Home | History | Annotate | Download | only in src
      1 
      2 /* -----------------------------------------------------------------------------------------------------------
      3 Software License for The Fraunhofer FDK AAC Codec Library for Android
      4 
      5  Copyright  1995 - 2013 Fraunhofer-Gesellschaft zur Frderung der angewandten Forschung e.V.
      6   All rights reserved.
      7 
      8  1.    INTRODUCTION
      9 The Fraunhofer FDK AAC Codec Library for Android ("FDK AAC Codec") is software that implements
     10 the MPEG Advanced Audio Coding ("AAC") encoding and decoding scheme for digital audio.
     11 This FDK AAC Codec software is intended to be used on a wide variety of Android devices.
     12 
     13 AAC's HE-AAC and HE-AAC v2 versions are regarded as today's most efficient general perceptual
     14 audio codecs. AAC-ELD is considered the best-performing full-bandwidth communications codec by
     15 independent studies and is widely deployed. AAC has been standardized by ISO and IEC as part
     16 of the MPEG specifications.
     17 
     18 Patent licenses for necessary patent claims for the FDK AAC Codec (including those of Fraunhofer)
     19 may be obtained through Via Licensing (www.vialicensing.com) or through the respective patent owners
     20 individually for the purpose of encoding or decoding bit streams in products that are compliant with
     21 the ISO/IEC MPEG audio standards. Please note that most manufacturers of Android devices already license
     22 these patent claims through Via Licensing or directly from the patent owners, and therefore FDK AAC Codec
     23 software may already be covered under those patent licenses when it is used for those licensed purposes only.
     24 
     25 Commercially-licensed AAC software libraries, including floating-point versions with enhanced sound quality,
     26 are also available from Fraunhofer. Users are encouraged to check the Fraunhofer website for additional
     27 applications information and documentation.
     28 
     29 2.    COPYRIGHT LICENSE
     30 
     31 Redistribution and use in source and binary forms, with or without modification, are permitted without
     32 payment of copyright license fees provided that you satisfy the following conditions:
     33 
     34 You must retain the complete text of this software license in redistributions of the FDK AAC Codec or
     35 your modifications thereto in source code form.
     36 
     37 You must retain the complete text of this software license in the documentation and/or other materials
     38 provided with redistributions of the FDK AAC Codec or your modifications thereto in binary form.
     39 You must make available free of charge copies of the complete source code of the FDK AAC Codec and your
     40 modifications thereto to recipients of copies in binary form.
     41 
     42 The name of Fraunhofer may not be used to endorse or promote products derived from this library without
     43 prior written permission.
     44 
     45 You may not charge copyright license fees for anyone to use, copy or distribute the FDK AAC Codec
     46 software or your modifications thereto.
     47 
     48 Your modified versions of the FDK AAC Codec must carry prominent notices stating that you changed the software
     49 and the date of any change. For modified versions of the FDK AAC Codec, the term
     50 "Fraunhofer FDK AAC Codec Library for Android" must be replaced by the term
     51 "Third-Party Modified Version of the Fraunhofer FDK AAC Codec Library for Android."
     52 
     53 3.    NO PATENT LICENSE
     54 
     55 NO EXPRESS OR IMPLIED LICENSES TO ANY PATENT CLAIMS, including without limitation the patents of Fraunhofer,
     56 ARE GRANTED BY THIS SOFTWARE LICENSE. Fraunhofer provides no warranty of patent non-infringement with
     57 respect to this software.
     58 
     59 You may use this FDK AAC Codec software or modifications thereto only for purposes that are authorized
     60 by appropriate patent licenses.
     61 
     62 4.    DISCLAIMER
     63 
     64 This FDK AAC Codec software is provided by Fraunhofer on behalf of the copyright holders and contributors
     65 "AS IS" and WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES, including but not limited to the implied warranties
     66 of merchantability and fitness for a particular purpose. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
     67 CONTRIBUTORS BE LIABLE for any direct, indirect, incidental, special, exemplary, or consequential damages,
     68 including but not limited to procurement of substitute goods or services; loss of use, data, or profits,
     69 or business interruption, however caused and on any theory of liability, whether in contract, strict
     70 liability, or tort (including negligence), arising in any way out of the use of this software, even if
     71 advised of the possibility of such damage.
     72 
     73 5.    CONTACT INFORMATION
     74 
     75 Fraunhofer Institute for Integrated Circuits IIS
     76 Attention: Audio and Multimedia Departments - FDK AAC LL
     77 Am Wolfsmantel 33
     78 91058 Erlangen, Germany
     79 
     80 www.iis.fraunhofer.de/amm
     81 amm-info (at) iis.fraunhofer.de
     82 ----------------------------------------------------------------------------------------------------------- */
     83 
     84 /***************************  Fraunhofer IIS FDK Tools  **********************
     85 
     86    Author(s):   Haricharan Lakshman, Manuel Jander
     87    Description: Trigonometric functions fixed point fractional implementation.
     88 
     89 ******************************************************************************/
     90 
     91 #include "FDK_trigFcts.h"
     92 
     93 #include "fixpoint_math.h"
     94 
     95 
     96 
     97 
     98 #define IMPROVE_ATAN2_ACCURACY  1  // 0 --> 59 dB SNR     1 --> 65 dB SNR
     99 #define MINSFTAB  7
    100 #define MAXSFTAB 25
    101 
    102 #if IMPROVE_ATAN2_ACCURACY
    103 static const FIXP_DBL f_atan_expand_range[MAXSFTAB-(MINSFTAB-1)]  =
    104 {
    105   /*****************************************************************************
    106    *
    107    *  Table holds fixp_atan() output values which are outside of input range
    108    *  of fixp_atan() to improve SNR of fixp_atan2().
    109    *
    110    *  This Table might also be used in fixp_atan() [todo] so there a wider input
    111    *  range can be covered, too.
    112    *
    113    *  Matlab (generate table):
    114    *    for scl = 7:25            % MINSFTAB .. MAXSFTAB
    115    *      at=atan(0.5 *(2^scl));  % 0.5 because get in 'middle' area of current scale level 'scl'
    116    *      at/2                    % div at by ATO_SCALE
    117    *    end
    118    *
    119    *  Table divided by 2=ATO_SCALE  <--  SF=ATO_SF
    120    *****************************************************************************/
    121    FL2FXCONST_DBL(7.775862990872099e-001), FL2FXCONST_DBL(7.814919928673978e-001), FL2FXCONST_DBL(7.834450483314648e-001),
    122    FL2FXCONST_DBL(7.844216021392089e-001), FL2FXCONST_DBL(7.849098823026687e-001), FL2FXCONST_DBL(7.851540227918509e-001),
    123    FL2FXCONST_DBL(7.852760930873737e-001), FL2FXCONST_DBL(7.853371282415015e-001), FL2FXCONST_DBL(7.853676458193612e-001),
    124    FL2FXCONST_DBL(7.853829046083906e-001), FL2FXCONST_DBL(7.853905340029177e-001), FL2FXCONST_DBL(7.853943487001828e-001),
    125    FL2FXCONST_DBL(7.853962560488155e-001), FL2FXCONST_DBL(7.853972097231319e-001), FL2FXCONST_DBL(7.853976865602901e-001),
    126    FL2FXCONST_DBL(7.853979249788692e-001), FL2FXCONST_DBL(7.853980441881587e-001), FL2FXCONST_DBL(7.853981037928035e-001),
    127    FL2FXCONST_DBL(7.853981335951259e-001)
    128    //     pi/4 = 0.785398163397448 = pi/2/ATO_SCALE
    129 };
    130 #endif
    131 
    132 FIXP_DBL fixp_atan2(FIXP_DBL y, FIXP_DBL x)
    133 {
    134     FIXP_DBL q;
    135     FIXP_DBL at;  // atan  out
    136     FIXP_DBL at2; // atan2 out
    137     FIXP_DBL ret = FL2FXCONST_DBL(-1.0f);
    138     INT sf,sfo,stf;
    139 
    140     // --- division
    141 
    142     if      (y > FL2FXCONST_DBL(0.0f))
    143     {
    144         if      (x > FL2FXCONST_DBL(0.0f)) {
    145                                            q =  fDivNormHighPrec( y, x, &sf); // both pos.
    146         }
    147         else if (x < FL2FXCONST_DBL(0.0f)) {
    148                                            q = -fDivNormHighPrec( y,-x, &sf); // x neg.
    149         }
    150         else {//(x ==FL2FXCONST_DBL(0.0f))
    151                                            q =  FL2FXCONST_DBL(+1.0f);  // y/x = pos/zero = +Inf
    152                                            sf = 0;
    153         }
    154     }
    155     else if (y < FL2FXCONST_DBL(0.0f))
    156     {
    157         if      (x > FL2FXCONST_DBL(0.0f)) {
    158                                            q = -fDivNormHighPrec(-y, x, &sf); // y neg.
    159         }
    160         else if (x < FL2FXCONST_DBL(0.0f)) {
    161                                            q =  fDivNormHighPrec(-y,-x, &sf); // both neg.
    162         }
    163         else {//(x ==FL2FXCONST_DBL(0.0f))
    164                                            q =  FL2FXCONST_DBL(-1.0f);  // y/x = neg/zero = -Inf
    165                                            sf = 0;
    166         }
    167     }
    168     else { // (y ==FL2FXCONST_DBL(0.0f))
    169         q = FL2FXCONST_DBL(0.0f);
    170         sf = 0;
    171     }
    172     sfo = sf;
    173 
    174     // --- atan()
    175 
    176     if  ( sfo > ATI_SF ) {
    177         // --- could not calc fixp_atan() here bec of input data out of range
    178         //     ==> therefore give back boundary values
    179 
    180         #if IMPROVE_ATAN2_ACCURACY
    181         if (sfo > MAXSFTAB) sfo = MAXSFTAB;
    182         #endif
    183 
    184         if      (  q > FL2FXCONST_DBL(0.0f) ) {
    185            #if IMPROVE_ATAN2_ACCURACY
    186             at = +f_atan_expand_range[sfo-ATI_SF-1];
    187            #else
    188             at = FL2FXCONST_DBL( +M_PI/2 / ATO_SCALE);
    189            #endif
    190         }
    191         else if (  q < FL2FXCONST_DBL(0.0f) ) {
    192            #if IMPROVE_ATAN2_ACCURACY
    193             at = -f_atan_expand_range[sfo-ATI_SF-1];
    194            #else
    195             at = FL2FXCONST_DBL( -M_PI/2 / ATO_SCALE);
    196            #endif
    197         }
    198         else {  // q== FL2FXCONST_DBL(0.0f)
    199             at = FL2FXCONST_DBL( 0.0f );
    200         }
    201     }else{
    202         // --- calc of fixp_atan() is possible; input data within range
    203         //     ==> set q on fixed scale level as desired from fixp_atan()
    204         stf = sfo - ATI_SF;
    205         if (stf > 0)  q = q << (INT)fMin( stf,DFRACT_BITS-1);
    206         else          q = q >> (INT)fMin(-stf,DFRACT_BITS-1);
    207         at = fixp_atan(q);  // ATO_SF
    208     }
    209 
    210     // --- atan2()
    211 
    212     at2 = at >> (AT2O_SF - ATO_SF); // now AT2O_SF for atan2
    213     if      (  x > FL2FXCONST_DBL(0.0f) ) {
    214         ret = at2;
    215     }
    216     else if (  x < FL2FXCONST_DBL(0.0f) ) {
    217         if (  y >= FL2FXCONST_DBL(0.0f) ) {
    218             ret = at2 + FL2FXCONST_DBL( M_PI / AT2O_SCALE);
    219         } else {
    220             ret = at2 - FL2FXCONST_DBL( M_PI / AT2O_SCALE);
    221         }
    222     }
    223     else {
    224         // x == 0
    225         if      ( y >  FL2FXCONST_DBL(0.0f) ) {
    226             ret = FL2FXCONST_DBL( +M_PI/2 / AT2O_SCALE);
    227         }
    228         else if ( y <  FL2FXCONST_DBL(0.0f) ) {
    229             ret = FL2FXCONST_DBL( -M_PI/2 / AT2O_SCALE);
    230         }
    231         else if ( y == FL2FXCONST_DBL(0.0f) ) {
    232             ret = FL2FXCONST_DBL(0.0f);
    233         }
    234     }
    235     return ret;
    236 }
    237 
    238 
    239 FIXP_DBL fixp_atan(FIXP_DBL x)
    240 {
    241     INT sign;
    242     FIXP_DBL result, temp;
    243 
    244     // SNR of fixp_atan() = 56 dB
    245     FIXP_DBL ONEBY3P56  = (FIXP_DBL)0x26800000; // 1.0/3.56 in q31
    246     FIXP_DBL P281       = (FIXP_DBL)0x00013000; // 0.281 in q18
    247     FIXP_DBL ONEP571    = (FIXP_DBL)0x6487ef00; // 1.571 in q30
    248 
    249     if (x < FIXP_DBL(0)) {
    250       sign = 1;
    251       x = - x ;
    252     } else {
    253       sign = 0;
    254     }
    255 
    256     /* calc of arctan */
    257     if(x < ( Q(Q_ATANINP)-FL2FXCONST_DBL(0.00395)) )
    258     {
    259         INT res_e;
    260 
    261         temp = fPow2(x);            // q25 * q25 - (DFRACT_BITS-1) = q19
    262         temp = fMult(temp, ONEBY3P56);      // q19 * q31 - (DFRACT_BITS-1) = q19
    263         temp = temp + Q(19);                // q19 + q19 = q19
    264         result = fDivNorm(x, temp, &res_e);
    265         result = scaleValue(result, (Q_ATANOUT-Q_ATANINP+19-DFRACT_BITS+1) + res_e  );
    266     }
    267     else if( x < FL2FXCONST_DBL(1.28/64.0) )
    268     {
    269         FIXP_DBL delta_fix;
    270         FIXP_DBL PI_BY_4 = FL2FXCONST_DBL(3.1415926/4.0) >> 1; /* pi/4 in q30 */
    271 
    272         delta_fix = (x - FL2FXCONST_DBL(1.0/64.0)) << 5; /* q30 */
    273         result = PI_BY_4 + (delta_fix >> 1) - (fPow2Div2(delta_fix));
    274     }
    275     else
    276     {
    277         INT res_e;
    278 
    279         temp = fPow2Div2(x);        // q25 * q25 - (DFRACT_BITS-1) - 1 = q18
    280         temp = temp + P281;                 // q18 + q18 = q18
    281         result = fDivNorm(x, temp, &res_e);
    282         result = scaleValue(result, (Q_ATANOUT-Q_ATANINP+18-DFRACT_BITS+1) + res_e );
    283         result = ONEP571 - result;          // q30 + q30 = q30
    284     }
    285     if (sign) {
    286       result = -result;
    287     }
    288 
    289     return(result);
    290 }
    291 
    292 
    293 
    294 #include "FDK_tools_rom.h"
    295 
    296 FIXP_DBL fixp_cos(FIXP_DBL x, int scale)
    297 {
    298     FIXP_DBL residual, error, sine, cosine;
    299 
    300     residual = fixp_sin_cos_residual_inline(x, scale, &sine, &cosine);
    301     error = fMult(sine, residual);
    302 
    303     return cosine - error;
    304 }
    305 
    306 FIXP_DBL fixp_sin(FIXP_DBL x, int scale)
    307 {
    308     FIXP_DBL residual, error, sine, cosine;
    309 
    310     residual = fixp_sin_cos_residual_inline(x, scale, &sine, &cosine);
    311     error = fMult(cosine, residual);
    312 
    313     return sine + error;
    314 }
    315 
    316 void fixp_cos_sin (FIXP_DBL x, int scale, FIXP_DBL *cos, FIXP_DBL *sin)
    317 {
    318     FIXP_DBL residual, error0, error1, sine, cosine;
    319 
    320     residual = fixp_sin_cos_residual_inline(x, scale, &sine, &cosine);
    321     error0 = fMult(sine, residual);
    322     error1 = fMult(cosine, residual);
    323     *cos  = cosine - error0;
    324     *sin  = sine + error1;
    325 }
    326 
    327 
    328 
    329 
    330 
    331