Home | History | Annotate | Download | only in platform
      1 // Copyright 2012 the V8 project authors. All rights reserved.
      2 // Use of this source code is governed by a BSD-style license that can be
      3 // found in the LICENSE file.
      4 
      5 // Platform-specific code for Win32.
      6 
      7 // Secure API functions are not available using MinGW with msvcrt.dll
      8 // on Windows XP. Make sure MINGW_HAS_SECURE_API is not defined to
      9 // disable definition of secure API functions in standard headers that
     10 // would conflict with our own implementation.
     11 #ifdef __MINGW32__
     12 #include <_mingw.h>
     13 #ifdef MINGW_HAS_SECURE_API
     14 #undef MINGW_HAS_SECURE_API
     15 #endif  // MINGW_HAS_SECURE_API
     16 #endif  // __MINGW32__
     17 
     18 #ifdef _MSC_VER
     19 #include <limits>
     20 #endif
     21 
     22 #include "src/base/win32-headers.h"
     23 
     24 #include "src/base/bits.h"
     25 #include "src/base/lazy-instance.h"
     26 #include "src/base/macros.h"
     27 #include "src/base/platform/platform.h"
     28 #include "src/base/platform/time.h"
     29 #include "src/base/utils/random-number-generator.h"
     30 
     31 #ifdef _MSC_VER
     32 
     33 // Case-insensitive bounded string comparisons. Use stricmp() on Win32. Usually
     34 // defined in strings.h.
     35 int strncasecmp(const char* s1, const char* s2, int n) {
     36   return _strnicmp(s1, s2, n);
     37 }
     38 
     39 #endif  // _MSC_VER
     40 
     41 
     42 // Extra functions for MinGW. Most of these are the _s functions which are in
     43 // the Microsoft Visual Studio C++ CRT.
     44 #ifdef __MINGW32__
     45 
     46 
     47 #ifndef __MINGW64_VERSION_MAJOR
     48 
     49 #define _TRUNCATE 0
     50 #define STRUNCATE 80
     51 
     52 inline void MemoryBarrier() {
     53   int barrier = 0;
     54   __asm__ __volatile__("xchgl %%eax,%0 ":"=r" (barrier));
     55 }
     56 
     57 #endif  // __MINGW64_VERSION_MAJOR
     58 
     59 
     60 int localtime_s(tm* out_tm, const time_t* time) {
     61   tm* posix_local_time_struct = localtime(time);
     62   if (posix_local_time_struct == NULL) return 1;
     63   *out_tm = *posix_local_time_struct;
     64   return 0;
     65 }
     66 
     67 
     68 int fopen_s(FILE** pFile, const char* filename, const char* mode) {
     69   *pFile = fopen(filename, mode);
     70   return *pFile != NULL ? 0 : 1;
     71 }
     72 
     73 int _vsnprintf_s(char* buffer, size_t sizeOfBuffer, size_t count,
     74                  const char* format, va_list argptr) {
     75   DCHECK(count == _TRUNCATE);
     76   return _vsnprintf(buffer, sizeOfBuffer, format, argptr);
     77 }
     78 
     79 
     80 int strncpy_s(char* dest, size_t dest_size, const char* source, size_t count) {
     81   CHECK(source != NULL);
     82   CHECK(dest != NULL);
     83   CHECK_GT(dest_size, 0);
     84 
     85   if (count == _TRUNCATE) {
     86     while (dest_size > 0 && *source != 0) {
     87       *(dest++) = *(source++);
     88       --dest_size;
     89     }
     90     if (dest_size == 0) {
     91       *(dest - 1) = 0;
     92       return STRUNCATE;
     93     }
     94   } else {
     95     while (dest_size > 0 && count > 0 && *source != 0) {
     96       *(dest++) = *(source++);
     97       --dest_size;
     98       --count;
     99     }
    100   }
    101   CHECK_GT(dest_size, 0);
    102   *dest = 0;
    103   return 0;
    104 }
    105 
    106 #endif  // __MINGW32__
    107 
    108 namespace v8 {
    109 namespace base {
    110 
    111 namespace {
    112 
    113 bool g_hard_abort = false;
    114 
    115 }  // namespace
    116 
    117 class TimezoneCache {
    118  public:
    119   TimezoneCache() : initialized_(false) { }
    120 
    121   void Clear() {
    122     initialized_ = false;
    123   }
    124 
    125   // Initialize timezone information. The timezone information is obtained from
    126   // windows. If we cannot get the timezone information we fall back to CET.
    127   void InitializeIfNeeded() {
    128     // Just return if timezone information has already been initialized.
    129     if (initialized_) return;
    130 
    131     // Initialize POSIX time zone data.
    132     _tzset();
    133     // Obtain timezone information from operating system.
    134     memset(&tzinfo_, 0, sizeof(tzinfo_));
    135     if (GetTimeZoneInformation(&tzinfo_) == TIME_ZONE_ID_INVALID) {
    136       // If we cannot get timezone information we fall back to CET.
    137       tzinfo_.Bias = -60;
    138       tzinfo_.StandardDate.wMonth = 10;
    139       tzinfo_.StandardDate.wDay = 5;
    140       tzinfo_.StandardDate.wHour = 3;
    141       tzinfo_.StandardBias = 0;
    142       tzinfo_.DaylightDate.wMonth = 3;
    143       tzinfo_.DaylightDate.wDay = 5;
    144       tzinfo_.DaylightDate.wHour = 2;
    145       tzinfo_.DaylightBias = -60;
    146     }
    147 
    148     // Make standard and DST timezone names.
    149     WideCharToMultiByte(CP_UTF8, 0, tzinfo_.StandardName, -1,
    150                         std_tz_name_, kTzNameSize, NULL, NULL);
    151     std_tz_name_[kTzNameSize - 1] = '\0';
    152     WideCharToMultiByte(CP_UTF8, 0, tzinfo_.DaylightName, -1,
    153                         dst_tz_name_, kTzNameSize, NULL, NULL);
    154     dst_tz_name_[kTzNameSize - 1] = '\0';
    155 
    156     // If OS returned empty string or resource id (like "@tzres.dll,-211")
    157     // simply guess the name from the UTC bias of the timezone.
    158     // To properly resolve the resource identifier requires a library load,
    159     // which is not possible in a sandbox.
    160     if (std_tz_name_[0] == '\0' || std_tz_name_[0] == '@') {
    161       OS::SNPrintF(std_tz_name_, kTzNameSize - 1,
    162                    "%s Standard Time",
    163                    GuessTimezoneNameFromBias(tzinfo_.Bias));
    164     }
    165     if (dst_tz_name_[0] == '\0' || dst_tz_name_[0] == '@') {
    166       OS::SNPrintF(dst_tz_name_, kTzNameSize - 1,
    167                    "%s Daylight Time",
    168                    GuessTimezoneNameFromBias(tzinfo_.Bias));
    169     }
    170     // Timezone information initialized.
    171     initialized_ = true;
    172   }
    173 
    174   // Guess the name of the timezone from the bias.
    175   // The guess is very biased towards the northern hemisphere.
    176   const char* GuessTimezoneNameFromBias(int bias) {
    177     static const int kHour = 60;
    178     switch (-bias) {
    179       case -9*kHour: return "Alaska";
    180       case -8*kHour: return "Pacific";
    181       case -7*kHour: return "Mountain";
    182       case -6*kHour: return "Central";
    183       case -5*kHour: return "Eastern";
    184       case -4*kHour: return "Atlantic";
    185       case  0*kHour: return "GMT";
    186       case +1*kHour: return "Central Europe";
    187       case +2*kHour: return "Eastern Europe";
    188       case +3*kHour: return "Russia";
    189       case +5*kHour + 30: return "India";
    190       case +8*kHour: return "China";
    191       case +9*kHour: return "Japan";
    192       case +12*kHour: return "New Zealand";
    193       default: return "Local";
    194     }
    195   }
    196 
    197 
    198  private:
    199   static const int kTzNameSize = 128;
    200   bool initialized_;
    201   char std_tz_name_[kTzNameSize];
    202   char dst_tz_name_[kTzNameSize];
    203   TIME_ZONE_INFORMATION tzinfo_;
    204   friend class Win32Time;
    205 };
    206 
    207 
    208 // ----------------------------------------------------------------------------
    209 // The Time class represents time on win32. A timestamp is represented as
    210 // a 64-bit integer in 100 nanoseconds since January 1, 1601 (UTC). JavaScript
    211 // timestamps are represented as a doubles in milliseconds since 00:00:00 UTC,
    212 // January 1, 1970.
    213 
    214 class Win32Time {
    215  public:
    216   // Constructors.
    217   Win32Time();
    218   explicit Win32Time(double jstime);
    219   Win32Time(int year, int mon, int day, int hour, int min, int sec);
    220 
    221   // Convert timestamp to JavaScript representation.
    222   double ToJSTime();
    223 
    224   // Set timestamp to current time.
    225   void SetToCurrentTime();
    226 
    227   // Returns the local timezone offset in milliseconds east of UTC. This is
    228   // the number of milliseconds you must add to UTC to get local time, i.e.
    229   // LocalOffset(CET) = 3600000 and LocalOffset(PST) = -28800000. This
    230   // routine also takes into account whether daylight saving is effect
    231   // at the time.
    232   int64_t LocalOffset(TimezoneCache* cache);
    233 
    234   // Returns the daylight savings time offset for the time in milliseconds.
    235   int64_t DaylightSavingsOffset(TimezoneCache* cache);
    236 
    237   // Returns a string identifying the current timezone for the
    238   // timestamp taking into account daylight saving.
    239   char* LocalTimezone(TimezoneCache* cache);
    240 
    241  private:
    242   // Constants for time conversion.
    243   static const int64_t kTimeEpoc = 116444736000000000LL;
    244   static const int64_t kTimeScaler = 10000;
    245   static const int64_t kMsPerMinute = 60000;
    246 
    247   // Constants for timezone information.
    248   static const bool kShortTzNames = false;
    249 
    250   // Return whether or not daylight savings time is in effect at this time.
    251   bool InDST(TimezoneCache* cache);
    252 
    253   // Accessor for FILETIME representation.
    254   FILETIME& ft() { return time_.ft_; }
    255 
    256   // Accessor for integer representation.
    257   int64_t& t() { return time_.t_; }
    258 
    259   // Although win32 uses 64-bit integers for representing timestamps,
    260   // these are packed into a FILETIME structure. The FILETIME structure
    261   // is just a struct representing a 64-bit integer. The TimeStamp union
    262   // allows access to both a FILETIME and an integer representation of
    263   // the timestamp.
    264   union TimeStamp {
    265     FILETIME ft_;
    266     int64_t t_;
    267   };
    268 
    269   TimeStamp time_;
    270 };
    271 
    272 
    273 // Initialize timestamp to start of epoc.
    274 Win32Time::Win32Time() {
    275   t() = 0;
    276 }
    277 
    278 
    279 // Initialize timestamp from a JavaScript timestamp.
    280 Win32Time::Win32Time(double jstime) {
    281   t() = static_cast<int64_t>(jstime) * kTimeScaler + kTimeEpoc;
    282 }
    283 
    284 
    285 // Initialize timestamp from date/time components.
    286 Win32Time::Win32Time(int year, int mon, int day, int hour, int min, int sec) {
    287   SYSTEMTIME st;
    288   st.wYear = year;
    289   st.wMonth = mon;
    290   st.wDay = day;
    291   st.wHour = hour;
    292   st.wMinute = min;
    293   st.wSecond = sec;
    294   st.wMilliseconds = 0;
    295   SystemTimeToFileTime(&st, &ft());
    296 }
    297 
    298 
    299 // Convert timestamp to JavaScript timestamp.
    300 double Win32Time::ToJSTime() {
    301   return static_cast<double>((t() - kTimeEpoc) / kTimeScaler);
    302 }
    303 
    304 
    305 // Set timestamp to current time.
    306 void Win32Time::SetToCurrentTime() {
    307   // The default GetSystemTimeAsFileTime has a ~15.5ms resolution.
    308   // Because we're fast, we like fast timers which have at least a
    309   // 1ms resolution.
    310   //
    311   // timeGetTime() provides 1ms granularity when combined with
    312   // timeBeginPeriod().  If the host application for v8 wants fast
    313   // timers, it can use timeBeginPeriod to increase the resolution.
    314   //
    315   // Using timeGetTime() has a drawback because it is a 32bit value
    316   // and hence rolls-over every ~49days.
    317   //
    318   // To use the clock, we use GetSystemTimeAsFileTime as our base;
    319   // and then use timeGetTime to extrapolate current time from the
    320   // start time.  To deal with rollovers, we resync the clock
    321   // any time when more than kMaxClockElapsedTime has passed or
    322   // whenever timeGetTime creates a rollover.
    323 
    324   static bool initialized = false;
    325   static TimeStamp init_time;
    326   static DWORD init_ticks;
    327   static const int64_t kHundredNanosecondsPerSecond = 10000000;
    328   static const int64_t kMaxClockElapsedTime =
    329       60*kHundredNanosecondsPerSecond;  // 1 minute
    330 
    331   // If we are uninitialized, we need to resync the clock.
    332   bool needs_resync = !initialized;
    333 
    334   // Get the current time.
    335   TimeStamp time_now;
    336   GetSystemTimeAsFileTime(&time_now.ft_);
    337   DWORD ticks_now = timeGetTime();
    338 
    339   // Check if we need to resync due to clock rollover.
    340   needs_resync |= ticks_now < init_ticks;
    341 
    342   // Check if we need to resync due to elapsed time.
    343   needs_resync |= (time_now.t_ - init_time.t_) > kMaxClockElapsedTime;
    344 
    345   // Check if we need to resync due to backwards time change.
    346   needs_resync |= time_now.t_ < init_time.t_;
    347 
    348   // Resync the clock if necessary.
    349   if (needs_resync) {
    350     GetSystemTimeAsFileTime(&init_time.ft_);
    351     init_ticks = ticks_now = timeGetTime();
    352     initialized = true;
    353   }
    354 
    355   // Finally, compute the actual time.  Why is this so hard.
    356   DWORD elapsed = ticks_now - init_ticks;
    357   this->time_.t_ = init_time.t_ + (static_cast<int64_t>(elapsed) * 10000);
    358 }
    359 
    360 
    361 // Return the local timezone offset in milliseconds east of UTC. This
    362 // takes into account whether daylight saving is in effect at the time.
    363 // Only times in the 32-bit Unix range may be passed to this function.
    364 // Also, adding the time-zone offset to the input must not overflow.
    365 // The function EquivalentTime() in date.js guarantees this.
    366 int64_t Win32Time::LocalOffset(TimezoneCache* cache) {
    367   cache->InitializeIfNeeded();
    368 
    369   Win32Time rounded_to_second(*this);
    370   rounded_to_second.t() = rounded_to_second.t() / 1000 / kTimeScaler *
    371       1000 * kTimeScaler;
    372   // Convert to local time using POSIX localtime function.
    373   // Windows XP Service Pack 3 made SystemTimeToTzSpecificLocalTime()
    374   // very slow.  Other browsers use localtime().
    375 
    376   // Convert from JavaScript milliseconds past 1/1/1970 0:00:00 to
    377   // POSIX seconds past 1/1/1970 0:00:00.
    378   double unchecked_posix_time = rounded_to_second.ToJSTime() / 1000;
    379   if (unchecked_posix_time > INT_MAX || unchecked_posix_time < 0) {
    380     return 0;
    381   }
    382   // Because _USE_32BIT_TIME_T is defined, time_t is a 32-bit int.
    383   time_t posix_time = static_cast<time_t>(unchecked_posix_time);
    384 
    385   // Convert to local time, as struct with fields for day, hour, year, etc.
    386   tm posix_local_time_struct;
    387   if (localtime_s(&posix_local_time_struct, &posix_time)) return 0;
    388 
    389   if (posix_local_time_struct.tm_isdst > 0) {
    390     return (cache->tzinfo_.Bias + cache->tzinfo_.DaylightBias) * -kMsPerMinute;
    391   } else if (posix_local_time_struct.tm_isdst == 0) {
    392     return (cache->tzinfo_.Bias + cache->tzinfo_.StandardBias) * -kMsPerMinute;
    393   } else {
    394     return cache->tzinfo_.Bias * -kMsPerMinute;
    395   }
    396 }
    397 
    398 
    399 // Return whether or not daylight savings time is in effect at this time.
    400 bool Win32Time::InDST(TimezoneCache* cache) {
    401   cache->InitializeIfNeeded();
    402 
    403   // Determine if DST is in effect at the specified time.
    404   bool in_dst = false;
    405   if (cache->tzinfo_.StandardDate.wMonth != 0 ||
    406       cache->tzinfo_.DaylightDate.wMonth != 0) {
    407     // Get the local timezone offset for the timestamp in milliseconds.
    408     int64_t offset = LocalOffset(cache);
    409 
    410     // Compute the offset for DST. The bias parameters in the timezone info
    411     // are specified in minutes. These must be converted to milliseconds.
    412     int64_t dstofs =
    413         -(cache->tzinfo_.Bias + cache->tzinfo_.DaylightBias) * kMsPerMinute;
    414 
    415     // If the local time offset equals the timezone bias plus the daylight
    416     // bias then DST is in effect.
    417     in_dst = offset == dstofs;
    418   }
    419 
    420   return in_dst;
    421 }
    422 
    423 
    424 // Return the daylight savings time offset for this time.
    425 int64_t Win32Time::DaylightSavingsOffset(TimezoneCache* cache) {
    426   return InDST(cache) ? 60 * kMsPerMinute : 0;
    427 }
    428 
    429 
    430 // Returns a string identifying the current timezone for the
    431 // timestamp taking into account daylight saving.
    432 char* Win32Time::LocalTimezone(TimezoneCache* cache) {
    433   // Return the standard or DST time zone name based on whether daylight
    434   // saving is in effect at the given time.
    435   return InDST(cache) ? cache->dst_tz_name_ : cache->std_tz_name_;
    436 }
    437 
    438 
    439 // Returns the accumulated user time for thread.
    440 int OS::GetUserTime(uint32_t* secs,  uint32_t* usecs) {
    441   FILETIME dummy;
    442   uint64_t usertime;
    443 
    444   // Get the amount of time that the thread has executed in user mode.
    445   if (!GetThreadTimes(GetCurrentThread(), &dummy, &dummy, &dummy,
    446                       reinterpret_cast<FILETIME*>(&usertime))) return -1;
    447 
    448   // Adjust the resolution to micro-seconds.
    449   usertime /= 10;
    450 
    451   // Convert to seconds and microseconds
    452   *secs = static_cast<uint32_t>(usertime / 1000000);
    453   *usecs = static_cast<uint32_t>(usertime % 1000000);
    454   return 0;
    455 }
    456 
    457 
    458 // Returns current time as the number of milliseconds since
    459 // 00:00:00 UTC, January 1, 1970.
    460 double OS::TimeCurrentMillis() {
    461   return Time::Now().ToJsTime();
    462 }
    463 
    464 
    465 TimezoneCache* OS::CreateTimezoneCache() {
    466   return new TimezoneCache();
    467 }
    468 
    469 
    470 void OS::DisposeTimezoneCache(TimezoneCache* cache) {
    471   delete cache;
    472 }
    473 
    474 
    475 void OS::ClearTimezoneCache(TimezoneCache* cache) {
    476   cache->Clear();
    477 }
    478 
    479 
    480 // Returns a string identifying the current timezone taking into
    481 // account daylight saving.
    482 const char* OS::LocalTimezone(double time, TimezoneCache* cache) {
    483   return Win32Time(time).LocalTimezone(cache);
    484 }
    485 
    486 
    487 // Returns the local time offset in milliseconds east of UTC without
    488 // taking daylight savings time into account.
    489 double OS::LocalTimeOffset(TimezoneCache* cache) {
    490   // Use current time, rounded to the millisecond.
    491   Win32Time t(TimeCurrentMillis());
    492   // Time::LocalOffset inlcudes any daylight savings offset, so subtract it.
    493   return static_cast<double>(t.LocalOffset(cache) -
    494                              t.DaylightSavingsOffset(cache));
    495 }
    496 
    497 
    498 // Returns the daylight savings offset in milliseconds for the given
    499 // time.
    500 double OS::DaylightSavingsOffset(double time, TimezoneCache* cache) {
    501   int64_t offset = Win32Time(time).DaylightSavingsOffset(cache);
    502   return static_cast<double>(offset);
    503 }
    504 
    505 
    506 int OS::GetLastError() {
    507   return ::GetLastError();
    508 }
    509 
    510 
    511 int OS::GetCurrentProcessId() {
    512   return static_cast<int>(::GetCurrentProcessId());
    513 }
    514 
    515 
    516 int OS::GetCurrentThreadId() {
    517   return static_cast<int>(::GetCurrentThreadId());
    518 }
    519 
    520 
    521 // ----------------------------------------------------------------------------
    522 // Win32 console output.
    523 //
    524 // If a Win32 application is linked as a console application it has a normal
    525 // standard output and standard error. In this case normal printf works fine
    526 // for output. However, if the application is linked as a GUI application,
    527 // the process doesn't have a console, and therefore (debugging) output is lost.
    528 // This is the case if we are embedded in a windows program (like a browser).
    529 // In order to be able to get debug output in this case the the debugging
    530 // facility using OutputDebugString. This output goes to the active debugger
    531 // for the process (if any). Else the output can be monitored using DBMON.EXE.
    532 
    533 enum OutputMode {
    534   UNKNOWN,  // Output method has not yet been determined.
    535   CONSOLE,  // Output is written to stdout.
    536   ODS       // Output is written to debug facility.
    537 };
    538 
    539 static OutputMode output_mode = UNKNOWN;  // Current output mode.
    540 
    541 
    542 // Determine if the process has a console for output.
    543 static bool HasConsole() {
    544   // Only check the first time. Eventual race conditions are not a problem,
    545   // because all threads will eventually determine the same mode.
    546   if (output_mode == UNKNOWN) {
    547     // We cannot just check that the standard output is attached to a console
    548     // because this would fail if output is redirected to a file. Therefore we
    549     // say that a process does not have an output console if either the
    550     // standard output handle is invalid or its file type is unknown.
    551     if (GetStdHandle(STD_OUTPUT_HANDLE) != INVALID_HANDLE_VALUE &&
    552         GetFileType(GetStdHandle(STD_OUTPUT_HANDLE)) != FILE_TYPE_UNKNOWN)
    553       output_mode = CONSOLE;
    554     else
    555       output_mode = ODS;
    556   }
    557   return output_mode == CONSOLE;
    558 }
    559 
    560 
    561 static void VPrintHelper(FILE* stream, const char* format, va_list args) {
    562   if ((stream == stdout || stream == stderr) && !HasConsole()) {
    563     // It is important to use safe print here in order to avoid
    564     // overflowing the buffer. We might truncate the output, but this
    565     // does not crash.
    566     char buffer[4096];
    567     OS::VSNPrintF(buffer, sizeof(buffer), format, args);
    568     OutputDebugStringA(buffer);
    569   } else {
    570     vfprintf(stream, format, args);
    571   }
    572 }
    573 
    574 
    575 FILE* OS::FOpen(const char* path, const char* mode) {
    576   FILE* result;
    577   if (fopen_s(&result, path, mode) == 0) {
    578     return result;
    579   } else {
    580     return NULL;
    581   }
    582 }
    583 
    584 
    585 bool OS::Remove(const char* path) {
    586   return (DeleteFileA(path) != 0);
    587 }
    588 
    589 
    590 FILE* OS::OpenTemporaryFile() {
    591   // tmpfile_s tries to use the root dir, don't use it.
    592   char tempPathBuffer[MAX_PATH];
    593   DWORD path_result = 0;
    594   path_result = GetTempPathA(MAX_PATH, tempPathBuffer);
    595   if (path_result > MAX_PATH || path_result == 0) return NULL;
    596   UINT name_result = 0;
    597   char tempNameBuffer[MAX_PATH];
    598   name_result = GetTempFileNameA(tempPathBuffer, "", 0, tempNameBuffer);
    599   if (name_result == 0) return NULL;
    600   FILE* result = FOpen(tempNameBuffer, "w+");  // Same mode as tmpfile uses.
    601   if (result != NULL) {
    602     Remove(tempNameBuffer);  // Delete on close.
    603   }
    604   return result;
    605 }
    606 
    607 
    608 // Open log file in binary mode to avoid /n -> /r/n conversion.
    609 const char* const OS::LogFileOpenMode = "wb";
    610 
    611 
    612 // Print (debug) message to console.
    613 void OS::Print(const char* format, ...) {
    614   va_list args;
    615   va_start(args, format);
    616   VPrint(format, args);
    617   va_end(args);
    618 }
    619 
    620 
    621 void OS::VPrint(const char* format, va_list args) {
    622   VPrintHelper(stdout, format, args);
    623 }
    624 
    625 
    626 void OS::FPrint(FILE* out, const char* format, ...) {
    627   va_list args;
    628   va_start(args, format);
    629   VFPrint(out, format, args);
    630   va_end(args);
    631 }
    632 
    633 
    634 void OS::VFPrint(FILE* out, const char* format, va_list args) {
    635   VPrintHelper(out, format, args);
    636 }
    637 
    638 
    639 // Print error message to console.
    640 void OS::PrintError(const char* format, ...) {
    641   va_list args;
    642   va_start(args, format);
    643   VPrintError(format, args);
    644   va_end(args);
    645 }
    646 
    647 
    648 void OS::VPrintError(const char* format, va_list args) {
    649   VPrintHelper(stderr, format, args);
    650 }
    651 
    652 
    653 int OS::SNPrintF(char* str, int length, const char* format, ...) {
    654   va_list args;
    655   va_start(args, format);
    656   int result = VSNPrintF(str, length, format, args);
    657   va_end(args);
    658   return result;
    659 }
    660 
    661 
    662 int OS::VSNPrintF(char* str, int length, const char* format, va_list args) {
    663   int n = _vsnprintf_s(str, length, _TRUNCATE, format, args);
    664   // Make sure to zero-terminate the string if the output was
    665   // truncated or if there was an error.
    666   if (n < 0 || n >= length) {
    667     if (length > 0)
    668       str[length - 1] = '\0';
    669     return -1;
    670   } else {
    671     return n;
    672   }
    673 }
    674 
    675 
    676 char* OS::StrChr(char* str, int c) {
    677   return const_cast<char*>(strchr(str, c));
    678 }
    679 
    680 
    681 void OS::StrNCpy(char* dest, int length, const char* src, size_t n) {
    682   // Use _TRUNCATE or strncpy_s crashes (by design) if buffer is too small.
    683   size_t buffer_size = static_cast<size_t>(length);
    684   if (n + 1 > buffer_size)  // count for trailing '\0'
    685     n = _TRUNCATE;
    686   int result = strncpy_s(dest, length, src, n);
    687   USE(result);
    688   DCHECK(result == 0 || (n == _TRUNCATE && result == STRUNCATE));
    689 }
    690 
    691 
    692 #undef _TRUNCATE
    693 #undef STRUNCATE
    694 
    695 
    696 // Get the system's page size used by VirtualAlloc() or the next power
    697 // of two. The reason for always returning a power of two is that the
    698 // rounding up in OS::Allocate expects that.
    699 static size_t GetPageSize() {
    700   static size_t page_size = 0;
    701   if (page_size == 0) {
    702     SYSTEM_INFO info;
    703     GetSystemInfo(&info);
    704     page_size = base::bits::RoundUpToPowerOfTwo32(info.dwPageSize);
    705   }
    706   return page_size;
    707 }
    708 
    709 
    710 // The allocation alignment is the guaranteed alignment for
    711 // VirtualAlloc'ed blocks of memory.
    712 size_t OS::AllocateAlignment() {
    713   static size_t allocate_alignment = 0;
    714   if (allocate_alignment == 0) {
    715     SYSTEM_INFO info;
    716     GetSystemInfo(&info);
    717     allocate_alignment = info.dwAllocationGranularity;
    718   }
    719   return allocate_alignment;
    720 }
    721 
    722 
    723 static LazyInstance<RandomNumberGenerator>::type
    724     platform_random_number_generator = LAZY_INSTANCE_INITIALIZER;
    725 
    726 
    727 void OS::Initialize(int64_t random_seed, bool hard_abort,
    728                     const char* const gc_fake_mmap) {
    729   if (random_seed) {
    730     platform_random_number_generator.Pointer()->SetSeed(random_seed);
    731   }
    732   g_hard_abort = hard_abort;
    733 }
    734 
    735 
    736 void* OS::GetRandomMmapAddr() {
    737   // The address range used to randomize RWX allocations in OS::Allocate
    738   // Try not to map pages into the default range that windows loads DLLs
    739   // Use a multiple of 64k to prevent committing unused memory.
    740   // Note: This does not guarantee RWX regions will be within the
    741   // range kAllocationRandomAddressMin to kAllocationRandomAddressMax
    742 #ifdef V8_HOST_ARCH_64_BIT
    743   static const intptr_t kAllocationRandomAddressMin = 0x0000000080000000;
    744   static const intptr_t kAllocationRandomAddressMax = 0x000003FFFFFF0000;
    745 #else
    746   static const intptr_t kAllocationRandomAddressMin = 0x04000000;
    747   static const intptr_t kAllocationRandomAddressMax = 0x3FFF0000;
    748 #endif
    749   uintptr_t address =
    750       (platform_random_number_generator.Pointer()->NextInt() << kPageSizeBits) |
    751       kAllocationRandomAddressMin;
    752   address &= kAllocationRandomAddressMax;
    753   return reinterpret_cast<void *>(address);
    754 }
    755 
    756 
    757 static void* RandomizedVirtualAlloc(size_t size, int action, int protection) {
    758   LPVOID base = NULL;
    759 
    760   if (protection == PAGE_EXECUTE_READWRITE || protection == PAGE_NOACCESS) {
    761     // For exectutable pages try and randomize the allocation address
    762     for (size_t attempts = 0; base == NULL && attempts < 3; ++attempts) {
    763       base = VirtualAlloc(OS::GetRandomMmapAddr(), size, action, protection);
    764     }
    765   }
    766 
    767   // After three attempts give up and let the OS find an address to use.
    768   if (base == NULL) base = VirtualAlloc(NULL, size, action, protection);
    769 
    770   return base;
    771 }
    772 
    773 
    774 void* OS::Allocate(const size_t requested,
    775                    size_t* allocated,
    776                    bool is_executable) {
    777   // VirtualAlloc rounds allocated size to page size automatically.
    778   size_t msize = RoundUp(requested, static_cast<int>(GetPageSize()));
    779 
    780   // Windows XP SP2 allows Data Excution Prevention (DEP).
    781   int prot = is_executable ? PAGE_EXECUTE_READWRITE : PAGE_READWRITE;
    782 
    783   LPVOID mbase = RandomizedVirtualAlloc(msize,
    784                                         MEM_COMMIT | MEM_RESERVE,
    785                                         prot);
    786 
    787   if (mbase == NULL) return NULL;
    788 
    789   DCHECK((reinterpret_cast<uintptr_t>(mbase) % OS::AllocateAlignment()) == 0);
    790 
    791   *allocated = msize;
    792   return mbase;
    793 }
    794 
    795 
    796 void OS::Free(void* address, const size_t size) {
    797   // TODO(1240712): VirtualFree has a return value which is ignored here.
    798   VirtualFree(address, 0, MEM_RELEASE);
    799   USE(size);
    800 }
    801 
    802 
    803 intptr_t OS::CommitPageSize() {
    804   return 4096;
    805 }
    806 
    807 
    808 void OS::ProtectCode(void* address, const size_t size) {
    809   DWORD old_protect;
    810   VirtualProtect(address, size, PAGE_EXECUTE_READ, &old_protect);
    811 }
    812 
    813 
    814 void OS::Guard(void* address, const size_t size) {
    815   DWORD oldprotect;
    816   VirtualProtect(address, size, PAGE_NOACCESS, &oldprotect);
    817 }
    818 
    819 
    820 void OS::Sleep(int milliseconds) {
    821   ::Sleep(milliseconds);
    822 }
    823 
    824 
    825 void OS::Abort() {
    826   if (g_hard_abort) {
    827     V8_IMMEDIATE_CRASH();
    828   }
    829   // Make the MSVCRT do a silent abort.
    830   raise(SIGABRT);
    831 }
    832 
    833 
    834 void OS::DebugBreak() {
    835 #ifdef _MSC_VER
    836   // To avoid Visual Studio runtime support the following code can be used
    837   // instead
    838   // __asm { int 3 }
    839   __debugbreak();
    840 #else
    841   ::DebugBreak();
    842 #endif
    843 }
    844 
    845 
    846 class Win32MemoryMappedFile : public OS::MemoryMappedFile {
    847  public:
    848   Win32MemoryMappedFile(HANDLE file,
    849                         HANDLE file_mapping,
    850                         void* memory,
    851                         int size)
    852       : file_(file),
    853         file_mapping_(file_mapping),
    854         memory_(memory),
    855         size_(size) { }
    856   virtual ~Win32MemoryMappedFile();
    857   virtual void* memory() { return memory_; }
    858   virtual int size() { return size_; }
    859  private:
    860   HANDLE file_;
    861   HANDLE file_mapping_;
    862   void* memory_;
    863   int size_;
    864 };
    865 
    866 
    867 OS::MemoryMappedFile* OS::MemoryMappedFile::open(const char* name) {
    868   // Open a physical file
    869   HANDLE file = CreateFileA(name, GENERIC_READ | GENERIC_WRITE,
    870       FILE_SHARE_READ | FILE_SHARE_WRITE, NULL, OPEN_EXISTING, 0, NULL);
    871   if (file == INVALID_HANDLE_VALUE) return NULL;
    872 
    873   int size = static_cast<int>(GetFileSize(file, NULL));
    874 
    875   // Create a file mapping for the physical file
    876   HANDLE file_mapping = CreateFileMapping(file, NULL,
    877       PAGE_READWRITE, 0, static_cast<DWORD>(size), NULL);
    878   if (file_mapping == NULL) return NULL;
    879 
    880   // Map a view of the file into memory
    881   void* memory = MapViewOfFile(file_mapping, FILE_MAP_ALL_ACCESS, 0, 0, size);
    882   return new Win32MemoryMappedFile(file, file_mapping, memory, size);
    883 }
    884 
    885 
    886 OS::MemoryMappedFile* OS::MemoryMappedFile::create(const char* name, int size,
    887     void* initial) {
    888   // Open a physical file
    889   HANDLE file = CreateFileA(name, GENERIC_READ | GENERIC_WRITE,
    890       FILE_SHARE_READ | FILE_SHARE_WRITE, NULL, OPEN_ALWAYS, 0, NULL);
    891   if (file == NULL) return NULL;
    892   // Create a file mapping for the physical file
    893   HANDLE file_mapping = CreateFileMapping(file, NULL,
    894       PAGE_READWRITE, 0, static_cast<DWORD>(size), NULL);
    895   if (file_mapping == NULL) return NULL;
    896   // Map a view of the file into memory
    897   void* memory = MapViewOfFile(file_mapping, FILE_MAP_ALL_ACCESS, 0, 0, size);
    898   if (memory) memmove(memory, initial, size);
    899   return new Win32MemoryMappedFile(file, file_mapping, memory, size);
    900 }
    901 
    902 
    903 Win32MemoryMappedFile::~Win32MemoryMappedFile() {
    904   if (memory_ != NULL)
    905     UnmapViewOfFile(memory_);
    906   CloseHandle(file_mapping_);
    907   CloseHandle(file_);
    908 }
    909 
    910 
    911 // The following code loads functions defined in DbhHelp.h and TlHelp32.h
    912 // dynamically. This is to avoid being depending on dbghelp.dll and
    913 // tlhelp32.dll when running (the functions in tlhelp32.dll have been moved to
    914 // kernel32.dll at some point so loading functions defines in TlHelp32.h
    915 // dynamically might not be necessary any more - for some versions of Windows?).
    916 
    917 // Function pointers to functions dynamically loaded from dbghelp.dll.
    918 #define DBGHELP_FUNCTION_LIST(V)  \
    919   V(SymInitialize)                \
    920   V(SymGetOptions)                \
    921   V(SymSetOptions)                \
    922   V(SymGetSearchPath)             \
    923   V(SymLoadModule64)              \
    924   V(StackWalk64)                  \
    925   V(SymGetSymFromAddr64)          \
    926   V(SymGetLineFromAddr64)         \
    927   V(SymFunctionTableAccess64)     \
    928   V(SymGetModuleBase64)
    929 
    930 // Function pointers to functions dynamically loaded from dbghelp.dll.
    931 #define TLHELP32_FUNCTION_LIST(V)  \
    932   V(CreateToolhelp32Snapshot)      \
    933   V(Module32FirstW)                \
    934   V(Module32NextW)
    935 
    936 // Define the decoration to use for the type and variable name used for
    937 // dynamically loaded DLL function..
    938 #define DLL_FUNC_TYPE(name) _##name##_
    939 #define DLL_FUNC_VAR(name) _##name
    940 
    941 // Define the type for each dynamically loaded DLL function. The function
    942 // definitions are copied from DbgHelp.h and TlHelp32.h. The IN and VOID macros
    943 // from the Windows include files are redefined here to have the function
    944 // definitions to be as close to the ones in the original .h files as possible.
    945 #ifndef IN
    946 #define IN
    947 #endif
    948 #ifndef VOID
    949 #define VOID void
    950 #endif
    951 
    952 // DbgHelp isn't supported on MinGW yet
    953 #ifndef __MINGW32__
    954 // DbgHelp.h functions.
    955 typedef BOOL (__stdcall *DLL_FUNC_TYPE(SymInitialize))(IN HANDLE hProcess,
    956                                                        IN PSTR UserSearchPath,
    957                                                        IN BOOL fInvadeProcess);
    958 typedef DWORD (__stdcall *DLL_FUNC_TYPE(SymGetOptions))(VOID);
    959 typedef DWORD (__stdcall *DLL_FUNC_TYPE(SymSetOptions))(IN DWORD SymOptions);
    960 typedef BOOL (__stdcall *DLL_FUNC_TYPE(SymGetSearchPath))(
    961     IN HANDLE hProcess,
    962     OUT PSTR SearchPath,
    963     IN DWORD SearchPathLength);
    964 typedef DWORD64 (__stdcall *DLL_FUNC_TYPE(SymLoadModule64))(
    965     IN HANDLE hProcess,
    966     IN HANDLE hFile,
    967     IN PSTR ImageName,
    968     IN PSTR ModuleName,
    969     IN DWORD64 BaseOfDll,
    970     IN DWORD SizeOfDll);
    971 typedef BOOL (__stdcall *DLL_FUNC_TYPE(StackWalk64))(
    972     DWORD MachineType,
    973     HANDLE hProcess,
    974     HANDLE hThread,
    975     LPSTACKFRAME64 StackFrame,
    976     PVOID ContextRecord,
    977     PREAD_PROCESS_MEMORY_ROUTINE64 ReadMemoryRoutine,
    978     PFUNCTION_TABLE_ACCESS_ROUTINE64 FunctionTableAccessRoutine,
    979     PGET_MODULE_BASE_ROUTINE64 GetModuleBaseRoutine,
    980     PTRANSLATE_ADDRESS_ROUTINE64 TranslateAddress);
    981 typedef BOOL (__stdcall *DLL_FUNC_TYPE(SymGetSymFromAddr64))(
    982     IN HANDLE hProcess,
    983     IN DWORD64 qwAddr,
    984     OUT PDWORD64 pdwDisplacement,
    985     OUT PIMAGEHLP_SYMBOL64 Symbol);
    986 typedef BOOL (__stdcall *DLL_FUNC_TYPE(SymGetLineFromAddr64))(
    987     IN HANDLE hProcess,
    988     IN DWORD64 qwAddr,
    989     OUT PDWORD pdwDisplacement,
    990     OUT PIMAGEHLP_LINE64 Line64);
    991 // DbgHelp.h typedefs. Implementation found in dbghelp.dll.
    992 typedef PVOID (__stdcall *DLL_FUNC_TYPE(SymFunctionTableAccess64))(
    993     HANDLE hProcess,
    994     DWORD64 AddrBase);  // DbgHelp.h typedef PFUNCTION_TABLE_ACCESS_ROUTINE64
    995 typedef DWORD64 (__stdcall *DLL_FUNC_TYPE(SymGetModuleBase64))(
    996     HANDLE hProcess,
    997     DWORD64 AddrBase);  // DbgHelp.h typedef PGET_MODULE_BASE_ROUTINE64
    998 
    999 // TlHelp32.h functions.
   1000 typedef HANDLE (__stdcall *DLL_FUNC_TYPE(CreateToolhelp32Snapshot))(
   1001     DWORD dwFlags,
   1002     DWORD th32ProcessID);
   1003 typedef BOOL (__stdcall *DLL_FUNC_TYPE(Module32FirstW))(HANDLE hSnapshot,
   1004                                                         LPMODULEENTRY32W lpme);
   1005 typedef BOOL (__stdcall *DLL_FUNC_TYPE(Module32NextW))(HANDLE hSnapshot,
   1006                                                        LPMODULEENTRY32W lpme);
   1007 
   1008 #undef IN
   1009 #undef VOID
   1010 
   1011 // Declare a variable for each dynamically loaded DLL function.
   1012 #define DEF_DLL_FUNCTION(name) DLL_FUNC_TYPE(name) DLL_FUNC_VAR(name) = NULL;
   1013 DBGHELP_FUNCTION_LIST(DEF_DLL_FUNCTION)
   1014 TLHELP32_FUNCTION_LIST(DEF_DLL_FUNCTION)
   1015 #undef DEF_DLL_FUNCTION
   1016 
   1017 // Load the functions. This function has a lot of "ugly" macros in order to
   1018 // keep down code duplication.
   1019 
   1020 static bool LoadDbgHelpAndTlHelp32() {
   1021   static bool dbghelp_loaded = false;
   1022 
   1023   if (dbghelp_loaded) return true;
   1024 
   1025   HMODULE module;
   1026 
   1027   // Load functions from the dbghelp.dll module.
   1028   module = LoadLibrary(TEXT("dbghelp.dll"));
   1029   if (module == NULL) {
   1030     return false;
   1031   }
   1032 
   1033 #define LOAD_DLL_FUNC(name)                                                 \
   1034   DLL_FUNC_VAR(name) =                                                      \
   1035       reinterpret_cast<DLL_FUNC_TYPE(name)>(GetProcAddress(module, #name));
   1036 
   1037 DBGHELP_FUNCTION_LIST(LOAD_DLL_FUNC)
   1038 
   1039 #undef LOAD_DLL_FUNC
   1040 
   1041   // Load functions from the kernel32.dll module (the TlHelp32.h function used
   1042   // to be in tlhelp32.dll but are now moved to kernel32.dll).
   1043   module = LoadLibrary(TEXT("kernel32.dll"));
   1044   if (module == NULL) {
   1045     return false;
   1046   }
   1047 
   1048 #define LOAD_DLL_FUNC(name)                                                 \
   1049   DLL_FUNC_VAR(name) =                                                      \
   1050       reinterpret_cast<DLL_FUNC_TYPE(name)>(GetProcAddress(module, #name));
   1051 
   1052 TLHELP32_FUNCTION_LIST(LOAD_DLL_FUNC)
   1053 
   1054 #undef LOAD_DLL_FUNC
   1055 
   1056   // Check that all functions where loaded.
   1057   bool result =
   1058 #define DLL_FUNC_LOADED(name) (DLL_FUNC_VAR(name) != NULL) &&
   1059 
   1060 DBGHELP_FUNCTION_LIST(DLL_FUNC_LOADED)
   1061 TLHELP32_FUNCTION_LIST(DLL_FUNC_LOADED)
   1062 
   1063 #undef DLL_FUNC_LOADED
   1064   true;
   1065 
   1066   dbghelp_loaded = result;
   1067   return result;
   1068   // NOTE: The modules are never unloaded and will stay around until the
   1069   // application is closed.
   1070 }
   1071 
   1072 #undef DBGHELP_FUNCTION_LIST
   1073 #undef TLHELP32_FUNCTION_LIST
   1074 #undef DLL_FUNC_VAR
   1075 #undef DLL_FUNC_TYPE
   1076 
   1077 
   1078 // Load the symbols for generating stack traces.
   1079 static std::vector<OS::SharedLibraryAddress> LoadSymbols(
   1080     HANDLE process_handle) {
   1081   static std::vector<OS::SharedLibraryAddress> result;
   1082 
   1083   static bool symbols_loaded = false;
   1084 
   1085   if (symbols_loaded) return result;
   1086 
   1087   BOOL ok;
   1088 
   1089   // Initialize the symbol engine.
   1090   ok = _SymInitialize(process_handle,  // hProcess
   1091                       NULL,            // UserSearchPath
   1092                       false);          // fInvadeProcess
   1093   if (!ok) return result;
   1094 
   1095   DWORD options = _SymGetOptions();
   1096   options |= SYMOPT_LOAD_LINES;
   1097   options |= SYMOPT_FAIL_CRITICAL_ERRORS;
   1098   options = _SymSetOptions(options);
   1099 
   1100   char buf[OS::kStackWalkMaxNameLen] = {0};
   1101   ok = _SymGetSearchPath(process_handle, buf, OS::kStackWalkMaxNameLen);
   1102   if (!ok) {
   1103     int err = GetLastError();
   1104     OS::Print("%d\n", err);
   1105     return result;
   1106   }
   1107 
   1108   HANDLE snapshot = _CreateToolhelp32Snapshot(
   1109       TH32CS_SNAPMODULE,       // dwFlags
   1110       GetCurrentProcessId());  // th32ProcessId
   1111   if (snapshot == INVALID_HANDLE_VALUE) return result;
   1112   MODULEENTRY32W module_entry;
   1113   module_entry.dwSize = sizeof(module_entry);  // Set the size of the structure.
   1114   BOOL cont = _Module32FirstW(snapshot, &module_entry);
   1115   while (cont) {
   1116     DWORD64 base;
   1117     // NOTE the SymLoadModule64 function has the peculiarity of accepting a
   1118     // both unicode and ASCII strings even though the parameter is PSTR.
   1119     base = _SymLoadModule64(
   1120         process_handle,                                       // hProcess
   1121         0,                                                    // hFile
   1122         reinterpret_cast<PSTR>(module_entry.szExePath),       // ImageName
   1123         reinterpret_cast<PSTR>(module_entry.szModule),        // ModuleName
   1124         reinterpret_cast<DWORD64>(module_entry.modBaseAddr),  // BaseOfDll
   1125         module_entry.modBaseSize);                            // SizeOfDll
   1126     if (base == 0) {
   1127       int err = GetLastError();
   1128       if (err != ERROR_MOD_NOT_FOUND &&
   1129           err != ERROR_INVALID_HANDLE) {
   1130         result.clear();
   1131         return result;
   1132       }
   1133     }
   1134     int lib_name_length = WideCharToMultiByte(
   1135         CP_UTF8, 0, module_entry.szExePath, -1, NULL, 0, NULL, NULL);
   1136     std::string lib_name(lib_name_length, 0);
   1137     WideCharToMultiByte(CP_UTF8, 0, module_entry.szExePath, -1, &lib_name[0],
   1138                         lib_name_length, NULL, NULL);
   1139     result.push_back(OS::SharedLibraryAddress(
   1140         lib_name, reinterpret_cast<unsigned int>(module_entry.modBaseAddr),
   1141         reinterpret_cast<unsigned int>(module_entry.modBaseAddr +
   1142                                        module_entry.modBaseSize)));
   1143     cont = _Module32NextW(snapshot, &module_entry);
   1144   }
   1145   CloseHandle(snapshot);
   1146 
   1147   symbols_loaded = true;
   1148   return result;
   1149 }
   1150 
   1151 
   1152 std::vector<OS::SharedLibraryAddress> OS::GetSharedLibraryAddresses() {
   1153   // SharedLibraryEvents are logged when loading symbol information.
   1154   // Only the shared libraries loaded at the time of the call to
   1155   // GetSharedLibraryAddresses are logged.  DLLs loaded after
   1156   // initialization are not accounted for.
   1157   if (!LoadDbgHelpAndTlHelp32()) return std::vector<OS::SharedLibraryAddress>();
   1158   HANDLE process_handle = GetCurrentProcess();
   1159   return LoadSymbols(process_handle);
   1160 }
   1161 
   1162 
   1163 void OS::SignalCodeMovingGC() {
   1164 }
   1165 
   1166 
   1167 #else  // __MINGW32__
   1168 std::vector<OS::SharedLibraryAddress> OS::GetSharedLibraryAddresses() {
   1169   return std::vector<OS::SharedLibraryAddress>();
   1170 }
   1171 
   1172 
   1173 void OS::SignalCodeMovingGC() { }
   1174 #endif  // __MINGW32__
   1175 
   1176 
   1177 double OS::nan_value() {
   1178 #ifdef _MSC_VER
   1179   return std::numeric_limits<double>::quiet_NaN();
   1180 #else  // _MSC_VER
   1181   return NAN;
   1182 #endif  // _MSC_VER
   1183 }
   1184 
   1185 
   1186 int OS::ActivationFrameAlignment() {
   1187 #ifdef _WIN64
   1188   return 16;  // Windows 64-bit ABI requires the stack to be 16-byte aligned.
   1189 #elif defined(__MINGW32__)
   1190   // With gcc 4.4 the tree vectorization optimizer can generate code
   1191   // that requires 16 byte alignment such as movdqa on x86.
   1192   return 16;
   1193 #else
   1194   return 8;  // Floating-point math runs faster with 8-byte alignment.
   1195 #endif
   1196 }
   1197 
   1198 
   1199 VirtualMemory::VirtualMemory() : address_(NULL), size_(0) { }
   1200 
   1201 
   1202 VirtualMemory::VirtualMemory(size_t size)
   1203     : address_(ReserveRegion(size)), size_(size) { }
   1204 
   1205 
   1206 VirtualMemory::VirtualMemory(size_t size, size_t alignment)
   1207     : address_(NULL), size_(0) {
   1208   DCHECK((alignment % OS::AllocateAlignment()) == 0);
   1209   size_t request_size = RoundUp(size + alignment,
   1210                                 static_cast<intptr_t>(OS::AllocateAlignment()));
   1211   void* address = ReserveRegion(request_size);
   1212   if (address == NULL) return;
   1213   uint8_t* base = RoundUp(static_cast<uint8_t*>(address), alignment);
   1214   // Try reducing the size by freeing and then reallocating a specific area.
   1215   bool result = ReleaseRegion(address, request_size);
   1216   USE(result);
   1217   DCHECK(result);
   1218   address = VirtualAlloc(base, size, MEM_RESERVE, PAGE_NOACCESS);
   1219   if (address != NULL) {
   1220     request_size = size;
   1221     DCHECK(base == static_cast<uint8_t*>(address));
   1222   } else {
   1223     // Resizing failed, just go with a bigger area.
   1224     address = ReserveRegion(request_size);
   1225     if (address == NULL) return;
   1226   }
   1227   address_ = address;
   1228   size_ = request_size;
   1229 }
   1230 
   1231 
   1232 VirtualMemory::~VirtualMemory() {
   1233   if (IsReserved()) {
   1234     bool result = ReleaseRegion(address(), size());
   1235     DCHECK(result);
   1236     USE(result);
   1237   }
   1238 }
   1239 
   1240 
   1241 bool VirtualMemory::IsReserved() {
   1242   return address_ != NULL;
   1243 }
   1244 
   1245 
   1246 void VirtualMemory::Reset() {
   1247   address_ = NULL;
   1248   size_ = 0;
   1249 }
   1250 
   1251 
   1252 bool VirtualMemory::Commit(void* address, size_t size, bool is_executable) {
   1253   return CommitRegion(address, size, is_executable);
   1254 }
   1255 
   1256 
   1257 bool VirtualMemory::Uncommit(void* address, size_t size) {
   1258   DCHECK(IsReserved());
   1259   return UncommitRegion(address, size);
   1260 }
   1261 
   1262 
   1263 bool VirtualMemory::Guard(void* address) {
   1264   if (NULL == VirtualAlloc(address,
   1265                            OS::CommitPageSize(),
   1266                            MEM_COMMIT,
   1267                            PAGE_NOACCESS)) {
   1268     return false;
   1269   }
   1270   return true;
   1271 }
   1272 
   1273 
   1274 void* VirtualMemory::ReserveRegion(size_t size) {
   1275   return RandomizedVirtualAlloc(size, MEM_RESERVE, PAGE_NOACCESS);
   1276 }
   1277 
   1278 
   1279 bool VirtualMemory::CommitRegion(void* base, size_t size, bool is_executable) {
   1280   int prot = is_executable ? PAGE_EXECUTE_READWRITE : PAGE_READWRITE;
   1281   if (NULL == VirtualAlloc(base, size, MEM_COMMIT, prot)) {
   1282     return false;
   1283   }
   1284   return true;
   1285 }
   1286 
   1287 
   1288 bool VirtualMemory::UncommitRegion(void* base, size_t size) {
   1289   return VirtualFree(base, size, MEM_DECOMMIT) != 0;
   1290 }
   1291 
   1292 
   1293 bool VirtualMemory::ReleaseRegion(void* base, size_t size) {
   1294   return VirtualFree(base, 0, MEM_RELEASE) != 0;
   1295 }
   1296 
   1297 
   1298 bool VirtualMemory::HasLazyCommits() {
   1299   // TODO(alph): implement for the platform.
   1300   return false;
   1301 }
   1302 
   1303 
   1304 // ----------------------------------------------------------------------------
   1305 // Win32 thread support.
   1306 
   1307 // Definition of invalid thread handle and id.
   1308 static const HANDLE kNoThread = INVALID_HANDLE_VALUE;
   1309 
   1310 // Entry point for threads. The supplied argument is a pointer to the thread
   1311 // object. The entry function dispatches to the run method in the thread
   1312 // object. It is important that this function has __stdcall calling
   1313 // convention.
   1314 static unsigned int __stdcall ThreadEntry(void* arg) {
   1315   Thread* thread = reinterpret_cast<Thread*>(arg);
   1316   thread->NotifyStartedAndRun();
   1317   return 0;
   1318 }
   1319 
   1320 
   1321 class Thread::PlatformData {
   1322  public:
   1323   explicit PlatformData(HANDLE thread) : thread_(thread) {}
   1324   HANDLE thread_;
   1325   unsigned thread_id_;
   1326 };
   1327 
   1328 
   1329 // Initialize a Win32 thread object. The thread has an invalid thread
   1330 // handle until it is started.
   1331 
   1332 Thread::Thread(const Options& options)
   1333     : stack_size_(options.stack_size()),
   1334       start_semaphore_(NULL) {
   1335   data_ = new PlatformData(kNoThread);
   1336   set_name(options.name());
   1337 }
   1338 
   1339 
   1340 void Thread::set_name(const char* name) {
   1341   OS::StrNCpy(name_, sizeof(name_), name, strlen(name));
   1342   name_[sizeof(name_) - 1] = '\0';
   1343 }
   1344 
   1345 
   1346 // Close our own handle for the thread.
   1347 Thread::~Thread() {
   1348   if (data_->thread_ != kNoThread) CloseHandle(data_->thread_);
   1349   delete data_;
   1350 }
   1351 
   1352 
   1353 // Create a new thread. It is important to use _beginthreadex() instead of
   1354 // the Win32 function CreateThread(), because the CreateThread() does not
   1355 // initialize thread specific structures in the C runtime library.
   1356 void Thread::Start() {
   1357   data_->thread_ = reinterpret_cast<HANDLE>(
   1358       _beginthreadex(NULL,
   1359                      static_cast<unsigned>(stack_size_),
   1360                      ThreadEntry,
   1361                      this,
   1362                      0,
   1363                      &data_->thread_id_));
   1364 }
   1365 
   1366 
   1367 // Wait for thread to terminate.
   1368 void Thread::Join() {
   1369   if (data_->thread_id_ != GetCurrentThreadId()) {
   1370     WaitForSingleObject(data_->thread_, INFINITE);
   1371   }
   1372 }
   1373 
   1374 
   1375 Thread::LocalStorageKey Thread::CreateThreadLocalKey() {
   1376   DWORD result = TlsAlloc();
   1377   DCHECK(result != TLS_OUT_OF_INDEXES);
   1378   return static_cast<LocalStorageKey>(result);
   1379 }
   1380 
   1381 
   1382 void Thread::DeleteThreadLocalKey(LocalStorageKey key) {
   1383   BOOL result = TlsFree(static_cast<DWORD>(key));
   1384   USE(result);
   1385   DCHECK(result);
   1386 }
   1387 
   1388 
   1389 void* Thread::GetThreadLocal(LocalStorageKey key) {
   1390   return TlsGetValue(static_cast<DWORD>(key));
   1391 }
   1392 
   1393 
   1394 void Thread::SetThreadLocal(LocalStorageKey key, void* value) {
   1395   BOOL result = TlsSetValue(static_cast<DWORD>(key), value);
   1396   USE(result);
   1397   DCHECK(result);
   1398 }
   1399 
   1400 
   1401 
   1402 void Thread::YieldCPU() {
   1403   Sleep(0);
   1404 }
   1405 
   1406 } }  // namespace v8::base
   1407