Home | History | Annotate | Download | only in Support
      1 //===- GenericDomTree.h - Generic dominator trees for graphs ----*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 /// \file
     10 ///
     11 /// This file defines a set of templates that efficiently compute a dominator
     12 /// tree over a generic graph. This is used typically in LLVM for fast
     13 /// dominance queries on the CFG, but is fully generic w.r.t. the underlying
     14 /// graph types.
     15 ///
     16 //===----------------------------------------------------------------------===//
     17 
     18 #ifndef LLVM_SUPPORT_GENERICDOMTREE_H
     19 #define LLVM_SUPPORT_GENERICDOMTREE_H
     20 
     21 #include "llvm/ADT/DenseMap.h"
     22 #include "llvm/ADT/DepthFirstIterator.h"
     23 #include "llvm/ADT/GraphTraits.h"
     24 #include "llvm/ADT/STLExtras.h"
     25 #include "llvm/ADT/SmallPtrSet.h"
     26 #include "llvm/ADT/SmallVector.h"
     27 #include "llvm/Support/Compiler.h"
     28 #include "llvm/Support/raw_ostream.h"
     29 #include <algorithm>
     30 
     31 namespace llvm {
     32 
     33 /// \brief Base class that other, more interesting dominator analyses
     34 /// inherit from.
     35 template <class NodeT> class DominatorBase {
     36 protected:
     37   std::vector<NodeT *> Roots;
     38   bool IsPostDominators;
     39   explicit DominatorBase(bool isPostDom)
     40       : Roots(), IsPostDominators(isPostDom) {}
     41   DominatorBase(DominatorBase &&Arg)
     42       : Roots(std::move(Arg.Roots)),
     43         IsPostDominators(std::move(Arg.IsPostDominators)) {
     44     Arg.Roots.clear();
     45   }
     46   DominatorBase &operator=(DominatorBase &&RHS) {
     47     Roots = std::move(RHS.Roots);
     48     IsPostDominators = std::move(RHS.IsPostDominators);
     49     RHS.Roots.clear();
     50     return *this;
     51   }
     52 
     53 public:
     54   /// getRoots - Return the root blocks of the current CFG.  This may include
     55   /// multiple blocks if we are computing post dominators.  For forward
     56   /// dominators, this will always be a single block (the entry node).
     57   ///
     58   const std::vector<NodeT *> &getRoots() const { return Roots; }
     59 
     60   /// isPostDominator - Returns true if analysis based of postdoms
     61   ///
     62   bool isPostDominator() const { return IsPostDominators; }
     63 };
     64 
     65 template <class NodeT> class DominatorTreeBase;
     66 struct PostDominatorTree;
     67 
     68 /// \brief Base class for the actual dominator tree node.
     69 template <class NodeT> class DomTreeNodeBase {
     70   NodeT *TheBB;
     71   DomTreeNodeBase<NodeT> *IDom;
     72   std::vector<DomTreeNodeBase<NodeT> *> Children;
     73   mutable int DFSNumIn, DFSNumOut;
     74 
     75   template <class N> friend class DominatorTreeBase;
     76   friend struct PostDominatorTree;
     77 
     78 public:
     79   typedef typename std::vector<DomTreeNodeBase<NodeT> *>::iterator iterator;
     80   typedef typename std::vector<DomTreeNodeBase<NodeT> *>::const_iterator
     81       const_iterator;
     82 
     83   iterator begin() { return Children.begin(); }
     84   iterator end() { return Children.end(); }
     85   const_iterator begin() const { return Children.begin(); }
     86   const_iterator end() const { return Children.end(); }
     87 
     88   NodeT *getBlock() const { return TheBB; }
     89   DomTreeNodeBase<NodeT> *getIDom() const { return IDom; }
     90   const std::vector<DomTreeNodeBase<NodeT> *> &getChildren() const {
     91     return Children;
     92   }
     93 
     94   DomTreeNodeBase(NodeT *BB, DomTreeNodeBase<NodeT> *iDom)
     95       : TheBB(BB), IDom(iDom), DFSNumIn(-1), DFSNumOut(-1) {}
     96 
     97   std::unique_ptr<DomTreeNodeBase<NodeT>>
     98   addChild(std::unique_ptr<DomTreeNodeBase<NodeT>> C) {
     99     Children.push_back(C.get());
    100     return C;
    101   }
    102 
    103   size_t getNumChildren() const { return Children.size(); }
    104 
    105   void clearAllChildren() { Children.clear(); }
    106 
    107   bool compare(const DomTreeNodeBase<NodeT> *Other) const {
    108     if (getNumChildren() != Other->getNumChildren())
    109       return true;
    110 
    111     SmallPtrSet<const NodeT *, 4> OtherChildren;
    112     for (const_iterator I = Other->begin(), E = Other->end(); I != E; ++I) {
    113       const NodeT *Nd = (*I)->getBlock();
    114       OtherChildren.insert(Nd);
    115     }
    116 
    117     for (const_iterator I = begin(), E = end(); I != E; ++I) {
    118       const NodeT *N = (*I)->getBlock();
    119       if (OtherChildren.count(N) == 0)
    120         return true;
    121     }
    122     return false;
    123   }
    124 
    125   void setIDom(DomTreeNodeBase<NodeT> *NewIDom) {
    126     assert(IDom && "No immediate dominator?");
    127     if (IDom != NewIDom) {
    128       typename std::vector<DomTreeNodeBase<NodeT> *>::iterator I =
    129           std::find(IDom->Children.begin(), IDom->Children.end(), this);
    130       assert(I != IDom->Children.end() &&
    131              "Not in immediate dominator children set!");
    132       // I am no longer your child...
    133       IDom->Children.erase(I);
    134 
    135       // Switch to new dominator
    136       IDom = NewIDom;
    137       IDom->Children.push_back(this);
    138     }
    139   }
    140 
    141   /// getDFSNumIn/getDFSNumOut - These are an internal implementation detail, do
    142   /// not call them.
    143   unsigned getDFSNumIn() const { return DFSNumIn; }
    144   unsigned getDFSNumOut() const { return DFSNumOut; }
    145 
    146 private:
    147   // Return true if this node is dominated by other. Use this only if DFS info
    148   // is valid.
    149   bool DominatedBy(const DomTreeNodeBase<NodeT> *other) const {
    150     return this->DFSNumIn >= other->DFSNumIn &&
    151            this->DFSNumOut <= other->DFSNumOut;
    152   }
    153 };
    154 
    155 template <class NodeT>
    156 raw_ostream &operator<<(raw_ostream &o, const DomTreeNodeBase<NodeT> *Node) {
    157   if (Node->getBlock())
    158     Node->getBlock()->printAsOperand(o, false);
    159   else
    160     o << " <<exit node>>";
    161 
    162   o << " {" << Node->getDFSNumIn() << "," << Node->getDFSNumOut() << "}";
    163 
    164   return o << "\n";
    165 }
    166 
    167 template <class NodeT>
    168 void PrintDomTree(const DomTreeNodeBase<NodeT> *N, raw_ostream &o,
    169                   unsigned Lev) {
    170   o.indent(2 * Lev) << "[" << Lev << "] " << N;
    171   for (typename DomTreeNodeBase<NodeT>::const_iterator I = N->begin(),
    172                                                        E = N->end();
    173        I != E; ++I)
    174     PrintDomTree<NodeT>(*I, o, Lev + 1);
    175 }
    176 
    177 // The calculate routine is provided in a separate header but referenced here.
    178 template <class FuncT, class N>
    179 void Calculate(DominatorTreeBase<typename GraphTraits<N>::NodeType> &DT,
    180                FuncT &F);
    181 
    182 /// \brief Core dominator tree base class.
    183 ///
    184 /// This class is a generic template over graph nodes. It is instantiated for
    185 /// various graphs in the LLVM IR or in the code generator.
    186 template <class NodeT> class DominatorTreeBase : public DominatorBase<NodeT> {
    187   DominatorTreeBase(const DominatorTreeBase &) = delete;
    188   DominatorTreeBase &operator=(const DominatorTreeBase &) = delete;
    189 
    190   bool dominatedBySlowTreeWalk(const DomTreeNodeBase<NodeT> *A,
    191                                const DomTreeNodeBase<NodeT> *B) const {
    192     assert(A != B);
    193     assert(isReachableFromEntry(B));
    194     assert(isReachableFromEntry(A));
    195 
    196     const DomTreeNodeBase<NodeT> *IDom;
    197     while ((IDom = B->getIDom()) != nullptr && IDom != A && IDom != B)
    198       B = IDom; // Walk up the tree
    199     return IDom != nullptr;
    200   }
    201 
    202   /// \brief Wipe this tree's state without releasing any resources.
    203   ///
    204   /// This is essentially a post-move helper only. It leaves the object in an
    205   /// assignable and destroyable state, but otherwise invalid.
    206   void wipe() {
    207     DomTreeNodes.clear();
    208     IDoms.clear();
    209     Vertex.clear();
    210     Info.clear();
    211     RootNode = nullptr;
    212   }
    213 
    214 protected:
    215   typedef DenseMap<NodeT *, std::unique_ptr<DomTreeNodeBase<NodeT>>>
    216       DomTreeNodeMapType;
    217   DomTreeNodeMapType DomTreeNodes;
    218   DomTreeNodeBase<NodeT> *RootNode;
    219 
    220   mutable bool DFSInfoValid;
    221   mutable unsigned int SlowQueries;
    222   // Information record used during immediate dominators computation.
    223   struct InfoRec {
    224     unsigned DFSNum;
    225     unsigned Parent;
    226     unsigned Semi;
    227     NodeT *Label;
    228 
    229     InfoRec() : DFSNum(0), Parent(0), Semi(0), Label(nullptr) {}
    230   };
    231 
    232   DenseMap<NodeT *, NodeT *> IDoms;
    233 
    234   // Vertex - Map the DFS number to the NodeT*
    235   std::vector<NodeT *> Vertex;
    236 
    237   // Info - Collection of information used during the computation of idoms.
    238   DenseMap<NodeT *, InfoRec> Info;
    239 
    240   void reset() {
    241     DomTreeNodes.clear();
    242     IDoms.clear();
    243     this->Roots.clear();
    244     Vertex.clear();
    245     RootNode = nullptr;
    246     DFSInfoValid = false;
    247     SlowQueries = 0;
    248   }
    249 
    250   // NewBB is split and now it has one successor. Update dominator tree to
    251   // reflect this change.
    252   template <class N, class GraphT>
    253   void Split(DominatorTreeBase<typename GraphT::NodeType> &DT,
    254              typename GraphT::NodeType *NewBB) {
    255     assert(std::distance(GraphT::child_begin(NewBB),
    256                          GraphT::child_end(NewBB)) == 1 &&
    257            "NewBB should have a single successor!");
    258     typename GraphT::NodeType *NewBBSucc = *GraphT::child_begin(NewBB);
    259 
    260     std::vector<typename GraphT::NodeType *> PredBlocks;
    261     typedef GraphTraits<Inverse<N>> InvTraits;
    262     for (typename InvTraits::ChildIteratorType
    263              PI = InvTraits::child_begin(NewBB),
    264              PE = InvTraits::child_end(NewBB);
    265          PI != PE; ++PI)
    266       PredBlocks.push_back(*PI);
    267 
    268     assert(!PredBlocks.empty() && "No predblocks?");
    269 
    270     bool NewBBDominatesNewBBSucc = true;
    271     for (typename InvTraits::ChildIteratorType
    272              PI = InvTraits::child_begin(NewBBSucc),
    273              E = InvTraits::child_end(NewBBSucc);
    274          PI != E; ++PI) {
    275       typename InvTraits::NodeType *ND = *PI;
    276       if (ND != NewBB && !DT.dominates(NewBBSucc, ND) &&
    277           DT.isReachableFromEntry(ND)) {
    278         NewBBDominatesNewBBSucc = false;
    279         break;
    280       }
    281     }
    282 
    283     // Find NewBB's immediate dominator and create new dominator tree node for
    284     // NewBB.
    285     NodeT *NewBBIDom = nullptr;
    286     unsigned i = 0;
    287     for (i = 0; i < PredBlocks.size(); ++i)
    288       if (DT.isReachableFromEntry(PredBlocks[i])) {
    289         NewBBIDom = PredBlocks[i];
    290         break;
    291       }
    292 
    293     // It's possible that none of the predecessors of NewBB are reachable;
    294     // in that case, NewBB itself is unreachable, so nothing needs to be
    295     // changed.
    296     if (!NewBBIDom)
    297       return;
    298 
    299     for (i = i + 1; i < PredBlocks.size(); ++i) {
    300       if (DT.isReachableFromEntry(PredBlocks[i]))
    301         NewBBIDom = DT.findNearestCommonDominator(NewBBIDom, PredBlocks[i]);
    302     }
    303 
    304     // Create the new dominator tree node... and set the idom of NewBB.
    305     DomTreeNodeBase<NodeT> *NewBBNode = DT.addNewBlock(NewBB, NewBBIDom);
    306 
    307     // If NewBB strictly dominates other blocks, then it is now the immediate
    308     // dominator of NewBBSucc.  Update the dominator tree as appropriate.
    309     if (NewBBDominatesNewBBSucc) {
    310       DomTreeNodeBase<NodeT> *NewBBSuccNode = DT.getNode(NewBBSucc);
    311       DT.changeImmediateDominator(NewBBSuccNode, NewBBNode);
    312     }
    313   }
    314 
    315 public:
    316   explicit DominatorTreeBase(bool isPostDom)
    317       : DominatorBase<NodeT>(isPostDom), DFSInfoValid(false), SlowQueries(0) {}
    318 
    319   DominatorTreeBase(DominatorTreeBase &&Arg)
    320       : DominatorBase<NodeT>(
    321             std::move(static_cast<DominatorBase<NodeT> &>(Arg))),
    322         DomTreeNodes(std::move(Arg.DomTreeNodes)),
    323         RootNode(std::move(Arg.RootNode)),
    324         DFSInfoValid(std::move(Arg.DFSInfoValid)),
    325         SlowQueries(std::move(Arg.SlowQueries)), IDoms(std::move(Arg.IDoms)),
    326         Vertex(std::move(Arg.Vertex)), Info(std::move(Arg.Info)) {
    327     Arg.wipe();
    328   }
    329   DominatorTreeBase &operator=(DominatorTreeBase &&RHS) {
    330     DominatorBase<NodeT>::operator=(
    331         std::move(static_cast<DominatorBase<NodeT> &>(RHS)));
    332     DomTreeNodes = std::move(RHS.DomTreeNodes);
    333     RootNode = std::move(RHS.RootNode);
    334     DFSInfoValid = std::move(RHS.DFSInfoValid);
    335     SlowQueries = std::move(RHS.SlowQueries);
    336     IDoms = std::move(RHS.IDoms);
    337     Vertex = std::move(RHS.Vertex);
    338     Info = std::move(RHS.Info);
    339     RHS.wipe();
    340     return *this;
    341   }
    342 
    343   /// compare - Return false if the other dominator tree base matches this
    344   /// dominator tree base. Otherwise return true.
    345   bool compare(const DominatorTreeBase &Other) const {
    346 
    347     const DomTreeNodeMapType &OtherDomTreeNodes = Other.DomTreeNodes;
    348     if (DomTreeNodes.size() != OtherDomTreeNodes.size())
    349       return true;
    350 
    351     for (typename DomTreeNodeMapType::const_iterator
    352              I = this->DomTreeNodes.begin(),
    353              E = this->DomTreeNodes.end();
    354          I != E; ++I) {
    355       NodeT *BB = I->first;
    356       typename DomTreeNodeMapType::const_iterator OI =
    357           OtherDomTreeNodes.find(BB);
    358       if (OI == OtherDomTreeNodes.end())
    359         return true;
    360 
    361       DomTreeNodeBase<NodeT> &MyNd = *I->second;
    362       DomTreeNodeBase<NodeT> &OtherNd = *OI->second;
    363 
    364       if (MyNd.compare(&OtherNd))
    365         return true;
    366     }
    367 
    368     return false;
    369   }
    370 
    371   void releaseMemory() { reset(); }
    372 
    373   /// getNode - return the (Post)DominatorTree node for the specified basic
    374   /// block.  This is the same as using operator[] on this class.
    375   ///
    376   DomTreeNodeBase<NodeT> *getNode(NodeT *BB) const {
    377     auto I = DomTreeNodes.find(BB);
    378     if (I != DomTreeNodes.end())
    379       return I->second.get();
    380     return nullptr;
    381   }
    382 
    383   DomTreeNodeBase<NodeT> *operator[](NodeT *BB) const { return getNode(BB); }
    384 
    385   /// getRootNode - This returns the entry node for the CFG of the function.  If
    386   /// this tree represents the post-dominance relations for a function, however,
    387   /// this root may be a node with the block == NULL.  This is the case when
    388   /// there are multiple exit nodes from a particular function.  Consumers of
    389   /// post-dominance information must be capable of dealing with this
    390   /// possibility.
    391   ///
    392   DomTreeNodeBase<NodeT> *getRootNode() { return RootNode; }
    393   const DomTreeNodeBase<NodeT> *getRootNode() const { return RootNode; }
    394 
    395   /// Get all nodes dominated by R, including R itself.
    396   void getDescendants(NodeT *R, SmallVectorImpl<NodeT *> &Result) const {
    397     Result.clear();
    398     const DomTreeNodeBase<NodeT> *RN = getNode(R);
    399     if (!RN)
    400       return; // If R is unreachable, it will not be present in the DOM tree.
    401     SmallVector<const DomTreeNodeBase<NodeT> *, 8> WL;
    402     WL.push_back(RN);
    403 
    404     while (!WL.empty()) {
    405       const DomTreeNodeBase<NodeT> *N = WL.pop_back_val();
    406       Result.push_back(N->getBlock());
    407       WL.append(N->begin(), N->end());
    408     }
    409   }
    410 
    411   /// properlyDominates - Returns true iff A dominates B and A != B.
    412   /// Note that this is not a constant time operation!
    413   ///
    414   bool properlyDominates(const DomTreeNodeBase<NodeT> *A,
    415                          const DomTreeNodeBase<NodeT> *B) const {
    416     if (!A || !B)
    417       return false;
    418     if (A == B)
    419       return false;
    420     return dominates(A, B);
    421   }
    422 
    423   bool properlyDominates(const NodeT *A, const NodeT *B) const;
    424 
    425   /// isReachableFromEntry - Return true if A is dominated by the entry
    426   /// block of the function containing it.
    427   bool isReachableFromEntry(const NodeT *A) const {
    428     assert(!this->isPostDominator() &&
    429            "This is not implemented for post dominators");
    430     return isReachableFromEntry(getNode(const_cast<NodeT *>(A)));
    431   }
    432 
    433   bool isReachableFromEntry(const DomTreeNodeBase<NodeT> *A) const { return A; }
    434 
    435   /// dominates - Returns true iff A dominates B.  Note that this is not a
    436   /// constant time operation!
    437   ///
    438   bool dominates(const DomTreeNodeBase<NodeT> *A,
    439                  const DomTreeNodeBase<NodeT> *B) const {
    440     // A node trivially dominates itself.
    441     if (B == A)
    442       return true;
    443 
    444     // An unreachable node is dominated by anything.
    445     if (!isReachableFromEntry(B))
    446       return true;
    447 
    448     // And dominates nothing.
    449     if (!isReachableFromEntry(A))
    450       return false;
    451 
    452     // Compare the result of the tree walk and the dfs numbers, if expensive
    453     // checks are enabled.
    454 #ifdef XDEBUG
    455     assert((!DFSInfoValid ||
    456             (dominatedBySlowTreeWalk(A, B) == B->DominatedBy(A))) &&
    457            "Tree walk disagrees with dfs numbers!");
    458 #endif
    459 
    460     if (DFSInfoValid)
    461       return B->DominatedBy(A);
    462 
    463     // If we end up with too many slow queries, just update the
    464     // DFS numbers on the theory that we are going to keep querying.
    465     SlowQueries++;
    466     if (SlowQueries > 32) {
    467       updateDFSNumbers();
    468       return B->DominatedBy(A);
    469     }
    470 
    471     return dominatedBySlowTreeWalk(A, B);
    472   }
    473 
    474   bool dominates(const NodeT *A, const NodeT *B) const;
    475 
    476   NodeT *getRoot() const {
    477     assert(this->Roots.size() == 1 && "Should always have entry node!");
    478     return this->Roots[0];
    479   }
    480 
    481   /// findNearestCommonDominator - Find nearest common dominator basic block
    482   /// for basic block A and B. If there is no such block then return NULL.
    483   NodeT *findNearestCommonDominator(NodeT *A, NodeT *B) {
    484     assert(A->getParent() == B->getParent() &&
    485            "Two blocks are not in same function");
    486 
    487     // If either A or B is a entry block then it is nearest common dominator
    488     // (for forward-dominators).
    489     if (!this->isPostDominator()) {
    490       NodeT &Entry = A->getParent()->front();
    491       if (A == &Entry || B == &Entry)
    492         return &Entry;
    493     }
    494 
    495     // If B dominates A then B is nearest common dominator.
    496     if (dominates(B, A))
    497       return B;
    498 
    499     // If A dominates B then A is nearest common dominator.
    500     if (dominates(A, B))
    501       return A;
    502 
    503     DomTreeNodeBase<NodeT> *NodeA = getNode(A);
    504     DomTreeNodeBase<NodeT> *NodeB = getNode(B);
    505 
    506     // If we have DFS info, then we can avoid all allocations by just querying
    507     // it from each IDom. Note that because we call 'dominates' twice above, we
    508     // expect to call through this code at most 16 times in a row without
    509     // building valid DFS information. This is important as below is a *very*
    510     // slow tree walk.
    511     if (DFSInfoValid) {
    512       DomTreeNodeBase<NodeT> *IDomA = NodeA->getIDom();
    513       while (IDomA) {
    514         if (NodeB->DominatedBy(IDomA))
    515           return IDomA->getBlock();
    516         IDomA = IDomA->getIDom();
    517       }
    518       return nullptr;
    519     }
    520 
    521     // Collect NodeA dominators set.
    522     SmallPtrSet<DomTreeNodeBase<NodeT> *, 16> NodeADoms;
    523     NodeADoms.insert(NodeA);
    524     DomTreeNodeBase<NodeT> *IDomA = NodeA->getIDom();
    525     while (IDomA) {
    526       NodeADoms.insert(IDomA);
    527       IDomA = IDomA->getIDom();
    528     }
    529 
    530     // Walk NodeB immediate dominators chain and find common dominator node.
    531     DomTreeNodeBase<NodeT> *IDomB = NodeB->getIDom();
    532     while (IDomB) {
    533       if (NodeADoms.count(IDomB) != 0)
    534         return IDomB->getBlock();
    535 
    536       IDomB = IDomB->getIDom();
    537     }
    538 
    539     return nullptr;
    540   }
    541 
    542   const NodeT *findNearestCommonDominator(const NodeT *A, const NodeT *B) {
    543     // Cast away the const qualifiers here. This is ok since
    544     // const is re-introduced on the return type.
    545     return findNearestCommonDominator(const_cast<NodeT *>(A),
    546                                       const_cast<NodeT *>(B));
    547   }
    548 
    549   //===--------------------------------------------------------------------===//
    550   // API to update (Post)DominatorTree information based on modifications to
    551   // the CFG...
    552 
    553   /// addNewBlock - Add a new node to the dominator tree information.  This
    554   /// creates a new node as a child of DomBB dominator node,linking it into
    555   /// the children list of the immediate dominator.
    556   DomTreeNodeBase<NodeT> *addNewBlock(NodeT *BB, NodeT *DomBB) {
    557     assert(getNode(BB) == nullptr && "Block already in dominator tree!");
    558     DomTreeNodeBase<NodeT> *IDomNode = getNode(DomBB);
    559     assert(IDomNode && "Not immediate dominator specified for block!");
    560     DFSInfoValid = false;
    561     return (DomTreeNodes[BB] = IDomNode->addChild(
    562                 llvm::make_unique<DomTreeNodeBase<NodeT>>(BB, IDomNode))).get();
    563   }
    564 
    565   /// changeImmediateDominator - This method is used to update the dominator
    566   /// tree information when a node's immediate dominator changes.
    567   ///
    568   void changeImmediateDominator(DomTreeNodeBase<NodeT> *N,
    569                                 DomTreeNodeBase<NodeT> *NewIDom) {
    570     assert(N && NewIDom && "Cannot change null node pointers!");
    571     DFSInfoValid = false;
    572     N->setIDom(NewIDom);
    573   }
    574 
    575   void changeImmediateDominator(NodeT *BB, NodeT *NewBB) {
    576     changeImmediateDominator(getNode(BB), getNode(NewBB));
    577   }
    578 
    579   /// eraseNode - Removes a node from the dominator tree. Block must not
    580   /// dominate any other blocks. Removes node from its immediate dominator's
    581   /// children list. Deletes dominator node associated with basic block BB.
    582   void eraseNode(NodeT *BB) {
    583     DomTreeNodeBase<NodeT> *Node = getNode(BB);
    584     assert(Node && "Removing node that isn't in dominator tree.");
    585     assert(Node->getChildren().empty() && "Node is not a leaf node.");
    586 
    587     // Remove node from immediate dominator's children list.
    588     DomTreeNodeBase<NodeT> *IDom = Node->getIDom();
    589     if (IDom) {
    590       typename std::vector<DomTreeNodeBase<NodeT> *>::iterator I =
    591           std::find(IDom->Children.begin(), IDom->Children.end(), Node);
    592       assert(I != IDom->Children.end() &&
    593              "Not in immediate dominator children set!");
    594       // I am no longer your child...
    595       IDom->Children.erase(I);
    596     }
    597 
    598     DomTreeNodes.erase(BB);
    599   }
    600 
    601   /// splitBlock - BB is split and now it has one successor. Update dominator
    602   /// tree to reflect this change.
    603   void splitBlock(NodeT *NewBB) {
    604     if (this->IsPostDominators)
    605       this->Split<Inverse<NodeT *>, GraphTraits<Inverse<NodeT *>>>(*this,
    606                                                                    NewBB);
    607     else
    608       this->Split<NodeT *, GraphTraits<NodeT *>>(*this, NewBB);
    609   }
    610 
    611   /// print - Convert to human readable form
    612   ///
    613   void print(raw_ostream &o) const {
    614     o << "=============================--------------------------------\n";
    615     if (this->isPostDominator())
    616       o << "Inorder PostDominator Tree: ";
    617     else
    618       o << "Inorder Dominator Tree: ";
    619     if (!this->DFSInfoValid)
    620       o << "DFSNumbers invalid: " << SlowQueries << " slow queries.";
    621     o << "\n";
    622 
    623     // The postdom tree can have a null root if there are no returns.
    624     if (getRootNode())
    625       PrintDomTree<NodeT>(getRootNode(), o, 1);
    626   }
    627 
    628 protected:
    629   template <class GraphT>
    630   friend typename GraphT::NodeType *
    631   Eval(DominatorTreeBase<typename GraphT::NodeType> &DT,
    632        typename GraphT::NodeType *V, unsigned LastLinked);
    633 
    634   template <class GraphT>
    635   friend unsigned DFSPass(DominatorTreeBase<typename GraphT::NodeType> &DT,
    636                           typename GraphT::NodeType *V, unsigned N);
    637 
    638   template <class FuncT, class N>
    639   friend void
    640   Calculate(DominatorTreeBase<typename GraphTraits<N>::NodeType> &DT, FuncT &F);
    641 
    642 
    643   DomTreeNodeBase<NodeT> *getNodeForBlock(NodeT *BB) {
    644     if (DomTreeNodeBase<NodeT> *Node = getNode(BB))
    645       return Node;
    646 
    647     // Haven't calculated this node yet?  Get or calculate the node for the
    648     // immediate dominator.
    649     NodeT *IDom = getIDom(BB);
    650 
    651     assert(IDom || this->DomTreeNodes[nullptr]);
    652     DomTreeNodeBase<NodeT> *IDomNode = getNodeForBlock(IDom);
    653 
    654     // Add a new tree node for this NodeT, and link it as a child of
    655     // IDomNode
    656     return (this->DomTreeNodes[BB] = IDomNode->addChild(
    657                 llvm::make_unique<DomTreeNodeBase<NodeT>>(BB, IDomNode))).get();
    658   }
    659 
    660   NodeT *getIDom(NodeT *BB) const { return IDoms.lookup(BB); }
    661 
    662   void addRoot(NodeT *BB) { this->Roots.push_back(BB); }
    663 
    664 public:
    665   /// updateDFSNumbers - Assign In and Out numbers to the nodes while walking
    666   /// dominator tree in dfs order.
    667   void updateDFSNumbers() const {
    668 
    669     if (DFSInfoValid) {
    670       SlowQueries = 0;
    671       return;
    672     }
    673 
    674     unsigned DFSNum = 0;
    675 
    676     SmallVector<std::pair<const DomTreeNodeBase<NodeT> *,
    677                           typename DomTreeNodeBase<NodeT>::const_iterator>,
    678                 32> WorkStack;
    679 
    680     const DomTreeNodeBase<NodeT> *ThisRoot = getRootNode();
    681 
    682     if (!ThisRoot)
    683       return;
    684 
    685     // Even in the case of multiple exits that form the post dominator root
    686     // nodes, do not iterate over all exits, but start from the virtual root
    687     // node. Otherwise bbs, that are not post dominated by any exit but by the
    688     // virtual root node, will never be assigned a DFS number.
    689     WorkStack.push_back(std::make_pair(ThisRoot, ThisRoot->begin()));
    690     ThisRoot->DFSNumIn = DFSNum++;
    691 
    692     while (!WorkStack.empty()) {
    693       const DomTreeNodeBase<NodeT> *Node = WorkStack.back().first;
    694       typename DomTreeNodeBase<NodeT>::const_iterator ChildIt =
    695           WorkStack.back().second;
    696 
    697       // If we visited all of the children of this node, "recurse" back up the
    698       // stack setting the DFOutNum.
    699       if (ChildIt == Node->end()) {
    700         Node->DFSNumOut = DFSNum++;
    701         WorkStack.pop_back();
    702       } else {
    703         // Otherwise, recursively visit this child.
    704         const DomTreeNodeBase<NodeT> *Child = *ChildIt;
    705         ++WorkStack.back().second;
    706 
    707         WorkStack.push_back(std::make_pair(Child, Child->begin()));
    708         Child->DFSNumIn = DFSNum++;
    709       }
    710     }
    711 
    712     SlowQueries = 0;
    713     DFSInfoValid = true;
    714   }
    715 
    716   /// recalculate - compute a dominator tree for the given function
    717   template <class FT> void recalculate(FT &F) {
    718     typedef GraphTraits<FT *> TraitsTy;
    719     reset();
    720     this->Vertex.push_back(nullptr);
    721 
    722     if (!this->IsPostDominators) {
    723       // Initialize root
    724       NodeT *entry = TraitsTy::getEntryNode(&F);
    725       this->Roots.push_back(entry);
    726       this->IDoms[entry] = nullptr;
    727       this->DomTreeNodes[entry] = nullptr;
    728 
    729       Calculate<FT, NodeT *>(*this, F);
    730     } else {
    731       // Initialize the roots list
    732       for (typename TraitsTy::nodes_iterator I = TraitsTy::nodes_begin(&F),
    733                                              E = TraitsTy::nodes_end(&F);
    734            I != E; ++I) {
    735         if (TraitsTy::child_begin(I) == TraitsTy::child_end(I))
    736           addRoot(I);
    737 
    738         // Prepopulate maps so that we don't get iterator invalidation issues
    739         // later.
    740         this->IDoms[I] = nullptr;
    741         this->DomTreeNodes[I] = nullptr;
    742       }
    743 
    744       Calculate<FT, Inverse<NodeT *>>(*this, F);
    745     }
    746   }
    747 };
    748 
    749 // These two functions are declared out of line as a workaround for building
    750 // with old (< r147295) versions of clang because of pr11642.
    751 template <class NodeT>
    752 bool DominatorTreeBase<NodeT>::dominates(const NodeT *A, const NodeT *B) const {
    753   if (A == B)
    754     return true;
    755 
    756   // Cast away the const qualifiers here. This is ok since
    757   // this function doesn't actually return the values returned
    758   // from getNode.
    759   return dominates(getNode(const_cast<NodeT *>(A)),
    760                    getNode(const_cast<NodeT *>(B)));
    761 }
    762 template <class NodeT>
    763 bool DominatorTreeBase<NodeT>::properlyDominates(const NodeT *A,
    764                                                  const NodeT *B) const {
    765   if (A == B)
    766     return false;
    767 
    768   // Cast away the const qualifiers here. This is ok since
    769   // this function doesn't actually return the values returned
    770   // from getNode.
    771   return dominates(getNode(const_cast<NodeT *>(A)),
    772                    getNode(const_cast<NodeT *>(B)));
    773 }
    774 
    775 }
    776 
    777 #endif
    778