Home | History | Annotate | Download | only in Core
      1 //==- CoreEngine.cpp - Path-Sensitive Dataflow Engine ------------*- C++ -*-//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 //  This file defines a generic engine for intraprocedural, path-sensitive,
     11 //  dataflow analysis via graph reachability engine.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 #include "clang/StaticAnalyzer/Core/PathSensitive/CoreEngine.h"
     16 #include "clang/AST/Expr.h"
     17 #include "clang/AST/ExprCXX.h"
     18 #include "clang/AST/StmtCXX.h"
     19 #include "clang/StaticAnalyzer/Core/PathSensitive/AnalysisManager.h"
     20 #include "clang/StaticAnalyzer/Core/PathSensitive/ExprEngine.h"
     21 #include "llvm/ADT/DenseMap.h"
     22 #include "llvm/ADT/Statistic.h"
     23 #include "llvm/Support/Casting.h"
     24 
     25 using namespace clang;
     26 using namespace ento;
     27 
     28 #define DEBUG_TYPE "CoreEngine"
     29 
     30 STATISTIC(NumSteps,
     31             "The # of steps executed.");
     32 STATISTIC(NumReachedMaxSteps,
     33             "The # of times we reached the max number of steps.");
     34 STATISTIC(NumPathsExplored,
     35             "The # of paths explored by the analyzer.");
     36 
     37 //===----------------------------------------------------------------------===//
     38 // Worklist classes for exploration of reachable states.
     39 //===----------------------------------------------------------------------===//
     40 
     41 WorkList::Visitor::~Visitor() {}
     42 
     43 namespace {
     44 class DFS : public WorkList {
     45   SmallVector<WorkListUnit,20> Stack;
     46 public:
     47   bool hasWork() const override {
     48     return !Stack.empty();
     49   }
     50 
     51   void enqueue(const WorkListUnit& U) override {
     52     Stack.push_back(U);
     53   }
     54 
     55   WorkListUnit dequeue() override {
     56     assert (!Stack.empty());
     57     const WorkListUnit& U = Stack.back();
     58     Stack.pop_back(); // This technically "invalidates" U, but we are fine.
     59     return U;
     60   }
     61 
     62   bool visitItemsInWorkList(Visitor &V) override {
     63     for (SmallVectorImpl<WorkListUnit>::iterator
     64          I = Stack.begin(), E = Stack.end(); I != E; ++I) {
     65       if (V.visit(*I))
     66         return true;
     67     }
     68     return false;
     69   }
     70 };
     71 
     72 class BFS : public WorkList {
     73   std::deque<WorkListUnit> Queue;
     74 public:
     75   bool hasWork() const override {
     76     return !Queue.empty();
     77   }
     78 
     79   void enqueue(const WorkListUnit& U) override {
     80     Queue.push_back(U);
     81   }
     82 
     83   WorkListUnit dequeue() override {
     84     WorkListUnit U = Queue.front();
     85     Queue.pop_front();
     86     return U;
     87   }
     88 
     89   bool visitItemsInWorkList(Visitor &V) override {
     90     for (std::deque<WorkListUnit>::iterator
     91          I = Queue.begin(), E = Queue.end(); I != E; ++I) {
     92       if (V.visit(*I))
     93         return true;
     94     }
     95     return false;
     96   }
     97 };
     98 
     99 } // end anonymous namespace
    100 
    101 // Place the dstor for WorkList here because it contains virtual member
    102 // functions, and we the code for the dstor generated in one compilation unit.
    103 WorkList::~WorkList() {}
    104 
    105 WorkList *WorkList::makeDFS() { return new DFS(); }
    106 WorkList *WorkList::makeBFS() { return new BFS(); }
    107 
    108 namespace {
    109   class BFSBlockDFSContents : public WorkList {
    110     std::deque<WorkListUnit> Queue;
    111     SmallVector<WorkListUnit,20> Stack;
    112   public:
    113     bool hasWork() const override {
    114       return !Queue.empty() || !Stack.empty();
    115     }
    116 
    117     void enqueue(const WorkListUnit& U) override {
    118       if (U.getNode()->getLocation().getAs<BlockEntrance>())
    119         Queue.push_front(U);
    120       else
    121         Stack.push_back(U);
    122     }
    123 
    124     WorkListUnit dequeue() override {
    125       // Process all basic blocks to completion.
    126       if (!Stack.empty()) {
    127         const WorkListUnit& U = Stack.back();
    128         Stack.pop_back(); // This technically "invalidates" U, but we are fine.
    129         return U;
    130       }
    131 
    132       assert(!Queue.empty());
    133       // Don't use const reference.  The subsequent pop_back() might make it
    134       // unsafe.
    135       WorkListUnit U = Queue.front();
    136       Queue.pop_front();
    137       return U;
    138     }
    139     bool visitItemsInWorkList(Visitor &V) override {
    140       for (SmallVectorImpl<WorkListUnit>::iterator
    141            I = Stack.begin(), E = Stack.end(); I != E; ++I) {
    142         if (V.visit(*I))
    143           return true;
    144       }
    145       for (std::deque<WorkListUnit>::iterator
    146            I = Queue.begin(), E = Queue.end(); I != E; ++I) {
    147         if (V.visit(*I))
    148           return true;
    149       }
    150       return false;
    151     }
    152 
    153   };
    154 } // end anonymous namespace
    155 
    156 WorkList* WorkList::makeBFSBlockDFSContents() {
    157   return new BFSBlockDFSContents();
    158 }
    159 
    160 //===----------------------------------------------------------------------===//
    161 // Core analysis engine.
    162 //===----------------------------------------------------------------------===//
    163 
    164 /// ExecuteWorkList - Run the worklist algorithm for a maximum number of steps.
    165 bool CoreEngine::ExecuteWorkList(const LocationContext *L, unsigned Steps,
    166                                    ProgramStateRef InitState) {
    167 
    168   if (G.num_roots() == 0) { // Initialize the analysis by constructing
    169     // the root if none exists.
    170 
    171     const CFGBlock *Entry = &(L->getCFG()->getEntry());
    172 
    173     assert (Entry->empty() &&
    174             "Entry block must be empty.");
    175 
    176     assert (Entry->succ_size() == 1 &&
    177             "Entry block must have 1 successor.");
    178 
    179     // Mark the entry block as visited.
    180     FunctionSummaries->markVisitedBasicBlock(Entry->getBlockID(),
    181                                              L->getDecl(),
    182                                              L->getCFG()->getNumBlockIDs());
    183 
    184     // Get the solitary successor.
    185     const CFGBlock *Succ = *(Entry->succ_begin());
    186 
    187     // Construct an edge representing the
    188     // starting location in the function.
    189     BlockEdge StartLoc(Entry, Succ, L);
    190 
    191     // Set the current block counter to being empty.
    192     WList->setBlockCounter(BCounterFactory.GetEmptyCounter());
    193 
    194     if (!InitState)
    195       // Generate the root.
    196       generateNode(StartLoc, SubEng.getInitialState(L), nullptr);
    197     else
    198       generateNode(StartLoc, InitState, nullptr);
    199   }
    200 
    201   // Check if we have a steps limit
    202   bool UnlimitedSteps = Steps == 0;
    203 
    204   while (WList->hasWork()) {
    205     if (!UnlimitedSteps) {
    206       if (Steps == 0) {
    207         NumReachedMaxSteps++;
    208         break;
    209       }
    210       --Steps;
    211     }
    212 
    213     NumSteps++;
    214 
    215     const WorkListUnit& WU = WList->dequeue();
    216 
    217     // Set the current block counter.
    218     WList->setBlockCounter(WU.getBlockCounter());
    219 
    220     // Retrieve the node.
    221     ExplodedNode *Node = WU.getNode();
    222 
    223     dispatchWorkItem(Node, Node->getLocation(), WU);
    224   }
    225   SubEng.processEndWorklist(hasWorkRemaining());
    226   return WList->hasWork();
    227 }
    228 
    229 void CoreEngine::dispatchWorkItem(ExplodedNode* Pred, ProgramPoint Loc,
    230                                   const WorkListUnit& WU) {
    231   // Dispatch on the location type.
    232   switch (Loc.getKind()) {
    233     case ProgramPoint::BlockEdgeKind:
    234       HandleBlockEdge(Loc.castAs<BlockEdge>(), Pred);
    235       break;
    236 
    237     case ProgramPoint::BlockEntranceKind:
    238       HandleBlockEntrance(Loc.castAs<BlockEntrance>(), Pred);
    239       break;
    240 
    241     case ProgramPoint::BlockExitKind:
    242       assert (false && "BlockExit location never occur in forward analysis.");
    243       break;
    244 
    245     case ProgramPoint::CallEnterKind: {
    246       CallEnter CEnter = Loc.castAs<CallEnter>();
    247       SubEng.processCallEnter(CEnter, Pred);
    248       break;
    249     }
    250 
    251     case ProgramPoint::CallExitBeginKind:
    252       SubEng.processCallExit(Pred);
    253       break;
    254 
    255     case ProgramPoint::EpsilonKind: {
    256       assert(Pred->hasSinglePred() &&
    257              "Assume epsilon has exactly one predecessor by construction");
    258       ExplodedNode *PNode = Pred->getFirstPred();
    259       dispatchWorkItem(Pred, PNode->getLocation(), WU);
    260       break;
    261     }
    262     default:
    263       assert(Loc.getAs<PostStmt>() ||
    264              Loc.getAs<PostInitializer>() ||
    265              Loc.getAs<PostImplicitCall>() ||
    266              Loc.getAs<CallExitEnd>());
    267       HandlePostStmt(WU.getBlock(), WU.getIndex(), Pred);
    268       break;
    269   }
    270 }
    271 
    272 bool CoreEngine::ExecuteWorkListWithInitialState(const LocationContext *L,
    273                                                  unsigned Steps,
    274                                                  ProgramStateRef InitState,
    275                                                  ExplodedNodeSet &Dst) {
    276   bool DidNotFinish = ExecuteWorkList(L, Steps, InitState);
    277   for (ExplodedGraph::eop_iterator I = G.eop_begin(), E = G.eop_end(); I != E;
    278        ++I) {
    279     Dst.Add(*I);
    280   }
    281   return DidNotFinish;
    282 }
    283 
    284 void CoreEngine::HandleBlockEdge(const BlockEdge &L, ExplodedNode *Pred) {
    285 
    286   const CFGBlock *Blk = L.getDst();
    287   NodeBuilderContext BuilderCtx(*this, Blk, Pred);
    288 
    289   // Mark this block as visited.
    290   const LocationContext *LC = Pred->getLocationContext();
    291   FunctionSummaries->markVisitedBasicBlock(Blk->getBlockID(),
    292                                            LC->getDecl(),
    293                                            LC->getCFG()->getNumBlockIDs());
    294 
    295   // Check if we are entering the EXIT block.
    296   if (Blk == &(L.getLocationContext()->getCFG()->getExit())) {
    297 
    298     assert (L.getLocationContext()->getCFG()->getExit().size() == 0
    299             && "EXIT block cannot contain Stmts.");
    300 
    301     // Process the final state transition.
    302     SubEng.processEndOfFunction(BuilderCtx, Pred);
    303 
    304     // This path is done. Don't enqueue any more nodes.
    305     return;
    306   }
    307 
    308   // Call into the SubEngine to process entering the CFGBlock.
    309   ExplodedNodeSet dstNodes;
    310   BlockEntrance BE(Blk, Pred->getLocationContext());
    311   NodeBuilderWithSinks nodeBuilder(Pred, dstNodes, BuilderCtx, BE);
    312   SubEng.processCFGBlockEntrance(L, nodeBuilder, Pred);
    313 
    314   // Auto-generate a node.
    315   if (!nodeBuilder.hasGeneratedNodes()) {
    316     nodeBuilder.generateNode(Pred->State, Pred);
    317   }
    318 
    319   // Enqueue nodes onto the worklist.
    320   enqueue(dstNodes);
    321 }
    322 
    323 void CoreEngine::HandleBlockEntrance(const BlockEntrance &L,
    324                                        ExplodedNode *Pred) {
    325 
    326   // Increment the block counter.
    327   const LocationContext *LC = Pred->getLocationContext();
    328   unsigned BlockId = L.getBlock()->getBlockID();
    329   BlockCounter Counter = WList->getBlockCounter();
    330   Counter = BCounterFactory.IncrementCount(Counter, LC->getCurrentStackFrame(),
    331                                            BlockId);
    332   WList->setBlockCounter(Counter);
    333 
    334   // Process the entrance of the block.
    335   if (Optional<CFGElement> E = L.getFirstElement()) {
    336     NodeBuilderContext Ctx(*this, L.getBlock(), Pred);
    337     SubEng.processCFGElement(*E, Pred, 0, &Ctx);
    338   }
    339   else
    340     HandleBlockExit(L.getBlock(), Pred);
    341 }
    342 
    343 void CoreEngine::HandleBlockExit(const CFGBlock * B, ExplodedNode *Pred) {
    344 
    345   if (const Stmt *Term = B->getTerminator()) {
    346     switch (Term->getStmtClass()) {
    347       default:
    348         llvm_unreachable("Analysis for this terminator not implemented.");
    349 
    350       case Stmt::CXXBindTemporaryExprClass:
    351         HandleCleanupTemporaryBranch(
    352             cast<CXXBindTemporaryExpr>(B->getTerminator().getStmt()), B, Pred);
    353         return;
    354 
    355       // Model static initializers.
    356       case Stmt::DeclStmtClass:
    357         HandleStaticInit(cast<DeclStmt>(Term), B, Pred);
    358         return;
    359 
    360       case Stmt::BinaryOperatorClass: // '&&' and '||'
    361         HandleBranch(cast<BinaryOperator>(Term)->getLHS(), Term, B, Pred);
    362         return;
    363 
    364       case Stmt::BinaryConditionalOperatorClass:
    365       case Stmt::ConditionalOperatorClass:
    366         HandleBranch(cast<AbstractConditionalOperator>(Term)->getCond(),
    367                      Term, B, Pred);
    368         return;
    369 
    370         // FIXME: Use constant-folding in CFG construction to simplify this
    371         // case.
    372 
    373       case Stmt::ChooseExprClass:
    374         HandleBranch(cast<ChooseExpr>(Term)->getCond(), Term, B, Pred);
    375         return;
    376 
    377       case Stmt::CXXTryStmtClass: {
    378         // Generate a node for each of the successors.
    379         // Our logic for EH analysis can certainly be improved.
    380         for (CFGBlock::const_succ_iterator it = B->succ_begin(),
    381              et = B->succ_end(); it != et; ++it) {
    382           if (const CFGBlock *succ = *it) {
    383             generateNode(BlockEdge(B, succ, Pred->getLocationContext()),
    384                          Pred->State, Pred);
    385           }
    386         }
    387         return;
    388       }
    389 
    390       case Stmt::DoStmtClass:
    391         HandleBranch(cast<DoStmt>(Term)->getCond(), Term, B, Pred);
    392         return;
    393 
    394       case Stmt::CXXForRangeStmtClass:
    395         HandleBranch(cast<CXXForRangeStmt>(Term)->getCond(), Term, B, Pred);
    396         return;
    397 
    398       case Stmt::ForStmtClass:
    399         HandleBranch(cast<ForStmt>(Term)->getCond(), Term, B, Pred);
    400         return;
    401 
    402       case Stmt::ContinueStmtClass:
    403       case Stmt::BreakStmtClass:
    404       case Stmt::GotoStmtClass:
    405         break;
    406 
    407       case Stmt::IfStmtClass:
    408         HandleBranch(cast<IfStmt>(Term)->getCond(), Term, B, Pred);
    409         return;
    410 
    411       case Stmt::IndirectGotoStmtClass: {
    412         // Only 1 successor: the indirect goto dispatch block.
    413         assert (B->succ_size() == 1);
    414 
    415         IndirectGotoNodeBuilder
    416            builder(Pred, B, cast<IndirectGotoStmt>(Term)->getTarget(),
    417                    *(B->succ_begin()), this);
    418 
    419         SubEng.processIndirectGoto(builder);
    420         return;
    421       }
    422 
    423       case Stmt::ObjCForCollectionStmtClass: {
    424         // In the case of ObjCForCollectionStmt, it appears twice in a CFG:
    425         //
    426         //  (1) inside a basic block, which represents the binding of the
    427         //      'element' variable to a value.
    428         //  (2) in a terminator, which represents the branch.
    429         //
    430         // For (1), subengines will bind a value (i.e., 0 or 1) indicating
    431         // whether or not collection contains any more elements.  We cannot
    432         // just test to see if the element is nil because a container can
    433         // contain nil elements.
    434         HandleBranch(Term, Term, B, Pred);
    435         return;
    436       }
    437 
    438       case Stmt::SwitchStmtClass: {
    439         SwitchNodeBuilder builder(Pred, B, cast<SwitchStmt>(Term)->getCond(),
    440                                     this);
    441 
    442         SubEng.processSwitch(builder);
    443         return;
    444       }
    445 
    446       case Stmt::WhileStmtClass:
    447         HandleBranch(cast<WhileStmt>(Term)->getCond(), Term, B, Pred);
    448         return;
    449     }
    450   }
    451 
    452   assert (B->succ_size() == 1 &&
    453           "Blocks with no terminator should have at most 1 successor.");
    454 
    455   generateNode(BlockEdge(B, *(B->succ_begin()), Pred->getLocationContext()),
    456                Pred->State, Pred);
    457 }
    458 
    459 void CoreEngine::HandleBranch(const Stmt *Cond, const Stmt *Term,
    460                                 const CFGBlock * B, ExplodedNode *Pred) {
    461   assert(B->succ_size() == 2);
    462   NodeBuilderContext Ctx(*this, B, Pred);
    463   ExplodedNodeSet Dst;
    464   SubEng.processBranch(Cond, Term, Ctx, Pred, Dst,
    465                        *(B->succ_begin()), *(B->succ_begin()+1));
    466   // Enqueue the new frontier onto the worklist.
    467   enqueue(Dst);
    468 }
    469 
    470 void CoreEngine::HandleCleanupTemporaryBranch(const CXXBindTemporaryExpr *BTE,
    471                                               const CFGBlock *B,
    472                                               ExplodedNode *Pred) {
    473   assert(B->succ_size() == 2);
    474   NodeBuilderContext Ctx(*this, B, Pred);
    475   ExplodedNodeSet Dst;
    476   SubEng.processCleanupTemporaryBranch(BTE, Ctx, Pred, Dst, *(B->succ_begin()),
    477                                        *(B->succ_begin() + 1));
    478   // Enqueue the new frontier onto the worklist.
    479   enqueue(Dst);
    480 }
    481 
    482 void CoreEngine::HandleStaticInit(const DeclStmt *DS, const CFGBlock *B,
    483                                   ExplodedNode *Pred) {
    484   assert(B->succ_size() == 2);
    485   NodeBuilderContext Ctx(*this, B, Pred);
    486   ExplodedNodeSet Dst;
    487   SubEng.processStaticInitializer(DS, Ctx, Pred, Dst,
    488                                   *(B->succ_begin()), *(B->succ_begin()+1));
    489   // Enqueue the new frontier onto the worklist.
    490   enqueue(Dst);
    491 }
    492 
    493 
    494 void CoreEngine::HandlePostStmt(const CFGBlock *B, unsigned StmtIdx,
    495                                   ExplodedNode *Pred) {
    496   assert(B);
    497   assert(!B->empty());
    498 
    499   if (StmtIdx == B->size())
    500     HandleBlockExit(B, Pred);
    501   else {
    502     NodeBuilderContext Ctx(*this, B, Pred);
    503     SubEng.processCFGElement((*B)[StmtIdx], Pred, StmtIdx, &Ctx);
    504   }
    505 }
    506 
    507 /// generateNode - Utility method to generate nodes, hook up successors,
    508 ///  and add nodes to the worklist.
    509 void CoreEngine::generateNode(const ProgramPoint &Loc,
    510                               ProgramStateRef State,
    511                               ExplodedNode *Pred) {
    512 
    513   bool IsNew;
    514   ExplodedNode *Node = G.getNode(Loc, State, false, &IsNew);
    515 
    516   if (Pred)
    517     Node->addPredecessor(Pred, G); // Link 'Node' with its predecessor.
    518   else {
    519     assert (IsNew);
    520     G.addRoot(Node); // 'Node' has no predecessor.  Make it a root.
    521   }
    522 
    523   // Only add 'Node' to the worklist if it was freshly generated.
    524   if (IsNew) WList->enqueue(Node);
    525 }
    526 
    527 void CoreEngine::enqueueStmtNode(ExplodedNode *N,
    528                                  const CFGBlock *Block, unsigned Idx) {
    529   assert(Block);
    530   assert (!N->isSink());
    531 
    532   // Check if this node entered a callee.
    533   if (N->getLocation().getAs<CallEnter>()) {
    534     // Still use the index of the CallExpr. It's needed to create the callee
    535     // StackFrameContext.
    536     WList->enqueue(N, Block, Idx);
    537     return;
    538   }
    539 
    540   // Do not create extra nodes. Move to the next CFG element.
    541   if (N->getLocation().getAs<PostInitializer>() ||
    542       N->getLocation().getAs<PostImplicitCall>()) {
    543     WList->enqueue(N, Block, Idx+1);
    544     return;
    545   }
    546 
    547   if (N->getLocation().getAs<EpsilonPoint>()) {
    548     WList->enqueue(N, Block, Idx);
    549     return;
    550   }
    551 
    552   if ((*Block)[Idx].getKind() == CFGElement::NewAllocator) {
    553     WList->enqueue(N, Block, Idx+1);
    554     return;
    555   }
    556 
    557   // At this point, we know we're processing a normal statement.
    558   CFGStmt CS = (*Block)[Idx].castAs<CFGStmt>();
    559   PostStmt Loc(CS.getStmt(), N->getLocationContext());
    560 
    561   if (Loc == N->getLocation().withTag(nullptr)) {
    562     // Note: 'N' should be a fresh node because otherwise it shouldn't be
    563     // a member of Deferred.
    564     WList->enqueue(N, Block, Idx+1);
    565     return;
    566   }
    567 
    568   bool IsNew;
    569   ExplodedNode *Succ = G.getNode(Loc, N->getState(), false, &IsNew);
    570   Succ->addPredecessor(N, G);
    571 
    572   if (IsNew)
    573     WList->enqueue(Succ, Block, Idx+1);
    574 }
    575 
    576 ExplodedNode *CoreEngine::generateCallExitBeginNode(ExplodedNode *N) {
    577   // Create a CallExitBegin node and enqueue it.
    578   const StackFrameContext *LocCtx
    579                          = cast<StackFrameContext>(N->getLocationContext());
    580 
    581   // Use the callee location context.
    582   CallExitBegin Loc(LocCtx);
    583 
    584   bool isNew;
    585   ExplodedNode *Node = G.getNode(Loc, N->getState(), false, &isNew);
    586   Node->addPredecessor(N, G);
    587   return isNew ? Node : nullptr;
    588 }
    589 
    590 
    591 void CoreEngine::enqueue(ExplodedNodeSet &Set) {
    592   for (ExplodedNodeSet::iterator I = Set.begin(),
    593                                  E = Set.end(); I != E; ++I) {
    594     WList->enqueue(*I);
    595   }
    596 }
    597 
    598 void CoreEngine::enqueue(ExplodedNodeSet &Set,
    599                          const CFGBlock *Block, unsigned Idx) {
    600   for (ExplodedNodeSet::iterator I = Set.begin(),
    601                                  E = Set.end(); I != E; ++I) {
    602     enqueueStmtNode(*I, Block, Idx);
    603   }
    604 }
    605 
    606 void CoreEngine::enqueueEndOfFunction(ExplodedNodeSet &Set) {
    607   for (ExplodedNodeSet::iterator I = Set.begin(), E = Set.end(); I != E; ++I) {
    608     ExplodedNode *N = *I;
    609     // If we are in an inlined call, generate CallExitBegin node.
    610     if (N->getLocationContext()->getParent()) {
    611       N = generateCallExitBeginNode(N);
    612       if (N)
    613         WList->enqueue(N);
    614     } else {
    615       // TODO: We should run remove dead bindings here.
    616       G.addEndOfPath(N);
    617       NumPathsExplored++;
    618     }
    619   }
    620 }
    621 
    622 
    623 void NodeBuilder::anchor() { }
    624 
    625 ExplodedNode* NodeBuilder::generateNodeImpl(const ProgramPoint &Loc,
    626                                             ProgramStateRef State,
    627                                             ExplodedNode *FromN,
    628                                             bool MarkAsSink) {
    629   HasGeneratedNodes = true;
    630   bool IsNew;
    631   ExplodedNode *N = C.Eng.G.getNode(Loc, State, MarkAsSink, &IsNew);
    632   N->addPredecessor(FromN, C.Eng.G);
    633   Frontier.erase(FromN);
    634 
    635   if (!IsNew)
    636     return nullptr;
    637 
    638   if (!MarkAsSink)
    639     Frontier.Add(N);
    640 
    641   return N;
    642 }
    643 
    644 void NodeBuilderWithSinks::anchor() { }
    645 
    646 StmtNodeBuilder::~StmtNodeBuilder() {
    647   if (EnclosingBldr)
    648     for (ExplodedNodeSet::iterator I = Frontier.begin(),
    649                                    E = Frontier.end(); I != E; ++I )
    650       EnclosingBldr->addNodes(*I);
    651 }
    652 
    653 void BranchNodeBuilder::anchor() { }
    654 
    655 ExplodedNode *BranchNodeBuilder::generateNode(ProgramStateRef State,
    656                                               bool branch,
    657                                               ExplodedNode *NodePred) {
    658   // If the branch has been marked infeasible we should not generate a node.
    659   if (!isFeasible(branch))
    660     return nullptr;
    661 
    662   ProgramPoint Loc = BlockEdge(C.Block, branch ? DstT:DstF,
    663                                NodePred->getLocationContext());
    664   ExplodedNode *Succ = generateNodeImpl(Loc, State, NodePred);
    665   return Succ;
    666 }
    667 
    668 ExplodedNode*
    669 IndirectGotoNodeBuilder::generateNode(const iterator &I,
    670                                       ProgramStateRef St,
    671                                       bool IsSink) {
    672   bool IsNew;
    673   ExplodedNode *Succ =
    674       Eng.G.getNode(BlockEdge(Src, I.getBlock(), Pred->getLocationContext()),
    675                     St, IsSink, &IsNew);
    676   Succ->addPredecessor(Pred, Eng.G);
    677 
    678   if (!IsNew)
    679     return nullptr;
    680 
    681   if (!IsSink)
    682     Eng.WList->enqueue(Succ);
    683 
    684   return Succ;
    685 }
    686 
    687 
    688 ExplodedNode*
    689 SwitchNodeBuilder::generateCaseStmtNode(const iterator &I,
    690                                         ProgramStateRef St) {
    691 
    692   bool IsNew;
    693   ExplodedNode *Succ =
    694       Eng.G.getNode(BlockEdge(Src, I.getBlock(), Pred->getLocationContext()),
    695                     St, false, &IsNew);
    696   Succ->addPredecessor(Pred, Eng.G);
    697   if (!IsNew)
    698     return nullptr;
    699 
    700   Eng.WList->enqueue(Succ);
    701   return Succ;
    702 }
    703 
    704 
    705 ExplodedNode*
    706 SwitchNodeBuilder::generateDefaultCaseNode(ProgramStateRef St,
    707                                            bool IsSink) {
    708   // Get the block for the default case.
    709   assert(Src->succ_rbegin() != Src->succ_rend());
    710   CFGBlock *DefaultBlock = *Src->succ_rbegin();
    711 
    712   // Sanity check for default blocks that are unreachable and not caught
    713   // by earlier stages.
    714   if (!DefaultBlock)
    715     return nullptr;
    716 
    717   bool IsNew;
    718   ExplodedNode *Succ =
    719       Eng.G.getNode(BlockEdge(Src, DefaultBlock, Pred->getLocationContext()),
    720                     St, IsSink, &IsNew);
    721   Succ->addPredecessor(Pred, Eng.G);
    722 
    723   if (!IsNew)
    724     return nullptr;
    725 
    726   if (!IsSink)
    727     Eng.WList->enqueue(Succ);
    728 
    729   return Succ;
    730 }
    731