1 /* 2 * Create a squashfs filesystem. This is a highly compressed read only 3 * filesystem. 4 * 5 * Copyright (c) 2014 6 * Phillip Lougher <phillip (at) squashfs.org.uk> 7 * 8 * This program is free software; you can redistribute it and/or 9 * modify it under the terms of the GNU General Public License 10 * as published by the Free Software Foundation; either version 2, 11 * or (at your option) any later version. 12 * 13 * This program is distributed in the hope that it will be useful, 14 * but WITHOUT ANY WARRANTY; without even the implied warranty of 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 16 * GNU General Public License for more details. 17 * 18 * You should have received a copy of the GNU General Public License 19 * along with this program; if not, write to the Free Software 20 * Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. 21 * 22 * process_fragments.c 23 */ 24 25 #include <pthread.h> 26 #include <sys/ioctl.h> 27 #include <unistd.h> 28 #include <signal.h> 29 #include <sys/time.h> 30 #include <string.h> 31 #include <stdio.h> 32 #include <math.h> 33 #include <stdarg.h> 34 #include <errno.h> 35 #include <stdlib.h> 36 #include <dirent.h> 37 #include <sys/types.h> 38 #include <sys/stat.h> 39 #include <fcntl.h> 40 41 #include "caches-queues-lists.h" 42 #include "squashfs_fs.h" 43 #include "mksquashfs.h" 44 #include "error.h" 45 #include "progressbar.h" 46 #include "info.h" 47 #include "compressor.h" 48 #include "process_fragments.h" 49 50 #define FALSE 0 51 #define TRUE 1 52 53 extern struct queue *to_process_frag; 54 extern struct seq_queue *to_main; 55 extern int sparse_files; 56 57 /* 58 * Compute 16 bit BSD checksum over the data, and check for sparseness 59 */ 60 static int checksum_sparse(struct file_buffer *file_buffer) 61 { 62 unsigned char *b = (unsigned char *) file_buffer->data; 63 unsigned short chksum = 0; 64 int bytes = file_buffer->size, sparse = TRUE, value; 65 66 while(bytes --) { 67 chksum = (chksum & 1) ? (chksum >> 1) | 0x8000 : chksum >> 1; 68 value = *b++; 69 if(value) { 70 sparse = FALSE; 71 chksum += value; 72 } 73 } 74 75 file_buffer->checksum = chksum; 76 return sparse; 77 } 78 79 80 static int read_filesystem(int fd, long long byte, int bytes, void *buff) 81 { 82 off_t off = byte; 83 84 TRACE("read_filesystem: reading from position 0x%llx, bytes %d\n", 85 byte, bytes); 86 87 if(lseek(fd, off, SEEK_SET) == -1) { 88 ERROR("read_filesystem: Lseek on destination failed because %s, " 89 "offset=0x%llx\n", strerror(errno), off); 90 return 0; 91 } else if(read_bytes(fd, buff, bytes) < bytes) { 92 ERROR("Read on destination failed\n"); 93 return 0; 94 } 95 96 return 1; 97 } 98 99 100 static struct file_buffer *get_fragment(struct fragment *fragment, 101 char *data_buffer, int fd) 102 { 103 struct squashfs_fragment_entry *disk_fragment; 104 struct file_buffer *buffer, *compressed_buffer; 105 long long start_block; 106 int res, size, index = fragment->index; 107 char locked; 108 109 /* 110 * Lookup fragment block in cache. 111 * If the fragment block doesn't exist, then get the compressed version 112 * from the writer cache or off disk, and decompress it. 113 * 114 * This routine has two things which complicate the code: 115 * 116 * 1. Multiple threads can simultaneously lookup/create the 117 * same buffer. This means a buffer needs to be "locked" 118 * when it is being filled in, to prevent other threads from 119 * using it when it is not ready. This is because we now do 120 * fragment duplicate checking in parallel. 121 * 2. We have two caches which need to be checked for the 122 * presence of fragment blocks: the normal fragment cache 123 * and a "reserve" cache. The reserve cache is used to 124 * prevent an unnecessary pipeline stall when the fragment cache 125 * is full of fragments waiting to be compressed. 126 */ 127 pthread_cleanup_push((void *) pthread_mutex_unlock, &dup_mutex); 128 pthread_mutex_lock(&dup_mutex); 129 130 again: 131 buffer = cache_lookup_nowait(fragment_buffer, index, &locked); 132 if(buffer) { 133 pthread_mutex_unlock(&dup_mutex); 134 if(locked) 135 /* got a buffer being filled in. Wait for it */ 136 cache_wait_unlock(buffer); 137 goto finished; 138 } 139 140 /* not in fragment cache, is it in the reserve cache? */ 141 buffer = cache_lookup_nowait(reserve_cache, index, &locked); 142 if(buffer) { 143 pthread_mutex_unlock(&dup_mutex); 144 if(locked) 145 /* got a buffer being filled in. Wait for it */ 146 cache_wait_unlock(buffer); 147 goto finished; 148 } 149 150 /* in neither cache, try to get it from the fragment cache */ 151 buffer = cache_get_nowait(fragment_buffer, index); 152 if(!buffer) { 153 /* 154 * no room, get it from the reserve cache, this is 155 * dimensioned so it will always have space (no more than 156 * processors + 1 can have an outstanding reserve buffer) 157 */ 158 buffer = cache_get_nowait(reserve_cache, index); 159 if(!buffer) { 160 /* failsafe */ 161 ERROR("no space in reserve cache\n"); 162 goto again; 163 } 164 } 165 166 pthread_mutex_unlock(&dup_mutex); 167 168 compressed_buffer = cache_lookup(fwriter_buffer, index); 169 170 pthread_cleanup_push((void *) pthread_mutex_unlock, &fragment_mutex); 171 pthread_mutex_lock(&fragment_mutex); 172 disk_fragment = &fragment_table[index]; 173 size = SQUASHFS_COMPRESSED_SIZE_BLOCK(disk_fragment->size); 174 start_block = disk_fragment->start_block; 175 pthread_cleanup_pop(1); 176 177 if(SQUASHFS_COMPRESSED_BLOCK(disk_fragment->size)) { 178 int error; 179 char *data; 180 181 if(compressed_buffer) 182 data = compressed_buffer->data; 183 else { 184 res = read_filesystem(fd, start_block, size, data_buffer); 185 if(res == 0) { 186 ERROR("Failed to read fragment from output" 187 " filesystem\n"); 188 BAD_ERROR("Output filesystem corrupted?\n"); 189 } 190 data = data_buffer; 191 } 192 193 res = compressor_uncompress(comp, buffer->data, data, size, 194 block_size, &error); 195 if(res == -1) 196 BAD_ERROR("%s uncompress failed with error code %d\n", 197 comp->name, error); 198 } else if(compressed_buffer) 199 memcpy(buffer->data, compressed_buffer->data, size); 200 else { 201 res = read_filesystem(fd, start_block, size, buffer->data); 202 if(res == 0) { 203 ERROR("Failed to read fragment from output " 204 "filesystem\n"); 205 BAD_ERROR("Output filesystem corrupted?\n"); 206 } 207 } 208 209 cache_unlock(buffer); 210 cache_block_put(compressed_buffer); 211 212 finished: 213 pthread_cleanup_pop(0); 214 215 return buffer; 216 } 217 218 219 struct file_buffer *get_fragment_cksum(struct file_info *file, 220 char *data_buffer, int fd, unsigned short *checksum) 221 { 222 struct file_buffer *frag_buffer; 223 struct append_file *append; 224 int index = file->fragment->index; 225 226 frag_buffer = get_fragment(file->fragment, data_buffer, fd); 227 228 pthread_cleanup_push((void *) pthread_mutex_unlock, &dup_mutex); 229 230 for(append = file_mapping[index]; append; append = append->next) { 231 int offset = append->file->fragment->offset; 232 int size = append->file->fragment->size; 233 char *data = frag_buffer->data + offset; 234 unsigned short cksum = get_checksum_mem(data, size); 235 236 if(file == append->file) 237 *checksum = cksum; 238 239 pthread_mutex_lock(&dup_mutex); 240 append->file->fragment_checksum = cksum; 241 append->file->have_frag_checksum = TRUE; 242 pthread_mutex_unlock(&dup_mutex); 243 } 244 245 pthread_cleanup_pop(0); 246 247 return frag_buffer; 248 } 249 250 251 void *frag_thrd(void *destination_file) 252 { 253 sigset_t sigmask, old_mask; 254 char *data_buffer; 255 int fd; 256 257 sigemptyset(&sigmask); 258 sigaddset(&sigmask, SIGINT); 259 sigaddset(&sigmask, SIGTERM); 260 sigaddset(&sigmask, SIGUSR1); 261 pthread_sigmask(SIG_BLOCK, &sigmask, &old_mask); 262 263 fd = open(destination_file, O_RDONLY); 264 if(fd == -1) 265 BAD_ERROR("frag_thrd: can't open destination for reading\n"); 266 267 data_buffer = malloc(SQUASHFS_FILE_MAX_SIZE); 268 if(data_buffer == NULL) 269 MEM_ERROR(); 270 271 pthread_cleanup_push((void *) pthread_mutex_unlock, &dup_mutex); 272 273 while(1) { 274 struct file_buffer *file_buffer = queue_get(to_process_frag); 275 struct file_buffer *buffer; 276 int sparse = checksum_sparse(file_buffer); 277 struct file_info *dupl_ptr; 278 long long file_size; 279 unsigned short checksum; 280 char flag; 281 int res; 282 283 if(sparse_files && sparse) { 284 file_buffer->c_byte = 0; 285 file_buffer->fragment = FALSE; 286 } else 287 file_buffer->c_byte = file_buffer->size; 288 289 /* 290 * Specutively pull into the fragment cache any fragment blocks 291 * which contain fragments which *this* fragment may be 292 * be a duplicate. 293 * 294 * By ensuring the fragment block is in cache ahead of time 295 * should eliminate the parallelisation stall when the 296 * main thread needs to read the fragment block to do a 297 * duplicate check on it. 298 * 299 * If this is a fragment belonging to a larger file 300 * (with additional blocks) then ignore it. Here we're 301 * interested in the "low hanging fruit" of files which 302 * consist of only a fragment 303 */ 304 if(file_buffer->file_size != file_buffer->size) { 305 seq_queue_put(to_main, file_buffer); 306 continue; 307 } 308 309 file_size = file_buffer->file_size; 310 311 pthread_mutex_lock(&dup_mutex); 312 dupl_ptr = dupl[DUP_HASH(file_size)]; 313 pthread_mutex_unlock(&dup_mutex); 314 315 file_buffer->dupl_start = dupl_ptr; 316 file_buffer->duplicate = FALSE; 317 318 for(; dupl_ptr; dupl_ptr = dupl_ptr->next) { 319 if(file_size != dupl_ptr->file_size || 320 file_size != dupl_ptr->fragment->size) 321 continue; 322 323 pthread_mutex_lock(&dup_mutex); 324 flag = dupl_ptr->have_frag_checksum; 325 checksum = dupl_ptr->fragment_checksum; 326 pthread_mutex_unlock(&dup_mutex); 327 328 /* 329 * If we have the checksum and it matches then 330 * read in the fragment block. 331 * 332 * If we *don't* have the checksum, then we are 333 * appending, and the fragment block is on the 334 * "old" filesystem. Read it in and checksum 335 * the entire fragment buffer 336 */ 337 if(!flag) { 338 buffer = get_fragment_cksum(dupl_ptr, 339 data_buffer, fd, &checksum); 340 if(checksum != file_buffer->checksum) { 341 cache_block_put(buffer); 342 continue; 343 } 344 } else if(checksum == file_buffer->checksum) 345 buffer = get_fragment(dupl_ptr->fragment, 346 data_buffer, fd); 347 else 348 continue; 349 350 res = memcmp(file_buffer->data, buffer->data + 351 dupl_ptr->fragment->offset, file_size); 352 cache_block_put(buffer); 353 if(res == 0) { 354 struct file_buffer *dup = malloc(sizeof(*dup)); 355 if(dup == NULL) 356 MEM_ERROR(); 357 memcpy(dup, file_buffer, sizeof(*dup)); 358 cache_block_put(file_buffer); 359 dup->dupl_start = dupl_ptr; 360 dup->duplicate = TRUE; 361 file_buffer = dup; 362 break; 363 } 364 } 365 366 seq_queue_put(to_main, file_buffer); 367 } 368 369 pthread_cleanup_pop(0); 370 } 371