1 //===- COFFObjectFile.cpp - COFF object file implementation -----*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file declares the COFFObjectFile class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Object/COFF.h" 15 #include "llvm/ADT/ArrayRef.h" 16 #include "llvm/ADT/SmallString.h" 17 #include "llvm/ADT/StringSwitch.h" 18 #include "llvm/ADT/Triple.h" 19 #include "llvm/Support/COFF.h" 20 #include "llvm/Support/Debug.h" 21 #include "llvm/Support/raw_ostream.h" 22 #include <cctype> 23 #include <limits> 24 25 using namespace llvm; 26 using namespace object; 27 28 using support::ulittle16_t; 29 using support::ulittle32_t; 30 using support::ulittle64_t; 31 using support::little16_t; 32 33 // Returns false if size is greater than the buffer size. And sets ec. 34 static bool checkSize(MemoryBufferRef M, std::error_code &EC, uint64_t Size) { 35 if (M.getBufferSize() < Size) { 36 EC = object_error::unexpected_eof; 37 return false; 38 } 39 return true; 40 } 41 42 static std::error_code checkOffset(MemoryBufferRef M, uintptr_t Addr, 43 const uint64_t Size) { 44 if (Addr + Size < Addr || Addr + Size < Size || 45 Addr + Size > uintptr_t(M.getBufferEnd()) || 46 Addr < uintptr_t(M.getBufferStart())) { 47 return object_error::unexpected_eof; 48 } 49 return object_error::success; 50 } 51 52 // Sets Obj unless any bytes in [addr, addr + size) fall outsize of m. 53 // Returns unexpected_eof if error. 54 template <typename T> 55 static std::error_code getObject(const T *&Obj, MemoryBufferRef M, 56 const void *Ptr, 57 const uint64_t Size = sizeof(T)) { 58 uintptr_t Addr = uintptr_t(Ptr); 59 if (std::error_code EC = checkOffset(M, Addr, Size)) 60 return EC; 61 Obj = reinterpret_cast<const T *>(Addr); 62 return object_error::success; 63 } 64 65 // Decode a string table entry in base 64 (//AAAAAA). Expects \arg Str without 66 // prefixed slashes. 67 static bool decodeBase64StringEntry(StringRef Str, uint32_t &Result) { 68 assert(Str.size() <= 6 && "String too long, possible overflow."); 69 if (Str.size() > 6) 70 return true; 71 72 uint64_t Value = 0; 73 while (!Str.empty()) { 74 unsigned CharVal; 75 if (Str[0] >= 'A' && Str[0] <= 'Z') // 0..25 76 CharVal = Str[0] - 'A'; 77 else if (Str[0] >= 'a' && Str[0] <= 'z') // 26..51 78 CharVal = Str[0] - 'a' + 26; 79 else if (Str[0] >= '0' && Str[0] <= '9') // 52..61 80 CharVal = Str[0] - '0' + 52; 81 else if (Str[0] == '+') // 62 82 CharVal = 62; 83 else if (Str[0] == '/') // 63 84 CharVal = 63; 85 else 86 return true; 87 88 Value = (Value * 64) + CharVal; 89 Str = Str.substr(1); 90 } 91 92 if (Value > std::numeric_limits<uint32_t>::max()) 93 return true; 94 95 Result = static_cast<uint32_t>(Value); 96 return false; 97 } 98 99 template <typename coff_symbol_type> 100 const coff_symbol_type *COFFObjectFile::toSymb(DataRefImpl Ref) const { 101 const coff_symbol_type *Addr = 102 reinterpret_cast<const coff_symbol_type *>(Ref.p); 103 104 assert(!checkOffset(Data, uintptr_t(Addr), sizeof(*Addr))); 105 #ifndef NDEBUG 106 // Verify that the symbol points to a valid entry in the symbol table. 107 uintptr_t Offset = uintptr_t(Addr) - uintptr_t(base()); 108 109 assert((Offset - getPointerToSymbolTable()) % sizeof(coff_symbol_type) == 0 && 110 "Symbol did not point to the beginning of a symbol"); 111 #endif 112 113 return Addr; 114 } 115 116 const coff_section *COFFObjectFile::toSec(DataRefImpl Ref) const { 117 const coff_section *Addr = reinterpret_cast<const coff_section*>(Ref.p); 118 119 # ifndef NDEBUG 120 // Verify that the section points to a valid entry in the section table. 121 if (Addr < SectionTable || Addr >= (SectionTable + getNumberOfSections())) 122 report_fatal_error("Section was outside of section table."); 123 124 uintptr_t Offset = uintptr_t(Addr) - uintptr_t(SectionTable); 125 assert(Offset % sizeof(coff_section) == 0 && 126 "Section did not point to the beginning of a section"); 127 # endif 128 129 return Addr; 130 } 131 132 void COFFObjectFile::moveSymbolNext(DataRefImpl &Ref) const { 133 auto End = reinterpret_cast<uintptr_t>(StringTable); 134 if (SymbolTable16) { 135 const coff_symbol16 *Symb = toSymb<coff_symbol16>(Ref); 136 Symb += 1 + Symb->NumberOfAuxSymbols; 137 Ref.p = std::min(reinterpret_cast<uintptr_t>(Symb), End); 138 } else if (SymbolTable32) { 139 const coff_symbol32 *Symb = toSymb<coff_symbol32>(Ref); 140 Symb += 1 + Symb->NumberOfAuxSymbols; 141 Ref.p = std::min(reinterpret_cast<uintptr_t>(Symb), End); 142 } else { 143 llvm_unreachable("no symbol table pointer!"); 144 } 145 } 146 147 std::error_code COFFObjectFile::getSymbolName(DataRefImpl Ref, 148 StringRef &Result) const { 149 COFFSymbolRef Symb = getCOFFSymbol(Ref); 150 return getSymbolName(Symb, Result); 151 } 152 153 std::error_code COFFObjectFile::getSymbolAddress(DataRefImpl Ref, 154 uint64_t &Result) const { 155 COFFSymbolRef Symb = getCOFFSymbol(Ref); 156 157 if (Symb.isAnyUndefined()) { 158 Result = UnknownAddressOrSize; 159 return object_error::success; 160 } 161 if (Symb.isCommon()) { 162 Result = UnknownAddressOrSize; 163 return object_error::success; 164 } 165 int32_t SectionNumber = Symb.getSectionNumber(); 166 if (!COFF::isReservedSectionNumber(SectionNumber)) { 167 const coff_section *Section = nullptr; 168 if (std::error_code EC = getSection(SectionNumber, Section)) 169 return EC; 170 171 Result = Section->VirtualAddress + Symb.getValue(); 172 return object_error::success; 173 } 174 175 Result = Symb.getValue(); 176 return object_error::success; 177 } 178 179 std::error_code COFFObjectFile::getSymbolType(DataRefImpl Ref, 180 SymbolRef::Type &Result) const { 181 COFFSymbolRef Symb = getCOFFSymbol(Ref); 182 int32_t SectionNumber = Symb.getSectionNumber(); 183 Result = SymbolRef::ST_Other; 184 185 if (Symb.isAnyUndefined()) { 186 Result = SymbolRef::ST_Unknown; 187 } else if (Symb.isFunctionDefinition()) { 188 Result = SymbolRef::ST_Function; 189 } else if (Symb.isCommon()) { 190 Result = SymbolRef::ST_Data; 191 } else if (Symb.isFileRecord()) { 192 Result = SymbolRef::ST_File; 193 } else if (SectionNumber == COFF::IMAGE_SYM_DEBUG || 194 Symb.isSectionDefinition()) { 195 // TODO: perhaps we need a new symbol type ST_Section. 196 Result = SymbolRef::ST_Debug; 197 } else if (!COFF::isReservedSectionNumber(SectionNumber)) { 198 const coff_section *Section = nullptr; 199 if (std::error_code EC = getSection(SectionNumber, Section)) 200 return EC; 201 uint32_t Characteristics = Section->Characteristics; 202 if (Characteristics & COFF::IMAGE_SCN_CNT_CODE) 203 Result = SymbolRef::ST_Function; 204 else if (Characteristics & (COFF::IMAGE_SCN_CNT_INITIALIZED_DATA | 205 COFF::IMAGE_SCN_CNT_UNINITIALIZED_DATA)) 206 Result = SymbolRef::ST_Data; 207 } 208 return object_error::success; 209 } 210 211 uint32_t COFFObjectFile::getSymbolFlags(DataRefImpl Ref) const { 212 COFFSymbolRef Symb = getCOFFSymbol(Ref); 213 uint32_t Result = SymbolRef::SF_None; 214 215 if (Symb.isExternal() || Symb.isWeakExternal()) 216 Result |= SymbolRef::SF_Global; 217 218 if (Symb.isWeakExternal()) 219 Result |= SymbolRef::SF_Weak; 220 221 if (Symb.getSectionNumber() == COFF::IMAGE_SYM_ABSOLUTE) 222 Result |= SymbolRef::SF_Absolute; 223 224 if (Symb.isFileRecord()) 225 Result |= SymbolRef::SF_FormatSpecific; 226 227 if (Symb.isSectionDefinition()) 228 Result |= SymbolRef::SF_FormatSpecific; 229 230 if (Symb.isCommon()) 231 Result |= SymbolRef::SF_Common; 232 233 if (Symb.isAnyUndefined()) 234 Result |= SymbolRef::SF_Undefined; 235 236 return Result; 237 } 238 239 std::error_code COFFObjectFile::getSymbolSize(DataRefImpl Ref, 240 uint64_t &Result) const { 241 COFFSymbolRef Symb = getCOFFSymbol(Ref); 242 243 if (Symb.isAnyUndefined()) { 244 Result = UnknownAddressOrSize; 245 return object_error::success; 246 } 247 if (Symb.isCommon()) { 248 Result = Symb.getValue(); 249 return object_error::success; 250 } 251 252 // Let's attempt to get the size of the symbol by looking at the address of 253 // the symbol after the symbol in question. 254 uint64_t SymbAddr; 255 if (std::error_code EC = getSymbolAddress(Ref, SymbAddr)) 256 return EC; 257 int32_t SectionNumber = Symb.getSectionNumber(); 258 if (COFF::isReservedSectionNumber(SectionNumber)) { 259 // Absolute and debug symbols aren't sorted in any interesting way. 260 Result = 0; 261 return object_error::success; 262 } 263 const section_iterator SecEnd = section_end(); 264 uint64_t AfterAddr = UnknownAddressOrSize; 265 for (const symbol_iterator SymbI : symbols()) { 266 section_iterator SecI = SecEnd; 267 if (std::error_code EC = SymbI->getSection(SecI)) 268 return EC; 269 // Check the symbol's section, skip it if it's in the wrong section. 270 // First, make sure it is in any section. 271 if (SecI == SecEnd) 272 continue; 273 // Second, make sure it is in the same section as the symbol in question. 274 if (!sectionContainsSymbol(SecI->getRawDataRefImpl(), Ref)) 275 continue; 276 uint64_t Addr; 277 if (std::error_code EC = SymbI->getAddress(Addr)) 278 return EC; 279 // We want to compare our symbol in question with the closest possible 280 // symbol that comes after. 281 if (AfterAddr > Addr && Addr > SymbAddr) 282 AfterAddr = Addr; 283 } 284 if (AfterAddr == UnknownAddressOrSize) { 285 // No symbol comes after this one, assume that everything after our symbol 286 // is part of it. 287 const coff_section *Section = nullptr; 288 if (std::error_code EC = getSection(SectionNumber, Section)) 289 return EC; 290 Result = Section->SizeOfRawData - Symb.getValue(); 291 } else { 292 // Take the difference between our symbol and the symbol that comes after 293 // our symbol. 294 Result = AfterAddr - SymbAddr; 295 } 296 297 return object_error::success; 298 } 299 300 std::error_code 301 COFFObjectFile::getSymbolSection(DataRefImpl Ref, 302 section_iterator &Result) const { 303 COFFSymbolRef Symb = getCOFFSymbol(Ref); 304 if (COFF::isReservedSectionNumber(Symb.getSectionNumber())) { 305 Result = section_end(); 306 } else { 307 const coff_section *Sec = nullptr; 308 if (std::error_code EC = getSection(Symb.getSectionNumber(), Sec)) 309 return EC; 310 DataRefImpl Ref; 311 Ref.p = reinterpret_cast<uintptr_t>(Sec); 312 Result = section_iterator(SectionRef(Ref, this)); 313 } 314 return object_error::success; 315 } 316 317 void COFFObjectFile::moveSectionNext(DataRefImpl &Ref) const { 318 const coff_section *Sec = toSec(Ref); 319 Sec += 1; 320 Ref.p = reinterpret_cast<uintptr_t>(Sec); 321 } 322 323 std::error_code COFFObjectFile::getSectionName(DataRefImpl Ref, 324 StringRef &Result) const { 325 const coff_section *Sec = toSec(Ref); 326 return getSectionName(Sec, Result); 327 } 328 329 uint64_t COFFObjectFile::getSectionAddress(DataRefImpl Ref) const { 330 const coff_section *Sec = toSec(Ref); 331 return Sec->VirtualAddress; 332 } 333 334 uint64_t COFFObjectFile::getSectionSize(DataRefImpl Ref) const { 335 return getSectionSize(toSec(Ref)); 336 } 337 338 std::error_code COFFObjectFile::getSectionContents(DataRefImpl Ref, 339 StringRef &Result) const { 340 const coff_section *Sec = toSec(Ref); 341 ArrayRef<uint8_t> Res; 342 std::error_code EC = getSectionContents(Sec, Res); 343 Result = StringRef(reinterpret_cast<const char*>(Res.data()), Res.size()); 344 return EC; 345 } 346 347 uint64_t COFFObjectFile::getSectionAlignment(DataRefImpl Ref) const { 348 const coff_section *Sec = toSec(Ref); 349 return uint64_t(1) << (((Sec->Characteristics & 0x00F00000) >> 20) - 1); 350 } 351 352 bool COFFObjectFile::isSectionText(DataRefImpl Ref) const { 353 const coff_section *Sec = toSec(Ref); 354 return Sec->Characteristics & COFF::IMAGE_SCN_CNT_CODE; 355 } 356 357 bool COFFObjectFile::isSectionData(DataRefImpl Ref) const { 358 const coff_section *Sec = toSec(Ref); 359 return Sec->Characteristics & COFF::IMAGE_SCN_CNT_INITIALIZED_DATA; 360 } 361 362 bool COFFObjectFile::isSectionBSS(DataRefImpl Ref) const { 363 const coff_section *Sec = toSec(Ref); 364 const uint32_t BssFlags = COFF::IMAGE_SCN_CNT_UNINITIALIZED_DATA | 365 COFF::IMAGE_SCN_MEM_READ | 366 COFF::IMAGE_SCN_MEM_WRITE; 367 return (Sec->Characteristics & BssFlags) == BssFlags; 368 } 369 370 bool COFFObjectFile::isSectionVirtual(DataRefImpl Ref) const { 371 const coff_section *Sec = toSec(Ref); 372 // In COFF, a virtual section won't have any in-file 373 // content, so the file pointer to the content will be zero. 374 return Sec->PointerToRawData == 0; 375 } 376 377 bool COFFObjectFile::sectionContainsSymbol(DataRefImpl SecRef, 378 DataRefImpl SymbRef) const { 379 const coff_section *Sec = toSec(SecRef); 380 COFFSymbolRef Symb = getCOFFSymbol(SymbRef); 381 int32_t SecNumber = (Sec - SectionTable) + 1; 382 return SecNumber == Symb.getSectionNumber(); 383 } 384 385 static uint32_t getNumberOfRelocations(const coff_section *Sec, 386 MemoryBufferRef M, const uint8_t *base) { 387 // The field for the number of relocations in COFF section table is only 388 // 16-bit wide. If a section has more than 65535 relocations, 0xFFFF is set to 389 // NumberOfRelocations field, and the actual relocation count is stored in the 390 // VirtualAddress field in the first relocation entry. 391 if (Sec->hasExtendedRelocations()) { 392 const coff_relocation *FirstReloc; 393 if (getObject(FirstReloc, M, reinterpret_cast<const coff_relocation*>( 394 base + Sec->PointerToRelocations))) 395 return 0; 396 // -1 to exclude this first relocation entry. 397 return FirstReloc->VirtualAddress - 1; 398 } 399 return Sec->NumberOfRelocations; 400 } 401 402 static const coff_relocation * 403 getFirstReloc(const coff_section *Sec, MemoryBufferRef M, const uint8_t *Base) { 404 uint64_t NumRelocs = getNumberOfRelocations(Sec, M, Base); 405 if (!NumRelocs) 406 return nullptr; 407 auto begin = reinterpret_cast<const coff_relocation *>( 408 Base + Sec->PointerToRelocations); 409 if (Sec->hasExtendedRelocations()) { 410 // Skip the first relocation entry repurposed to store the number of 411 // relocations. 412 begin++; 413 } 414 if (checkOffset(M, uintptr_t(begin), sizeof(coff_relocation) * NumRelocs)) 415 return nullptr; 416 return begin; 417 } 418 419 relocation_iterator COFFObjectFile::section_rel_begin(DataRefImpl Ref) const { 420 const coff_section *Sec = toSec(Ref); 421 const coff_relocation *begin = getFirstReloc(Sec, Data, base()); 422 DataRefImpl Ret; 423 Ret.p = reinterpret_cast<uintptr_t>(begin); 424 return relocation_iterator(RelocationRef(Ret, this)); 425 } 426 427 relocation_iterator COFFObjectFile::section_rel_end(DataRefImpl Ref) const { 428 const coff_section *Sec = toSec(Ref); 429 const coff_relocation *I = getFirstReloc(Sec, Data, base()); 430 if (I) 431 I += getNumberOfRelocations(Sec, Data, base()); 432 DataRefImpl Ret; 433 Ret.p = reinterpret_cast<uintptr_t>(I); 434 return relocation_iterator(RelocationRef(Ret, this)); 435 } 436 437 // Initialize the pointer to the symbol table. 438 std::error_code COFFObjectFile::initSymbolTablePtr() { 439 if (COFFHeader) 440 if (std::error_code EC = getObject( 441 SymbolTable16, Data, base() + getPointerToSymbolTable(), 442 (uint64_t)getNumberOfSymbols() * getSymbolTableEntrySize())) 443 return EC; 444 445 if (COFFBigObjHeader) 446 if (std::error_code EC = getObject( 447 SymbolTable32, Data, base() + getPointerToSymbolTable(), 448 (uint64_t)getNumberOfSymbols() * getSymbolTableEntrySize())) 449 return EC; 450 451 // Find string table. The first four byte of the string table contains the 452 // total size of the string table, including the size field itself. If the 453 // string table is empty, the value of the first four byte would be 4. 454 uint32_t StringTableOffset = getPointerToSymbolTable() + 455 getNumberOfSymbols() * getSymbolTableEntrySize(); 456 const uint8_t *StringTableAddr = base() + StringTableOffset; 457 const ulittle32_t *StringTableSizePtr; 458 if (std::error_code EC = getObject(StringTableSizePtr, Data, StringTableAddr)) 459 return EC; 460 StringTableSize = *StringTableSizePtr; 461 if (std::error_code EC = 462 getObject(StringTable, Data, StringTableAddr, StringTableSize)) 463 return EC; 464 465 // Treat table sizes < 4 as empty because contrary to the PECOFF spec, some 466 // tools like cvtres write a size of 0 for an empty table instead of 4. 467 if (StringTableSize < 4) 468 StringTableSize = 4; 469 470 // Check that the string table is null terminated if has any in it. 471 if (StringTableSize > 4 && StringTable[StringTableSize - 1] != 0) 472 return object_error::parse_failed; 473 return object_error::success; 474 } 475 476 // Returns the file offset for the given VA. 477 std::error_code COFFObjectFile::getVaPtr(uint64_t Addr, uintptr_t &Res) const { 478 uint64_t ImageBase = PE32Header ? (uint64_t)PE32Header->ImageBase 479 : (uint64_t)PE32PlusHeader->ImageBase; 480 uint64_t Rva = Addr - ImageBase; 481 assert(Rva <= UINT32_MAX); 482 return getRvaPtr((uint32_t)Rva, Res); 483 } 484 485 // Returns the file offset for the given RVA. 486 std::error_code COFFObjectFile::getRvaPtr(uint32_t Addr, uintptr_t &Res) const { 487 for (const SectionRef &S : sections()) { 488 const coff_section *Section = getCOFFSection(S); 489 uint32_t SectionStart = Section->VirtualAddress; 490 uint32_t SectionEnd = Section->VirtualAddress + Section->VirtualSize; 491 if (SectionStart <= Addr && Addr < SectionEnd) { 492 uint32_t Offset = Addr - SectionStart; 493 Res = uintptr_t(base()) + Section->PointerToRawData + Offset; 494 return object_error::success; 495 } 496 } 497 return object_error::parse_failed; 498 } 499 500 // Returns hint and name fields, assuming \p Rva is pointing to a Hint/Name 501 // table entry. 502 std::error_code COFFObjectFile::getHintName(uint32_t Rva, uint16_t &Hint, 503 StringRef &Name) const { 504 uintptr_t IntPtr = 0; 505 if (std::error_code EC = getRvaPtr(Rva, IntPtr)) 506 return EC; 507 const uint8_t *Ptr = reinterpret_cast<const uint8_t *>(IntPtr); 508 Hint = *reinterpret_cast<const ulittle16_t *>(Ptr); 509 Name = StringRef(reinterpret_cast<const char *>(Ptr + 2)); 510 return object_error::success; 511 } 512 513 // Find the import table. 514 std::error_code COFFObjectFile::initImportTablePtr() { 515 // First, we get the RVA of the import table. If the file lacks a pointer to 516 // the import table, do nothing. 517 const data_directory *DataEntry; 518 if (getDataDirectory(COFF::IMPORT_TABLE, DataEntry)) 519 return object_error::success; 520 521 // Do nothing if the pointer to import table is NULL. 522 if (DataEntry->RelativeVirtualAddress == 0) 523 return object_error::success; 524 525 uint32_t ImportTableRva = DataEntry->RelativeVirtualAddress; 526 // -1 because the last entry is the null entry. 527 NumberOfImportDirectory = DataEntry->Size / 528 sizeof(import_directory_table_entry) - 1; 529 530 // Find the section that contains the RVA. This is needed because the RVA is 531 // the import table's memory address which is different from its file offset. 532 uintptr_t IntPtr = 0; 533 if (std::error_code EC = getRvaPtr(ImportTableRva, IntPtr)) 534 return EC; 535 ImportDirectory = reinterpret_cast< 536 const import_directory_table_entry *>(IntPtr); 537 return object_error::success; 538 } 539 540 // Initializes DelayImportDirectory and NumberOfDelayImportDirectory. 541 std::error_code COFFObjectFile::initDelayImportTablePtr() { 542 const data_directory *DataEntry; 543 if (getDataDirectory(COFF::DELAY_IMPORT_DESCRIPTOR, DataEntry)) 544 return object_error::success; 545 if (DataEntry->RelativeVirtualAddress == 0) 546 return object_error::success; 547 548 uint32_t RVA = DataEntry->RelativeVirtualAddress; 549 NumberOfDelayImportDirectory = DataEntry->Size / 550 sizeof(delay_import_directory_table_entry) - 1; 551 552 uintptr_t IntPtr = 0; 553 if (std::error_code EC = getRvaPtr(RVA, IntPtr)) 554 return EC; 555 DelayImportDirectory = reinterpret_cast< 556 const delay_import_directory_table_entry *>(IntPtr); 557 return object_error::success; 558 } 559 560 // Find the export table. 561 std::error_code COFFObjectFile::initExportTablePtr() { 562 // First, we get the RVA of the export table. If the file lacks a pointer to 563 // the export table, do nothing. 564 const data_directory *DataEntry; 565 if (getDataDirectory(COFF::EXPORT_TABLE, DataEntry)) 566 return object_error::success; 567 568 // Do nothing if the pointer to export table is NULL. 569 if (DataEntry->RelativeVirtualAddress == 0) 570 return object_error::success; 571 572 uint32_t ExportTableRva = DataEntry->RelativeVirtualAddress; 573 uintptr_t IntPtr = 0; 574 if (std::error_code EC = getRvaPtr(ExportTableRva, IntPtr)) 575 return EC; 576 ExportDirectory = 577 reinterpret_cast<const export_directory_table_entry *>(IntPtr); 578 return object_error::success; 579 } 580 581 std::error_code COFFObjectFile::initBaseRelocPtr() { 582 const data_directory *DataEntry; 583 if (getDataDirectory(COFF::BASE_RELOCATION_TABLE, DataEntry)) 584 return object_error::success; 585 if (DataEntry->RelativeVirtualAddress == 0) 586 return object_error::success; 587 588 uintptr_t IntPtr = 0; 589 if (std::error_code EC = getRvaPtr(DataEntry->RelativeVirtualAddress, IntPtr)) 590 return EC; 591 BaseRelocHeader = reinterpret_cast<const coff_base_reloc_block_header *>( 592 IntPtr); 593 BaseRelocEnd = reinterpret_cast<coff_base_reloc_block_header *>( 594 IntPtr + DataEntry->Size); 595 return object_error::success; 596 } 597 598 COFFObjectFile::COFFObjectFile(MemoryBufferRef Object, std::error_code &EC) 599 : ObjectFile(Binary::ID_COFF, Object), COFFHeader(nullptr), 600 COFFBigObjHeader(nullptr), PE32Header(nullptr), PE32PlusHeader(nullptr), 601 DataDirectory(nullptr), SectionTable(nullptr), SymbolTable16(nullptr), 602 SymbolTable32(nullptr), StringTable(nullptr), StringTableSize(0), 603 ImportDirectory(nullptr), NumberOfImportDirectory(0), 604 DelayImportDirectory(nullptr), NumberOfDelayImportDirectory(0), 605 ExportDirectory(nullptr), BaseRelocHeader(nullptr), 606 BaseRelocEnd(nullptr) { 607 // Check that we at least have enough room for a header. 608 if (!checkSize(Data, EC, sizeof(coff_file_header))) 609 return; 610 611 // The current location in the file where we are looking at. 612 uint64_t CurPtr = 0; 613 614 // PE header is optional and is present only in executables. If it exists, 615 // it is placed right after COFF header. 616 bool HasPEHeader = false; 617 618 // Check if this is a PE/COFF file. 619 if (checkSize(Data, EC, sizeof(dos_header) + sizeof(COFF::PEMagic))) { 620 // PE/COFF, seek through MS-DOS compatibility stub and 4-byte 621 // PE signature to find 'normal' COFF header. 622 const auto *DH = reinterpret_cast<const dos_header *>(base()); 623 if (DH->Magic[0] == 'M' && DH->Magic[1] == 'Z') { 624 CurPtr = DH->AddressOfNewExeHeader; 625 // Check the PE magic bytes. ("PE\0\0") 626 if (memcmp(base() + CurPtr, COFF::PEMagic, sizeof(COFF::PEMagic)) != 0) { 627 EC = object_error::parse_failed; 628 return; 629 } 630 CurPtr += sizeof(COFF::PEMagic); // Skip the PE magic bytes. 631 HasPEHeader = true; 632 } 633 } 634 635 if ((EC = getObject(COFFHeader, Data, base() + CurPtr))) 636 return; 637 638 // It might be a bigobj file, let's check. Note that COFF bigobj and COFF 639 // import libraries share a common prefix but bigobj is more restrictive. 640 if (!HasPEHeader && COFFHeader->Machine == COFF::IMAGE_FILE_MACHINE_UNKNOWN && 641 COFFHeader->NumberOfSections == uint16_t(0xffff) && 642 checkSize(Data, EC, sizeof(coff_bigobj_file_header))) { 643 if ((EC = getObject(COFFBigObjHeader, Data, base() + CurPtr))) 644 return; 645 646 // Verify that we are dealing with bigobj. 647 if (COFFBigObjHeader->Version >= COFF::BigObjHeader::MinBigObjectVersion && 648 std::memcmp(COFFBigObjHeader->UUID, COFF::BigObjMagic, 649 sizeof(COFF::BigObjMagic)) == 0) { 650 COFFHeader = nullptr; 651 CurPtr += sizeof(coff_bigobj_file_header); 652 } else { 653 // It's not a bigobj. 654 COFFBigObjHeader = nullptr; 655 } 656 } 657 if (COFFHeader) { 658 // The prior checkSize call may have failed. This isn't a hard error 659 // because we were just trying to sniff out bigobj. 660 EC = object_error::success; 661 CurPtr += sizeof(coff_file_header); 662 663 if (COFFHeader->isImportLibrary()) 664 return; 665 } 666 667 if (HasPEHeader) { 668 const pe32_header *Header; 669 if ((EC = getObject(Header, Data, base() + CurPtr))) 670 return; 671 672 const uint8_t *DataDirAddr; 673 uint64_t DataDirSize; 674 if (Header->Magic == COFF::PE32Header::PE32) { 675 PE32Header = Header; 676 DataDirAddr = base() + CurPtr + sizeof(pe32_header); 677 DataDirSize = sizeof(data_directory) * PE32Header->NumberOfRvaAndSize; 678 } else if (Header->Magic == COFF::PE32Header::PE32_PLUS) { 679 PE32PlusHeader = reinterpret_cast<const pe32plus_header *>(Header); 680 DataDirAddr = base() + CurPtr + sizeof(pe32plus_header); 681 DataDirSize = sizeof(data_directory) * PE32PlusHeader->NumberOfRvaAndSize; 682 } else { 683 // It's neither PE32 nor PE32+. 684 EC = object_error::parse_failed; 685 return; 686 } 687 if ((EC = getObject(DataDirectory, Data, DataDirAddr, DataDirSize))) 688 return; 689 CurPtr += COFFHeader->SizeOfOptionalHeader; 690 } 691 692 if ((EC = getObject(SectionTable, Data, base() + CurPtr, 693 (uint64_t)getNumberOfSections() * sizeof(coff_section)))) 694 return; 695 696 // Initialize the pointer to the symbol table. 697 if (getPointerToSymbolTable() != 0) { 698 if ((EC = initSymbolTablePtr())) 699 return; 700 } else { 701 // We had better not have any symbols if we don't have a symbol table. 702 if (getNumberOfSymbols() != 0) { 703 EC = object_error::parse_failed; 704 return; 705 } 706 } 707 708 // Initialize the pointer to the beginning of the import table. 709 if ((EC = initImportTablePtr())) 710 return; 711 if ((EC = initDelayImportTablePtr())) 712 return; 713 714 // Initialize the pointer to the export table. 715 if ((EC = initExportTablePtr())) 716 return; 717 718 // Initialize the pointer to the base relocation table. 719 if ((EC = initBaseRelocPtr())) 720 return; 721 722 EC = object_error::success; 723 } 724 725 basic_symbol_iterator COFFObjectFile::symbol_begin_impl() const { 726 DataRefImpl Ret; 727 Ret.p = getSymbolTable(); 728 return basic_symbol_iterator(SymbolRef(Ret, this)); 729 } 730 731 basic_symbol_iterator COFFObjectFile::symbol_end_impl() const { 732 // The symbol table ends where the string table begins. 733 DataRefImpl Ret; 734 Ret.p = reinterpret_cast<uintptr_t>(StringTable); 735 return basic_symbol_iterator(SymbolRef(Ret, this)); 736 } 737 738 import_directory_iterator COFFObjectFile::import_directory_begin() const { 739 return import_directory_iterator( 740 ImportDirectoryEntryRef(ImportDirectory, 0, this)); 741 } 742 743 import_directory_iterator COFFObjectFile::import_directory_end() const { 744 return import_directory_iterator( 745 ImportDirectoryEntryRef(ImportDirectory, NumberOfImportDirectory, this)); 746 } 747 748 delay_import_directory_iterator 749 COFFObjectFile::delay_import_directory_begin() const { 750 return delay_import_directory_iterator( 751 DelayImportDirectoryEntryRef(DelayImportDirectory, 0, this)); 752 } 753 754 delay_import_directory_iterator 755 COFFObjectFile::delay_import_directory_end() const { 756 return delay_import_directory_iterator( 757 DelayImportDirectoryEntryRef( 758 DelayImportDirectory, NumberOfDelayImportDirectory, this)); 759 } 760 761 export_directory_iterator COFFObjectFile::export_directory_begin() const { 762 return export_directory_iterator( 763 ExportDirectoryEntryRef(ExportDirectory, 0, this)); 764 } 765 766 export_directory_iterator COFFObjectFile::export_directory_end() const { 767 if (!ExportDirectory) 768 return export_directory_iterator(ExportDirectoryEntryRef(nullptr, 0, this)); 769 ExportDirectoryEntryRef Ref(ExportDirectory, 770 ExportDirectory->AddressTableEntries, this); 771 return export_directory_iterator(Ref); 772 } 773 774 section_iterator COFFObjectFile::section_begin() const { 775 DataRefImpl Ret; 776 Ret.p = reinterpret_cast<uintptr_t>(SectionTable); 777 return section_iterator(SectionRef(Ret, this)); 778 } 779 780 section_iterator COFFObjectFile::section_end() const { 781 DataRefImpl Ret; 782 int NumSections = 783 COFFHeader && COFFHeader->isImportLibrary() ? 0 : getNumberOfSections(); 784 Ret.p = reinterpret_cast<uintptr_t>(SectionTable + NumSections); 785 return section_iterator(SectionRef(Ret, this)); 786 } 787 788 base_reloc_iterator COFFObjectFile::base_reloc_begin() const { 789 return base_reloc_iterator(BaseRelocRef(BaseRelocHeader, this)); 790 } 791 792 base_reloc_iterator COFFObjectFile::base_reloc_end() const { 793 return base_reloc_iterator(BaseRelocRef(BaseRelocEnd, this)); 794 } 795 796 uint8_t COFFObjectFile::getBytesInAddress() const { 797 return getArch() == Triple::x86_64 ? 8 : 4; 798 } 799 800 StringRef COFFObjectFile::getFileFormatName() const { 801 switch(getMachine()) { 802 case COFF::IMAGE_FILE_MACHINE_I386: 803 return "COFF-i386"; 804 case COFF::IMAGE_FILE_MACHINE_AMD64: 805 return "COFF-x86-64"; 806 case COFF::IMAGE_FILE_MACHINE_ARMNT: 807 return "COFF-ARM"; 808 default: 809 return "COFF-<unknown arch>"; 810 } 811 } 812 813 unsigned COFFObjectFile::getArch() const { 814 switch (getMachine()) { 815 case COFF::IMAGE_FILE_MACHINE_I386: 816 return Triple::x86; 817 case COFF::IMAGE_FILE_MACHINE_AMD64: 818 return Triple::x86_64; 819 case COFF::IMAGE_FILE_MACHINE_ARMNT: 820 return Triple::thumb; 821 default: 822 return Triple::UnknownArch; 823 } 824 } 825 826 iterator_range<import_directory_iterator> 827 COFFObjectFile::import_directories() const { 828 return make_range(import_directory_begin(), import_directory_end()); 829 } 830 831 iterator_range<delay_import_directory_iterator> 832 COFFObjectFile::delay_import_directories() const { 833 return make_range(delay_import_directory_begin(), 834 delay_import_directory_end()); 835 } 836 837 iterator_range<export_directory_iterator> 838 COFFObjectFile::export_directories() const { 839 return make_range(export_directory_begin(), export_directory_end()); 840 } 841 842 iterator_range<base_reloc_iterator> COFFObjectFile::base_relocs() const { 843 return make_range(base_reloc_begin(), base_reloc_end()); 844 } 845 846 std::error_code COFFObjectFile::getPE32Header(const pe32_header *&Res) const { 847 Res = PE32Header; 848 return object_error::success; 849 } 850 851 std::error_code 852 COFFObjectFile::getPE32PlusHeader(const pe32plus_header *&Res) const { 853 Res = PE32PlusHeader; 854 return object_error::success; 855 } 856 857 std::error_code 858 COFFObjectFile::getDataDirectory(uint32_t Index, 859 const data_directory *&Res) const { 860 // Error if if there's no data directory or the index is out of range. 861 if (!DataDirectory) { 862 Res = nullptr; 863 return object_error::parse_failed; 864 } 865 assert(PE32Header || PE32PlusHeader); 866 uint32_t NumEnt = PE32Header ? PE32Header->NumberOfRvaAndSize 867 : PE32PlusHeader->NumberOfRvaAndSize; 868 if (Index >= NumEnt) { 869 Res = nullptr; 870 return object_error::parse_failed; 871 } 872 Res = &DataDirectory[Index]; 873 return object_error::success; 874 } 875 876 std::error_code COFFObjectFile::getSection(int32_t Index, 877 const coff_section *&Result) const { 878 Result = nullptr; 879 if (COFF::isReservedSectionNumber(Index)) 880 return object_error::success; 881 if (static_cast<uint32_t>(Index) <= getNumberOfSections()) { 882 // We already verified the section table data, so no need to check again. 883 Result = SectionTable + (Index - 1); 884 return object_error::success; 885 } 886 return object_error::parse_failed; 887 } 888 889 std::error_code COFFObjectFile::getString(uint32_t Offset, 890 StringRef &Result) const { 891 if (StringTableSize <= 4) 892 // Tried to get a string from an empty string table. 893 return object_error::parse_failed; 894 if (Offset >= StringTableSize) 895 return object_error::unexpected_eof; 896 Result = StringRef(StringTable + Offset); 897 return object_error::success; 898 } 899 900 std::error_code COFFObjectFile::getSymbolName(COFFSymbolRef Symbol, 901 StringRef &Res) const { 902 // Check for string table entry. First 4 bytes are 0. 903 if (Symbol.getStringTableOffset().Zeroes == 0) { 904 uint32_t Offset = Symbol.getStringTableOffset().Offset; 905 if (std::error_code EC = getString(Offset, Res)) 906 return EC; 907 return object_error::success; 908 } 909 910 if (Symbol.getShortName()[COFF::NameSize - 1] == 0) 911 // Null terminated, let ::strlen figure out the length. 912 Res = StringRef(Symbol.getShortName()); 913 else 914 // Not null terminated, use all 8 bytes. 915 Res = StringRef(Symbol.getShortName(), COFF::NameSize); 916 return object_error::success; 917 } 918 919 ArrayRef<uint8_t> 920 COFFObjectFile::getSymbolAuxData(COFFSymbolRef Symbol) const { 921 const uint8_t *Aux = nullptr; 922 923 size_t SymbolSize = getSymbolTableEntrySize(); 924 if (Symbol.getNumberOfAuxSymbols() > 0) { 925 // AUX data comes immediately after the symbol in COFF 926 Aux = reinterpret_cast<const uint8_t *>(Symbol.getRawPtr()) + SymbolSize; 927 # ifndef NDEBUG 928 // Verify that the Aux symbol points to a valid entry in the symbol table. 929 uintptr_t Offset = uintptr_t(Aux) - uintptr_t(base()); 930 if (Offset < getPointerToSymbolTable() || 931 Offset >= 932 getPointerToSymbolTable() + (getNumberOfSymbols() * SymbolSize)) 933 report_fatal_error("Aux Symbol data was outside of symbol table."); 934 935 assert((Offset - getPointerToSymbolTable()) % SymbolSize == 0 && 936 "Aux Symbol data did not point to the beginning of a symbol"); 937 # endif 938 } 939 return makeArrayRef(Aux, Symbol.getNumberOfAuxSymbols() * SymbolSize); 940 } 941 942 std::error_code COFFObjectFile::getSectionName(const coff_section *Sec, 943 StringRef &Res) const { 944 StringRef Name; 945 if (Sec->Name[COFF::NameSize - 1] == 0) 946 // Null terminated, let ::strlen figure out the length. 947 Name = Sec->Name; 948 else 949 // Not null terminated, use all 8 bytes. 950 Name = StringRef(Sec->Name, COFF::NameSize); 951 952 // Check for string table entry. First byte is '/'. 953 if (Name.startswith("/")) { 954 uint32_t Offset; 955 if (Name.startswith("//")) { 956 if (decodeBase64StringEntry(Name.substr(2), Offset)) 957 return object_error::parse_failed; 958 } else { 959 if (Name.substr(1).getAsInteger(10, Offset)) 960 return object_error::parse_failed; 961 } 962 if (std::error_code EC = getString(Offset, Name)) 963 return EC; 964 } 965 966 Res = Name; 967 return object_error::success; 968 } 969 970 uint64_t COFFObjectFile::getSectionSize(const coff_section *Sec) const { 971 // SizeOfRawData and VirtualSize change what they represent depending on 972 // whether or not we have an executable image. 973 // 974 // For object files, SizeOfRawData contains the size of section's data; 975 // VirtualSize is always zero. 976 // 977 // For executables, SizeOfRawData *must* be a multiple of FileAlignment; the 978 // actual section size is in VirtualSize. It is possible for VirtualSize to 979 // be greater than SizeOfRawData; the contents past that point should be 980 // considered to be zero. 981 uint32_t SectionSize; 982 if (Sec->VirtualSize) 983 SectionSize = std::min(Sec->VirtualSize, Sec->SizeOfRawData); 984 else 985 SectionSize = Sec->SizeOfRawData; 986 987 return SectionSize; 988 } 989 990 std::error_code 991 COFFObjectFile::getSectionContents(const coff_section *Sec, 992 ArrayRef<uint8_t> &Res) const { 993 // PointerToRawData and SizeOfRawData won't make sense for BSS sections, 994 // don't do anything interesting for them. 995 assert((Sec->Characteristics & COFF::IMAGE_SCN_CNT_UNINITIALIZED_DATA) == 0 && 996 "BSS sections don't have contents!"); 997 // The only thing that we need to verify is that the contents is contained 998 // within the file bounds. We don't need to make sure it doesn't cover other 999 // data, as there's nothing that says that is not allowed. 1000 uintptr_t ConStart = uintptr_t(base()) + Sec->PointerToRawData; 1001 uint32_t SectionSize = getSectionSize(Sec); 1002 if (checkOffset(Data, ConStart, SectionSize)) 1003 return object_error::parse_failed; 1004 Res = makeArrayRef(reinterpret_cast<const uint8_t *>(ConStart), SectionSize); 1005 return object_error::success; 1006 } 1007 1008 const coff_relocation *COFFObjectFile::toRel(DataRefImpl Rel) const { 1009 return reinterpret_cast<const coff_relocation*>(Rel.p); 1010 } 1011 1012 void COFFObjectFile::moveRelocationNext(DataRefImpl &Rel) const { 1013 Rel.p = reinterpret_cast<uintptr_t>( 1014 reinterpret_cast<const coff_relocation*>(Rel.p) + 1); 1015 } 1016 1017 std::error_code COFFObjectFile::getRelocationAddress(DataRefImpl Rel, 1018 uint64_t &Res) const { 1019 report_fatal_error("getRelocationAddress not implemented in COFFObjectFile"); 1020 } 1021 1022 std::error_code COFFObjectFile::getRelocationOffset(DataRefImpl Rel, 1023 uint64_t &Res) const { 1024 const coff_relocation *R = toRel(Rel); 1025 const support::ulittle32_t *VirtualAddressPtr; 1026 if (std::error_code EC = 1027 getObject(VirtualAddressPtr, Data, &R->VirtualAddress)) 1028 return EC; 1029 Res = *VirtualAddressPtr; 1030 return object_error::success; 1031 } 1032 1033 symbol_iterator COFFObjectFile::getRelocationSymbol(DataRefImpl Rel) const { 1034 const coff_relocation *R = toRel(Rel); 1035 DataRefImpl Ref; 1036 if (R->SymbolTableIndex >= getNumberOfSymbols()) 1037 return symbol_end(); 1038 if (SymbolTable16) 1039 Ref.p = reinterpret_cast<uintptr_t>(SymbolTable16 + R->SymbolTableIndex); 1040 else if (SymbolTable32) 1041 Ref.p = reinterpret_cast<uintptr_t>(SymbolTable32 + R->SymbolTableIndex); 1042 else 1043 llvm_unreachable("no symbol table pointer!"); 1044 return symbol_iterator(SymbolRef(Ref, this)); 1045 } 1046 1047 std::error_code COFFObjectFile::getRelocationType(DataRefImpl Rel, 1048 uint64_t &Res) const { 1049 const coff_relocation* R = toRel(Rel); 1050 Res = R->Type; 1051 return object_error::success; 1052 } 1053 1054 const coff_section * 1055 COFFObjectFile::getCOFFSection(const SectionRef &Section) const { 1056 return toSec(Section.getRawDataRefImpl()); 1057 } 1058 1059 COFFSymbolRef COFFObjectFile::getCOFFSymbol(const DataRefImpl &Ref) const { 1060 if (SymbolTable16) 1061 return toSymb<coff_symbol16>(Ref); 1062 if (SymbolTable32) 1063 return toSymb<coff_symbol32>(Ref); 1064 llvm_unreachable("no symbol table pointer!"); 1065 } 1066 1067 COFFSymbolRef COFFObjectFile::getCOFFSymbol(const SymbolRef &Symbol) const { 1068 return getCOFFSymbol(Symbol.getRawDataRefImpl()); 1069 } 1070 1071 const coff_relocation * 1072 COFFObjectFile::getCOFFRelocation(const RelocationRef &Reloc) const { 1073 return toRel(Reloc.getRawDataRefImpl()); 1074 } 1075 1076 #define LLVM_COFF_SWITCH_RELOC_TYPE_NAME(reloc_type) \ 1077 case COFF::reloc_type: \ 1078 Res = #reloc_type; \ 1079 break; 1080 1081 std::error_code 1082 COFFObjectFile::getRelocationTypeName(DataRefImpl Rel, 1083 SmallVectorImpl<char> &Result) const { 1084 const coff_relocation *Reloc = toRel(Rel); 1085 StringRef Res; 1086 switch (getMachine()) { 1087 case COFF::IMAGE_FILE_MACHINE_AMD64: 1088 switch (Reloc->Type) { 1089 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_ABSOLUTE); 1090 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_ADDR64); 1091 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_ADDR32); 1092 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_ADDR32NB); 1093 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32); 1094 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32_1); 1095 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32_2); 1096 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32_3); 1097 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32_4); 1098 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32_5); 1099 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_SECTION); 1100 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_SECREL); 1101 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_SECREL7); 1102 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_TOKEN); 1103 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_SREL32); 1104 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_PAIR); 1105 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_SSPAN32); 1106 default: 1107 Res = "Unknown"; 1108 } 1109 break; 1110 case COFF::IMAGE_FILE_MACHINE_ARMNT: 1111 switch (Reloc->Type) { 1112 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_ABSOLUTE); 1113 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_ADDR32); 1114 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_ADDR32NB); 1115 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BRANCH24); 1116 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BRANCH11); 1117 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_TOKEN); 1118 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BLX24); 1119 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BLX11); 1120 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_SECTION); 1121 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_SECREL); 1122 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_MOV32A); 1123 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_MOV32T); 1124 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BRANCH20T); 1125 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BRANCH24T); 1126 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BLX23T); 1127 default: 1128 Res = "Unknown"; 1129 } 1130 break; 1131 case COFF::IMAGE_FILE_MACHINE_I386: 1132 switch (Reloc->Type) { 1133 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_ABSOLUTE); 1134 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_DIR16); 1135 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_REL16); 1136 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_DIR32); 1137 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_DIR32NB); 1138 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_SEG12); 1139 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_SECTION); 1140 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_SECREL); 1141 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_TOKEN); 1142 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_SECREL7); 1143 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_REL32); 1144 default: 1145 Res = "Unknown"; 1146 } 1147 break; 1148 default: 1149 Res = "Unknown"; 1150 } 1151 Result.append(Res.begin(), Res.end()); 1152 return object_error::success; 1153 } 1154 1155 #undef LLVM_COFF_SWITCH_RELOC_TYPE_NAME 1156 1157 std::error_code 1158 COFFObjectFile::getRelocationValueString(DataRefImpl Rel, 1159 SmallVectorImpl<char> &Result) const { 1160 const coff_relocation *Reloc = toRel(Rel); 1161 DataRefImpl Sym; 1162 ErrorOr<COFFSymbolRef> Symb = getSymbol(Reloc->SymbolTableIndex); 1163 if (std::error_code EC = Symb.getError()) 1164 return EC; 1165 Sym.p = reinterpret_cast<uintptr_t>(Symb->getRawPtr()); 1166 StringRef SymName; 1167 if (std::error_code EC = getSymbolName(Sym, SymName)) 1168 return EC; 1169 Result.append(SymName.begin(), SymName.end()); 1170 return object_error::success; 1171 } 1172 1173 bool COFFObjectFile::isRelocatableObject() const { 1174 return !DataDirectory; 1175 } 1176 1177 bool ImportDirectoryEntryRef:: 1178 operator==(const ImportDirectoryEntryRef &Other) const { 1179 return ImportTable == Other.ImportTable && Index == Other.Index; 1180 } 1181 1182 void ImportDirectoryEntryRef::moveNext() { 1183 ++Index; 1184 } 1185 1186 std::error_code ImportDirectoryEntryRef::getImportTableEntry( 1187 const import_directory_table_entry *&Result) const { 1188 Result = ImportTable + Index; 1189 return object_error::success; 1190 } 1191 1192 static imported_symbol_iterator 1193 makeImportedSymbolIterator(const COFFObjectFile *Object, 1194 uintptr_t Ptr, int Index) { 1195 if (Object->getBytesInAddress() == 4) { 1196 auto *P = reinterpret_cast<const import_lookup_table_entry32 *>(Ptr); 1197 return imported_symbol_iterator(ImportedSymbolRef(P, Index, Object)); 1198 } 1199 auto *P = reinterpret_cast<const import_lookup_table_entry64 *>(Ptr); 1200 return imported_symbol_iterator(ImportedSymbolRef(P, Index, Object)); 1201 } 1202 1203 static imported_symbol_iterator 1204 importedSymbolBegin(uint32_t RVA, const COFFObjectFile *Object) { 1205 uintptr_t IntPtr = 0; 1206 Object->getRvaPtr(RVA, IntPtr); 1207 return makeImportedSymbolIterator(Object, IntPtr, 0); 1208 } 1209 1210 static imported_symbol_iterator 1211 importedSymbolEnd(uint32_t RVA, const COFFObjectFile *Object) { 1212 uintptr_t IntPtr = 0; 1213 Object->getRvaPtr(RVA, IntPtr); 1214 // Forward the pointer to the last entry which is null. 1215 int Index = 0; 1216 if (Object->getBytesInAddress() == 4) { 1217 auto *Entry = reinterpret_cast<ulittle32_t *>(IntPtr); 1218 while (*Entry++) 1219 ++Index; 1220 } else { 1221 auto *Entry = reinterpret_cast<ulittle64_t *>(IntPtr); 1222 while (*Entry++) 1223 ++Index; 1224 } 1225 return makeImportedSymbolIterator(Object, IntPtr, Index); 1226 } 1227 1228 imported_symbol_iterator 1229 ImportDirectoryEntryRef::imported_symbol_begin() const { 1230 return importedSymbolBegin(ImportTable[Index].ImportLookupTableRVA, 1231 OwningObject); 1232 } 1233 1234 imported_symbol_iterator 1235 ImportDirectoryEntryRef::imported_symbol_end() const { 1236 return importedSymbolEnd(ImportTable[Index].ImportLookupTableRVA, 1237 OwningObject); 1238 } 1239 1240 iterator_range<imported_symbol_iterator> 1241 ImportDirectoryEntryRef::imported_symbols() const { 1242 return make_range(imported_symbol_begin(), imported_symbol_end()); 1243 } 1244 1245 std::error_code ImportDirectoryEntryRef::getName(StringRef &Result) const { 1246 uintptr_t IntPtr = 0; 1247 if (std::error_code EC = 1248 OwningObject->getRvaPtr(ImportTable[Index].NameRVA, IntPtr)) 1249 return EC; 1250 Result = StringRef(reinterpret_cast<const char *>(IntPtr)); 1251 return object_error::success; 1252 } 1253 1254 std::error_code 1255 ImportDirectoryEntryRef::getImportLookupTableRVA(uint32_t &Result) const { 1256 Result = ImportTable[Index].ImportLookupTableRVA; 1257 return object_error::success; 1258 } 1259 1260 std::error_code 1261 ImportDirectoryEntryRef::getImportAddressTableRVA(uint32_t &Result) const { 1262 Result = ImportTable[Index].ImportAddressTableRVA; 1263 return object_error::success; 1264 } 1265 1266 std::error_code ImportDirectoryEntryRef::getImportLookupEntry( 1267 const import_lookup_table_entry32 *&Result) const { 1268 uintptr_t IntPtr = 0; 1269 uint32_t RVA = ImportTable[Index].ImportLookupTableRVA; 1270 if (std::error_code EC = OwningObject->getRvaPtr(RVA, IntPtr)) 1271 return EC; 1272 Result = reinterpret_cast<const import_lookup_table_entry32 *>(IntPtr); 1273 return object_error::success; 1274 } 1275 1276 bool DelayImportDirectoryEntryRef:: 1277 operator==(const DelayImportDirectoryEntryRef &Other) const { 1278 return Table == Other.Table && Index == Other.Index; 1279 } 1280 1281 void DelayImportDirectoryEntryRef::moveNext() { 1282 ++Index; 1283 } 1284 1285 imported_symbol_iterator 1286 DelayImportDirectoryEntryRef::imported_symbol_begin() const { 1287 return importedSymbolBegin(Table[Index].DelayImportNameTable, 1288 OwningObject); 1289 } 1290 1291 imported_symbol_iterator 1292 DelayImportDirectoryEntryRef::imported_symbol_end() const { 1293 return importedSymbolEnd(Table[Index].DelayImportNameTable, 1294 OwningObject); 1295 } 1296 1297 iterator_range<imported_symbol_iterator> 1298 DelayImportDirectoryEntryRef::imported_symbols() const { 1299 return make_range(imported_symbol_begin(), imported_symbol_end()); 1300 } 1301 1302 std::error_code DelayImportDirectoryEntryRef::getName(StringRef &Result) const { 1303 uintptr_t IntPtr = 0; 1304 if (std::error_code EC = OwningObject->getRvaPtr(Table[Index].Name, IntPtr)) 1305 return EC; 1306 Result = StringRef(reinterpret_cast<const char *>(IntPtr)); 1307 return object_error::success; 1308 } 1309 1310 std::error_code DelayImportDirectoryEntryRef:: 1311 getDelayImportTable(const delay_import_directory_table_entry *&Result) const { 1312 Result = Table; 1313 return object_error::success; 1314 } 1315 1316 std::error_code DelayImportDirectoryEntryRef:: 1317 getImportAddress(int AddrIndex, uint64_t &Result) const { 1318 uint32_t RVA = Table[Index].DelayImportAddressTable + 1319 AddrIndex * (OwningObject->is64() ? 8 : 4); 1320 uintptr_t IntPtr = 0; 1321 if (std::error_code EC = OwningObject->getRvaPtr(RVA, IntPtr)) 1322 return EC; 1323 if (OwningObject->is64()) 1324 Result = *reinterpret_cast<const ulittle64_t *>(IntPtr); 1325 else 1326 Result = *reinterpret_cast<const ulittle32_t *>(IntPtr); 1327 return object_error::success; 1328 } 1329 1330 bool ExportDirectoryEntryRef:: 1331 operator==(const ExportDirectoryEntryRef &Other) const { 1332 return ExportTable == Other.ExportTable && Index == Other.Index; 1333 } 1334 1335 void ExportDirectoryEntryRef::moveNext() { 1336 ++Index; 1337 } 1338 1339 // Returns the name of the current export symbol. If the symbol is exported only 1340 // by ordinal, the empty string is set as a result. 1341 std::error_code ExportDirectoryEntryRef::getDllName(StringRef &Result) const { 1342 uintptr_t IntPtr = 0; 1343 if (std::error_code EC = 1344 OwningObject->getRvaPtr(ExportTable->NameRVA, IntPtr)) 1345 return EC; 1346 Result = StringRef(reinterpret_cast<const char *>(IntPtr)); 1347 return object_error::success; 1348 } 1349 1350 // Returns the starting ordinal number. 1351 std::error_code 1352 ExportDirectoryEntryRef::getOrdinalBase(uint32_t &Result) const { 1353 Result = ExportTable->OrdinalBase; 1354 return object_error::success; 1355 } 1356 1357 // Returns the export ordinal of the current export symbol. 1358 std::error_code ExportDirectoryEntryRef::getOrdinal(uint32_t &Result) const { 1359 Result = ExportTable->OrdinalBase + Index; 1360 return object_error::success; 1361 } 1362 1363 // Returns the address of the current export symbol. 1364 std::error_code ExportDirectoryEntryRef::getExportRVA(uint32_t &Result) const { 1365 uintptr_t IntPtr = 0; 1366 if (std::error_code EC = 1367 OwningObject->getRvaPtr(ExportTable->ExportAddressTableRVA, IntPtr)) 1368 return EC; 1369 const export_address_table_entry *entry = 1370 reinterpret_cast<const export_address_table_entry *>(IntPtr); 1371 Result = entry[Index].ExportRVA; 1372 return object_error::success; 1373 } 1374 1375 // Returns the name of the current export symbol. If the symbol is exported only 1376 // by ordinal, the empty string is set as a result. 1377 std::error_code 1378 ExportDirectoryEntryRef::getSymbolName(StringRef &Result) const { 1379 uintptr_t IntPtr = 0; 1380 if (std::error_code EC = 1381 OwningObject->getRvaPtr(ExportTable->OrdinalTableRVA, IntPtr)) 1382 return EC; 1383 const ulittle16_t *Start = reinterpret_cast<const ulittle16_t *>(IntPtr); 1384 1385 uint32_t NumEntries = ExportTable->NumberOfNamePointers; 1386 int Offset = 0; 1387 for (const ulittle16_t *I = Start, *E = Start + NumEntries; 1388 I < E; ++I, ++Offset) { 1389 if (*I != Index) 1390 continue; 1391 if (std::error_code EC = 1392 OwningObject->getRvaPtr(ExportTable->NamePointerRVA, IntPtr)) 1393 return EC; 1394 const ulittle32_t *NamePtr = reinterpret_cast<const ulittle32_t *>(IntPtr); 1395 if (std::error_code EC = OwningObject->getRvaPtr(NamePtr[Offset], IntPtr)) 1396 return EC; 1397 Result = StringRef(reinterpret_cast<const char *>(IntPtr)); 1398 return object_error::success; 1399 } 1400 Result = ""; 1401 return object_error::success; 1402 } 1403 1404 bool ImportedSymbolRef:: 1405 operator==(const ImportedSymbolRef &Other) const { 1406 return Entry32 == Other.Entry32 && Entry64 == Other.Entry64 1407 && Index == Other.Index; 1408 } 1409 1410 void ImportedSymbolRef::moveNext() { 1411 ++Index; 1412 } 1413 1414 std::error_code 1415 ImportedSymbolRef::getSymbolName(StringRef &Result) const { 1416 uint32_t RVA; 1417 if (Entry32) { 1418 // If a symbol is imported only by ordinal, it has no name. 1419 if (Entry32[Index].isOrdinal()) 1420 return object_error::success; 1421 RVA = Entry32[Index].getHintNameRVA(); 1422 } else { 1423 if (Entry64[Index].isOrdinal()) 1424 return object_error::success; 1425 RVA = Entry64[Index].getHintNameRVA(); 1426 } 1427 uintptr_t IntPtr = 0; 1428 if (std::error_code EC = OwningObject->getRvaPtr(RVA, IntPtr)) 1429 return EC; 1430 // +2 because the first two bytes is hint. 1431 Result = StringRef(reinterpret_cast<const char *>(IntPtr + 2)); 1432 return object_error::success; 1433 } 1434 1435 std::error_code ImportedSymbolRef::getOrdinal(uint16_t &Result) const { 1436 uint32_t RVA; 1437 if (Entry32) { 1438 if (Entry32[Index].isOrdinal()) { 1439 Result = Entry32[Index].getOrdinal(); 1440 return object_error::success; 1441 } 1442 RVA = Entry32[Index].getHintNameRVA(); 1443 } else { 1444 if (Entry64[Index].isOrdinal()) { 1445 Result = Entry64[Index].getOrdinal(); 1446 return object_error::success; 1447 } 1448 RVA = Entry64[Index].getHintNameRVA(); 1449 } 1450 uintptr_t IntPtr = 0; 1451 if (std::error_code EC = OwningObject->getRvaPtr(RVA, IntPtr)) 1452 return EC; 1453 Result = *reinterpret_cast<const ulittle16_t *>(IntPtr); 1454 return object_error::success; 1455 } 1456 1457 ErrorOr<std::unique_ptr<COFFObjectFile>> 1458 ObjectFile::createCOFFObjectFile(MemoryBufferRef Object) { 1459 std::error_code EC; 1460 std::unique_ptr<COFFObjectFile> Ret(new COFFObjectFile(Object, EC)); 1461 if (EC) 1462 return EC; 1463 return std::move(Ret); 1464 } 1465 1466 bool BaseRelocRef::operator==(const BaseRelocRef &Other) const { 1467 return Header == Other.Header && Index == Other.Index; 1468 } 1469 1470 void BaseRelocRef::moveNext() { 1471 // Header->BlockSize is the size of the current block, including the 1472 // size of the header itself. 1473 uint32_t Size = sizeof(*Header) + 1474 sizeof(coff_base_reloc_block_entry) * (Index + 1); 1475 if (Size == Header->BlockSize) { 1476 // .reloc contains a list of base relocation blocks. Each block 1477 // consists of the header followed by entries. The header contains 1478 // how many entories will follow. When we reach the end of the 1479 // current block, proceed to the next block. 1480 Header = reinterpret_cast<const coff_base_reloc_block_header *>( 1481 reinterpret_cast<const uint8_t *>(Header) + Size); 1482 Index = 0; 1483 } else { 1484 ++Index; 1485 } 1486 } 1487 1488 std::error_code BaseRelocRef::getType(uint8_t &Type) const { 1489 auto *Entry = reinterpret_cast<const coff_base_reloc_block_entry *>(Header + 1); 1490 Type = Entry[Index].getType(); 1491 return object_error::success; 1492 } 1493 1494 std::error_code BaseRelocRef::getRVA(uint32_t &Result) const { 1495 auto *Entry = reinterpret_cast<const coff_base_reloc_block_entry *>(Header + 1); 1496 Result = Header->PageRVA + Entry[Index].getOffset(); 1497 return object_error::success; 1498 } 1499