) {
    450         return checkParallel(rh);
    451     }
    452     double smallTs[2] = {-1, -1};
    453     bool limited[2] = {false, false};
    454     for (int index = 0; index < 2; ++index) {
    455         SkPath::Verb cVerb = index ? rVerb : lVerb;
    456         // if the curve is a line, then the line and the ray intersect only at their crossing
    457         if (cVerb == SkPath::kLine_Verb) {
    458             continue;
    459         }
    460         const SkOpSegment& segment = index ? *rh->segment() : *this->segment();
    461         SkIntersections i;
    462         (*CurveIntersectRay[cVerb])(segment.pts(), segment.weight(), rays[index], &i);
    463         double tStart = index ? rh->fStart->t() : this->fStart->t();
    464         double tEnd = index ? rh->fComputedEnd->t() : this->fComputedEnd->t();
    465         bool testAscends = tStart < (index ? rh->fComputedEnd->t() : this->fComputedEnd->t());
    466         double t = testAscends ? 0 : 1;
    467         for (int idx2 = 0; idx2 < i.used(); ++idx2) {
    468             double testT = i[0][idx2];
    469             if (!approximately_between_orderable(tStart, testT, tEnd)) {
    470                 continue;
    471             }
    472             if (approximately_equal_orderable(tStart, testT)) {
    473                 continue;
    474             }
    475             smallTs[index] = t = testAscends ? SkTMax(t, testT) : SkTMin(t, testT);
    476             limited[index] = approximately_equal_orderable(t, tEnd);
    477         }
    478     }
    479     bool sRayLonger = false;
    480     SkDVector sCept = {0, 0};
    481     double sCeptT = -1;
    482     int sIndex = -1;
    483     bool useIntersect = false;
    484     for (int index = 0; index < 2; ++index) {
    485         if (smallTs[index] < 0) {
    486             continue;
    487         }
    488         const SkOpSegment& segment = index ? *rh->segment() : *this->segment();
    489         const SkDPoint& dPt = segment.dPtAtT(smallTs[index]);
    490         SkDVector cept = dPt - rays[index][0];
    491         // If this point is on the curve, it should have been detected earlier by ordinary
    492         // curve intersection. This may be hard to determine in general, but for lines,
    493         // the point could be close to or equal to its end, but shouldn't be near the start.
    494         if ((index ? lPts : rPts) == 1) {
    495             SkDVector total = rays[index][1] - rays[index][0];
    496             if (cept.lengthSquared() * 2 < total.lengthSquared()) {
    497                 continue;
    498             }
    499         }
    500         SkDVector end = rays[index][1] - rays[index][0];
    501         if (cept.fX * end.fX < 0 || cept.fY * end.fY < 0) {
    502             continue;
    503         }
    504         double rayDist = cept.length();
    505         double endDist = end.length();
    506         bool rayLonger = rayDist > endDist;
    507         if (limited[0] && limited[1] && rayLonger) {
    508             useIntersect = true;
    509             sRayLonger = rayLonger;
    510             sCept = cept;
    511             sCeptT = smallTs[index];
    512             sIndex = index;
    513             break;
    514         }
    515         double delta = fabs(rayDist - endDist);
    516         double minX, minY, maxX, maxY;
    517         minX = minY = SK_ScalarInfinity;
    518         maxX = maxY = -SK_ScalarInfinity;
    519         const SkDCurve& curve = index ? rh->fCurvePart : this->fCurvePart;
    520         int ptCount = index ? rPts : lPts;
    521         for (int idx2 = 0; idx2 <= ptCount; ++idx2) {
    522             minX = SkTMin(minX, curve[idx2].fX);
    523             minY = SkTMin(minY, curve[idx2].fY);
    524             maxX = SkTMax(maxX, curve[idx2].fX);
    525             maxY = SkTMax(maxY, curve[idx2].fY);
    526         }
    527         double maxWidth = SkTMax(maxX - minX, maxY - minY);
    528         delta /= maxWidth;
    529         if (delta > 1e-3 && (useIntersect ^= true)) {  // FIXME: move this magic number
    530             sRayLonger = rayLonger;
    531             sCept = cept;
    532             sCeptT = smallTs[index];
    533             sIndex = index;
    534         }
    535     }
    536     if (useIntersect) {
    537         const SkDCurve& curve = sIndex ? rh->fCurvePart : this->fCurvePart;
    538         const SkOpSegment& segment = sIndex ? *rh->segment() : *this->segment();
    539         double tStart = sIndex ? rh->fStart->t() : fStart->t();
    540         SkDVector mid = segment.dPtAtT(tStart + (sCeptT - tStart) / 2) - curve[0];
    541         double septDir = mid.crossCheck(sCept);
    542         if (!septDir) {
    543             return checkParallel(rh);
    544         }
    545         return sRayLonger ^ (sIndex == 0) ^ (septDir < 0);
    546     } else {
    547         return checkParallel(rh);
    548     }
    549 }
    550 
    551 bool SkOpAngle::endToSide(const SkOpAngle* rh, bool* inside) const {
    552     const SkOpSegment* segment = this->segment();
    553     SkPath::Verb verb = segment->verb();
    554     SkDLine rayEnd;
    555     rayEnd[0].set(this->fEnd->pt());
    556     rayEnd[1] = rayEnd[0];
    557     SkDVector slopeAtEnd = (*CurveDSlopeAtT[verb])(segment->pts(), segment->weight(),
    558             this->fEnd->t());
    559     rayEnd[1].fX += slopeAtEnd.fY;
    560     rayEnd[1].fY -= slopeAtEnd.fX;
    561     SkIntersections iEnd;
    562     const SkOpSegment* oppSegment = rh->segment();
    563     SkPath::Verb oppVerb = oppSegment->verb();
    564     (*CurveIntersectRay[oppVerb])(oppSegment->pts(), oppSegment->weight(), rayEnd, &iEnd);
    565     double endDist;
    566     int closestEnd = iEnd.closestTo(rh->fStart->t(), rh->fEnd->t(), rayEnd[0], &endDist);
    567     if (closestEnd < 0) {
    568         return false;
    569     }
    570     if (!endDist) {
    571         return false;
    572     }
    573     SkDPoint start;
    574     start.set(this->fStart->pt());
    575     // OPTIMIZATION: multiple times in the code we find the max scalar
    576     double minX, minY, maxX, maxY;
    577     minX = minY = SK_ScalarInfinity;
    578     maxX = maxY = -SK_ScalarInfinity;
    579     const SkDCurve& curve = rh->fCurvePart;
    580     int oppPts = SkPathOpsVerbToPoints(oppVerb);
    581     for (int idx2 = 0; idx2 <= oppPts; ++idx2) {
    582         minX = SkTMin(minX, curve[idx2].fX);
    583         minY = SkTMin(minY, curve[idx2].fY);
    584         maxX = SkTMax(maxX, curve[idx2].fX);
    585         maxY = SkTMax(maxY, curve[idx2].fY);
    586     }
    587     double maxWidth = SkTMax(maxX - minX, maxY - minY);
    588     endDist /= maxWidth;
    589     if (endDist < 5e-11) {  // empirically found
    590         return false;
    591     }
    592     const SkDPoint* endPt = &rayEnd[0];
    593     SkDPoint oppPt = iEnd.pt(closestEnd);
    594     SkDVector vLeft = *endPt - start;
    595     SkDVector vRight = oppPt - start;
    596     double dir = vLeft.crossCheck(vRight);
    597     if (!dir) {
    598         return false;
    599     }
    600     *inside = dir < 0;
    601     return true;
    602 }
    603 
    604 /*      y<0 y==0 y>0  x<0 x==0 x>0 xy<0 xy==0 xy>0
    605     0    x                      x               x
    606     1    x                      x          x
    607     2    x                      x    x
    608     3    x                  x        x
    609     4    x             x             x
    610     5    x             x                   x
    611     6    x             x                        x
    612     7         x        x                        x
    613     8             x    x                        x
    614     9             x    x                   x
    615     10            x    x             x
    616     11            x         x        x
    617     12            x             x    x
    618     13            x             x          x
    619     14            x             x               x
    620     15        x                 x               x
    621 */
    622 int SkOpAngle::findSector(SkPath::Verb verb, double x, double y) const {
    623     double absX = fabs(x);
    624     double absY = fabs(y);
    625     double xy = SkPath::kLine_Verb == verb || !AlmostEqualUlps(absX, absY) ? absX - absY : 0;
    626     // If there are four quadrants and eight octants, and since the Latin for sixteen is sedecim,
    627     // one could coin the term sedecimant for a space divided into 16 sections.
    628    // http://english.stackexchange.com/questions/133688/word-for-something-partitioned-into-16-parts
    629     static const int sedecimant[3][3][3] = {
    630     //       y<0           y==0           y>0
    631     //   x<0 x==0 x>0  x<0 x==0 x>0  x<0 x==0 x>0
    632         {{ 4,  3,  2}, { 7, -1, 15}, {10, 11, 12}},  // abs(x) <  abs(y)
    633         {{ 5, -1,  1}, {-1, -1, -1}, { 9, -1, 13}},  // abs(x) == abs(y)
    634         {{ 6,  3,  0}, { 7, -1, 15}, { 8, 11, 14}},  // abs(x) >  abs(y)
    635     };
    636     int sector = sedecimant[(xy >= 0) + (xy > 0)][(y >= 0) + (y > 0)][(x >= 0) + (x > 0)] * 2 + 1;
    637 //    SkASSERT(SkPath::kLine_Verb == verb || sector >= 0);
    638     return sector;
    639 }
    640 
    641 SkOpGlobalState* SkOpAngle::globalState() const {
    642     return this->segment()->globalState();
    643 }
    644 
    645 
    646 // OPTIMIZE: if this loops to only one other angle, after first compare fails, insert on other side
    647 // OPTIMIZE: return where insertion succeeded. Then, start next insertion on opposite side
    648 void SkOpAngle::insert(SkOpAngle* angle) {
    649     if (angle->fNext) {
    650         if (loopCount() >= angle->loopCount()) {
    651             if (!merge(angle)) {
    652                 return;
    653             }
    654         } else if (fNext) {
    655             if (!angle->merge(this)) {
    656                 return;
    657             }
    658         } else {
    659             angle->insert(this);
    660         }
    661         return;
    662     }
    663     bool singleton = NULL == fNext;
    664     if (singleton) {
    665         fNext = this;
    666     }
    667     SkOpAngle* next = fNext;
    668     if (next->fNext == this) {
    669         if (singleton || angle->after(this)) {
    670             this->fNext = angle;
    671             angle->fNext = next;
    672         } else {
    673             next->fNext = angle;
    674             angle->fNext = this;
    675         }
    676         debugValidateNext();
    677         return;
    678     }
    679     SkOpAngle* last = this;
    680     do {
    681         SkASSERT(last->fNext == next);
    682         if (angle->after(last)) {
    683             last->fNext = angle;
    684             angle->fNext = next;
    685             debugValidateNext();
    686             return;
    687         }
    688         last = next;
    689         next = next->fNext;
    690         if (last == this) {
    691             if (next->fUnorderable) {
    692                 fUnorderable = true;
    693             } else {
    694                 globalState()->setAngleCoincidence();
    695                 this->fNext = angle;
    696                 angle->fNext = next;
    697                 angle->fCheckCoincidence = true;
    698             }
    699             return;
    700         }
    701     } while (true);
    702 }
    703 
    704 SkOpSpanBase* SkOpAngle::lastMarked() const {
    705     if (fLastMarked) {
    706         if (fLastMarked->chased()) {
    707             return NULL;
    708         }
    709         fLastMarked->setChased(true);
    710     }
    711     return fLastMarked;
    712 }
    713 
    714 bool SkOpAngle::loopContains(const SkOpAngle* angle) const {
    715     if (!fNext) {
    716         return false;
    717     }
    718     const SkOpAngle* first = this;
    719     const SkOpAngle* loop = this;
    720     const SkOpSegment* tSegment = angle->fStart->segment();
    721     double tStart = angle->fStart->t();
    722     double tEnd = angle->fEnd->t();
    723     do {
    724         const SkOpSegment* lSegment = loop->fStart->segment();
    725         if (lSegment != tSegment) {
    726             continue;
    727         }
    728         double lStart = loop->fStart->t();
    729         if (lStart != tEnd) {
    730             continue;
    731         }
    732         double lEnd = loop->fEnd->t();
    733         if (lEnd == tStart) {
    734             return true;
    735         }
    736     } while ((loop = loop->fNext) != first);
    737     return false;
    738 }
    739 
    740 int SkOpAngle::loopCount() const {
    741     int count = 0;
    742     const SkOpAngle* first = this;
    743     const SkOpAngle* next = this;
    744     do {
    745         next = next->fNext;
    746         ++count;
    747     } while (next && next != first);
    748     return count;
    749 }
    750 
    751 bool SkOpAngle::merge(SkOpAngle* angle) {
    752     SkASSERT(fNext);
    753     SkASSERT(angle->fNext);
    754     SkOpAngle* working = angle;
    755     do {
    756         if (this == working) {
    757             return false;
    758         }
    759         working = working->fNext;
    760     } while (working != angle);
    761     do {
    762         SkOpAngle* next = working->fNext;
    763         working->fNext = NULL;
    764         insert(working);
    765         working = next;
    766     } while (working != angle);
    767     // it's likely that a pair of the angles are unorderable
    768     debugValidateNext();
    769     return true;
    770 }
    771 
    772 double SkOpAngle::midT() const {
    773     return (fStart->t() + fEnd->t()) / 2;
    774 }
    775 
    776 bool SkOpAngle::midToSide(const SkOpAngle* rh, bool* inside) const {
    777     const SkOpSegment* segment = this->segment();
    778     SkPath::Verb verb = segment->verb();
    779     const SkPoint& startPt = this->fStart->pt();
    780     const SkPoint& endPt = this->fEnd->pt();
    781     SkDPoint dStartPt;
    782     dStartPt.set(startPt);
    783     SkDLine rayMid;
    784     rayMid[0].fX = (startPt.fX + endPt.fX) / 2;
    785     rayMid[0].fY = (startPt.fY + endPt.fY) / 2;
    786     rayMid[1].fX = rayMid[0].fX + (endPt.fY - startPt.fY);
    787     rayMid[1].fY = rayMid[0].fY - (endPt.fX - startPt.fX);
    788     SkIntersections iMid;
    789     (*CurveIntersectRay[verb])(segment->pts(), segment->weight(), rayMid, &iMid);
    790     int iOutside = iMid.mostOutside(this->fStart->t(), this->fEnd->t(), dStartPt);
    791     if (iOutside < 0) {
    792         return false;
    793     }
    794     const SkOpSegment* oppSegment = rh->segment();
    795     SkPath::Verb oppVerb = oppSegment->verb();
    796     SkIntersections oppMid;
    797     (*CurveIntersectRay[oppVerb])(oppSegment->pts(), oppSegment->weight(), rayMid, &oppMid);
    798     int oppOutside = oppMid.mostOutside(rh->fStart->t(), rh->fEnd->t(), dStartPt);
    799     if (oppOutside < 0) {
    800         return false;
    801     }
    802     SkDVector iSide = iMid.pt(iOutside) - dStartPt;
    803     SkDVector oppSide = oppMid.pt(oppOutside) - dStartPt;
    804     double dir = iSide.crossCheck(oppSide);
    805     if (!dir) {
    806         return false;
    807     }
    808     *inside = dir < 0;
    809     return true;
    810 }
    811 
    812 bool SkOpAngle::oppositePlanes(const SkOpAngle* rh) const {
    813     int startSpan = abs(rh->fSectorStart - fSectorStart);
    814     return startSpan >= 8;
    815 }
    816 
    817 bool SkOpAngle::orderable(SkOpAngle* rh) {
    818     int result;
    819     if (!fIsCurve) {
    820         if (!rh->fIsCurve) {
    821             double leftX = fTangentHalf.dx();
    822             double leftY = fTangentHalf.dy();
    823             double rightX = rh->fTangentHalf.dx();
    824             double rightY = rh->fTangentHalf.dy();
    825             double x_ry = leftX * rightY;
    826             double rx_y = rightX * leftY;
    827             if (x_ry == rx_y) {
    828                 if (leftX * rightX < 0 || leftY * rightY < 0) {
    829                     return true;  // exactly 180 degrees apart
    830                 }
    831                 goto unorderable;
    832             }
    833             SkASSERT(x_ry != rx_y); // indicates an undetected coincidence -- worth finding earlier
    834             return x_ry < rx_y;
    835         }
    836         if ((result = allOnOneSide(rh)) >= 0) {
    837             return result;
    838         }
    839         if (fUnorderable || approximately_zero(rh->fSide)) {
    840             goto unorderable;
    841         }
    842     } else if (!rh->fIsCurve) {
    843         if ((result = rh->allOnOneSide(this)) >= 0) {
    844             return !result;
    845         }
    846         if (rh->fUnorderable || approximately_zero(fSide)) {
    847             goto unorderable;
    848         }
    849     }
    850     if ((result = convexHullOverlaps(rh)) >= 0) {
    851         return result;
    852     }
    853     return endsIntersect(rh);
    854 unorderable:
    855     fUnorderable = true;
    856     rh->fUnorderable = true;
    857     return true;
    858 }
    859 
    860 // OPTIMIZE: if this shows up in a profile, add a previous pointer
    861 // as is, this should be rarely called
    862 SkOpAngle* SkOpAngle::previous() const {
    863     SkOpAngle* last = fNext;
    864     do {
    865         SkOpAngle* next = last->fNext;
    866         if (next == this) {
    867             return last;
    868         }
    869         last = next;
    870     } while (true);
    871 }
    872 
    873 SkOpSegment* SkOpAngle::segment() const {
    874     return fStart->segment();
    875 }
    876 
    877 void SkOpAngle::set(SkOpSpanBase* start, SkOpSpanBase* end) {
    878     fStart = start;
    879     fComputedEnd = fEnd = end;
    880     SkASSERT(start != end);
    881     fNext = NULL;
    882     fComputeSector = fComputedSector = fCheckCoincidence = false;
    883     setSpans();
    884     setSector();
    885     SkDEBUGCODE(fID = start ? start->globalState()->nextAngleID() : -1);
    886 }
    887 
    888 void SkOpAngle::setCurveHullSweep() {
    889     fUnorderedSweep = false;
    890     fSweep[0] = fCurvePart[1] - fCurvePart[0];
    891     const SkOpSegment* segment = fStart->segment();
    892     if (SkPath::kLine_Verb == segment->verb()) {
    893         fSweep[1] = fSweep[0];
    894         return;
    895     }
    896     fSweep[1] = fCurvePart[2] - fCurvePart[0];
    897     if (SkPath::kCubic_Verb != segment->verb()) {
    898         if (!fSweep[0].fX && !fSweep[0].fY) {
    899             fSweep[0] = fSweep[1];
    900         }
    901         return;
    902     }
    903     SkDVector thirdSweep = fCurvePart[3] - fCurvePart[0];
    904     if (fSweep[0].fX == 0 && fSweep[0].fY == 0) {
    905         fSweep[0] = fSweep[1];
    906         fSweep[1] = thirdSweep;
    907         if (fSweep[0].fX == 0 && fSweep[0].fY == 0) {
    908             fSweep[0] = fSweep[1];
    909             fCurvePart[1] = fCurvePart[3];
    910             fIsCurve = false;
    911         }
    912         return;
    913     }
    914     double s1x3 = fSweep[0].crossCheck(thirdSweep);
    915     double s3x2 = thirdSweep.crossCheck(fSweep[1]);
    916     if (s1x3 * s3x2 >= 0) {  // if third vector is on or between first two vectors
    917         return;
    918     }
    919     double s2x1 = fSweep[1].crossCheck(fSweep[0]);
    920     // FIXME: If the sweep of the cubic is greater than 180 degrees, we're in trouble
    921     // probably such wide sweeps should be artificially subdivided earlier so that never happens
    922     SkASSERT(s1x3 * s2x1 < 0 || s1x3 * s3x2 < 0);
    923     if (s3x2 * s2x1 < 0) {
    924         SkASSERT(s2x1 * s1x3 > 0);
    925         fSweep[0] = fSweep[1];
    926         fUnorderedSweep = true;
    927     }
    928     fSweep[1] = thirdSweep;
    929 }
    930 
    931 void SkOpAngle::setSpans() {
    932     fUnorderable = false;
    933     fLastMarked = NULL;
    934     if (!fStart) {
    935         fUnorderable = true;
    936         return;
    937     }
    938     const SkOpSegment* segment = fStart->segment();
    939     const SkPoint* pts = segment->pts();
    940     SkDEBUGCODE(fCurvePart.fVerb = SkPath::kCubic_Verb);
    941     SkDEBUGCODE(fCurvePart[2].fX = fCurvePart[2].fY = fCurvePart[3].fX = fCurvePart[3].fY
    942             = SK_ScalarNaN);
    943     SkDEBUGCODE(fCurvePart.fVerb = segment->verb());
    944     segment->subDivide(fStart, fEnd, &fCurvePart);
    945     setCurveHullSweep();
    946     const SkPath::Verb verb = segment->verb();
    947     if (verb != SkPath::kLine_Verb
    948             && !(fIsCurve = fSweep[0].crossCheck(fSweep[1]) != 0)) {
    949         SkDLine lineHalf;
    950         lineHalf[0].set(fCurvePart[0].asSkPoint());
    951         lineHalf[1].set(fCurvePart[SkPathOpsVerbToPoints(verb)].asSkPoint());
    952         fTangentHalf.lineEndPoints(lineHalf);
    953         fSide = 0;
    954     }
    955     switch (verb) {
    956     case SkPath::kLine_Verb: {
    957         SkASSERT(fStart != fEnd);
    958         const SkPoint& cP1 = pts[fStart->t() < fEnd->t()];
    959         SkDLine lineHalf;
    960         lineHalf[0].set(fStart->pt());
    961         lineHalf[1].set(cP1);
    962         fTangentHalf.lineEndPoints(lineHalf);
    963         fSide = 0;
    964         fIsCurve = false;
    965         } return;
    966     case SkPath::kQuad_Verb:
    967     case SkPath::kConic_Verb: {
    968         SkLineParameters tangentPart;
    969         (void) tangentPart.quadEndPoints(fCurvePart.fQuad);
    970         fSide = -tangentPart.pointDistance(fCurvePart[2]);  // not normalized -- compare sign only
    971         } break;
    972     case SkPath::kCubic_Verb: {
    973         SkLineParameters tangentPart;
    974         (void) tangentPart.cubicPart(fCurvePart.fCubic);
    975         fSide = -tangentPart.pointDistance(fCurvePart[3]);
    976         double testTs[4];
    977         // OPTIMIZATION: keep inflections precomputed with cubic segment?
    978         int testCount = SkDCubic::FindInflections(pts, testTs);
    979         double startT = fStart->t();
    980         double endT = fEnd->t();
    981         double limitT = endT;
    982         int index;
    983         for (index = 0; index < testCount; ++index) {
    984             if (!::between(startT, testTs[index], limitT)) {
    985                 testTs[index] = -1;
    986             }
    987         }
    988         testTs[testCount++] = startT;
    989         testTs[testCount++] = endT;
    990         SkTQSort<double>(testTs, &testTs[testCount - 1]);
    991         double bestSide = 0;
    992         int testCases = (testCount << 1) - 1;
    993         index = 0;
    994         while (testTs[index] < 0) {
    995             ++index;
    996         }
    997         index <<= 1;
    998         for (; index < testCases; ++index) {
    999             int testIndex = index >> 1;
   1000             double testT = testTs[testIndex];
   1001             if (index & 1) {
   1002                 testT = (testT + testTs[testIndex + 1]) / 2;
   1003             }
   1004             // OPTIMIZE: could avoid call for t == startT, endT
   1005             SkDPoint pt = dcubic_xy_at_t(pts, segment->weight(), testT);
   1006             SkLineParameters tangentPart;
   1007             tangentPart.cubicEndPoints(fCurvePart.fCubic);
   1008             double testSide = tangentPart.pointDistance(pt);
   1009             if (fabs(bestSide) < fabs(testSide)) {
   1010                 bestSide = testSide;
   1011             }
   1012         }
   1013         fSide = -bestSide;  // compare sign only
   1014         } break;
   1015     default:
   1016         SkASSERT(0);
   1017     }
   1018 }
   1019 
   1020 void SkOpAngle::setSector() {
   1021     if (!fStart) {
   1022         fUnorderable = true;
   1023         return;
   1024     }
   1025     const SkOpSegment* segment = fStart->segment();
   1026     SkPath::Verb verb = segment->verb();
   1027     fSectorStart = this->findSector(verb, fSweep[0].fX, fSweep[0].fY);
   1028     if (fSectorStart < 0) {
   1029         goto deferTilLater;
   1030     }
   1031     if (!fIsCurve) {  // if it's a line or line-like, note that both sectors are the same
   1032         SkASSERT(fSectorStart >= 0);
   1033         fSectorEnd = fSectorStart;
   1034         fSectorMask = 1 << fSectorStart;
   1035         return;
   1036     }
   1037     SkASSERT(SkPath::kLine_Verb != verb);
   1038     fSectorEnd = this->findSector(verb, fSweep[1].fX, fSweep[1].fY);
   1039     if (fSectorEnd < 0) {
   1040 deferTilLater:
   1041         fSectorStart = fSectorEnd = -1;
   1042         fSectorMask = 0;
   1043         fComputeSector = true;  // can't determine sector until segment length can be found
   1044         return;
   1045     }
   1046     if (fSectorEnd == fSectorStart
   1047             && (fSectorStart & 3) != 3) { // if the sector has no span, it can't be an exact angle
   1048         fSectorMask = 1 << fSectorStart;
   1049         return;
   1050     }
   1051     bool crossesZero = this->checkCrossesZero();
   1052     int start = SkTMin(fSectorStart, fSectorEnd);
   1053     bool curveBendsCCW = (fSectorStart == start) ^ crossesZero;
   1054     // bump the start and end of the sector span if they are on exact compass points
   1055     if ((fSectorStart & 3) == 3) {
   1056         fSectorStart = (fSectorStart + (curveBendsCCW ? 1 : 31)) & 0x1f;
   1057     }
   1058     if ((fSectorEnd & 3) == 3) {
   1059         fSectorEnd = (fSectorEnd + (curveBendsCCW ? 31 : 1)) & 0x1f;
   1060     }
   1061     crossesZero = this->checkCrossesZero();
   1062     start = SkTMin(fSectorStart, fSectorEnd);
   1063     int end = SkTMax(fSectorStart, fSectorEnd);
   1064     if (!crossesZero) {
   1065         fSectorMask = (unsigned) -1 >> (31 - end + start) << start;
   1066     } else {
   1067         fSectorMask = (unsigned) -1 >> (31 - start) | (-1 << end);
   1068     }
   1069 }
   1070 
   1071 SkOpSpan* SkOpAngle::starter() {
   1072     return fStart->starter(fEnd);
   1073 }
   1074 
   1075 bool SkOpAngle::tangentsDiverge(const SkOpAngle* rh, double s0xt0) const {
   1076     if (s0xt0 == 0) {
   1077         return false;
   1078     }
   1079     // if the ctrl tangents are not nearly parallel, use them
   1080     // solve for opposite direction displacement scale factor == m
   1081     // initial dir = v1.cross(v2) == v2.x * v1.y - v2.y * v1.x
   1082     // displacement of q1[1] : dq1 = { -m * v1.y, m * v1.x } + q1[1]
   1083     // straight angle when : v2.x * (dq1.y - q1[0].y) == v2.y * (dq1.x - q1[0].x)
   1084     //                       v2.x * (m * v1.x + v1.y) == v2.y * (-m * v1.y + v1.x)
   1085     // - m * (v2.x * v1.x + v2.y * v1.y) == v2.x * v1.y - v2.y * v1.x
   1086     // m = (v2.y * v1.x - v2.x * v1.y) / (v2.x * v1.x + v2.y * v1.y)
   1087     // m = v1.cross(v2) / v1.dot(v2)
   1088     const SkDVector* sweep = fSweep;
   1089     const SkDVector* tweep = rh->fSweep;
   1090     double s0dt0 = sweep[0].dot(tweep[0]);
   1091     if (!s0dt0) {
   1092         return true;
   1093     }
   1094     SkASSERT(s0dt0 != 0);
   1095     double m = s0xt0 / s0dt0;
   1096     double sDist = sweep[0].length() * m;
   1097     double tDist = tweep[0].length() * m;
   1098     bool useS = fabs(sDist) < fabs(tDist);
   1099     double mFactor = fabs(useS ? this->distEndRatio(sDist) : rh->distEndRatio(tDist));
   1100     return mFactor < 2400;  // empirically found limit
   1101 }
   1102