Home | History | Annotate | Download | only in CodeGen
      1 //===--- CodeGenTypes.cpp - Type translation for LLVM CodeGen -------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This is the code that handles AST -> LLVM type lowering.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "CodeGenTypes.h"
     15 #include "CGCXXABI.h"
     16 #include "CGCall.h"
     17 #include "CGOpenCLRuntime.h"
     18 #include "CGRecordLayout.h"
     19 #include "TargetInfo.h"
     20 #include "clang/AST/ASTContext.h"
     21 #include "clang/AST/DeclCXX.h"
     22 #include "clang/AST/DeclObjC.h"
     23 #include "clang/AST/Expr.h"
     24 #include "clang/AST/RecordLayout.h"
     25 #include "clang/CodeGen/CGFunctionInfo.h"
     26 #include "llvm/IR/DataLayout.h"
     27 #include "llvm/IR/DerivedTypes.h"
     28 #include "llvm/IR/Module.h"
     29 using namespace clang;
     30 using namespace CodeGen;
     31 
     32 CodeGenTypes::CodeGenTypes(CodeGenModule &cgm)
     33   : CGM(cgm), Context(cgm.getContext()), TheModule(cgm.getModule()),
     34     TheDataLayout(cgm.getDataLayout()),
     35     Target(cgm.getTarget()), TheCXXABI(cgm.getCXXABI()),
     36     TheABIInfo(cgm.getTargetCodeGenInfo().getABIInfo()) {
     37   SkippedLayout = false;
     38 }
     39 
     40 CodeGenTypes::~CodeGenTypes() {
     41   llvm::DeleteContainerSeconds(CGRecordLayouts);
     42 
     43   for (llvm::FoldingSet<CGFunctionInfo>::iterator
     44        I = FunctionInfos.begin(), E = FunctionInfos.end(); I != E; )
     45     delete &*I++;
     46 }
     47 
     48 void CodeGenTypes::addRecordTypeName(const RecordDecl *RD,
     49                                      llvm::StructType *Ty,
     50                                      StringRef suffix) {
     51   SmallString<256> TypeName;
     52   llvm::raw_svector_ostream OS(TypeName);
     53   OS << RD->getKindName() << '.';
     54 
     55   // Name the codegen type after the typedef name
     56   // if there is no tag type name available
     57   if (RD->getIdentifier()) {
     58     // FIXME: We should not have to check for a null decl context here.
     59     // Right now we do it because the implicit Obj-C decls don't have one.
     60     if (RD->getDeclContext())
     61       RD->printQualifiedName(OS);
     62     else
     63       RD->printName(OS);
     64   } else if (const TypedefNameDecl *TDD = RD->getTypedefNameForAnonDecl()) {
     65     // FIXME: We should not have to check for a null decl context here.
     66     // Right now we do it because the implicit Obj-C decls don't have one.
     67     if (TDD->getDeclContext())
     68       TDD->printQualifiedName(OS);
     69     else
     70       TDD->printName(OS);
     71   } else
     72     OS << "anon";
     73 
     74   if (!suffix.empty())
     75     OS << suffix;
     76 
     77   Ty->setName(OS.str());
     78 }
     79 
     80 /// ConvertTypeForMem - Convert type T into a llvm::Type.  This differs from
     81 /// ConvertType in that it is used to convert to the memory representation for
     82 /// a type.  For example, the scalar representation for _Bool is i1, but the
     83 /// memory representation is usually i8 or i32, depending on the target.
     84 llvm::Type *CodeGenTypes::ConvertTypeForMem(QualType T) {
     85   llvm::Type *R = ConvertType(T);
     86 
     87   // If this is a non-bool type, don't map it.
     88   if (!R->isIntegerTy(1))
     89     return R;
     90 
     91   // Otherwise, return an integer of the target-specified size.
     92   return llvm::IntegerType::get(getLLVMContext(),
     93                                 (unsigned)Context.getTypeSize(T));
     94 }
     95 
     96 
     97 /// isRecordLayoutComplete - Return true if the specified type is already
     98 /// completely laid out.
     99 bool CodeGenTypes::isRecordLayoutComplete(const Type *Ty) const {
    100   llvm::DenseMap<const Type*, llvm::StructType *>::const_iterator I =
    101   RecordDeclTypes.find(Ty);
    102   return I != RecordDeclTypes.end() && !I->second->isOpaque();
    103 }
    104 
    105 static bool
    106 isSafeToConvert(QualType T, CodeGenTypes &CGT,
    107                 llvm::SmallPtrSet<const RecordDecl*, 16> &AlreadyChecked);
    108 
    109 
    110 /// isSafeToConvert - Return true if it is safe to convert the specified record
    111 /// decl to IR and lay it out, false if doing so would cause us to get into a
    112 /// recursive compilation mess.
    113 static bool
    114 isSafeToConvert(const RecordDecl *RD, CodeGenTypes &CGT,
    115                 llvm::SmallPtrSet<const RecordDecl*, 16> &AlreadyChecked) {
    116   // If we have already checked this type (maybe the same type is used by-value
    117   // multiple times in multiple structure fields, don't check again.
    118   if (!AlreadyChecked.insert(RD).second)
    119     return true;
    120 
    121   const Type *Key = CGT.getContext().getTagDeclType(RD).getTypePtr();
    122 
    123   // If this type is already laid out, converting it is a noop.
    124   if (CGT.isRecordLayoutComplete(Key)) return true;
    125 
    126   // If this type is currently being laid out, we can't recursively compile it.
    127   if (CGT.isRecordBeingLaidOut(Key))
    128     return false;
    129 
    130   // If this type would require laying out bases that are currently being laid
    131   // out, don't do it.  This includes virtual base classes which get laid out
    132   // when a class is translated, even though they aren't embedded by-value into
    133   // the class.
    134   if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) {
    135     for (const auto &I : CRD->bases())
    136       if (!isSafeToConvert(I.getType()->getAs<RecordType>()->getDecl(),
    137                            CGT, AlreadyChecked))
    138         return false;
    139   }
    140 
    141   // If this type would require laying out members that are currently being laid
    142   // out, don't do it.
    143   for (const auto *I : RD->fields())
    144     if (!isSafeToConvert(I->getType(), CGT, AlreadyChecked))
    145       return false;
    146 
    147   // If there are no problems, lets do it.
    148   return true;
    149 }
    150 
    151 /// isSafeToConvert - Return true if it is safe to convert this field type,
    152 /// which requires the structure elements contained by-value to all be
    153 /// recursively safe to convert.
    154 static bool
    155 isSafeToConvert(QualType T, CodeGenTypes &CGT,
    156                 llvm::SmallPtrSet<const RecordDecl*, 16> &AlreadyChecked) {
    157   T = T.getCanonicalType();
    158 
    159   // If this is a record, check it.
    160   if (const RecordType *RT = dyn_cast<RecordType>(T))
    161     return isSafeToConvert(RT->getDecl(), CGT, AlreadyChecked);
    162 
    163   // If this is an array, check the elements, which are embedded inline.
    164   if (const ArrayType *AT = dyn_cast<ArrayType>(T))
    165     return isSafeToConvert(AT->getElementType(), CGT, AlreadyChecked);
    166 
    167   // Otherwise, there is no concern about transforming this.  We only care about
    168   // things that are contained by-value in a structure that can have another
    169   // structure as a member.
    170   return true;
    171 }
    172 
    173 
    174 /// isSafeToConvert - Return true if it is safe to convert the specified record
    175 /// decl to IR and lay it out, false if doing so would cause us to get into a
    176 /// recursive compilation mess.
    177 static bool isSafeToConvert(const RecordDecl *RD, CodeGenTypes &CGT) {
    178   // If no structs are being laid out, we can certainly do this one.
    179   if (CGT.noRecordsBeingLaidOut()) return true;
    180 
    181   llvm::SmallPtrSet<const RecordDecl*, 16> AlreadyChecked;
    182   return isSafeToConvert(RD, CGT, AlreadyChecked);
    183 }
    184 
    185 /// isFuncParamTypeConvertible - Return true if the specified type in a
    186 /// function parameter or result position can be converted to an IR type at this
    187 /// point.  This boils down to being whether it is complete, as well as whether
    188 /// we've temporarily deferred expanding the type because we're in a recursive
    189 /// context.
    190 bool CodeGenTypes::isFuncParamTypeConvertible(QualType Ty) {
    191   // Some ABIs cannot have their member pointers represented in IR unless
    192   // certain circumstances have been reached.
    193   if (const auto *MPT = Ty->getAs<MemberPointerType>())
    194     return getCXXABI().isMemberPointerConvertible(MPT);
    195 
    196   // If this isn't a tagged type, we can convert it!
    197   const TagType *TT = Ty->getAs<TagType>();
    198   if (!TT) return true;
    199 
    200   // Incomplete types cannot be converted.
    201   if (TT->isIncompleteType())
    202     return false;
    203 
    204   // If this is an enum, then it is always safe to convert.
    205   const RecordType *RT = dyn_cast<RecordType>(TT);
    206   if (!RT) return true;
    207 
    208   // Otherwise, we have to be careful.  If it is a struct that we're in the
    209   // process of expanding, then we can't convert the function type.  That's ok
    210   // though because we must be in a pointer context under the struct, so we can
    211   // just convert it to a dummy type.
    212   //
    213   // We decide this by checking whether ConvertRecordDeclType returns us an
    214   // opaque type for a struct that we know is defined.
    215   return isSafeToConvert(RT->getDecl(), *this);
    216 }
    217 
    218 
    219 /// Code to verify a given function type is complete, i.e. the return type
    220 /// and all of the parameter types are complete.  Also check to see if we are in
    221 /// a RS_StructPointer context, and if so whether any struct types have been
    222 /// pended.  If so, we don't want to ask the ABI lowering code to handle a type
    223 /// that cannot be converted to an IR type.
    224 bool CodeGenTypes::isFuncTypeConvertible(const FunctionType *FT) {
    225   if (!isFuncParamTypeConvertible(FT->getReturnType()))
    226     return false;
    227 
    228   if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(FT))
    229     for (unsigned i = 0, e = FPT->getNumParams(); i != e; i++)
    230       if (!isFuncParamTypeConvertible(FPT->getParamType(i)))
    231         return false;
    232 
    233   return true;
    234 }
    235 
    236 /// UpdateCompletedType - When we find the full definition for a TagDecl,
    237 /// replace the 'opaque' type we previously made for it if applicable.
    238 void CodeGenTypes::UpdateCompletedType(const TagDecl *TD) {
    239   // If this is an enum being completed, then we flush all non-struct types from
    240   // the cache.  This allows function types and other things that may be derived
    241   // from the enum to be recomputed.
    242   if (const EnumDecl *ED = dyn_cast<EnumDecl>(TD)) {
    243     // Only flush the cache if we've actually already converted this type.
    244     if (TypeCache.count(ED->getTypeForDecl())) {
    245       // Okay, we formed some types based on this.  We speculated that the enum
    246       // would be lowered to i32, so we only need to flush the cache if this
    247       // didn't happen.
    248       if (!ConvertType(ED->getIntegerType())->isIntegerTy(32))
    249         TypeCache.clear();
    250     }
    251     // If necessary, provide the full definition of a type only used with a
    252     // declaration so far.
    253     if (CGDebugInfo *DI = CGM.getModuleDebugInfo())
    254       DI->completeType(ED);
    255     return;
    256   }
    257 
    258   // If we completed a RecordDecl that we previously used and converted to an
    259   // anonymous type, then go ahead and complete it now.
    260   const RecordDecl *RD = cast<RecordDecl>(TD);
    261   if (RD->isDependentType()) return;
    262 
    263   // Only complete it if we converted it already.  If we haven't converted it
    264   // yet, we'll just do it lazily.
    265   if (RecordDeclTypes.count(Context.getTagDeclType(RD).getTypePtr()))
    266     ConvertRecordDeclType(RD);
    267 
    268   // If necessary, provide the full definition of a type only used with a
    269   // declaration so far.
    270   if (CGDebugInfo *DI = CGM.getModuleDebugInfo())
    271     DI->completeType(RD);
    272 }
    273 
    274 static llvm::Type *getTypeForFormat(llvm::LLVMContext &VMContext,
    275                                     const llvm::fltSemantics &format,
    276                                     bool UseNativeHalf = false) {
    277   if (&format == &llvm::APFloat::IEEEhalf) {
    278     if (UseNativeHalf)
    279       return llvm::Type::getHalfTy(VMContext);
    280     else
    281       return llvm::Type::getInt16Ty(VMContext);
    282   }
    283   if (&format == &llvm::APFloat::IEEEsingle)
    284     return llvm::Type::getFloatTy(VMContext);
    285   if (&format == &llvm::APFloat::IEEEdouble)
    286     return llvm::Type::getDoubleTy(VMContext);
    287   if (&format == &llvm::APFloat::IEEEquad)
    288     return llvm::Type::getFP128Ty(VMContext);
    289   if (&format == &llvm::APFloat::PPCDoubleDouble)
    290     return llvm::Type::getPPC_FP128Ty(VMContext);
    291   if (&format == &llvm::APFloat::x87DoubleExtended)
    292     return llvm::Type::getX86_FP80Ty(VMContext);
    293   llvm_unreachable("Unknown float format!");
    294 }
    295 
    296 /// ConvertType - Convert the specified type to its LLVM form.
    297 llvm::Type *CodeGenTypes::ConvertType(QualType T) {
    298   T = Context.getCanonicalType(T);
    299 
    300   const Type *Ty = T.getTypePtr();
    301 
    302   // RecordTypes are cached and processed specially.
    303   if (const RecordType *RT = dyn_cast<RecordType>(Ty))
    304     return ConvertRecordDeclType(RT->getDecl());
    305 
    306   // See if type is already cached.
    307   llvm::DenseMap<const Type *, llvm::Type *>::iterator TCI = TypeCache.find(Ty);
    308   // If type is found in map then use it. Otherwise, convert type T.
    309   if (TCI != TypeCache.end())
    310     return TCI->second;
    311 
    312   // If we don't have it in the cache, convert it now.
    313   llvm::Type *ResultType = nullptr;
    314   switch (Ty->getTypeClass()) {
    315   case Type::Record: // Handled above.
    316 #define TYPE(Class, Base)
    317 #define ABSTRACT_TYPE(Class, Base)
    318 #define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
    319 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
    320 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class:
    321 #include "clang/AST/TypeNodes.def"
    322     llvm_unreachable("Non-canonical or dependent types aren't possible.");
    323 
    324   case Type::Builtin: {
    325     switch (cast<BuiltinType>(Ty)->getKind()) {
    326     case BuiltinType::Void:
    327     case BuiltinType::ObjCId:
    328     case BuiltinType::ObjCClass:
    329     case BuiltinType::ObjCSel:
    330       // LLVM void type can only be used as the result of a function call.  Just
    331       // map to the same as char.
    332       ResultType = llvm::Type::getInt8Ty(getLLVMContext());
    333       break;
    334 
    335     case BuiltinType::Bool:
    336       // Note that we always return bool as i1 for use as a scalar type.
    337       ResultType = llvm::Type::getInt1Ty(getLLVMContext());
    338       break;
    339 
    340     case BuiltinType::Char_S:
    341     case BuiltinType::Char_U:
    342     case BuiltinType::SChar:
    343     case BuiltinType::UChar:
    344     case BuiltinType::Short:
    345     case BuiltinType::UShort:
    346     case BuiltinType::Int:
    347     case BuiltinType::UInt:
    348     case BuiltinType::Long:
    349     case BuiltinType::ULong:
    350     case BuiltinType::LongLong:
    351     case BuiltinType::ULongLong:
    352     case BuiltinType::WChar_S:
    353     case BuiltinType::WChar_U:
    354     case BuiltinType::Char16:
    355     case BuiltinType::Char32:
    356       ResultType = llvm::IntegerType::get(getLLVMContext(),
    357                                  static_cast<unsigned>(Context.getTypeSize(T)));
    358       break;
    359 
    360     case BuiltinType::Half:
    361       // Half FP can either be storage-only (lowered to i16) or native.
    362       ResultType =
    363           getTypeForFormat(getLLVMContext(), Context.getFloatTypeSemantics(T),
    364                            Context.getLangOpts().NativeHalfType ||
    365                                Context.getLangOpts().HalfArgsAndReturns);
    366       break;
    367     case BuiltinType::Float:
    368     case BuiltinType::Double:
    369     case BuiltinType::LongDouble:
    370       ResultType = getTypeForFormat(getLLVMContext(),
    371                                     Context.getFloatTypeSemantics(T),
    372                                     /* UseNativeHalf = */ false);
    373       break;
    374 
    375     case BuiltinType::NullPtr:
    376       // Model std::nullptr_t as i8*
    377       ResultType = llvm::Type::getInt8PtrTy(getLLVMContext());
    378       break;
    379 
    380     case BuiltinType::UInt128:
    381     case BuiltinType::Int128:
    382       ResultType = llvm::IntegerType::get(getLLVMContext(), 128);
    383       break;
    384 
    385     case BuiltinType::OCLImage1d:
    386     case BuiltinType::OCLImage1dArray:
    387     case BuiltinType::OCLImage1dBuffer:
    388     case BuiltinType::OCLImage2d:
    389     case BuiltinType::OCLImage2dArray:
    390     case BuiltinType::OCLImage3d:
    391     case BuiltinType::OCLSampler:
    392     case BuiltinType::OCLEvent:
    393       ResultType = CGM.getOpenCLRuntime().convertOpenCLSpecificType(Ty);
    394       break;
    395 
    396     case BuiltinType::Dependent:
    397 #define BUILTIN_TYPE(Id, SingletonId)
    398 #define PLACEHOLDER_TYPE(Id, SingletonId) \
    399     case BuiltinType::Id:
    400 #include "clang/AST/BuiltinTypes.def"
    401       llvm_unreachable("Unexpected placeholder builtin type!");
    402     }
    403     break;
    404   }
    405   case Type::Auto:
    406     llvm_unreachable("Unexpected undeduced auto type!");
    407   case Type::Complex: {
    408     llvm::Type *EltTy = ConvertType(cast<ComplexType>(Ty)->getElementType());
    409     ResultType = llvm::StructType::get(EltTy, EltTy, nullptr);
    410     break;
    411   }
    412   case Type::LValueReference:
    413   case Type::RValueReference: {
    414     const ReferenceType *RTy = cast<ReferenceType>(Ty);
    415     QualType ETy = RTy->getPointeeType();
    416     llvm::Type *PointeeType = ConvertTypeForMem(ETy);
    417     unsigned AS = Context.getTargetAddressSpace(ETy);
    418     ResultType = llvm::PointerType::get(PointeeType, AS);
    419     break;
    420   }
    421   case Type::Pointer: {
    422     const PointerType *PTy = cast<PointerType>(Ty);
    423     QualType ETy = PTy->getPointeeType();
    424     llvm::Type *PointeeType = ConvertTypeForMem(ETy);
    425     if (PointeeType->isVoidTy())
    426       PointeeType = llvm::Type::getInt8Ty(getLLVMContext());
    427     unsigned AS = Context.getTargetAddressSpace(ETy);
    428     ResultType = llvm::PointerType::get(PointeeType, AS);
    429     break;
    430   }
    431 
    432   case Type::VariableArray: {
    433     const VariableArrayType *A = cast<VariableArrayType>(Ty);
    434     assert(A->getIndexTypeCVRQualifiers() == 0 &&
    435            "FIXME: We only handle trivial array types so far!");
    436     // VLAs resolve to the innermost element type; this matches
    437     // the return of alloca, and there isn't any obviously better choice.
    438     ResultType = ConvertTypeForMem(A->getElementType());
    439     break;
    440   }
    441   case Type::IncompleteArray: {
    442     const IncompleteArrayType *A = cast<IncompleteArrayType>(Ty);
    443     assert(A->getIndexTypeCVRQualifiers() == 0 &&
    444            "FIXME: We only handle trivial array types so far!");
    445     // int X[] -> [0 x int], unless the element type is not sized.  If it is
    446     // unsized (e.g. an incomplete struct) just use [0 x i8].
    447     ResultType = ConvertTypeForMem(A->getElementType());
    448     if (!ResultType->isSized()) {
    449       SkippedLayout = true;
    450       ResultType = llvm::Type::getInt8Ty(getLLVMContext());
    451     }
    452     ResultType = llvm::ArrayType::get(ResultType, 0);
    453     break;
    454   }
    455   case Type::ConstantArray: {
    456     const ConstantArrayType *A = cast<ConstantArrayType>(Ty);
    457     llvm::Type *EltTy = ConvertTypeForMem(A->getElementType());
    458 
    459     // Lower arrays of undefined struct type to arrays of i8 just to have a
    460     // concrete type.
    461     if (!EltTy->isSized()) {
    462       SkippedLayout = true;
    463       EltTy = llvm::Type::getInt8Ty(getLLVMContext());
    464     }
    465 
    466     ResultType = llvm::ArrayType::get(EltTy, A->getSize().getZExtValue());
    467     break;
    468   }
    469   case Type::ExtVector:
    470   case Type::Vector: {
    471     const VectorType *VT = cast<VectorType>(Ty);
    472     ResultType = llvm::VectorType::get(ConvertType(VT->getElementType()),
    473                                        VT->getNumElements());
    474     break;
    475   }
    476   case Type::FunctionNoProto:
    477   case Type::FunctionProto: {
    478     const FunctionType *FT = cast<FunctionType>(Ty);
    479     // First, check whether we can build the full function type.  If the
    480     // function type depends on an incomplete type (e.g. a struct or enum), we
    481     // cannot lower the function type.
    482     if (!isFuncTypeConvertible(FT)) {
    483       // This function's type depends on an incomplete tag type.
    484 
    485       // Force conversion of all the relevant record types, to make sure
    486       // we re-convert the FunctionType when appropriate.
    487       if (const RecordType *RT = FT->getReturnType()->getAs<RecordType>())
    488         ConvertRecordDeclType(RT->getDecl());
    489       if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(FT))
    490         for (unsigned i = 0, e = FPT->getNumParams(); i != e; i++)
    491           if (const RecordType *RT = FPT->getParamType(i)->getAs<RecordType>())
    492             ConvertRecordDeclType(RT->getDecl());
    493 
    494       // Return a placeholder type.
    495       ResultType = llvm::StructType::get(getLLVMContext());
    496 
    497       SkippedLayout = true;
    498       break;
    499     }
    500 
    501     // While we're converting the parameter types for a function, we don't want
    502     // to recursively convert any pointed-to structs.  Converting directly-used
    503     // structs is ok though.
    504     if (!RecordsBeingLaidOut.insert(Ty).second) {
    505       ResultType = llvm::StructType::get(getLLVMContext());
    506 
    507       SkippedLayout = true;
    508       break;
    509     }
    510 
    511     // The function type can be built; call the appropriate routines to
    512     // build it.
    513     const CGFunctionInfo *FI;
    514     if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(FT)) {
    515       FI = &arrangeFreeFunctionType(
    516                    CanQual<FunctionProtoType>::CreateUnsafe(QualType(FPT, 0)));
    517     } else {
    518       const FunctionNoProtoType *FNPT = cast<FunctionNoProtoType>(FT);
    519       FI = &arrangeFreeFunctionType(
    520                 CanQual<FunctionNoProtoType>::CreateUnsafe(QualType(FNPT, 0)));
    521     }
    522 
    523     // If there is something higher level prodding our CGFunctionInfo, then
    524     // don't recurse into it again.
    525     if (FunctionsBeingProcessed.count(FI)) {
    526 
    527       ResultType = llvm::StructType::get(getLLVMContext());
    528       SkippedLayout = true;
    529     } else {
    530 
    531       // Otherwise, we're good to go, go ahead and convert it.
    532       ResultType = GetFunctionType(*FI);
    533     }
    534 
    535     RecordsBeingLaidOut.erase(Ty);
    536 
    537     if (SkippedLayout)
    538       TypeCache.clear();
    539 
    540     if (RecordsBeingLaidOut.empty())
    541       while (!DeferredRecords.empty())
    542         ConvertRecordDeclType(DeferredRecords.pop_back_val());
    543     break;
    544   }
    545 
    546   case Type::ObjCObject:
    547     ResultType = ConvertType(cast<ObjCObjectType>(Ty)->getBaseType());
    548     break;
    549 
    550   case Type::ObjCInterface: {
    551     // Objective-C interfaces are always opaque (outside of the
    552     // runtime, which can do whatever it likes); we never refine
    553     // these.
    554     llvm::Type *&T = InterfaceTypes[cast<ObjCInterfaceType>(Ty)];
    555     if (!T)
    556       T = llvm::StructType::create(getLLVMContext());
    557     ResultType = T;
    558     break;
    559   }
    560 
    561   case Type::ObjCObjectPointer: {
    562     // Protocol qualifications do not influence the LLVM type, we just return a
    563     // pointer to the underlying interface type. We don't need to worry about
    564     // recursive conversion.
    565     llvm::Type *T =
    566       ConvertTypeForMem(cast<ObjCObjectPointerType>(Ty)->getPointeeType());
    567     ResultType = T->getPointerTo();
    568     break;
    569   }
    570 
    571   case Type::Enum: {
    572     const EnumDecl *ED = cast<EnumType>(Ty)->getDecl();
    573     if (ED->isCompleteDefinition() || ED->isFixed())
    574       return ConvertType(ED->getIntegerType());
    575     // Return a placeholder 'i32' type.  This can be changed later when the
    576     // type is defined (see UpdateCompletedType), but is likely to be the
    577     // "right" answer.
    578     ResultType = llvm::Type::getInt32Ty(getLLVMContext());
    579     break;
    580   }
    581 
    582   case Type::BlockPointer: {
    583     const QualType FTy = cast<BlockPointerType>(Ty)->getPointeeType();
    584     llvm::Type *PointeeType = ConvertTypeForMem(FTy);
    585     unsigned AS = Context.getTargetAddressSpace(FTy);
    586     ResultType = llvm::PointerType::get(PointeeType, AS);
    587     break;
    588   }
    589 
    590   case Type::MemberPointer: {
    591     if (!getCXXABI().isMemberPointerConvertible(cast<MemberPointerType>(Ty)))
    592       return llvm::StructType::create(getLLVMContext());
    593     ResultType =
    594       getCXXABI().ConvertMemberPointerType(cast<MemberPointerType>(Ty));
    595     break;
    596   }
    597 
    598   case Type::Atomic: {
    599     QualType valueType = cast<AtomicType>(Ty)->getValueType();
    600     ResultType = ConvertTypeForMem(valueType);
    601 
    602     // Pad out to the inflated size if necessary.
    603     uint64_t valueSize = Context.getTypeSize(valueType);
    604     uint64_t atomicSize = Context.getTypeSize(Ty);
    605     if (valueSize != atomicSize) {
    606       assert(valueSize < atomicSize);
    607       llvm::Type *elts[] = {
    608         ResultType,
    609         llvm::ArrayType::get(CGM.Int8Ty, (atomicSize - valueSize) / 8)
    610       };
    611       ResultType = llvm::StructType::get(getLLVMContext(),
    612                                          llvm::makeArrayRef(elts));
    613     }
    614     break;
    615   }
    616   }
    617 
    618   assert(ResultType && "Didn't convert a type?");
    619 
    620   TypeCache[Ty] = ResultType;
    621   return ResultType;
    622 }
    623 
    624 bool CodeGenModule::isPaddedAtomicType(QualType type) {
    625   return isPaddedAtomicType(type->castAs<AtomicType>());
    626 }
    627 
    628 bool CodeGenModule::isPaddedAtomicType(const AtomicType *type) {
    629   return Context.getTypeSize(type) != Context.getTypeSize(type->getValueType());
    630 }
    631 
    632 /// ConvertRecordDeclType - Lay out a tagged decl type like struct or union.
    633 llvm::StructType *CodeGenTypes::ConvertRecordDeclType(const RecordDecl *RD) {
    634   // TagDecl's are not necessarily unique, instead use the (clang)
    635   // type connected to the decl.
    636   const Type *Key = Context.getTagDeclType(RD).getTypePtr();
    637 
    638   llvm::StructType *&Entry = RecordDeclTypes[Key];
    639 
    640   // If we don't have a StructType at all yet, create the forward declaration.
    641   if (!Entry) {
    642     Entry = llvm::StructType::create(getLLVMContext());
    643     addRecordTypeName(RD, Entry, "");
    644   }
    645   llvm::StructType *Ty = Entry;
    646 
    647   // If this is still a forward declaration, or the LLVM type is already
    648   // complete, there's nothing more to do.
    649   RD = RD->getDefinition();
    650   if (!RD || !RD->isCompleteDefinition() || !Ty->isOpaque())
    651     return Ty;
    652 
    653   // If converting this type would cause us to infinitely loop, don't do it!
    654   if (!isSafeToConvert(RD, *this)) {
    655     DeferredRecords.push_back(RD);
    656     return Ty;
    657   }
    658 
    659   // Okay, this is a definition of a type.  Compile the implementation now.
    660   bool InsertResult = RecordsBeingLaidOut.insert(Key).second;
    661   (void)InsertResult;
    662   assert(InsertResult && "Recursively compiling a struct?");
    663 
    664   // Force conversion of non-virtual base classes recursively.
    665   if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) {
    666     for (const auto &I : CRD->bases()) {
    667       if (I.isVirtual()) continue;
    668 
    669       ConvertRecordDeclType(I.getType()->getAs<RecordType>()->getDecl());
    670     }
    671   }
    672 
    673   // Layout fields.
    674   CGRecordLayout *Layout = ComputeRecordLayout(RD, Ty);
    675   CGRecordLayouts[Key] = Layout;
    676 
    677   // We're done laying out this struct.
    678   bool EraseResult = RecordsBeingLaidOut.erase(Key); (void)EraseResult;
    679   assert(EraseResult && "struct not in RecordsBeingLaidOut set?");
    680 
    681   // If this struct blocked a FunctionType conversion, then recompute whatever
    682   // was derived from that.
    683   // FIXME: This is hugely overconservative.
    684   if (SkippedLayout)
    685     TypeCache.clear();
    686 
    687   // If we're done converting the outer-most record, then convert any deferred
    688   // structs as well.
    689   if (RecordsBeingLaidOut.empty())
    690     while (!DeferredRecords.empty())
    691       ConvertRecordDeclType(DeferredRecords.pop_back_val());
    692 
    693   return Ty;
    694 }
    695 
    696 /// getCGRecordLayout - Return record layout info for the given record decl.
    697 const CGRecordLayout &
    698 CodeGenTypes::getCGRecordLayout(const RecordDecl *RD) {
    699   const Type *Key = Context.getTagDeclType(RD).getTypePtr();
    700 
    701   const CGRecordLayout *Layout = CGRecordLayouts.lookup(Key);
    702   if (!Layout) {
    703     // Compute the type information.
    704     ConvertRecordDeclType(RD);
    705 
    706     // Now try again.
    707     Layout = CGRecordLayouts.lookup(Key);
    708   }
    709 
    710   assert(Layout && "Unable to find record layout information for type");
    711   return *Layout;
    712 }
    713 
    714 bool CodeGenTypes::isZeroInitializable(QualType T) {
    715   // No need to check for member pointers when not compiling C++.
    716   if (!Context.getLangOpts().CPlusPlus)
    717     return true;
    718 
    719   T = Context.getBaseElementType(T);
    720 
    721   // Records are non-zero-initializable if they contain any
    722   // non-zero-initializable subobjects.
    723   if (const RecordType *RT = T->getAs<RecordType>()) {
    724     const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
    725     return isZeroInitializable(RD);
    726   }
    727 
    728   // We have to ask the ABI about member pointers.
    729   if (const MemberPointerType *MPT = T->getAs<MemberPointerType>())
    730     return getCXXABI().isZeroInitializable(MPT);
    731 
    732   // Everything else is okay.
    733   return true;
    734 }
    735 
    736 bool CodeGenTypes::isZeroInitializable(const CXXRecordDecl *RD) {
    737   return getCGRecordLayout(RD).isZeroInitializable();
    738 }
    739