Home | History | Annotate | Download | only in i18n
      1 /*
      2 **************************************************************************
      3 *   Copyright (C) 2002-2015 International Business Machines Corporation  *
      4 *   and others. All rights reserved.                                     *
      5 **************************************************************************
      6 */
      7 //
      8 //  file:  rematch.cpp
      9 //
     10 //         Contains the implementation of class RegexMatcher,
     11 //         which is one of the main API classes for the ICU regular expression package.
     12 //
     13 
     14 #include "unicode/utypes.h"
     15 #if !UCONFIG_NO_REGULAR_EXPRESSIONS
     16 
     17 #include "unicode/regex.h"
     18 #include "unicode/uniset.h"
     19 #include "unicode/uchar.h"
     20 #include "unicode/ustring.h"
     21 #include "unicode/rbbi.h"
     22 #include "unicode/utf.h"
     23 #include "unicode/utf16.h"
     24 #include "uassert.h"
     25 #include "cmemory.h"
     26 #include "uvector.h"
     27 #include "uvectr32.h"
     28 #include "uvectr64.h"
     29 #include "regeximp.h"
     30 #include "regexst.h"
     31 #include "regextxt.h"
     32 #include "ucase.h"
     33 
     34 // #include <malloc.h>        // Needed for heapcheck testing
     35 
     36 U_NAMESPACE_BEGIN
     37 
     38 // Default limit for the size of the back track stack, to avoid system
     39 //    failures causedby heap exhaustion.  Units are in 32 bit words, not bytes.
     40 // This value puts ICU's limits higher than most other regexp implementations,
     41 //    which use recursion rather than the heap, and take more storage per
     42 //    backtrack point.
     43 //
     44 static const int32_t DEFAULT_BACKTRACK_STACK_CAPACITY = 8000000;
     45 
     46 // Time limit counter constant.
     47 //   Time limits for expression evaluation are in terms of quanta of work by
     48 //   the engine, each of which is 10,000 state saves.
     49 //   This constant determines that state saves per tick number.
     50 static const int32_t TIMER_INITIAL_VALUE = 10000;
     51 
     52 
     53 // Test for any of the Unicode line terminating characters.
     54 static inline UBool isLineTerminator(UChar32 c) {
     55     if (c & ~(0x0a | 0x0b | 0x0c | 0x0d | 0x85 | 0x2028 | 0x2029)) {
     56         return false;
     57     }
     58     return (c<=0x0d && c>=0x0a) || c==0x85 || c==0x2028 || c==0x2029;
     59 }
     60 
     61 //-----------------------------------------------------------------------------
     62 //
     63 //   Constructor and Destructor
     64 //
     65 //-----------------------------------------------------------------------------
     66 RegexMatcher::RegexMatcher(const RegexPattern *pat)  {
     67     fDeferredStatus = U_ZERO_ERROR;
     68     init(fDeferredStatus);
     69     if (U_FAILURE(fDeferredStatus)) {
     70         return;
     71     }
     72     if (pat==NULL) {
     73         fDeferredStatus = U_ILLEGAL_ARGUMENT_ERROR;
     74         return;
     75     }
     76     fPattern = pat;
     77     init2(RegexStaticSets::gStaticSets->fEmptyText, fDeferredStatus);
     78 }
     79 
     80 
     81 
     82 RegexMatcher::RegexMatcher(const UnicodeString &regexp, const UnicodeString &input,
     83                            uint32_t flags, UErrorCode &status) {
     84     init(status);
     85     if (U_FAILURE(status)) {
     86         return;
     87     }
     88     UParseError    pe;
     89     fPatternOwned      = RegexPattern::compile(regexp, flags, pe, status);
     90     fPattern           = fPatternOwned;
     91 
     92     UText inputText = UTEXT_INITIALIZER;
     93     utext_openConstUnicodeString(&inputText, &input, &status);
     94     init2(&inputText, status);
     95     utext_close(&inputText);
     96 
     97     fInputUniStrMaybeMutable = TRUE;
     98 }
     99 
    100 
    101 RegexMatcher::RegexMatcher(UText *regexp, UText *input,
    102                            uint32_t flags, UErrorCode &status) {
    103     init(status);
    104     if (U_FAILURE(status)) {
    105         return;
    106     }
    107     UParseError    pe;
    108     fPatternOwned      = RegexPattern::compile(regexp, flags, pe, status);
    109     if (U_FAILURE(status)) {
    110         return;
    111     }
    112 
    113     fPattern           = fPatternOwned;
    114     init2(input, status);
    115 }
    116 
    117 
    118 RegexMatcher::RegexMatcher(const UnicodeString &regexp,
    119                            uint32_t flags, UErrorCode &status) {
    120     init(status);
    121     if (U_FAILURE(status)) {
    122         return;
    123     }
    124     UParseError    pe;
    125     fPatternOwned      = RegexPattern::compile(regexp, flags, pe, status);
    126     if (U_FAILURE(status)) {
    127         return;
    128     }
    129     fPattern           = fPatternOwned;
    130     init2(RegexStaticSets::gStaticSets->fEmptyText, status);
    131 }
    132 
    133 RegexMatcher::RegexMatcher(UText *regexp,
    134                            uint32_t flags, UErrorCode &status) {
    135     init(status);
    136     if (U_FAILURE(status)) {
    137         return;
    138     }
    139     UParseError    pe;
    140     fPatternOwned      = RegexPattern::compile(regexp, flags, pe, status);
    141         if (U_FAILURE(status)) {
    142         return;
    143     }
    144 
    145     fPattern           = fPatternOwned;
    146     init2(RegexStaticSets::gStaticSets->fEmptyText, status);
    147 }
    148 
    149 
    150 
    151 
    152 RegexMatcher::~RegexMatcher() {
    153     delete fStack;
    154     if (fData != fSmallData) {
    155         uprv_free(fData);
    156         fData = NULL;
    157     }
    158     if (fPatternOwned) {
    159         delete fPatternOwned;
    160         fPatternOwned = NULL;
    161         fPattern = NULL;
    162     }
    163 
    164     if (fInput) {
    165         delete fInput;
    166     }
    167     if (fInputText) {
    168         utext_close(fInputText);
    169     }
    170     if (fAltInputText) {
    171         utext_close(fAltInputText);
    172     }
    173 
    174     #if UCONFIG_NO_BREAK_ITERATION==0
    175     delete fWordBreakItr;
    176     #endif
    177 }
    178 
    179 //
    180 //   init()   common initialization for use by all constructors.
    181 //            Initialize all fields, get the object into a consistent state.
    182 //            This must be done even when the initial status shows an error,
    183 //            so that the object is initialized sufficiently well for the destructor
    184 //            to run safely.
    185 //
    186 void RegexMatcher::init(UErrorCode &status) {
    187     fPattern           = NULL;
    188     fPatternOwned      = NULL;
    189     fFrameSize         = 0;
    190     fRegionStart       = 0;
    191     fRegionLimit       = 0;
    192     fAnchorStart       = 0;
    193     fAnchorLimit       = 0;
    194     fLookStart         = 0;
    195     fLookLimit         = 0;
    196     fActiveStart       = 0;
    197     fActiveLimit       = 0;
    198     fTransparentBounds = FALSE;
    199     fAnchoringBounds   = TRUE;
    200     fMatch             = FALSE;
    201     fMatchStart        = 0;
    202     fMatchEnd          = 0;
    203     fLastMatchEnd      = -1;
    204     fAppendPosition    = 0;
    205     fHitEnd            = FALSE;
    206     fRequireEnd        = FALSE;
    207     fStack             = NULL;
    208     fFrame             = NULL;
    209     fTimeLimit         = 0;
    210     fTime              = 0;
    211     fTickCounter       = 0;
    212     fStackLimit        = DEFAULT_BACKTRACK_STACK_CAPACITY;
    213     fCallbackFn        = NULL;
    214     fCallbackContext   = NULL;
    215     fFindProgressCallbackFn      = NULL;
    216     fFindProgressCallbackContext = NULL;
    217     fTraceDebug        = FALSE;
    218     fDeferredStatus    = status;
    219     fData              = fSmallData;
    220     fWordBreakItr      = NULL;
    221 
    222     fStack             = NULL;
    223     fInputText         = NULL;
    224     fAltInputText      = NULL;
    225     fInput             = NULL;
    226     fInputLength       = 0;
    227     fInputUniStrMaybeMutable = FALSE;
    228 
    229     if (U_FAILURE(status)) {
    230         fDeferredStatus = status;
    231     }
    232 }
    233 
    234 //
    235 //  init2()   Common initialization for use by RegexMatcher constructors, part 2.
    236 //            This handles the common setup to be done after the Pattern is available.
    237 //
    238 void RegexMatcher::init2(UText *input, UErrorCode &status) {
    239     if (U_FAILURE(status)) {
    240         fDeferredStatus = status;
    241         return;
    242     }
    243 
    244     if (fPattern->fDataSize > (int32_t)(sizeof(fSmallData)/sizeof(fSmallData[0]))) {
    245         fData = (int64_t *)uprv_malloc(fPattern->fDataSize * sizeof(int64_t));
    246         if (fData == NULL) {
    247             status = fDeferredStatus = U_MEMORY_ALLOCATION_ERROR;
    248             return;
    249         }
    250     }
    251 
    252     fStack = new UVector64(status);
    253     if (fStack == NULL) {
    254         status = fDeferredStatus = U_MEMORY_ALLOCATION_ERROR;
    255         return;
    256     }
    257 
    258     reset(input);
    259     setStackLimit(DEFAULT_BACKTRACK_STACK_CAPACITY, status);
    260     if (U_FAILURE(status)) {
    261         fDeferredStatus = status;
    262         return;
    263     }
    264 }
    265 
    266 
    267 static const UChar BACKSLASH  = 0x5c;
    268 static const UChar DOLLARSIGN = 0x24;
    269 static const UChar LEFTBRACKET = 0x7b;
    270 static const UChar RIGHTBRACKET = 0x7d;
    271 
    272 //--------------------------------------------------------------------------------
    273 //
    274 //    appendReplacement
    275 //
    276 //--------------------------------------------------------------------------------
    277 RegexMatcher &RegexMatcher::appendReplacement(UnicodeString &dest,
    278                                               const UnicodeString &replacement,
    279                                               UErrorCode &status) {
    280     UText replacementText = UTEXT_INITIALIZER;
    281 
    282     utext_openConstUnicodeString(&replacementText, &replacement, &status);
    283     if (U_SUCCESS(status)) {
    284         UText resultText = UTEXT_INITIALIZER;
    285         utext_openUnicodeString(&resultText, &dest, &status);
    286 
    287         if (U_SUCCESS(status)) {
    288             appendReplacement(&resultText, &replacementText, status);
    289             utext_close(&resultText);
    290         }
    291         utext_close(&replacementText);
    292     }
    293 
    294     return *this;
    295 }
    296 
    297 //
    298 //    appendReplacement, UText mode
    299 //
    300 RegexMatcher &RegexMatcher::appendReplacement(UText *dest,
    301                                               UText *replacement,
    302                                               UErrorCode &status) {
    303     if (U_FAILURE(status)) {
    304         return *this;
    305     }
    306     if (U_FAILURE(fDeferredStatus)) {
    307         status = fDeferredStatus;
    308         return *this;
    309     }
    310     if (fMatch == FALSE) {
    311         status = U_REGEX_INVALID_STATE;
    312         return *this;
    313     }
    314 
    315     // Copy input string from the end of previous match to start of current match
    316     int64_t  destLen = utext_nativeLength(dest);
    317     if (fMatchStart > fAppendPosition) {
    318         if (UTEXT_FULL_TEXT_IN_CHUNK(fInputText, fInputLength)) {
    319             destLen += utext_replace(dest, destLen, destLen, fInputText->chunkContents+fAppendPosition,
    320                                      (int32_t)(fMatchStart-fAppendPosition), &status);
    321         } else {
    322             int32_t len16;
    323             if (UTEXT_USES_U16(fInputText)) {
    324                 len16 = (int32_t)(fMatchStart-fAppendPosition);
    325             } else {
    326                 UErrorCode lengthStatus = U_ZERO_ERROR;
    327                 len16 = utext_extract(fInputText, fAppendPosition, fMatchStart, NULL, 0, &lengthStatus);
    328             }
    329             UChar *inputChars = (UChar *)uprv_malloc(sizeof(UChar)*(len16+1));
    330             if (inputChars == NULL) {
    331                 status = U_MEMORY_ALLOCATION_ERROR;
    332                 return *this;
    333             }
    334             utext_extract(fInputText, fAppendPosition, fMatchStart, inputChars, len16+1, &status);
    335             destLen += utext_replace(dest, destLen, destLen, inputChars, len16, &status);
    336             uprv_free(inputChars);
    337         }
    338     }
    339     fAppendPosition = fMatchEnd;
    340 
    341 
    342     // scan the replacement text, looking for substitutions ($n) and \escapes.
    343     //  TODO:  optimize this loop by efficiently scanning for '$' or '\',
    344     //         move entire ranges not containing substitutions.
    345     UTEXT_SETNATIVEINDEX(replacement, 0);
    346     for (UChar32 c = UTEXT_NEXT32(replacement); U_SUCCESS(status) && c != U_SENTINEL;  c = UTEXT_NEXT32(replacement)) {
    347         if (c == BACKSLASH) {
    348             // Backslash Escape.  Copy the following char out without further checks.
    349             //                    Note:  Surrogate pairs don't need any special handling
    350             //                           The second half wont be a '$' or a '\', and
    351             //                           will move to the dest normally on the next
    352             //                           loop iteration.
    353             c = UTEXT_CURRENT32(replacement);
    354             if (c == U_SENTINEL) {
    355                 break;
    356             }
    357 
    358             if (c==0x55/*U*/ || c==0x75/*u*/) {
    359                 // We have a \udddd or \Udddddddd escape sequence.
    360                 int32_t offset = 0;
    361                 struct URegexUTextUnescapeCharContext context = U_REGEX_UTEXT_UNESCAPE_CONTEXT(replacement);
    362                 UChar32 escapedChar = u_unescapeAt(uregex_utext_unescape_charAt, &offset, INT32_MAX, &context);
    363                 if (escapedChar != (UChar32)0xFFFFFFFF) {
    364                     if (U_IS_BMP(escapedChar)) {
    365                         UChar c16 = (UChar)escapedChar;
    366                         destLen += utext_replace(dest, destLen, destLen, &c16, 1, &status);
    367                     } else {
    368                         UChar surrogate[2];
    369                         surrogate[0] = U16_LEAD(escapedChar);
    370                         surrogate[1] = U16_TRAIL(escapedChar);
    371                         if (U_SUCCESS(status)) {
    372                             destLen += utext_replace(dest, destLen, destLen, surrogate, 2, &status);
    373                         }
    374                     }
    375                     // TODO:  Report errors for mal-formed \u escapes?
    376                     //        As this is, the original sequence is output, which may be OK.
    377                     if (context.lastOffset == offset) {
    378                         (void)UTEXT_PREVIOUS32(replacement);
    379                     } else if (context.lastOffset != offset-1) {
    380                         utext_moveIndex32(replacement, offset - context.lastOffset - 1);
    381                     }
    382                 }
    383             } else {
    384                 (void)UTEXT_NEXT32(replacement);
    385                 // Plain backslash escape.  Just put out the escaped character.
    386                 if (U_IS_BMP(c)) {
    387                     UChar c16 = (UChar)c;
    388                     destLen += utext_replace(dest, destLen, destLen, &c16, 1, &status);
    389                 } else {
    390                     UChar surrogate[2];
    391                     surrogate[0] = U16_LEAD(c);
    392                     surrogate[1] = U16_TRAIL(c);
    393                     if (U_SUCCESS(status)) {
    394                         destLen += utext_replace(dest, destLen, destLen, surrogate, 2, &status);
    395                     }
    396                 }
    397             }
    398         } else if (c != DOLLARSIGN) {
    399             // Normal char, not a $.  Copy it out without further checks.
    400             if (U_IS_BMP(c)) {
    401                 UChar c16 = (UChar)c;
    402                 destLen += utext_replace(dest, destLen, destLen, &c16, 1, &status);
    403             } else {
    404                 UChar surrogate[2];
    405                 surrogate[0] = U16_LEAD(c);
    406                 surrogate[1] = U16_TRAIL(c);
    407                 if (U_SUCCESS(status)) {
    408                     destLen += utext_replace(dest, destLen, destLen, surrogate, 2, &status);
    409                 }
    410             }
    411         } else {
    412             // We've got a $.  Pick up a capture group name or number if one follows.
    413             // Consume digits so long as the resulting group number <= the number of
    414             // number of capture groups in the pattern.
    415 
    416             int32_t groupNum  = 0;
    417             int32_t numDigits = 0;
    418             UChar32 nextChar = utext_current32(replacement);
    419             if (nextChar == LEFTBRACKET) {
    420                 // Scan for a Named Capture Group, ${name}.
    421                 UnicodeString groupName;
    422                 utext_next32(replacement);
    423                 while(U_SUCCESS(status) && nextChar != RIGHTBRACKET) {
    424                     nextChar = utext_next32(replacement);
    425                     if (nextChar == U_SENTINEL) {
    426                         status = U_REGEX_INVALID_CAPTURE_GROUP_NAME;
    427                     } else if ((nextChar >= 0x41 && nextChar <= 0x5a) ||       // A..Z
    428                                (nextChar >= 0x61 && nextChar <= 0x7a) ||       // a..z
    429                                (nextChar >= 0x31 && nextChar <= 0x39)) {       // 0..9
    430                         groupName.append(nextChar);
    431                     } else if (nextChar == RIGHTBRACKET) {
    432                         groupNum = uhash_geti(fPattern->fNamedCaptureMap, &groupName);
    433                         if (groupNum == 0) {
    434                             status = U_REGEX_INVALID_CAPTURE_GROUP_NAME;
    435                         }
    436                     } else {
    437                         // Character was something other than a name char or a closing '}'
    438                         status = U_REGEX_INVALID_CAPTURE_GROUP_NAME;
    439                     }
    440                 }
    441 
    442             } else if (u_isdigit(nextChar)) {
    443                 // $n    Scan for a capture group number
    444                 int32_t numCaptureGroups = fPattern->fGroupMap->size();
    445                 for (;;) {
    446                     nextChar = UTEXT_CURRENT32(replacement);
    447                     if (nextChar == U_SENTINEL) {
    448                         break;
    449                     }
    450                     if (u_isdigit(nextChar) == FALSE) {
    451                         break;
    452                     }
    453                     int32_t nextDigitVal = u_charDigitValue(nextChar);
    454                     if (groupNum*10 + nextDigitVal > numCaptureGroups) {
    455                         // Don't consume the next digit if it makes the capture group number too big.
    456                         if (numDigits == 0) {
    457                             status = U_INDEX_OUTOFBOUNDS_ERROR;
    458                         }
    459                         break;
    460                     }
    461                     (void)UTEXT_NEXT32(replacement);
    462                     groupNum=groupNum*10 + nextDigitVal;
    463                     ++numDigits;
    464                 }
    465             } else {
    466                 // $ not followed by capture group name or number.
    467                 status = U_REGEX_INVALID_CAPTURE_GROUP_NAME;
    468             }
    469 
    470             if (U_SUCCESS(status)) {
    471                 destLen += appendGroup(groupNum, dest, status);
    472             }
    473         }  // End of $ capture group handling
    474     }  // End of per-character loop through the replacement string.
    475 
    476     return *this;
    477 }
    478 
    479 
    480 
    481 //--------------------------------------------------------------------------------
    482 //
    483 //    appendTail     Intended to be used in conjunction with appendReplacement()
    484 //                   To the destination string, append everything following
    485 //                   the last match position from the input string.
    486 //
    487 //                   Note:  Match ranges do not affect appendTail or appendReplacement
    488 //
    489 //--------------------------------------------------------------------------------
    490 UnicodeString &RegexMatcher::appendTail(UnicodeString &dest) {
    491     UErrorCode status = U_ZERO_ERROR;
    492     UText resultText = UTEXT_INITIALIZER;
    493     utext_openUnicodeString(&resultText, &dest, &status);
    494 
    495     if (U_SUCCESS(status)) {
    496         appendTail(&resultText, status);
    497         utext_close(&resultText);
    498     }
    499 
    500     return dest;
    501 }
    502 
    503 //
    504 //   appendTail, UText mode
    505 //
    506 UText *RegexMatcher::appendTail(UText *dest, UErrorCode &status) {
    507     if (U_FAILURE(status)) {
    508         return dest;
    509     }
    510     if (U_FAILURE(fDeferredStatus)) {
    511         status = fDeferredStatus;
    512         return dest;
    513     }
    514 
    515     if (fInputLength > fAppendPosition) {
    516         if (UTEXT_FULL_TEXT_IN_CHUNK(fInputText, fInputLength)) {
    517             int64_t destLen = utext_nativeLength(dest);
    518             utext_replace(dest, destLen, destLen, fInputText->chunkContents+fAppendPosition,
    519                           (int32_t)(fInputLength-fAppendPosition), &status);
    520         } else {
    521             int32_t len16;
    522             if (UTEXT_USES_U16(fInputText)) {
    523                 len16 = (int32_t)(fInputLength-fAppendPosition);
    524             } else {
    525                 len16 = utext_extract(fInputText, fAppendPosition, fInputLength, NULL, 0, &status);
    526                 status = U_ZERO_ERROR; // buffer overflow
    527             }
    528 
    529             UChar *inputChars = (UChar *)uprv_malloc(sizeof(UChar)*(len16));
    530             if (inputChars == NULL) {
    531                 fDeferredStatus = U_MEMORY_ALLOCATION_ERROR;
    532             } else {
    533                 utext_extract(fInputText, fAppendPosition, fInputLength, inputChars, len16, &status); // unterminated
    534                 int64_t destLen = utext_nativeLength(dest);
    535                 utext_replace(dest, destLen, destLen, inputChars, len16, &status);
    536                 uprv_free(inputChars);
    537             }
    538         }
    539     }
    540     return dest;
    541 }
    542 
    543 
    544 
    545 //--------------------------------------------------------------------------------
    546 //
    547 //   end
    548 //
    549 //--------------------------------------------------------------------------------
    550 int32_t RegexMatcher::end(UErrorCode &err) const {
    551     return end(0, err);
    552 }
    553 
    554 int64_t RegexMatcher::end64(UErrorCode &err) const {
    555     return end64(0, err);
    556 }
    557 
    558 int64_t RegexMatcher::end64(int32_t group, UErrorCode &err) const {
    559     if (U_FAILURE(err)) {
    560         return -1;
    561     }
    562     if (fMatch == FALSE) {
    563         err = U_REGEX_INVALID_STATE;
    564         return -1;
    565     }
    566     if (group < 0 || group > fPattern->fGroupMap->size()) {
    567         err = U_INDEX_OUTOFBOUNDS_ERROR;
    568         return -1;
    569     }
    570     int64_t e = -1;
    571     if (group == 0) {
    572         e = fMatchEnd;
    573     } else {
    574         // Get the position within the stack frame of the variables for
    575         //    this capture group.
    576         int32_t groupOffset = fPattern->fGroupMap->elementAti(group-1);
    577         U_ASSERT(groupOffset < fPattern->fFrameSize);
    578         U_ASSERT(groupOffset >= 0);
    579         e = fFrame->fExtra[groupOffset + 1];
    580     }
    581 
    582         return e;
    583 }
    584 
    585 int32_t RegexMatcher::end(int32_t group, UErrorCode &err) const {
    586     return (int32_t)end64(group, err);
    587 }
    588 
    589 //--------------------------------------------------------------------------------
    590 //
    591 //   findProgressInterrupt  This function is called once for each advance in the target
    592 //                          string from the find() function, and calls the user progress callback
    593 //                          function if there is one installed.
    594 //
    595 //         Return:  TRUE if the find operation is to be terminated.
    596 //                  FALSE if the find operation is to continue running.
    597 //
    598 //--------------------------------------------------------------------------------
    599 UBool RegexMatcher::findProgressInterrupt(int64_t pos, UErrorCode &status) {
    600     if (fFindProgressCallbackFn && !(*fFindProgressCallbackFn)(fFindProgressCallbackContext, pos)) {
    601         status = U_REGEX_STOPPED_BY_CALLER;
    602         return TRUE;
    603     }
    604     return FALSE;
    605 }
    606 
    607 //--------------------------------------------------------------------------------
    608 //
    609 //   find()
    610 //
    611 //--------------------------------------------------------------------------------
    612 UBool RegexMatcher::find() {
    613     if (U_FAILURE(fDeferredStatus)) {
    614         return FALSE;
    615     }
    616     UErrorCode status = U_ZERO_ERROR;
    617     UBool result = find(status);
    618     return result;
    619 }
    620 
    621 //--------------------------------------------------------------------------------
    622 //
    623 //   find()
    624 //
    625 //--------------------------------------------------------------------------------
    626 UBool RegexMatcher::find(UErrorCode &status) {
    627     // Start at the position of the last match end.  (Will be zero if the
    628     //   matcher has been reset.)
    629     //
    630     if (U_FAILURE(status)) {
    631         return FALSE;
    632     }
    633     if (U_FAILURE(fDeferredStatus)) {
    634         status = fDeferredStatus;
    635         return FALSE;
    636     }
    637 
    638     if (UTEXT_FULL_TEXT_IN_CHUNK(fInputText, fInputLength)) {
    639         return findUsingChunk(status);
    640     }
    641 
    642     int64_t startPos = fMatchEnd;
    643     if (startPos==0) {
    644         startPos = fActiveStart;
    645     }
    646 
    647     if (fMatch) {
    648         // Save the position of any previous successful match.
    649         fLastMatchEnd = fMatchEnd;
    650 
    651         if (fMatchStart == fMatchEnd) {
    652             // Previous match had zero length.  Move start position up one position
    653             //  to avoid sending find() into a loop on zero-length matches.
    654             if (startPos >= fActiveLimit) {
    655                 fMatch = FALSE;
    656                 fHitEnd = TRUE;
    657                 return FALSE;
    658             }
    659             UTEXT_SETNATIVEINDEX(fInputText, startPos);
    660             (void)UTEXT_NEXT32(fInputText);
    661             startPos = UTEXT_GETNATIVEINDEX(fInputText);
    662         }
    663     } else {
    664         if (fLastMatchEnd >= 0) {
    665             // A previous find() failed to match.  Don't try again.
    666             //   (without this test, a pattern with a zero-length match
    667             //    could match again at the end of an input string.)
    668             fHitEnd = TRUE;
    669             return FALSE;
    670         }
    671     }
    672 
    673 
    674     // Compute the position in the input string beyond which a match can not begin, because
    675     //   the minimum length match would extend past the end of the input.
    676     //   Note:  some patterns that cannot match anything will have fMinMatchLength==Max Int.
    677     //          Be aware of possible overflows if making changes here.
    678     int64_t testStartLimit;
    679     if (UTEXT_USES_U16(fInputText)) {
    680         testStartLimit = fActiveLimit - fPattern->fMinMatchLen;
    681         if (startPos > testStartLimit) {
    682             fMatch = FALSE;
    683             fHitEnd = TRUE;
    684             return FALSE;
    685         }
    686     } else {
    687         // We don't know exactly how long the minimum match length is in native characters.
    688         // Treat anything > 0 as 1.
    689         testStartLimit = fActiveLimit - (fPattern->fMinMatchLen > 0 ? 1 : 0);
    690     }
    691 
    692     UChar32  c;
    693     U_ASSERT(startPos >= 0);
    694 
    695     switch (fPattern->fStartType) {
    696     case START_NO_INFO:
    697         // No optimization was found.
    698         //  Try a match at each input position.
    699         for (;;) {
    700             MatchAt(startPos, FALSE, status);
    701             if (U_FAILURE(status)) {
    702                 return FALSE;
    703             }
    704             if (fMatch) {
    705                 return TRUE;
    706             }
    707             if (startPos >= testStartLimit) {
    708                 fHitEnd = TRUE;
    709                 return FALSE;
    710             }
    711             UTEXT_SETNATIVEINDEX(fInputText, startPos);
    712             (void)UTEXT_NEXT32(fInputText);
    713             startPos = UTEXT_GETNATIVEINDEX(fInputText);
    714             // Note that it's perfectly OK for a pattern to have a zero-length
    715             //   match at the end of a string, so we must make sure that the loop
    716             //   runs with startPos == testStartLimit the last time through.
    717             if  (findProgressInterrupt(startPos, status))
    718                 return FALSE;
    719         }
    720         U_ASSERT(FALSE);
    721 
    722     case START_START:
    723         // Matches are only possible at the start of the input string
    724         //   (pattern begins with ^ or \A)
    725         if (startPos > fActiveStart) {
    726             fMatch = FALSE;
    727             return FALSE;
    728         }
    729         MatchAt(startPos, FALSE, status);
    730         if (U_FAILURE(status)) {
    731             return FALSE;
    732         }
    733         return fMatch;
    734 
    735 
    736     case START_SET:
    737         {
    738             // Match may start on any char from a pre-computed set.
    739             U_ASSERT(fPattern->fMinMatchLen > 0);
    740             UTEXT_SETNATIVEINDEX(fInputText, startPos);
    741             for (;;) {
    742                 int64_t pos = startPos;
    743                 c = UTEXT_NEXT32(fInputText);
    744                 startPos = UTEXT_GETNATIVEINDEX(fInputText);
    745                 // c will be -1 (U_SENTINEL) at end of text, in which case we
    746                 // skip this next block (so we don't have a negative array index)
    747                 // and handle end of text in the following block.
    748                 if (c >= 0 && ((c<256 && fPattern->fInitialChars8->contains(c)) ||
    749                               (c>=256 && fPattern->fInitialChars->contains(c)))) {
    750                     MatchAt(pos, FALSE, status);
    751                     if (U_FAILURE(status)) {
    752                         return FALSE;
    753                     }
    754                     if (fMatch) {
    755                         return TRUE;
    756                     }
    757                     UTEXT_SETNATIVEINDEX(fInputText, pos);
    758                 }
    759                 if (startPos > testStartLimit) {
    760                     fMatch = FALSE;
    761                     fHitEnd = TRUE;
    762                     return FALSE;
    763                 }
    764                 if  (findProgressInterrupt(startPos, status))
    765                     return FALSE;
    766             }
    767         }
    768         U_ASSERT(FALSE);
    769 
    770     case START_STRING:
    771     case START_CHAR:
    772         {
    773             // Match starts on exactly one char.
    774             U_ASSERT(fPattern->fMinMatchLen > 0);
    775             UChar32 theChar = fPattern->fInitialChar;
    776             UTEXT_SETNATIVEINDEX(fInputText, startPos);
    777             for (;;) {
    778                 int64_t pos = startPos;
    779                 c = UTEXT_NEXT32(fInputText);
    780                 startPos = UTEXT_GETNATIVEINDEX(fInputText);
    781                 if (c == theChar) {
    782                     MatchAt(pos, FALSE, status);
    783                     if (U_FAILURE(status)) {
    784                         return FALSE;
    785                     }
    786                     if (fMatch) {
    787                         return TRUE;
    788                     }
    789                     UTEXT_SETNATIVEINDEX(fInputText, pos);
    790                 }
    791                 if (startPos > testStartLimit) {
    792                     fMatch = FALSE;
    793                     fHitEnd = TRUE;
    794                     return FALSE;
    795                 }
    796                 if  (findProgressInterrupt(startPos, status))
    797                     return FALSE;
    798            }
    799         }
    800         U_ASSERT(FALSE);
    801 
    802     case START_LINE:
    803         {
    804             UChar32  c;
    805             if (startPos == fAnchorStart) {
    806                 MatchAt(startPos, FALSE, status);
    807                 if (U_FAILURE(status)) {
    808                     return FALSE;
    809                 }
    810                 if (fMatch) {
    811                     return TRUE;
    812                 }
    813                 UTEXT_SETNATIVEINDEX(fInputText, startPos);
    814                 c = UTEXT_NEXT32(fInputText);
    815                 startPos = UTEXT_GETNATIVEINDEX(fInputText);
    816             } else {
    817                 UTEXT_SETNATIVEINDEX(fInputText, startPos);
    818                 c = UTEXT_PREVIOUS32(fInputText);
    819                 UTEXT_SETNATIVEINDEX(fInputText, startPos);
    820             }
    821 
    822             if (fPattern->fFlags & UREGEX_UNIX_LINES) {
    823                 for (;;) {
    824                     if (c == 0x0a) {
    825                             MatchAt(startPos, FALSE, status);
    826                             if (U_FAILURE(status)) {
    827                                 return FALSE;
    828                             }
    829                             if (fMatch) {
    830                                 return TRUE;
    831                             }
    832                             UTEXT_SETNATIVEINDEX(fInputText, startPos);
    833                     }
    834                     if (startPos >= testStartLimit) {
    835                         fMatch = FALSE;
    836                         fHitEnd = TRUE;
    837                         return FALSE;
    838                     }
    839                     c = UTEXT_NEXT32(fInputText);
    840                     startPos = UTEXT_GETNATIVEINDEX(fInputText);
    841                     // Note that it's perfectly OK for a pattern to have a zero-length
    842                     //   match at the end of a string, so we must make sure that the loop
    843                     //   runs with startPos == testStartLimit the last time through.
    844                     if  (findProgressInterrupt(startPos, status))
    845                         return FALSE;
    846                 }
    847             } else {
    848                 for (;;) {
    849                     if (isLineTerminator(c)) {
    850                         if (c == 0x0d && startPos < fActiveLimit && UTEXT_CURRENT32(fInputText) == 0x0a) {
    851                             (void)UTEXT_NEXT32(fInputText);
    852                             startPos = UTEXT_GETNATIVEINDEX(fInputText);
    853                         }
    854                         MatchAt(startPos, FALSE, status);
    855                         if (U_FAILURE(status)) {
    856                             return FALSE;
    857                         }
    858                         if (fMatch) {
    859                             return TRUE;
    860                         }
    861                         UTEXT_SETNATIVEINDEX(fInputText, startPos);
    862                     }
    863                     if (startPos >= testStartLimit) {
    864                         fMatch = FALSE;
    865                         fHitEnd = TRUE;
    866                         return FALSE;
    867                     }
    868                     c = UTEXT_NEXT32(fInputText);
    869                     startPos = UTEXT_GETNATIVEINDEX(fInputText);
    870                     // Note that it's perfectly OK for a pattern to have a zero-length
    871                     //   match at the end of a string, so we must make sure that the loop
    872                     //   runs with startPos == testStartLimit the last time through.
    873                     if  (findProgressInterrupt(startPos, status))
    874                         return FALSE;
    875                 }
    876             }
    877         }
    878 
    879     default:
    880         U_ASSERT(FALSE);
    881     }
    882 
    883     U_ASSERT(FALSE);
    884     return FALSE;
    885 }
    886 
    887 
    888 
    889 UBool RegexMatcher::find(int64_t start, UErrorCode &status) {
    890     if (U_FAILURE(status)) {
    891         return FALSE;
    892     }
    893     if (U_FAILURE(fDeferredStatus)) {
    894         status = fDeferredStatus;
    895         return FALSE;
    896     }
    897     this->reset();                        // Note:  Reset() is specified by Java Matcher documentation.
    898                                           //        This will reset the region to be the full input length.
    899     if (start < 0) {
    900         status = U_INDEX_OUTOFBOUNDS_ERROR;
    901         return FALSE;
    902     }
    903 
    904     int64_t nativeStart = start;
    905     if (nativeStart < fActiveStart || nativeStart > fActiveLimit) {
    906         status = U_INDEX_OUTOFBOUNDS_ERROR;
    907         return FALSE;
    908     }
    909     fMatchEnd = nativeStart;
    910     return find(status);
    911 }
    912 
    913 
    914 //--------------------------------------------------------------------------------
    915 //
    916 //   findUsingChunk() -- like find(), but with the advance knowledge that the
    917 //                       entire string is available in the UText's chunk buffer.
    918 //
    919 //--------------------------------------------------------------------------------
    920 UBool RegexMatcher::findUsingChunk(UErrorCode &status) {
    921     // Start at the position of the last match end.  (Will be zero if the
    922     //   matcher has been reset.
    923     //
    924 
    925     int32_t startPos = (int32_t)fMatchEnd;
    926     if (startPos==0) {
    927         startPos = (int32_t)fActiveStart;
    928     }
    929 
    930     const UChar *inputBuf = fInputText->chunkContents;
    931 
    932     if (fMatch) {
    933         // Save the position of any previous successful match.
    934         fLastMatchEnd = fMatchEnd;
    935 
    936         if (fMatchStart == fMatchEnd) {
    937             // Previous match had zero length.  Move start position up one position
    938             //  to avoid sending find() into a loop on zero-length matches.
    939             if (startPos >= fActiveLimit) {
    940                 fMatch = FALSE;
    941                 fHitEnd = TRUE;
    942                 return FALSE;
    943             }
    944             U16_FWD_1(inputBuf, startPos, fInputLength);
    945         }
    946     } else {
    947         if (fLastMatchEnd >= 0) {
    948             // A previous find() failed to match.  Don't try again.
    949             //   (without this test, a pattern with a zero-length match
    950             //    could match again at the end of an input string.)
    951             fHitEnd = TRUE;
    952             return FALSE;
    953         }
    954     }
    955 
    956 
    957     // Compute the position in the input string beyond which a match can not begin, because
    958     //   the minimum length match would extend past the end of the input.
    959     //   Note:  some patterns that cannot match anything will have fMinMatchLength==Max Int.
    960     //          Be aware of possible overflows if making changes here.
    961     //   Note:  a match can begin at inputBuf + testLen; it is an inclusive limit.
    962     int32_t testLen  = (int32_t)(fActiveLimit - fPattern->fMinMatchLen);
    963     if (startPos > testLen) {
    964         fMatch = FALSE;
    965         fHitEnd = TRUE;
    966         return FALSE;
    967     }
    968 
    969     UChar32  c;
    970     U_ASSERT(startPos >= 0);
    971 
    972     switch (fPattern->fStartType) {
    973     case START_NO_INFO:
    974         // No optimization was found.
    975         //  Try a match at each input position.
    976         for (;;) {
    977             MatchChunkAt(startPos, FALSE, status);
    978             if (U_FAILURE(status)) {
    979                 return FALSE;
    980             }
    981             if (fMatch) {
    982                 return TRUE;
    983             }
    984             if (startPos >= testLen) {
    985                 fHitEnd = TRUE;
    986                 return FALSE;
    987             }
    988             U16_FWD_1(inputBuf, startPos, fActiveLimit);
    989             // Note that it's perfectly OK for a pattern to have a zero-length
    990             //   match at the end of a string, so we must make sure that the loop
    991             //   runs with startPos == testLen the last time through.
    992             if  (findProgressInterrupt(startPos, status))
    993                 return FALSE;
    994         }
    995         U_ASSERT(FALSE);
    996 
    997     case START_START:
    998         // Matches are only possible at the start of the input string
    999         //   (pattern begins with ^ or \A)
   1000         if (startPos > fActiveStart) {
   1001             fMatch = FALSE;
   1002             return FALSE;
   1003         }
   1004         MatchChunkAt(startPos, FALSE, status);
   1005         if (U_FAILURE(status)) {
   1006             return FALSE;
   1007         }
   1008         return fMatch;
   1009 
   1010 
   1011     case START_SET:
   1012     {
   1013         // Match may start on any char from a pre-computed set.
   1014         U_ASSERT(fPattern->fMinMatchLen > 0);
   1015         for (;;) {
   1016             int32_t pos = startPos;
   1017             U16_NEXT(inputBuf, startPos, fActiveLimit, c);  // like c = inputBuf[startPos++];
   1018             if ((c<256 && fPattern->fInitialChars8->contains(c)) ||
   1019                 (c>=256 && fPattern->fInitialChars->contains(c))) {
   1020                 MatchChunkAt(pos, FALSE, status);
   1021                 if (U_FAILURE(status)) {
   1022                     return FALSE;
   1023                 }
   1024                 if (fMatch) {
   1025                     return TRUE;
   1026                 }
   1027             }
   1028             if (startPos > testLen) {
   1029                 fMatch = FALSE;
   1030                 fHitEnd = TRUE;
   1031                 return FALSE;
   1032             }
   1033             if  (findProgressInterrupt(startPos, status))
   1034                 return FALSE;
   1035         }
   1036     }
   1037         U_ASSERT(FALSE);
   1038 
   1039     case START_STRING:
   1040     case START_CHAR:
   1041     {
   1042         // Match starts on exactly one char.
   1043         U_ASSERT(fPattern->fMinMatchLen > 0);
   1044         UChar32 theChar = fPattern->fInitialChar;
   1045         for (;;) {
   1046             int32_t pos = startPos;
   1047             U16_NEXT(inputBuf, startPos, fActiveLimit, c);  // like c = inputBuf[startPos++];
   1048             if (c == theChar) {
   1049                 MatchChunkAt(pos, FALSE, status);
   1050                 if (U_FAILURE(status)) {
   1051                     return FALSE;
   1052                 }
   1053                 if (fMatch) {
   1054                     return TRUE;
   1055                 }
   1056             }
   1057             if (startPos > testLen) {
   1058                 fMatch = FALSE;
   1059                 fHitEnd = TRUE;
   1060                 return FALSE;
   1061             }
   1062             if  (findProgressInterrupt(startPos, status))
   1063                 return FALSE;
   1064         }
   1065     }
   1066     U_ASSERT(FALSE);
   1067 
   1068     case START_LINE:
   1069     {
   1070         UChar32  c;
   1071         if (startPos == fAnchorStart) {
   1072             MatchChunkAt(startPos, FALSE, status);
   1073             if (U_FAILURE(status)) {
   1074                 return FALSE;
   1075             }
   1076             if (fMatch) {
   1077                 return TRUE;
   1078             }
   1079             U16_FWD_1(inputBuf, startPos, fActiveLimit);
   1080         }
   1081 
   1082         if (fPattern->fFlags & UREGEX_UNIX_LINES) {
   1083             for (;;) {
   1084                 c = inputBuf[startPos-1];
   1085                 if (c == 0x0a) {
   1086                     MatchChunkAt(startPos, FALSE, status);
   1087                     if (U_FAILURE(status)) {
   1088                         return FALSE;
   1089                     }
   1090                     if (fMatch) {
   1091                         return TRUE;
   1092                     }
   1093                 }
   1094                 if (startPos >= testLen) {
   1095                     fMatch = FALSE;
   1096                     fHitEnd = TRUE;
   1097                     return FALSE;
   1098                 }
   1099                 U16_FWD_1(inputBuf, startPos, fActiveLimit);
   1100                 // Note that it's perfectly OK for a pattern to have a zero-length
   1101                 //   match at the end of a string, so we must make sure that the loop
   1102                 //   runs with startPos == testLen the last time through.
   1103                 if  (findProgressInterrupt(startPos, status))
   1104                     return FALSE;
   1105             }
   1106         } else {
   1107             for (;;) {
   1108                 c = inputBuf[startPos-1];
   1109                 if (isLineTerminator(c)) {
   1110                     if (c == 0x0d && startPos < fActiveLimit && inputBuf[startPos] == 0x0a) {
   1111                         startPos++;
   1112                     }
   1113                     MatchChunkAt(startPos, FALSE, status);
   1114                     if (U_FAILURE(status)) {
   1115                         return FALSE;
   1116                     }
   1117                     if (fMatch) {
   1118                         return TRUE;
   1119                     }
   1120                 }
   1121                 if (startPos >= testLen) {
   1122                     fMatch = FALSE;
   1123                     fHitEnd = TRUE;
   1124                     return FALSE;
   1125                 }
   1126                 U16_FWD_1(inputBuf, startPos, fActiveLimit);
   1127                 // Note that it's perfectly OK for a pattern to have a zero-length
   1128                 //   match at the end of a string, so we must make sure that the loop
   1129                 //   runs with startPos == testLen the last time through.
   1130                 if  (findProgressInterrupt(startPos, status))
   1131                     return FALSE;
   1132             }
   1133         }
   1134     }
   1135 
   1136     default:
   1137         U_ASSERT(FALSE);
   1138     }
   1139 
   1140     U_ASSERT(FALSE);
   1141     return FALSE;
   1142 }
   1143 
   1144 
   1145 
   1146 //--------------------------------------------------------------------------------
   1147 //
   1148 //  group()
   1149 //
   1150 //--------------------------------------------------------------------------------
   1151 UnicodeString RegexMatcher::group(UErrorCode &status) const {
   1152     return group(0, status);
   1153 }
   1154 
   1155 //  Return immutable shallow clone
   1156 UText *RegexMatcher::group(UText *dest, int64_t &group_len, UErrorCode &status) const {
   1157     return group(0, dest, group_len, status);
   1158 }
   1159 
   1160 //  Return immutable shallow clone
   1161 UText *RegexMatcher::group(int32_t groupNum, UText *dest, int64_t &group_len, UErrorCode &status) const {
   1162     group_len = 0;
   1163     if (U_FAILURE(status)) {
   1164         return dest;
   1165     }
   1166     if (U_FAILURE(fDeferredStatus)) {
   1167         status = fDeferredStatus;
   1168     } else if (fMatch == FALSE) {
   1169         status = U_REGEX_INVALID_STATE;
   1170     } else if (groupNum < 0 || groupNum > fPattern->fGroupMap->size()) {
   1171         status = U_INDEX_OUTOFBOUNDS_ERROR;
   1172     }
   1173 
   1174     if (U_FAILURE(status)) {
   1175         return dest;
   1176     }
   1177 
   1178     int64_t s, e;
   1179     if (groupNum == 0) {
   1180         s = fMatchStart;
   1181         e = fMatchEnd;
   1182     } else {
   1183         int32_t groupOffset = fPattern->fGroupMap->elementAti(groupNum-1);
   1184         U_ASSERT(groupOffset < fPattern->fFrameSize);
   1185         U_ASSERT(groupOffset >= 0);
   1186         s = fFrame->fExtra[groupOffset];
   1187         e = fFrame->fExtra[groupOffset+1];
   1188     }
   1189 
   1190     if (s < 0) {
   1191         // A capture group wasn't part of the match
   1192         return utext_clone(dest, fInputText, FALSE, TRUE, &status);
   1193     }
   1194     U_ASSERT(s <= e);
   1195     group_len = e - s;
   1196 
   1197     dest = utext_clone(dest, fInputText, FALSE, TRUE, &status);
   1198     if (dest)
   1199         UTEXT_SETNATIVEINDEX(dest, s);
   1200     return dest;
   1201 }
   1202 
   1203 UnicodeString RegexMatcher::group(int32_t groupNum, UErrorCode &status) const {
   1204     UnicodeString result;
   1205     int64_t groupStart = start64(groupNum, status);
   1206     int64_t groupEnd = end64(groupNum, status);
   1207     if (U_FAILURE(status) || groupStart == -1 || groupStart == groupEnd) {
   1208         return result;
   1209     }
   1210 
   1211     // Get the group length using a utext_extract preflight.
   1212     //    UText is actually pretty efficient at this when underlying encoding is UTF-16.
   1213     int32_t length = utext_extract(fInputText, groupStart, groupEnd, NULL, 0, &status);
   1214     if (status != U_BUFFER_OVERFLOW_ERROR) {
   1215         return result;
   1216     }
   1217 
   1218     status = U_ZERO_ERROR;
   1219     UChar *buf = result.getBuffer(length);
   1220     if (buf == NULL) {
   1221         status = U_MEMORY_ALLOCATION_ERROR;
   1222     } else {
   1223         int32_t extractLength = utext_extract(fInputText, groupStart, groupEnd, buf, length, &status);
   1224         result.releaseBuffer(extractLength);
   1225         U_ASSERT(length == extractLength);
   1226     }
   1227     return result;
   1228 }
   1229 
   1230 
   1231 //--------------------------------------------------------------------------------
   1232 //
   1233 //  appendGroup() -- currently internal only, appends a group to a UText rather
   1234 //                   than replacing its contents
   1235 //
   1236 //--------------------------------------------------------------------------------
   1237 
   1238 int64_t RegexMatcher::appendGroup(int32_t groupNum, UText *dest, UErrorCode &status) const {
   1239     if (U_FAILURE(status)) {
   1240         return 0;
   1241     }
   1242     if (U_FAILURE(fDeferredStatus)) {
   1243         status = fDeferredStatus;
   1244         return 0;
   1245     }
   1246     int64_t destLen = utext_nativeLength(dest);
   1247 
   1248     if (fMatch == FALSE) {
   1249         status = U_REGEX_INVALID_STATE;
   1250         return utext_replace(dest, destLen, destLen, NULL, 0, &status);
   1251     }
   1252     if (groupNum < 0 || groupNum > fPattern->fGroupMap->size()) {
   1253         status = U_INDEX_OUTOFBOUNDS_ERROR;
   1254         return utext_replace(dest, destLen, destLen, NULL, 0, &status);
   1255     }
   1256 
   1257     int64_t s, e;
   1258     if (groupNum == 0) {
   1259         s = fMatchStart;
   1260         e = fMatchEnd;
   1261     } else {
   1262         int32_t groupOffset = fPattern->fGroupMap->elementAti(groupNum-1);
   1263         U_ASSERT(groupOffset < fPattern->fFrameSize);
   1264         U_ASSERT(groupOffset >= 0);
   1265         s = fFrame->fExtra[groupOffset];
   1266         e = fFrame->fExtra[groupOffset+1];
   1267     }
   1268 
   1269     if (s < 0) {
   1270         // A capture group wasn't part of the match
   1271         return utext_replace(dest, destLen, destLen, NULL, 0, &status);
   1272     }
   1273     U_ASSERT(s <= e);
   1274 
   1275     int64_t deltaLen;
   1276     if (UTEXT_FULL_TEXT_IN_CHUNK(fInputText, fInputLength)) {
   1277         U_ASSERT(e <= fInputLength);
   1278         deltaLen = utext_replace(dest, destLen, destLen, fInputText->chunkContents+s, (int32_t)(e-s), &status);
   1279     } else {
   1280         int32_t len16;
   1281         if (UTEXT_USES_U16(fInputText)) {
   1282             len16 = (int32_t)(e-s);
   1283         } else {
   1284             UErrorCode lengthStatus = U_ZERO_ERROR;
   1285             len16 = utext_extract(fInputText, s, e, NULL, 0, &lengthStatus);
   1286         }
   1287         UChar *groupChars = (UChar *)uprv_malloc(sizeof(UChar)*(len16+1));
   1288         if (groupChars == NULL) {
   1289             status = U_MEMORY_ALLOCATION_ERROR;
   1290             return 0;
   1291         }
   1292         utext_extract(fInputText, s, e, groupChars, len16+1, &status);
   1293 
   1294         deltaLen = utext_replace(dest, destLen, destLen, groupChars, len16, &status);
   1295         uprv_free(groupChars);
   1296     }
   1297     return deltaLen;
   1298 }
   1299 
   1300 
   1301 
   1302 //--------------------------------------------------------------------------------
   1303 //
   1304 //  groupCount()
   1305 //
   1306 //--------------------------------------------------------------------------------
   1307 int32_t RegexMatcher::groupCount() const {
   1308     return fPattern->fGroupMap->size();
   1309 }
   1310 
   1311 //--------------------------------------------------------------------------------
   1312 //
   1313 //  hasAnchoringBounds()
   1314 //
   1315 //--------------------------------------------------------------------------------
   1316 UBool RegexMatcher::hasAnchoringBounds() const {
   1317     return fAnchoringBounds;
   1318 }
   1319 
   1320 
   1321 //--------------------------------------------------------------------------------
   1322 //
   1323 //  hasTransparentBounds()
   1324 //
   1325 //--------------------------------------------------------------------------------
   1326 UBool RegexMatcher::hasTransparentBounds() const {
   1327     return fTransparentBounds;
   1328 }
   1329 
   1330 
   1331 
   1332 //--------------------------------------------------------------------------------
   1333 //
   1334 //  hitEnd()
   1335 //
   1336 //--------------------------------------------------------------------------------
   1337 UBool RegexMatcher::hitEnd() const {
   1338     return fHitEnd;
   1339 }
   1340 
   1341 
   1342 //--------------------------------------------------------------------------------
   1343 //
   1344 //  input()
   1345 //
   1346 //--------------------------------------------------------------------------------
   1347 const UnicodeString &RegexMatcher::input() const {
   1348     if (!fInput) {
   1349         UErrorCode status = U_ZERO_ERROR;
   1350         int32_t len16;
   1351         if (UTEXT_USES_U16(fInputText)) {
   1352             len16 = (int32_t)fInputLength;
   1353         } else {
   1354             len16 = utext_extract(fInputText, 0, fInputLength, NULL, 0, &status);
   1355             status = U_ZERO_ERROR; // overflow, length status
   1356         }
   1357         UnicodeString *result = new UnicodeString(len16, 0, 0);
   1358 
   1359         UChar *inputChars = result->getBuffer(len16);
   1360         utext_extract(fInputText, 0, fInputLength, inputChars, len16, &status); // unterminated warning
   1361         result->releaseBuffer(len16);
   1362 
   1363         (*(const UnicodeString **)&fInput) = result; // pointer assignment, rather than operator=
   1364     }
   1365 
   1366     return *fInput;
   1367 }
   1368 
   1369 //--------------------------------------------------------------------------------
   1370 //
   1371 //  inputText()
   1372 //
   1373 //--------------------------------------------------------------------------------
   1374 UText *RegexMatcher::inputText() const {
   1375     return fInputText;
   1376 }
   1377 
   1378 
   1379 //--------------------------------------------------------------------------------
   1380 //
   1381 //  getInput() -- like inputText(), but makes a clone or copies into another UText
   1382 //
   1383 //--------------------------------------------------------------------------------
   1384 UText *RegexMatcher::getInput (UText *dest, UErrorCode &status) const {
   1385     if (U_FAILURE(status)) {
   1386         return dest;
   1387     }
   1388     if (U_FAILURE(fDeferredStatus)) {
   1389         status = fDeferredStatus;
   1390         return dest;
   1391     }
   1392 
   1393     if (dest) {
   1394         if (UTEXT_FULL_TEXT_IN_CHUNK(fInputText, fInputLength)) {
   1395             utext_replace(dest, 0, utext_nativeLength(dest), fInputText->chunkContents, (int32_t)fInputLength, &status);
   1396         } else {
   1397             int32_t input16Len;
   1398             if (UTEXT_USES_U16(fInputText)) {
   1399                 input16Len = (int32_t)fInputLength;
   1400             } else {
   1401                 UErrorCode lengthStatus = U_ZERO_ERROR;
   1402                 input16Len = utext_extract(fInputText, 0, fInputLength, NULL, 0, &lengthStatus); // buffer overflow error
   1403             }
   1404             UChar *inputChars = (UChar *)uprv_malloc(sizeof(UChar)*(input16Len));
   1405             if (inputChars == NULL) {
   1406                 return dest;
   1407             }
   1408 
   1409             status = U_ZERO_ERROR;
   1410             utext_extract(fInputText, 0, fInputLength, inputChars, input16Len, &status); // not terminated warning
   1411             status = U_ZERO_ERROR;
   1412             utext_replace(dest, 0, utext_nativeLength(dest), inputChars, input16Len, &status);
   1413 
   1414             uprv_free(inputChars);
   1415         }
   1416         return dest;
   1417     } else {
   1418         return utext_clone(NULL, fInputText, FALSE, TRUE, &status);
   1419     }
   1420 }
   1421 
   1422 
   1423 static UBool compat_SyncMutableUTextContents(UText *ut);
   1424 static UBool compat_SyncMutableUTextContents(UText *ut) {
   1425     UBool retVal = FALSE;
   1426 
   1427     //  In the following test, we're really only interested in whether the UText should switch
   1428     //  between heap and stack allocation.  If length hasn't changed, we won't, so the chunkContents
   1429     //  will still point to the correct data.
   1430     if (utext_nativeLength(ut) != ut->nativeIndexingLimit) {
   1431         UnicodeString *us=(UnicodeString *)ut->context;
   1432 
   1433         // Update to the latest length.
   1434         // For example, (utext_nativeLength(ut) != ut->nativeIndexingLimit).
   1435         int32_t newLength = us->length();
   1436 
   1437         // Update the chunk description.
   1438         // The buffer may have switched between stack- and heap-based.
   1439         ut->chunkContents    = us->getBuffer();
   1440         ut->chunkLength      = newLength;
   1441         ut->chunkNativeLimit = newLength;
   1442         ut->nativeIndexingLimit = newLength;
   1443         retVal = TRUE;
   1444     }
   1445 
   1446     return retVal;
   1447 }
   1448 
   1449 //--------------------------------------------------------------------------------
   1450 //
   1451 //  lookingAt()
   1452 //
   1453 //--------------------------------------------------------------------------------
   1454 UBool RegexMatcher::lookingAt(UErrorCode &status) {
   1455     if (U_FAILURE(status)) {
   1456         return FALSE;
   1457     }
   1458     if (U_FAILURE(fDeferredStatus)) {
   1459         status = fDeferredStatus;
   1460         return FALSE;
   1461     }
   1462 
   1463     if (fInputUniStrMaybeMutable) {
   1464         if (compat_SyncMutableUTextContents(fInputText)) {
   1465         fInputLength = utext_nativeLength(fInputText);
   1466         reset();
   1467         }
   1468     }
   1469     else {
   1470         resetPreserveRegion();
   1471     }
   1472     if (UTEXT_FULL_TEXT_IN_CHUNK(fInputText, fInputLength)) {
   1473         MatchChunkAt((int32_t)fActiveStart, FALSE, status);
   1474     } else {
   1475         MatchAt(fActiveStart, FALSE, status);
   1476     }
   1477     return fMatch;
   1478 }
   1479 
   1480 
   1481 UBool RegexMatcher::lookingAt(int64_t start, UErrorCode &status) {
   1482     if (U_FAILURE(status)) {
   1483         return FALSE;
   1484     }
   1485     if (U_FAILURE(fDeferredStatus)) {
   1486         status = fDeferredStatus;
   1487         return FALSE;
   1488     }
   1489     reset();
   1490 
   1491     if (start < 0) {
   1492         status = U_INDEX_OUTOFBOUNDS_ERROR;
   1493         return FALSE;
   1494     }
   1495 
   1496     if (fInputUniStrMaybeMutable) {
   1497         if (compat_SyncMutableUTextContents(fInputText)) {
   1498         fInputLength = utext_nativeLength(fInputText);
   1499         reset();
   1500         }
   1501     }
   1502 
   1503     int64_t nativeStart;
   1504     nativeStart = start;
   1505     if (nativeStart < fActiveStart || nativeStart > fActiveLimit) {
   1506         status = U_INDEX_OUTOFBOUNDS_ERROR;
   1507         return FALSE;
   1508     }
   1509 
   1510     if (UTEXT_FULL_TEXT_IN_CHUNK(fInputText, fInputLength)) {
   1511         MatchChunkAt((int32_t)nativeStart, FALSE, status);
   1512     } else {
   1513         MatchAt(nativeStart, FALSE, status);
   1514     }
   1515     return fMatch;
   1516 }
   1517 
   1518 
   1519 
   1520 //--------------------------------------------------------------------------------
   1521 //
   1522 //  matches()
   1523 //
   1524 //--------------------------------------------------------------------------------
   1525 UBool RegexMatcher::matches(UErrorCode &status) {
   1526     if (U_FAILURE(status)) {
   1527         return FALSE;
   1528     }
   1529     if (U_FAILURE(fDeferredStatus)) {
   1530         status = fDeferredStatus;
   1531         return FALSE;
   1532     }
   1533 
   1534     if (fInputUniStrMaybeMutable) {
   1535         if (compat_SyncMutableUTextContents(fInputText)) {
   1536         fInputLength = utext_nativeLength(fInputText);
   1537         reset();
   1538         }
   1539     }
   1540     else {
   1541         resetPreserveRegion();
   1542     }
   1543 
   1544     if (UTEXT_FULL_TEXT_IN_CHUNK(fInputText, fInputLength)) {
   1545         MatchChunkAt((int32_t)fActiveStart, TRUE, status);
   1546     } else {
   1547         MatchAt(fActiveStart, TRUE, status);
   1548     }
   1549     return fMatch;
   1550 }
   1551 
   1552 
   1553 UBool RegexMatcher::matches(int64_t start, UErrorCode &status) {
   1554     if (U_FAILURE(status)) {
   1555         return FALSE;
   1556     }
   1557     if (U_FAILURE(fDeferredStatus)) {
   1558         status = fDeferredStatus;
   1559         return FALSE;
   1560     }
   1561     reset();
   1562 
   1563     if (start < 0) {
   1564         status = U_INDEX_OUTOFBOUNDS_ERROR;
   1565         return FALSE;
   1566     }
   1567 
   1568     if (fInputUniStrMaybeMutable) {
   1569         if (compat_SyncMutableUTextContents(fInputText)) {
   1570         fInputLength = utext_nativeLength(fInputText);
   1571         reset();
   1572         }
   1573     }
   1574 
   1575     int64_t nativeStart;
   1576     nativeStart = start;
   1577     if (nativeStart < fActiveStart || nativeStart > fActiveLimit) {
   1578         status = U_INDEX_OUTOFBOUNDS_ERROR;
   1579         return FALSE;
   1580     }
   1581 
   1582     if (UTEXT_FULL_TEXT_IN_CHUNK(fInputText, fInputLength)) {
   1583         MatchChunkAt((int32_t)nativeStart, TRUE, status);
   1584     } else {
   1585         MatchAt(nativeStart, TRUE, status);
   1586     }
   1587     return fMatch;
   1588 }
   1589 
   1590 
   1591 
   1592 //--------------------------------------------------------------------------------
   1593 //
   1594 //    pattern
   1595 //
   1596 //--------------------------------------------------------------------------------
   1597 const RegexPattern &RegexMatcher::pattern() const {
   1598     return *fPattern;
   1599 }
   1600 
   1601 
   1602 
   1603 //--------------------------------------------------------------------------------
   1604 //
   1605 //    region
   1606 //
   1607 //--------------------------------------------------------------------------------
   1608 RegexMatcher &RegexMatcher::region(int64_t regionStart, int64_t regionLimit, int64_t startIndex, UErrorCode &status) {
   1609     if (U_FAILURE(status)) {
   1610         return *this;
   1611     }
   1612 
   1613     if (regionStart>regionLimit || regionStart<0 || regionLimit<0) {
   1614         status = U_ILLEGAL_ARGUMENT_ERROR;
   1615     }
   1616 
   1617     int64_t nativeStart = regionStart;
   1618     int64_t nativeLimit = regionLimit;
   1619     if (nativeStart > fInputLength || nativeLimit > fInputLength) {
   1620       status = U_ILLEGAL_ARGUMENT_ERROR;
   1621     }
   1622 
   1623     if (startIndex == -1)
   1624       this->reset();
   1625     else
   1626       resetPreserveRegion();
   1627 
   1628     fRegionStart = nativeStart;
   1629     fRegionLimit = nativeLimit;
   1630     fActiveStart = nativeStart;
   1631     fActiveLimit = nativeLimit;
   1632 
   1633     if (startIndex != -1) {
   1634       if (startIndex < fActiveStart || startIndex > fActiveLimit) {
   1635           status = U_INDEX_OUTOFBOUNDS_ERROR;
   1636       }
   1637       fMatchEnd = startIndex;
   1638     }
   1639 
   1640     if (!fTransparentBounds) {
   1641         fLookStart = nativeStart;
   1642         fLookLimit = nativeLimit;
   1643     }
   1644     if (fAnchoringBounds) {
   1645         fAnchorStart = nativeStart;
   1646         fAnchorLimit = nativeLimit;
   1647     }
   1648     return *this;
   1649 }
   1650 
   1651 RegexMatcher &RegexMatcher::region(int64_t start, int64_t limit, UErrorCode &status) {
   1652   return region(start, limit, -1, status);
   1653 }
   1654 
   1655 //--------------------------------------------------------------------------------
   1656 //
   1657 //    regionEnd
   1658 //
   1659 //--------------------------------------------------------------------------------
   1660 int32_t RegexMatcher::regionEnd() const {
   1661     return (int32_t)fRegionLimit;
   1662 }
   1663 
   1664 int64_t RegexMatcher::regionEnd64() const {
   1665     return fRegionLimit;
   1666 }
   1667 
   1668 //--------------------------------------------------------------------------------
   1669 //
   1670 //    regionStart
   1671 //
   1672 //--------------------------------------------------------------------------------
   1673 int32_t RegexMatcher::regionStart() const {
   1674     return (int32_t)fRegionStart;
   1675 }
   1676 
   1677 int64_t RegexMatcher::regionStart64() const {
   1678     return fRegionStart;
   1679 }
   1680 
   1681 
   1682 //--------------------------------------------------------------------------------
   1683 //
   1684 //    replaceAll
   1685 //
   1686 //--------------------------------------------------------------------------------
   1687 UnicodeString RegexMatcher::replaceAll(const UnicodeString &replacement, UErrorCode &status) {
   1688     UText replacementText = UTEXT_INITIALIZER;
   1689     UText resultText = UTEXT_INITIALIZER;
   1690     UnicodeString resultString;
   1691     if (U_FAILURE(status)) {
   1692         return resultString;
   1693     }
   1694 
   1695     utext_openConstUnicodeString(&replacementText, &replacement, &status);
   1696     utext_openUnicodeString(&resultText, &resultString, &status);
   1697 
   1698     replaceAll(&replacementText, &resultText, status);
   1699 
   1700     utext_close(&resultText);
   1701     utext_close(&replacementText);
   1702 
   1703     return resultString;
   1704 }
   1705 
   1706 
   1707 //
   1708 //    replaceAll, UText mode
   1709 //
   1710 UText *RegexMatcher::replaceAll(UText *replacement, UText *dest, UErrorCode &status) {
   1711     if (U_FAILURE(status)) {
   1712         return dest;
   1713     }
   1714     if (U_FAILURE(fDeferredStatus)) {
   1715         status = fDeferredStatus;
   1716         return dest;
   1717     }
   1718 
   1719     if (dest == NULL) {
   1720         UnicodeString emptyString;
   1721         UText empty = UTEXT_INITIALIZER;
   1722 
   1723         utext_openUnicodeString(&empty, &emptyString, &status);
   1724         dest = utext_clone(NULL, &empty, TRUE, FALSE, &status);
   1725         utext_close(&empty);
   1726     }
   1727 
   1728     if (U_SUCCESS(status)) {
   1729         reset();
   1730         while (find()) {
   1731             appendReplacement(dest, replacement, status);
   1732             if (U_FAILURE(status)) {
   1733                 break;
   1734             }
   1735         }
   1736         appendTail(dest, status);
   1737     }
   1738 
   1739     return dest;
   1740 }
   1741 
   1742 
   1743 //--------------------------------------------------------------------------------
   1744 //
   1745 //    replaceFirst
   1746 //
   1747 //--------------------------------------------------------------------------------
   1748 UnicodeString RegexMatcher::replaceFirst(const UnicodeString &replacement, UErrorCode &status) {
   1749     UText replacementText = UTEXT_INITIALIZER;
   1750     UText resultText = UTEXT_INITIALIZER;
   1751     UnicodeString resultString;
   1752 
   1753     utext_openConstUnicodeString(&replacementText, &replacement, &status);
   1754     utext_openUnicodeString(&resultText, &resultString, &status);
   1755 
   1756     replaceFirst(&replacementText, &resultText, status);
   1757 
   1758     utext_close(&resultText);
   1759     utext_close(&replacementText);
   1760 
   1761     return resultString;
   1762 }
   1763 
   1764 //
   1765 //    replaceFirst, UText mode
   1766 //
   1767 UText *RegexMatcher::replaceFirst(UText *replacement, UText *dest, UErrorCode &status) {
   1768     if (U_FAILURE(status)) {
   1769         return dest;
   1770     }
   1771     if (U_FAILURE(fDeferredStatus)) {
   1772         status = fDeferredStatus;
   1773         return dest;
   1774     }
   1775 
   1776     reset();
   1777     if (!find()) {
   1778         return getInput(dest, status);
   1779     }
   1780 
   1781     if (dest == NULL) {
   1782         UnicodeString emptyString;
   1783         UText empty = UTEXT_INITIALIZER;
   1784 
   1785         utext_openUnicodeString(&empty, &emptyString, &status);
   1786         dest = utext_clone(NULL, &empty, TRUE, FALSE, &status);
   1787         utext_close(&empty);
   1788     }
   1789 
   1790     appendReplacement(dest, replacement, status);
   1791     appendTail(dest, status);
   1792 
   1793     return dest;
   1794 }
   1795 
   1796 
   1797 //--------------------------------------------------------------------------------
   1798 //
   1799 //     requireEnd
   1800 //
   1801 //--------------------------------------------------------------------------------
   1802 UBool RegexMatcher::requireEnd() const {
   1803     return fRequireEnd;
   1804 }
   1805 
   1806 
   1807 //--------------------------------------------------------------------------------
   1808 //
   1809 //     reset
   1810 //
   1811 //--------------------------------------------------------------------------------
   1812 RegexMatcher &RegexMatcher::reset() {
   1813     fRegionStart    = 0;
   1814     fRegionLimit    = fInputLength;
   1815     fActiveStart    = 0;
   1816     fActiveLimit    = fInputLength;
   1817     fAnchorStart    = 0;
   1818     fAnchorLimit    = fInputLength;
   1819     fLookStart      = 0;
   1820     fLookLimit      = fInputLength;
   1821     resetPreserveRegion();
   1822     return *this;
   1823 }
   1824 
   1825 
   1826 
   1827 void RegexMatcher::resetPreserveRegion() {
   1828     fMatchStart     = 0;
   1829     fMatchEnd       = 0;
   1830     fLastMatchEnd   = -1;
   1831     fAppendPosition = 0;
   1832     fMatch          = FALSE;
   1833     fHitEnd         = FALSE;
   1834     fRequireEnd     = FALSE;
   1835     fTime           = 0;
   1836     fTickCounter    = TIMER_INITIAL_VALUE;
   1837     //resetStack(); // more expensive than it looks...
   1838 }
   1839 
   1840 
   1841 RegexMatcher &RegexMatcher::reset(const UnicodeString &input) {
   1842     fInputText = utext_openConstUnicodeString(fInputText, &input, &fDeferredStatus);
   1843     if (fPattern->fNeedsAltInput) {
   1844         fAltInputText = utext_clone(fAltInputText, fInputText, FALSE, TRUE, &fDeferredStatus);
   1845     }
   1846     if (U_FAILURE(fDeferredStatus)) {
   1847         return *this;
   1848     }
   1849     fInputLength = utext_nativeLength(fInputText);
   1850 
   1851     reset();
   1852     delete fInput;
   1853     fInput = NULL;
   1854 
   1855     //  Do the following for any UnicodeString.
   1856     //  This is for compatibility for those clients who modify the input string "live" during regex operations.
   1857     fInputUniStrMaybeMutable = TRUE;
   1858 
   1859     if (fWordBreakItr != NULL) {
   1860 #if UCONFIG_NO_BREAK_ITERATION==0
   1861         UErrorCode status = U_ZERO_ERROR;
   1862         fWordBreakItr->setText(fInputText, status);
   1863 #endif
   1864     }
   1865     return *this;
   1866 }
   1867 
   1868 
   1869 RegexMatcher &RegexMatcher::reset(UText *input) {
   1870     if (fInputText != input) {
   1871         fInputText = utext_clone(fInputText, input, FALSE, TRUE, &fDeferredStatus);
   1872         if (fPattern->fNeedsAltInput) fAltInputText = utext_clone(fAltInputText, fInputText, FALSE, TRUE, &fDeferredStatus);
   1873         if (U_FAILURE(fDeferredStatus)) {
   1874             return *this;
   1875         }
   1876         fInputLength = utext_nativeLength(fInputText);
   1877 
   1878         delete fInput;
   1879         fInput = NULL;
   1880 
   1881         if (fWordBreakItr != NULL) {
   1882 #if UCONFIG_NO_BREAK_ITERATION==0
   1883             UErrorCode status = U_ZERO_ERROR;
   1884             fWordBreakItr->setText(input, status);
   1885 #endif
   1886         }
   1887     }
   1888     reset();
   1889     fInputUniStrMaybeMutable = FALSE;
   1890 
   1891     return *this;
   1892 }
   1893 
   1894 /*RegexMatcher &RegexMatcher::reset(const UChar *) {
   1895     fDeferredStatus = U_INTERNAL_PROGRAM_ERROR;
   1896     return *this;
   1897 }*/
   1898 
   1899 RegexMatcher &RegexMatcher::reset(int64_t position, UErrorCode &status) {
   1900     if (U_FAILURE(status)) {
   1901         return *this;
   1902     }
   1903     reset();       // Reset also resets the region to be the entire string.
   1904 
   1905     if (position < 0 || position > fActiveLimit) {
   1906         status = U_INDEX_OUTOFBOUNDS_ERROR;
   1907         return *this;
   1908     }
   1909     fMatchEnd = position;
   1910     return *this;
   1911 }
   1912 
   1913 
   1914 //--------------------------------------------------------------------------------
   1915 //
   1916 //    refresh
   1917 //
   1918 //--------------------------------------------------------------------------------
   1919 RegexMatcher &RegexMatcher::refreshInputText(UText *input, UErrorCode &status) {
   1920     if (U_FAILURE(status)) {
   1921         return *this;
   1922     }
   1923     if (input == NULL) {
   1924         status = U_ILLEGAL_ARGUMENT_ERROR;
   1925         return *this;
   1926     }
   1927     if (utext_nativeLength(fInputText) != utext_nativeLength(input)) {
   1928         status = U_ILLEGAL_ARGUMENT_ERROR;
   1929         return *this;
   1930     }
   1931     int64_t  pos = utext_getNativeIndex(fInputText);
   1932     //  Shallow read-only clone of the new UText into the existing input UText
   1933     fInputText = utext_clone(fInputText, input, FALSE, TRUE, &status);
   1934     if (U_FAILURE(status)) {
   1935         return *this;
   1936     }
   1937     utext_setNativeIndex(fInputText, pos);
   1938 
   1939     if (fAltInputText != NULL) {
   1940         pos = utext_getNativeIndex(fAltInputText);
   1941         fAltInputText = utext_clone(fAltInputText, input, FALSE, TRUE, &status);
   1942         if (U_FAILURE(status)) {
   1943             return *this;
   1944         }
   1945         utext_setNativeIndex(fAltInputText, pos);
   1946     }
   1947     return *this;
   1948 }
   1949 
   1950 
   1951 
   1952 //--------------------------------------------------------------------------------
   1953 //
   1954 //    setTrace
   1955 //
   1956 //--------------------------------------------------------------------------------
   1957 void RegexMatcher::setTrace(UBool state) {
   1958     fTraceDebug = state;
   1959 }
   1960 
   1961 
   1962 
   1963 /**
   1964   *  UText, replace entire contents of the destination UText with a substring of the source UText.
   1965   *
   1966   *     @param src    The source UText
   1967   *     @param dest   The destination UText. Must be writable.
   1968   *                   May be NULL, in which case a new UText will be allocated.
   1969   *     @param start  Start index of source substring.
   1970   *     @param limit  Limit index of source substring.
   1971   *     @param status An error code.
   1972   */
   1973 static UText *utext_extract_replace(UText *src, UText *dest, int64_t start, int64_t limit, UErrorCode *status) {
   1974     if (U_FAILURE(*status)) {
   1975         return dest;
   1976     }
   1977     if (start == limit) {
   1978         if (dest) {
   1979             utext_replace(dest, 0, utext_nativeLength(dest), NULL, 0, status);
   1980             return dest;
   1981         } else {
   1982             return utext_openUChars(NULL, NULL, 0, status);
   1983         }
   1984     }
   1985     int32_t length = utext_extract(src, start, limit, NULL, 0, status);
   1986     if (*status != U_BUFFER_OVERFLOW_ERROR && U_FAILURE(*status)) {
   1987         return dest;
   1988     }
   1989     *status = U_ZERO_ERROR;
   1990     MaybeStackArray<UChar, 40> buffer;
   1991     if (length >= buffer.getCapacity()) {
   1992         UChar *newBuf = buffer.resize(length+1);   // Leave space for terminating Nul.
   1993         if (newBuf == NULL) {
   1994             *status = U_MEMORY_ALLOCATION_ERROR;
   1995         }
   1996     }
   1997     utext_extract(src, start, limit, buffer.getAlias(), length+1, status);
   1998     if (dest) {
   1999         utext_replace(dest, 0, utext_nativeLength(dest), buffer.getAlias(), length, status);
   2000         return dest;
   2001     }
   2002 
   2003     // Caller did not provide a prexisting UText.
   2004     // Open a new one, and have it adopt the text buffer storage.
   2005     if (U_FAILURE(*status)) {
   2006         return NULL;
   2007     }
   2008     int32_t ownedLength = 0;
   2009     UChar *ownedBuf = buffer.orphanOrClone(length+1, ownedLength);
   2010     if (ownedBuf == NULL) {
   2011         *status = U_MEMORY_ALLOCATION_ERROR;
   2012         return NULL;
   2013     }
   2014     UText *result = utext_openUChars(NULL, ownedBuf, length, status);
   2015     if (U_FAILURE(*status)) {
   2016         uprv_free(ownedBuf);
   2017         return NULL;
   2018     }
   2019     result->providerProperties |= (1 << UTEXT_PROVIDER_OWNS_TEXT);
   2020     return result;
   2021 }
   2022 
   2023 
   2024 //---------------------------------------------------------------------
   2025 //
   2026 //   split
   2027 //
   2028 //---------------------------------------------------------------------
   2029 int32_t  RegexMatcher::split(const UnicodeString &input,
   2030         UnicodeString    dest[],
   2031         int32_t          destCapacity,
   2032         UErrorCode      &status)
   2033 {
   2034     UText inputText = UTEXT_INITIALIZER;
   2035     utext_openConstUnicodeString(&inputText, &input, &status);
   2036     if (U_FAILURE(status)) {
   2037         return 0;
   2038     }
   2039 
   2040     UText **destText = (UText **)uprv_malloc(sizeof(UText*)*destCapacity);
   2041     if (destText == NULL) {
   2042         status = U_MEMORY_ALLOCATION_ERROR;
   2043         return 0;
   2044     }
   2045     int32_t i;
   2046     for (i = 0; i < destCapacity; i++) {
   2047         destText[i] = utext_openUnicodeString(NULL, &dest[i], &status);
   2048     }
   2049 
   2050     int32_t fieldCount = split(&inputText, destText, destCapacity, status);
   2051 
   2052     for (i = 0; i < destCapacity; i++) {
   2053         utext_close(destText[i]);
   2054     }
   2055 
   2056     uprv_free(destText);
   2057     utext_close(&inputText);
   2058     return fieldCount;
   2059 }
   2060 
   2061 //
   2062 //   split, UText mode
   2063 //
   2064 int32_t  RegexMatcher::split(UText *input,
   2065         UText           *dest[],
   2066         int32_t          destCapacity,
   2067         UErrorCode      &status)
   2068 {
   2069     //
   2070     // Check arguements for validity
   2071     //
   2072     if (U_FAILURE(status)) {
   2073         return 0;
   2074     };
   2075 
   2076     if (destCapacity < 1) {
   2077         status = U_ILLEGAL_ARGUMENT_ERROR;
   2078         return 0;
   2079     }
   2080 
   2081     //
   2082     // Reset for the input text
   2083     //
   2084     reset(input);
   2085     int64_t   nextOutputStringStart = 0;
   2086     if (fActiveLimit == 0) {
   2087         return 0;
   2088     }
   2089 
   2090     //
   2091     // Loop through the input text, searching for the delimiter pattern
   2092     //
   2093     int32_t i;
   2094     int32_t numCaptureGroups = fPattern->fGroupMap->size();
   2095     for (i=0; ; i++) {
   2096         if (i>=destCapacity-1) {
   2097             // There is one or zero output string left.
   2098             // Fill the last output string with whatever is left from the input, then exit the loop.
   2099             //  ( i will be == destCapacity if we filled the output array while processing
   2100             //    capture groups of the delimiter expression, in which case we will discard the
   2101             //    last capture group saved in favor of the unprocessed remainder of the
   2102             //    input string.)
   2103             i = destCapacity-1;
   2104             if (fActiveLimit > nextOutputStringStart) {
   2105                 if (UTEXT_FULL_TEXT_IN_CHUNK(input, fInputLength)) {
   2106                     if (dest[i]) {
   2107                         utext_replace(dest[i], 0, utext_nativeLength(dest[i]),
   2108                                       input->chunkContents+nextOutputStringStart,
   2109                                       (int32_t)(fActiveLimit-nextOutputStringStart), &status);
   2110                     } else {
   2111                         UText remainingText = UTEXT_INITIALIZER;
   2112                         utext_openUChars(&remainingText, input->chunkContents+nextOutputStringStart,
   2113                                          fActiveLimit-nextOutputStringStart, &status);
   2114                         dest[i] = utext_clone(NULL, &remainingText, TRUE, FALSE, &status);
   2115                         utext_close(&remainingText);
   2116                     }
   2117                 } else {
   2118                     UErrorCode lengthStatus = U_ZERO_ERROR;
   2119                     int32_t remaining16Length =
   2120                         utext_extract(input, nextOutputStringStart, fActiveLimit, NULL, 0, &lengthStatus);
   2121                     UChar *remainingChars = (UChar *)uprv_malloc(sizeof(UChar)*(remaining16Length+1));
   2122                     if (remainingChars == NULL) {
   2123                         status = U_MEMORY_ALLOCATION_ERROR;
   2124                         break;
   2125                     }
   2126 
   2127                     utext_extract(input, nextOutputStringStart, fActiveLimit, remainingChars, remaining16Length+1, &status);
   2128                     if (dest[i]) {
   2129                         utext_replace(dest[i], 0, utext_nativeLength(dest[i]), remainingChars, remaining16Length, &status);
   2130                     } else {
   2131                         UText remainingText = UTEXT_INITIALIZER;
   2132                         utext_openUChars(&remainingText, remainingChars, remaining16Length, &status);
   2133                         dest[i] = utext_clone(NULL, &remainingText, TRUE, FALSE, &status);
   2134                         utext_close(&remainingText);
   2135                     }
   2136 
   2137                     uprv_free(remainingChars);
   2138                 }
   2139             }
   2140             break;
   2141         }
   2142         if (find()) {
   2143             // We found another delimiter.  Move everything from where we started looking
   2144             //  up until the start of the delimiter into the next output string.
   2145             if (UTEXT_FULL_TEXT_IN_CHUNK(input, fInputLength)) {
   2146                 if (dest[i]) {
   2147                     utext_replace(dest[i], 0, utext_nativeLength(dest[i]),
   2148                                   input->chunkContents+nextOutputStringStart,
   2149                                   (int32_t)(fMatchStart-nextOutputStringStart), &status);
   2150                 } else {
   2151                     UText remainingText = UTEXT_INITIALIZER;
   2152                     utext_openUChars(&remainingText, input->chunkContents+nextOutputStringStart,
   2153                                       fMatchStart-nextOutputStringStart, &status);
   2154                     dest[i] = utext_clone(NULL, &remainingText, TRUE, FALSE, &status);
   2155                     utext_close(&remainingText);
   2156                 }
   2157             } else {
   2158                 UErrorCode lengthStatus = U_ZERO_ERROR;
   2159                 int32_t remaining16Length = utext_extract(input, nextOutputStringStart, fMatchStart, NULL, 0, &lengthStatus);
   2160                 UChar *remainingChars = (UChar *)uprv_malloc(sizeof(UChar)*(remaining16Length+1));
   2161                 if (remainingChars == NULL) {
   2162                     status = U_MEMORY_ALLOCATION_ERROR;
   2163                     break;
   2164                 }
   2165                 utext_extract(input, nextOutputStringStart, fMatchStart, remainingChars, remaining16Length+1, &status);
   2166                 if (dest[i]) {
   2167                     utext_replace(dest[i], 0, utext_nativeLength(dest[i]), remainingChars, remaining16Length, &status);
   2168                 } else {
   2169                     UText remainingText = UTEXT_INITIALIZER;
   2170                     utext_openUChars(&remainingText, remainingChars, remaining16Length, &status);
   2171                     dest[i] = utext_clone(NULL, &remainingText, TRUE, FALSE, &status);
   2172                     utext_close(&remainingText);
   2173                 }
   2174 
   2175                 uprv_free(remainingChars);
   2176             }
   2177             nextOutputStringStart = fMatchEnd;
   2178 
   2179             // If the delimiter pattern has capturing parentheses, the captured
   2180             //  text goes out into the next n destination strings.
   2181             int32_t groupNum;
   2182             for (groupNum=1; groupNum<=numCaptureGroups; groupNum++) {
   2183                 if (i >= destCapacity-2) {
   2184                     // Never fill the last available output string with capture group text.
   2185                     // It will filled with the last field, the remainder of the
   2186                     //  unsplit input text.
   2187                     break;
   2188                 }
   2189                 i++;
   2190                 dest[i] = utext_extract_replace(fInputText, dest[i],
   2191                                                start64(groupNum, status), end64(groupNum, status), &status);
   2192             }
   2193 
   2194             if (nextOutputStringStart == fActiveLimit) {
   2195                 // The delimiter was at the end of the string.  We're done, but first
   2196                 // we output one last empty string, for the empty field following
   2197                 //   the delimiter at the end of input.
   2198                 if (i+1 < destCapacity) {
   2199                     ++i;
   2200                     if (dest[i] == NULL) {
   2201                         dest[i] = utext_openUChars(NULL, NULL, 0, &status);
   2202                     } else {
   2203                         static UChar emptyString[] = {(UChar)0};
   2204                         utext_replace(dest[i], 0, utext_nativeLength(dest[i]), emptyString, 0, &status);
   2205                     }
   2206                 }
   2207                 break;
   2208 
   2209             }
   2210         }
   2211         else
   2212         {
   2213             // We ran off the end of the input while looking for the next delimiter.
   2214             // All the remaining text goes into the current output string.
   2215             if (UTEXT_FULL_TEXT_IN_CHUNK(input, fInputLength)) {
   2216                 if (dest[i]) {
   2217                     utext_replace(dest[i], 0, utext_nativeLength(dest[i]),
   2218                                   input->chunkContents+nextOutputStringStart,
   2219                                   (int32_t)(fActiveLimit-nextOutputStringStart), &status);
   2220                 } else {
   2221                     UText remainingText = UTEXT_INITIALIZER;
   2222                     utext_openUChars(&remainingText, input->chunkContents+nextOutputStringStart,
   2223                                      fActiveLimit-nextOutputStringStart, &status);
   2224                     dest[i] = utext_clone(NULL, &remainingText, TRUE, FALSE, &status);
   2225                     utext_close(&remainingText);
   2226                 }
   2227             } else {
   2228                 UErrorCode lengthStatus = U_ZERO_ERROR;
   2229                 int32_t remaining16Length = utext_extract(input, nextOutputStringStart, fActiveLimit, NULL, 0, &lengthStatus);
   2230                 UChar *remainingChars = (UChar *)uprv_malloc(sizeof(UChar)*(remaining16Length+1));
   2231                 if (remainingChars == NULL) {
   2232                     status = U_MEMORY_ALLOCATION_ERROR;
   2233                     break;
   2234                 }
   2235 
   2236                 utext_extract(input, nextOutputStringStart, fActiveLimit, remainingChars, remaining16Length+1, &status);
   2237                 if (dest[i]) {
   2238                     utext_replace(dest[i], 0, utext_nativeLength(dest[i]), remainingChars, remaining16Length, &status);
   2239                 } else {
   2240                     UText remainingText = UTEXT_INITIALIZER;
   2241                     utext_openUChars(&remainingText, remainingChars, remaining16Length, &status);
   2242                     dest[i] = utext_clone(NULL, &remainingText, TRUE, FALSE, &status);
   2243                     utext_close(&remainingText);
   2244                 }
   2245 
   2246                 uprv_free(remainingChars);
   2247             }
   2248             break;
   2249         }
   2250         if (U_FAILURE(status)) {
   2251             break;
   2252         }
   2253     }   // end of for loop
   2254     return i+1;
   2255 }
   2256 
   2257 
   2258 //--------------------------------------------------------------------------------
   2259 //
   2260 //     start
   2261 //
   2262 //--------------------------------------------------------------------------------
   2263 int32_t RegexMatcher::start(UErrorCode &status) const {
   2264     return start(0, status);
   2265 }
   2266 
   2267 int64_t RegexMatcher::start64(UErrorCode &status) const {
   2268     return start64(0, status);
   2269 }
   2270 
   2271 //--------------------------------------------------------------------------------
   2272 //
   2273 //     start(int32_t group, UErrorCode &status)
   2274 //
   2275 //--------------------------------------------------------------------------------
   2276 
   2277 int64_t RegexMatcher::start64(int32_t group, UErrorCode &status) const {
   2278     if (U_FAILURE(status)) {
   2279         return -1;
   2280     }
   2281     if (U_FAILURE(fDeferredStatus)) {
   2282         status = fDeferredStatus;
   2283         return -1;
   2284     }
   2285     if (fMatch == FALSE) {
   2286         status = U_REGEX_INVALID_STATE;
   2287         return -1;
   2288     }
   2289     if (group < 0 || group > fPattern->fGroupMap->size()) {
   2290         status = U_INDEX_OUTOFBOUNDS_ERROR;
   2291         return -1;
   2292     }
   2293     int64_t s;
   2294     if (group == 0) {
   2295         s = fMatchStart;
   2296     } else {
   2297         int32_t groupOffset = fPattern->fGroupMap->elementAti(group-1);
   2298         U_ASSERT(groupOffset < fPattern->fFrameSize);
   2299         U_ASSERT(groupOffset >= 0);
   2300         s = fFrame->fExtra[groupOffset];
   2301     }
   2302 
   2303     return s;
   2304 }
   2305 
   2306 
   2307 int32_t RegexMatcher::start(int32_t group, UErrorCode &status) const {
   2308     return (int32_t)start64(group, status);
   2309 }
   2310 
   2311 //--------------------------------------------------------------------------------
   2312 //
   2313 //     useAnchoringBounds
   2314 //
   2315 //--------------------------------------------------------------------------------
   2316 RegexMatcher &RegexMatcher::useAnchoringBounds(UBool b) {
   2317     fAnchoringBounds = b;
   2318     fAnchorStart = (fAnchoringBounds ? fRegionStart : 0);
   2319     fAnchorLimit = (fAnchoringBounds ? fRegionLimit : fInputLength);
   2320     return *this;
   2321 }
   2322 
   2323 
   2324 //--------------------------------------------------------------------------------
   2325 //
   2326 //     useTransparentBounds
   2327 //
   2328 //--------------------------------------------------------------------------------
   2329 RegexMatcher &RegexMatcher::useTransparentBounds(UBool b) {
   2330     fTransparentBounds = b;
   2331     fLookStart = (fTransparentBounds ? 0 : fRegionStart);
   2332     fLookLimit = (fTransparentBounds ? fInputLength : fRegionLimit);
   2333     return *this;
   2334 }
   2335 
   2336 //--------------------------------------------------------------------------------
   2337 //
   2338 //     setTimeLimit
   2339 //
   2340 //--------------------------------------------------------------------------------
   2341 void RegexMatcher::setTimeLimit(int32_t limit, UErrorCode &status) {
   2342     if (U_FAILURE(status)) {
   2343         return;
   2344     }
   2345     if (U_FAILURE(fDeferredStatus)) {
   2346         status = fDeferredStatus;
   2347         return;
   2348     }
   2349     if (limit < 0) {
   2350         status = U_ILLEGAL_ARGUMENT_ERROR;
   2351         return;
   2352     }
   2353     fTimeLimit = limit;
   2354 }
   2355 
   2356 
   2357 //--------------------------------------------------------------------------------
   2358 //
   2359 //     getTimeLimit
   2360 //
   2361 //--------------------------------------------------------------------------------
   2362 int32_t RegexMatcher::getTimeLimit() const {
   2363     return fTimeLimit;
   2364 }
   2365 
   2366 
   2367 //--------------------------------------------------------------------------------
   2368 //
   2369 //     setStackLimit
   2370 //
   2371 //--------------------------------------------------------------------------------
   2372 void RegexMatcher::setStackLimit(int32_t limit, UErrorCode &status) {
   2373     if (U_FAILURE(status)) {
   2374         return;
   2375     }
   2376     if (U_FAILURE(fDeferredStatus)) {
   2377         status = fDeferredStatus;
   2378         return;
   2379     }
   2380     if (limit < 0) {
   2381         status = U_ILLEGAL_ARGUMENT_ERROR;
   2382         return;
   2383     }
   2384 
   2385     // Reset the matcher.  This is needed here in case there is a current match
   2386     //    whose final stack frame (containing the match results, pointed to by fFrame)
   2387     //    would be lost by resizing to a smaller stack size.
   2388     reset();
   2389 
   2390     if (limit == 0) {
   2391         // Unlimited stack expansion
   2392         fStack->setMaxCapacity(0);
   2393     } else {
   2394         // Change the units of the limit  from bytes to ints, and bump the size up
   2395         //   to be big enough to hold at least one stack frame for the pattern,
   2396         //   if it isn't there already.
   2397         int32_t adjustedLimit = limit / sizeof(int32_t);
   2398         if (adjustedLimit < fPattern->fFrameSize) {
   2399             adjustedLimit = fPattern->fFrameSize;
   2400         }
   2401         fStack->setMaxCapacity(adjustedLimit);
   2402     }
   2403     fStackLimit = limit;
   2404 }
   2405 
   2406 
   2407 //--------------------------------------------------------------------------------
   2408 //
   2409 //     getStackLimit
   2410 //
   2411 //--------------------------------------------------------------------------------
   2412 int32_t RegexMatcher::getStackLimit() const {
   2413     return fStackLimit;
   2414 }
   2415 
   2416 
   2417 //--------------------------------------------------------------------------------
   2418 //
   2419 //     setMatchCallback
   2420 //
   2421 //--------------------------------------------------------------------------------
   2422 void RegexMatcher::setMatchCallback(URegexMatchCallback     *callback,
   2423                                     const void              *context,
   2424                                     UErrorCode              &status) {
   2425     if (U_FAILURE(status)) {
   2426         return;
   2427     }
   2428     fCallbackFn = callback;
   2429     fCallbackContext = context;
   2430 }
   2431 
   2432 
   2433 //--------------------------------------------------------------------------------
   2434 //
   2435 //     getMatchCallback
   2436 //
   2437 //--------------------------------------------------------------------------------
   2438 void RegexMatcher::getMatchCallback(URegexMatchCallback   *&callback,
   2439                                   const void              *&context,
   2440                                   UErrorCode              &status) {
   2441     if (U_FAILURE(status)) {
   2442        return;
   2443     }
   2444     callback = fCallbackFn;
   2445     context  = fCallbackContext;
   2446 }
   2447 
   2448 
   2449 //--------------------------------------------------------------------------------
   2450 //
   2451 //     setMatchCallback
   2452 //
   2453 //--------------------------------------------------------------------------------
   2454 void RegexMatcher::setFindProgressCallback(URegexFindProgressCallback      *callback,
   2455                                                 const void                      *context,
   2456                                                 UErrorCode                      &status) {
   2457     if (U_FAILURE(status)) {
   2458         return;
   2459     }
   2460     fFindProgressCallbackFn = callback;
   2461     fFindProgressCallbackContext = context;
   2462 }
   2463 
   2464 
   2465 //--------------------------------------------------------------------------------
   2466 //
   2467 //     getMatchCallback
   2468 //
   2469 //--------------------------------------------------------------------------------
   2470 void RegexMatcher::getFindProgressCallback(URegexFindProgressCallback    *&callback,
   2471                                                 const void                    *&context,
   2472                                                 UErrorCode                    &status) {
   2473     if (U_FAILURE(status)) {
   2474        return;
   2475     }
   2476     callback = fFindProgressCallbackFn;
   2477     context  = fFindProgressCallbackContext;
   2478 }
   2479 
   2480 
   2481 //================================================================================
   2482 //
   2483 //    Code following this point in this file is the internal
   2484 //    Match Engine Implementation.
   2485 //
   2486 //================================================================================
   2487 
   2488 
   2489 //--------------------------------------------------------------------------------
   2490 //
   2491 //   resetStack
   2492 //           Discard any previous contents of the state save stack, and initialize a
   2493 //           new stack frame to all -1.  The -1s are needed for capture group limits,
   2494 //           where they indicate that a group has not yet matched anything.
   2495 //--------------------------------------------------------------------------------
   2496 REStackFrame *RegexMatcher::resetStack() {
   2497     // Discard any previous contents of the state save stack, and initialize a
   2498     //  new stack frame with all -1 data.  The -1s are needed for capture group limits,
   2499     //  where they indicate that a group has not yet matched anything.
   2500     fStack->removeAllElements();
   2501 
   2502     REStackFrame *iFrame = (REStackFrame *)fStack->reserveBlock(fPattern->fFrameSize, fDeferredStatus);
   2503     int32_t i;
   2504     for (i=0; i<fPattern->fFrameSize-RESTACKFRAME_HDRCOUNT; i++) {
   2505         iFrame->fExtra[i] = -1;
   2506     }
   2507     return iFrame;
   2508 }
   2509 
   2510 
   2511 
   2512 //--------------------------------------------------------------------------------
   2513 //
   2514 //   isWordBoundary
   2515 //                     in perl, "xab..cd..", \b is true at positions 0,3,5,7
   2516 //                     For us,
   2517 //                       If the current char is a combining mark,
   2518 //                          \b is FALSE.
   2519 //                       Else Scan backwards to the first non-combining char.
   2520 //                            We are at a boundary if the this char and the original chars are
   2521 //                               opposite in membership in \w set
   2522 //
   2523 //          parameters:   pos   - the current position in the input buffer
   2524 //
   2525 //              TODO:  double-check edge cases at region boundaries.
   2526 //
   2527 //--------------------------------------------------------------------------------
   2528 UBool RegexMatcher::isWordBoundary(int64_t pos) {
   2529     UBool isBoundary = FALSE;
   2530     UBool cIsWord    = FALSE;
   2531 
   2532     if (pos >= fLookLimit) {
   2533         fHitEnd = TRUE;
   2534     } else {
   2535         // Determine whether char c at current position is a member of the word set of chars.
   2536         // If we're off the end of the string, behave as though we're not at a word char.
   2537         UTEXT_SETNATIVEINDEX(fInputText, pos);
   2538         UChar32  c = UTEXT_CURRENT32(fInputText);
   2539         if (u_hasBinaryProperty(c, UCHAR_GRAPHEME_EXTEND) || u_charType(c) == U_FORMAT_CHAR) {
   2540             // Current char is a combining one.  Not a boundary.
   2541             return FALSE;
   2542         }
   2543         cIsWord = fPattern->fStaticSets[URX_ISWORD_SET]->contains(c);
   2544     }
   2545 
   2546     // Back up until we come to a non-combining char, determine whether
   2547     //  that char is a word char.
   2548     UBool prevCIsWord = FALSE;
   2549     for (;;) {
   2550         if (UTEXT_GETNATIVEINDEX(fInputText) <= fLookStart) {
   2551             break;
   2552         }
   2553         UChar32 prevChar = UTEXT_PREVIOUS32(fInputText);
   2554         if (!(u_hasBinaryProperty(prevChar, UCHAR_GRAPHEME_EXTEND)
   2555               || u_charType(prevChar) == U_FORMAT_CHAR)) {
   2556             prevCIsWord = fPattern->fStaticSets[URX_ISWORD_SET]->contains(prevChar);
   2557             break;
   2558         }
   2559     }
   2560     isBoundary = cIsWord ^ prevCIsWord;
   2561     return isBoundary;
   2562 }
   2563 
   2564 UBool RegexMatcher::isChunkWordBoundary(int32_t pos) {
   2565     UBool isBoundary = FALSE;
   2566     UBool cIsWord    = FALSE;
   2567 
   2568     const UChar *inputBuf = fInputText->chunkContents;
   2569 
   2570     if (pos >= fLookLimit) {
   2571         fHitEnd = TRUE;
   2572     } else {
   2573         // Determine whether char c at current position is a member of the word set of chars.
   2574         // If we're off the end of the string, behave as though we're not at a word char.
   2575         UChar32 c;
   2576         U16_GET(inputBuf, fLookStart, pos, fLookLimit, c);
   2577         if (u_hasBinaryProperty(c, UCHAR_GRAPHEME_EXTEND) || u_charType(c) == U_FORMAT_CHAR) {
   2578             // Current char is a combining one.  Not a boundary.
   2579             return FALSE;
   2580         }
   2581         cIsWord = fPattern->fStaticSets[URX_ISWORD_SET]->contains(c);
   2582     }
   2583 
   2584     // Back up until we come to a non-combining char, determine whether
   2585     //  that char is a word char.
   2586     UBool prevCIsWord = FALSE;
   2587     for (;;) {
   2588         if (pos <= fLookStart) {
   2589             break;
   2590         }
   2591         UChar32 prevChar;
   2592         U16_PREV(inputBuf, fLookStart, pos, prevChar);
   2593         if (!(u_hasBinaryProperty(prevChar, UCHAR_GRAPHEME_EXTEND)
   2594               || u_charType(prevChar) == U_FORMAT_CHAR)) {
   2595             prevCIsWord = fPattern->fStaticSets[URX_ISWORD_SET]->contains(prevChar);
   2596             break;
   2597         }
   2598     }
   2599     isBoundary = cIsWord ^ prevCIsWord;
   2600     return isBoundary;
   2601 }
   2602 
   2603 //--------------------------------------------------------------------------------
   2604 //
   2605 //   isUWordBoundary
   2606 //
   2607 //         Test for a word boundary using RBBI word break.
   2608 //
   2609 //          parameters:   pos   - the current position in the input buffer
   2610 //
   2611 //--------------------------------------------------------------------------------
   2612 UBool RegexMatcher::isUWordBoundary(int64_t pos) {
   2613     UBool       returnVal = FALSE;
   2614 #if UCONFIG_NO_BREAK_ITERATION==0
   2615 
   2616     // If we haven't yet created a break iterator for this matcher, do it now.
   2617     if (fWordBreakItr == NULL) {
   2618         fWordBreakItr =
   2619             (RuleBasedBreakIterator *)BreakIterator::createWordInstance(Locale::getEnglish(), fDeferredStatus);
   2620         if (U_FAILURE(fDeferredStatus)) {
   2621             return FALSE;
   2622         }
   2623         fWordBreakItr->setText(fInputText, fDeferredStatus);
   2624     }
   2625 
   2626     if (pos >= fLookLimit) {
   2627         fHitEnd = TRUE;
   2628         returnVal = TRUE;   // With Unicode word rules, only positions within the interior of "real"
   2629                             //    words are not boundaries.  All non-word chars stand by themselves,
   2630                             //    with word boundaries on both sides.
   2631     } else {
   2632         if (!UTEXT_USES_U16(fInputText)) {
   2633             // !!!: Would like a better way to do this!
   2634             UErrorCode status = U_ZERO_ERROR;
   2635             pos = utext_extract(fInputText, 0, pos, NULL, 0, &status);
   2636         }
   2637         returnVal = fWordBreakItr->isBoundary((int32_t)pos);
   2638     }
   2639 #endif
   2640     return   returnVal;
   2641 }
   2642 
   2643 //--------------------------------------------------------------------------------
   2644 //
   2645 //   IncrementTime     This function is called once each TIMER_INITIAL_VALUE state
   2646 //                     saves. Increment the "time" counter, and call the
   2647 //                     user callback function if there is one installed.
   2648 //
   2649 //                     If the match operation needs to be aborted, either for a time-out
   2650 //                     or because the user callback asked for it, just set an error status.
   2651 //                     The engine will pick that up and stop in its outer loop.
   2652 //
   2653 //--------------------------------------------------------------------------------
   2654 void RegexMatcher::IncrementTime(UErrorCode &status) {
   2655     fTickCounter = TIMER_INITIAL_VALUE;
   2656     fTime++;
   2657     if (fCallbackFn != NULL) {
   2658         if ((*fCallbackFn)(fCallbackContext, fTime) == FALSE) {
   2659             status = U_REGEX_STOPPED_BY_CALLER;
   2660             return;
   2661         }
   2662     }
   2663     if (fTimeLimit > 0 && fTime >= fTimeLimit) {
   2664         status = U_REGEX_TIME_OUT;
   2665     }
   2666 }
   2667 
   2668 //--------------------------------------------------------------------------------
   2669 //
   2670 //   StateSave
   2671 //       Make a new stack frame, initialized as a copy of the current stack frame.
   2672 //       Set the pattern index in the original stack frame from the operand value
   2673 //       in the opcode.  Execution of the engine continues with the state in
   2674 //       the newly created stack frame
   2675 //
   2676 //       Note that reserveBlock() may grow the stack, resulting in the
   2677 //       whole thing being relocated in memory.
   2678 //
   2679 //    Parameters:
   2680 //       fp           The top frame pointer when called.  At return, a new
   2681 //                    fame will be present
   2682 //       savePatIdx   An index into the compiled pattern.  Goes into the original
   2683 //                    (not new) frame.  If execution ever back-tracks out of the
   2684 //                    new frame, this will be where we continue from in the pattern.
   2685 //    Return
   2686 //                    The new frame pointer.
   2687 //
   2688 //--------------------------------------------------------------------------------
   2689 inline REStackFrame *RegexMatcher::StateSave(REStackFrame *fp, int64_t savePatIdx, UErrorCode &status) {
   2690     // push storage for a new frame.
   2691     int64_t *newFP = fStack->reserveBlock(fFrameSize, status);
   2692     if (newFP == NULL) {
   2693         // Failure on attempted stack expansion.
   2694         //   Stack function set some other error code, change it to a more
   2695         //   specific one for regular expressions.
   2696         status = U_REGEX_STACK_OVERFLOW;
   2697         // We need to return a writable stack frame, so just return the
   2698         //    previous frame.  The match operation will stop quickly
   2699         //    because of the error status, after which the frame will never
   2700         //    be looked at again.
   2701         return fp;
   2702     }
   2703     fp = (REStackFrame *)(newFP - fFrameSize);  // in case of realloc of stack.
   2704 
   2705     // New stack frame = copy of old top frame.
   2706     int64_t *source = (int64_t *)fp;
   2707     int64_t *dest   = newFP;
   2708     for (;;) {
   2709         *dest++ = *source++;
   2710         if (source == newFP) {
   2711             break;
   2712         }
   2713     }
   2714 
   2715     fTickCounter--;
   2716     if (fTickCounter <= 0) {
   2717        IncrementTime(status);    // Re-initializes fTickCounter
   2718     }
   2719     fp->fPatIdx = savePatIdx;
   2720     return (REStackFrame *)newFP;
   2721 }
   2722 
   2723 
   2724 //--------------------------------------------------------------------------------
   2725 //
   2726 //   MatchAt      This is the actual matching engine.
   2727 //
   2728 //                  startIdx:    begin matching a this index.
   2729 //                  toEnd:       if true, match must extend to end of the input region
   2730 //
   2731 //--------------------------------------------------------------------------------
   2732 void RegexMatcher::MatchAt(int64_t startIdx, UBool toEnd, UErrorCode &status) {
   2733     UBool       isMatch  = FALSE;      // True if the we have a match.
   2734 
   2735     int64_t     backSearchIndex = U_INT64_MAX; // used after greedy single-character matches for searching backwards
   2736 
   2737     int32_t     op;                    // Operation from the compiled pattern, split into
   2738     int32_t     opType;                //    the opcode
   2739     int32_t     opValue;               //    and the operand value.
   2740 
   2741 #ifdef REGEX_RUN_DEBUG
   2742     if (fTraceDebug)
   2743     {
   2744         printf("MatchAt(startIdx=%ld)\n", startIdx);
   2745         printf("Original Pattern: ");
   2746         UChar32 c = utext_next32From(fPattern->fPattern, 0);
   2747         while (c != U_SENTINEL) {
   2748             if (c<32 || c>256) {
   2749                 c = '.';
   2750             }
   2751             printf("%c", c);
   2752 
   2753             c = UTEXT_NEXT32(fPattern->fPattern);
   2754         }
   2755         printf("\n");
   2756         printf("Input String: ");
   2757         c = utext_next32From(fInputText, 0);
   2758         while (c != U_SENTINEL) {
   2759             if (c<32 || c>256) {
   2760                 c = '.';
   2761             }
   2762             printf("%c", c);
   2763 
   2764             c = UTEXT_NEXT32(fInputText);
   2765         }
   2766         printf("\n");
   2767         printf("\n");
   2768     }
   2769 #endif
   2770 
   2771     if (U_FAILURE(status)) {
   2772         return;
   2773     }
   2774 
   2775     //  Cache frequently referenced items from the compiled pattern
   2776     //
   2777     int64_t             *pat           = fPattern->fCompiledPat->getBuffer();
   2778 
   2779     const UChar         *litText       = fPattern->fLiteralText.getBuffer();
   2780     UVector             *sets          = fPattern->fSets;
   2781 
   2782     fFrameSize = fPattern->fFrameSize;
   2783     REStackFrame        *fp            = resetStack();
   2784 
   2785     fp->fPatIdx   = 0;
   2786     fp->fInputIdx = startIdx;
   2787 
   2788     // Zero out the pattern's static data
   2789     int32_t i;
   2790     for (i = 0; i<fPattern->fDataSize; i++) {
   2791         fData[i] = 0;
   2792     }
   2793 
   2794     //
   2795     //  Main loop for interpreting the compiled pattern.
   2796     //  One iteration of the loop per pattern operation performed.
   2797     //
   2798     for (;;) {
   2799         op      = (int32_t)pat[fp->fPatIdx];
   2800         opType  = URX_TYPE(op);
   2801         opValue = URX_VAL(op);
   2802 #ifdef REGEX_RUN_DEBUG
   2803         if (fTraceDebug) {
   2804             UTEXT_SETNATIVEINDEX(fInputText, fp->fInputIdx);
   2805             printf("inputIdx=%ld   inputChar=%x   sp=%3ld   activeLimit=%ld  ", fp->fInputIdx,
   2806                 UTEXT_CURRENT32(fInputText), (int64_t *)fp-fStack->getBuffer(), fActiveLimit);
   2807             fPattern->dumpOp(fp->fPatIdx);
   2808         }
   2809 #endif
   2810         fp->fPatIdx++;
   2811 
   2812         switch (opType) {
   2813 
   2814 
   2815         case URX_NOP:
   2816             break;
   2817 
   2818 
   2819         case URX_BACKTRACK:
   2820             // Force a backtrack.  In some circumstances, the pattern compiler
   2821             //   will notice that the pattern can't possibly match anything, and will
   2822             //   emit one of these at that point.
   2823             fp = (REStackFrame *)fStack->popFrame(fFrameSize);
   2824             break;
   2825 
   2826 
   2827         case URX_ONECHAR:
   2828             if (fp->fInputIdx < fActiveLimit) {
   2829                 UTEXT_SETNATIVEINDEX(fInputText, fp->fInputIdx);
   2830                 UChar32 c = UTEXT_NEXT32(fInputText);
   2831                 if (c == opValue) {
   2832                     fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText);
   2833                     break;
   2834                 }
   2835             } else {
   2836                 fHitEnd = TRUE;
   2837             }
   2838             fp = (REStackFrame *)fStack->popFrame(fFrameSize);
   2839             break;
   2840 
   2841 
   2842         case URX_STRING:
   2843             {
   2844                 // Test input against a literal string.
   2845                 // Strings require two slots in the compiled pattern, one for the
   2846                 //   offset to the string text, and one for the length.
   2847 
   2848                 int32_t   stringStartIdx = opValue;
   2849                 op      = (int32_t)pat[fp->fPatIdx];     // Fetch the second operand
   2850                 fp->fPatIdx++;
   2851                 opType    = URX_TYPE(op);
   2852                 int32_t stringLen = URX_VAL(op);
   2853                 U_ASSERT(opType == URX_STRING_LEN);
   2854                 U_ASSERT(stringLen >= 2);
   2855 
   2856                 const UChar *patternString = litText+stringStartIdx;
   2857                 int32_t patternStringIndex = 0;
   2858                 UTEXT_SETNATIVEINDEX(fInputText, fp->fInputIdx);
   2859                 UChar32 inputChar;
   2860                 UChar32 patternChar;
   2861                 UBool success = TRUE;
   2862                 while (patternStringIndex < stringLen) {
   2863                     if (UTEXT_GETNATIVEINDEX(fInputText) >= fActiveLimit) {
   2864                         success = FALSE;
   2865                         fHitEnd = TRUE;
   2866                         break;
   2867                     }
   2868                     inputChar = UTEXT_NEXT32(fInputText);
   2869                     U16_NEXT(patternString, patternStringIndex, stringLen, patternChar);
   2870                     if (patternChar != inputChar) {
   2871                         success = FALSE;
   2872                         break;
   2873                     }
   2874                 }
   2875 
   2876                 if (success) {
   2877                     fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText);
   2878                 } else {
   2879                     fp = (REStackFrame *)fStack->popFrame(fFrameSize);
   2880                 }
   2881             }
   2882             break;
   2883 
   2884 
   2885         case URX_STATE_SAVE:
   2886             fp = StateSave(fp, opValue, status);
   2887             break;
   2888 
   2889 
   2890         case URX_END:
   2891             // The match loop will exit via this path on a successful match,
   2892             //   when we reach the end of the pattern.
   2893             if (toEnd && fp->fInputIdx != fActiveLimit) {
   2894                 // The pattern matched, but not to the end of input.  Try some more.
   2895                 fp = (REStackFrame *)fStack->popFrame(fFrameSize);
   2896                 break;
   2897             }
   2898             isMatch = TRUE;
   2899             goto  breakFromLoop;
   2900 
   2901         // Start and End Capture stack frame variables are laid out out like this:
   2902             //  fp->fExtra[opValue]  - The start of a completed capture group
   2903             //             opValue+1 - The end   of a completed capture group
   2904             //             opValue+2 - the start of a capture group whose end
   2905             //                          has not yet been reached (and might not ever be).
   2906         case URX_START_CAPTURE:
   2907             U_ASSERT(opValue >= 0 && opValue < fFrameSize-3);
   2908             fp->fExtra[opValue+2] = fp->fInputIdx;
   2909             break;
   2910 
   2911 
   2912         case URX_END_CAPTURE:
   2913             U_ASSERT(opValue >= 0 && opValue < fFrameSize-3);
   2914             U_ASSERT(fp->fExtra[opValue+2] >= 0);            // Start pos for this group must be set.
   2915             fp->fExtra[opValue]   = fp->fExtra[opValue+2];   // Tentative start becomes real.
   2916             fp->fExtra[opValue+1] = fp->fInputIdx;           // End position
   2917             U_ASSERT(fp->fExtra[opValue] <= fp->fExtra[opValue+1]);
   2918             break;
   2919 
   2920 
   2921         case URX_DOLLAR:                   //  $, test for End of line
   2922                                            //     or for position before new line at end of input
   2923             {
   2924                 if (fp->fInputIdx >= fAnchorLimit) {
   2925                     // We really are at the end of input.  Success.
   2926                     fHitEnd = TRUE;
   2927                     fRequireEnd = TRUE;
   2928                     break;
   2929                 }
   2930 
   2931                 UTEXT_SETNATIVEINDEX(fInputText, fp->fInputIdx);
   2932 
   2933                 // If we are positioned just before a new-line that is located at the
   2934                 //   end of input, succeed.
   2935                 UChar32 c = UTEXT_NEXT32(fInputText);
   2936                 if (UTEXT_GETNATIVEINDEX(fInputText) >= fAnchorLimit) {
   2937                     if (isLineTerminator(c)) {
   2938                         // If not in the middle of a CR/LF sequence
   2939                         if ( !(c==0x0a && fp->fInputIdx>fAnchorStart && ((void)UTEXT_PREVIOUS32(fInputText), UTEXT_PREVIOUS32(fInputText))==0x0d)) {
   2940                             // At new-line at end of input. Success
   2941                             fHitEnd = TRUE;
   2942                             fRequireEnd = TRUE;
   2943 
   2944                             break;
   2945                         }
   2946                     }
   2947                 } else {
   2948                     UChar32 nextC = UTEXT_NEXT32(fInputText);
   2949                     if (c == 0x0d && nextC == 0x0a && UTEXT_GETNATIVEINDEX(fInputText) >= fAnchorLimit) {
   2950                         fHitEnd = TRUE;
   2951                         fRequireEnd = TRUE;
   2952                         break;                         // At CR/LF at end of input.  Success
   2953                     }
   2954                 }
   2955 
   2956                 fp = (REStackFrame *)fStack->popFrame(fFrameSize);
   2957             }
   2958             break;
   2959 
   2960 
   2961          case URX_DOLLAR_D:                   //  $, test for End of Line, in UNIX_LINES mode.
   2962             if (fp->fInputIdx >= fAnchorLimit) {
   2963                 // Off the end of input.  Success.
   2964                 fHitEnd = TRUE;
   2965                 fRequireEnd = TRUE;
   2966                 break;
   2967             } else {
   2968                 UTEXT_SETNATIVEINDEX(fInputText, fp->fInputIdx);
   2969                 UChar32 c = UTEXT_NEXT32(fInputText);
   2970                 // Either at the last character of input, or off the end.
   2971                 if (c == 0x0a && UTEXT_GETNATIVEINDEX(fInputText) == fAnchorLimit) {
   2972                     fHitEnd = TRUE;
   2973                     fRequireEnd = TRUE;
   2974                     break;
   2975                 }
   2976             }
   2977 
   2978             // Not at end of input.  Back-track out.
   2979             fp = (REStackFrame *)fStack->popFrame(fFrameSize);
   2980             break;
   2981 
   2982 
   2983          case URX_DOLLAR_M:                //  $, test for End of line in multi-line mode
   2984              {
   2985                  if (fp->fInputIdx >= fAnchorLimit) {
   2986                      // We really are at the end of input.  Success.
   2987                      fHitEnd = TRUE;
   2988                      fRequireEnd = TRUE;
   2989                      break;
   2990                  }
   2991                  // If we are positioned just before a new-line, succeed.
   2992                  // It makes no difference where the new-line is within the input.
   2993                  UTEXT_SETNATIVEINDEX(fInputText, fp->fInputIdx);
   2994                  UChar32 c = UTEXT_CURRENT32(fInputText);
   2995                  if (isLineTerminator(c)) {
   2996                      // At a line end, except for the odd chance of  being in the middle of a CR/LF sequence
   2997                      //  In multi-line mode, hitting a new-line just before the end of input does not
   2998                      //   set the hitEnd or requireEnd flags
   2999                      if ( !(c==0x0a && fp->fInputIdx>fAnchorStart && UTEXT_PREVIOUS32(fInputText)==0x0d)) {
   3000                         break;
   3001                      }
   3002                  }
   3003                  // not at a new line.  Fail.
   3004                  fp = (REStackFrame *)fStack->popFrame(fFrameSize);
   3005              }
   3006              break;
   3007 
   3008 
   3009          case URX_DOLLAR_MD:                //  $, test for End of line in multi-line and UNIX_LINES mode
   3010              {
   3011                  if (fp->fInputIdx >= fAnchorLimit) {
   3012                      // We really are at the end of input.  Success.
   3013                      fHitEnd = TRUE;
   3014                      fRequireEnd = TRUE;  // Java set requireEnd in this case, even though
   3015                      break;               //   adding a new-line would not lose the match.
   3016                  }
   3017                  // If we are not positioned just before a new-line, the test fails; backtrack out.
   3018                  // It makes no difference where the new-line is within the input.
   3019                  UTEXT_SETNATIVEINDEX(fInputText, fp->fInputIdx);
   3020                  if (UTEXT_CURRENT32(fInputText) != 0x0a) {
   3021                      fp = (REStackFrame *)fStack->popFrame(fFrameSize);
   3022                  }
   3023              }
   3024              break;
   3025 
   3026 
   3027        case URX_CARET:                    //  ^, test for start of line
   3028             if (fp->fInputIdx != fAnchorStart) {
   3029                 fp = (REStackFrame *)fStack->popFrame(fFrameSize);
   3030             }
   3031             break;
   3032 
   3033 
   3034        case URX_CARET_M:                   //  ^, test for start of line in mulit-line mode
   3035            {
   3036                if (fp->fInputIdx == fAnchorStart) {
   3037                    // We are at the start input.  Success.
   3038                    break;
   3039                }
   3040                // Check whether character just before the current pos is a new-line
   3041                //   unless we are at the end of input
   3042                UTEXT_SETNATIVEINDEX(fInputText, fp->fInputIdx);
   3043                UChar32  c = UTEXT_PREVIOUS32(fInputText);
   3044                if ((fp->fInputIdx < fAnchorLimit) && isLineTerminator(c)) {
   3045                    //  It's a new-line.  ^ is true.  Success.
   3046                    //  TODO:  what should be done with positions between a CR and LF?
   3047                    break;
   3048                }
   3049                // Not at the start of a line.  Fail.
   3050                fp = (REStackFrame *)fStack->popFrame(fFrameSize);
   3051            }
   3052            break;
   3053 
   3054 
   3055        case URX_CARET_M_UNIX:       //  ^, test for start of line in mulit-line + Unix-line mode
   3056            {
   3057                U_ASSERT(fp->fInputIdx >= fAnchorStart);
   3058                if (fp->fInputIdx <= fAnchorStart) {
   3059                    // We are at the start input.  Success.
   3060                    break;
   3061                }
   3062                // Check whether character just before the current pos is a new-line
   3063                U_ASSERT(fp->fInputIdx <= fAnchorLimit);
   3064                UTEXT_SETNATIVEINDEX(fInputText, fp->fInputIdx);
   3065                UChar32  c = UTEXT_PREVIOUS32(fInputText);
   3066                if (c != 0x0a) {
   3067                    // Not at the start of a line.  Back-track out.
   3068                    fp = (REStackFrame *)fStack->popFrame(fFrameSize);
   3069                }
   3070            }
   3071            break;
   3072 
   3073         case URX_BACKSLASH_B:          // Test for word boundaries
   3074             {
   3075                 UBool success = isWordBoundary(fp->fInputIdx);
   3076                 success ^= (UBool)(opValue != 0);     // flip sense for \B
   3077                 if (!success) {
   3078                     fp = (REStackFrame *)fStack->popFrame(fFrameSize);
   3079                 }
   3080             }
   3081             break;
   3082 
   3083 
   3084         case URX_BACKSLASH_BU:          // Test for word boundaries, Unicode-style
   3085             {
   3086                 UBool success = isUWordBoundary(fp->fInputIdx);
   3087                 success ^= (UBool)(opValue != 0);     // flip sense for \B
   3088                 if (!success) {
   3089                     fp = (REStackFrame *)fStack->popFrame(fFrameSize);
   3090                 }
   3091             }
   3092             break;
   3093 
   3094 
   3095         case URX_BACKSLASH_D:            // Test for decimal digit
   3096             {
   3097                 if (fp->fInputIdx >= fActiveLimit) {
   3098                     fHitEnd = TRUE;
   3099                     fp = (REStackFrame *)fStack->popFrame(fFrameSize);
   3100                     break;
   3101                 }
   3102 
   3103                 UTEXT_SETNATIVEINDEX(fInputText, fp->fInputIdx);
   3104 
   3105                 UChar32 c = UTEXT_NEXT32(fInputText);
   3106                 int8_t ctype = u_charType(c);     // TODO:  make a unicode set for this.  Will be faster.
   3107                 UBool success = (ctype == U_DECIMAL_DIGIT_NUMBER);
   3108                 success ^= (UBool)(opValue != 0);        // flip sense for \D
   3109                 if (success) {
   3110                     fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText);
   3111                 } else {
   3112                     fp = (REStackFrame *)fStack->popFrame(fFrameSize);
   3113                 }
   3114             }
   3115             break;
   3116 
   3117 
   3118         case URX_BACKSLASH_G:          // Test for position at end of previous match
   3119             if (!((fMatch && fp->fInputIdx==fMatchEnd) || (fMatch==FALSE && fp->fInputIdx==fActiveStart))) {
   3120                 fp = (REStackFrame *)fStack->popFrame(fFrameSize);
   3121             }
   3122             break;
   3123 
   3124 
   3125         case URX_BACKSLASH_H:            // Test for \h, horizontal white space.
   3126             {
   3127                 if (fp->fInputIdx >= fActiveLimit) {
   3128                     fHitEnd = TRUE;
   3129                     fp = (REStackFrame *)fStack->popFrame(fFrameSize);
   3130                     break;
   3131                 }
   3132                 UTEXT_SETNATIVEINDEX(fInputText, fp->fInputIdx);
   3133                 UChar32 c = UTEXT_NEXT32(fInputText);
   3134                 int8_t ctype = u_charType(c);
   3135                 UBool success = (ctype == U_SPACE_SEPARATOR || c == 9);  // SPACE_SEPARATOR || TAB
   3136                 success ^= (UBool)(opValue != 0);        // flip sense for \H
   3137                 if (success) {
   3138                     fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText);
   3139                 } else {
   3140                     fp = (REStackFrame *)fStack->popFrame(fFrameSize);
   3141                 }
   3142             }
   3143             break;
   3144 
   3145 
   3146         case URX_BACKSLASH_R:            // Test for \R, any line break sequence.
   3147             {
   3148                 if (fp->fInputIdx >= fActiveLimit) {
   3149                     fHitEnd = TRUE;
   3150                     fp = (REStackFrame *)fStack->popFrame(fFrameSize);
   3151                     break;
   3152                 }
   3153                 UTEXT_SETNATIVEINDEX(fInputText, fp->fInputIdx);
   3154                 UChar32 c = UTEXT_NEXT32(fInputText);
   3155                 if (isLineTerminator(c)) {
   3156                     if (c == 0x0d && utext_current32(fInputText) == 0x0a) {
   3157                         utext_next32(fInputText);
   3158                     }
   3159                     fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText);
   3160                 } else {
   3161                     fp = (REStackFrame *)fStack->popFrame(fFrameSize);
   3162                 }
   3163             }
   3164             break;
   3165 
   3166 
   3167         case URX_BACKSLASH_V:            // \v, any single line ending character.
   3168             {
   3169                 if (fp->fInputIdx >= fActiveLimit) {
   3170                     fHitEnd = TRUE;
   3171                     fp = (REStackFrame *)fStack->popFrame(fFrameSize);
   3172                     break;
   3173                 }
   3174                 UTEXT_SETNATIVEINDEX(fInputText, fp->fInputIdx);
   3175                 UChar32 c = UTEXT_NEXT32(fInputText);
   3176                 UBool success = isLineTerminator(c);
   3177                 success ^= (UBool)(opValue != 0);        // flip sense for \V
   3178                 if (success) {
   3179                     fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText);
   3180                 } else {
   3181                     fp = (REStackFrame *)fStack->popFrame(fFrameSize);
   3182                 }
   3183             }
   3184             break;
   3185 
   3186 
   3187         case URX_BACKSLASH_X:
   3188             //  Match a Grapheme, as defined by Unicode TR 29.
   3189             //  Differs slightly from Perl, which consumes combining marks independently
   3190             //    of context.
   3191             {
   3192 
   3193                 // Fail if at end of input
   3194                 if (fp->fInputIdx >= fActiveLimit) {
   3195                     fHitEnd = TRUE;
   3196                     fp = (REStackFrame *)fStack->popFrame(fFrameSize);
   3197                     break;
   3198                 }
   3199 
   3200                 UTEXT_SETNATIVEINDEX(fInputText, fp->fInputIdx);
   3201 
   3202                 // Examine (and consume) the current char.
   3203                 //   Dispatch into a little state machine, based on the char.
   3204                 UChar32  c;
   3205                 c = UTEXT_NEXT32(fInputText);
   3206                 fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText);
   3207                 UnicodeSet **sets = fPattern->fStaticSets;
   3208                 if (sets[URX_GC_NORMAL]->contains(c))  goto GC_Extend;
   3209                 if (sets[URX_GC_CONTROL]->contains(c)) goto GC_Control;
   3210                 if (sets[URX_GC_L]->contains(c))       goto GC_L;
   3211                 if (sets[URX_GC_LV]->contains(c))      goto GC_V;
   3212                 if (sets[URX_GC_LVT]->contains(c))     goto GC_T;
   3213                 if (sets[URX_GC_V]->contains(c))       goto GC_V;
   3214                 if (sets[URX_GC_T]->contains(c))       goto GC_T;
   3215                 goto GC_Extend;
   3216 
   3217 
   3218 
   3219 GC_L:
   3220                 if (fp->fInputIdx >= fActiveLimit)         goto GC_Done;
   3221                 c = UTEXT_NEXT32(fInputText);
   3222                 fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText);
   3223                 if (sets[URX_GC_L]->contains(c))       goto GC_L;
   3224                 if (sets[URX_GC_LV]->contains(c))      goto GC_V;
   3225                 if (sets[URX_GC_LVT]->contains(c))     goto GC_T;
   3226                 if (sets[URX_GC_V]->contains(c))       goto GC_V;
   3227                 (void)UTEXT_PREVIOUS32(fInputText);
   3228                 fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText);
   3229                 goto GC_Extend;
   3230 
   3231 GC_V:
   3232                 if (fp->fInputIdx >= fActiveLimit)         goto GC_Done;
   3233                 c = UTEXT_NEXT32(fInputText);
   3234                 fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText);
   3235                 if (sets[URX_GC_V]->contains(c))       goto GC_V;
   3236                 if (sets[URX_GC_T]->contains(c))       goto GC_T;
   3237                 (void)UTEXT_PREVIOUS32(fInputText);
   3238                 fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText);
   3239                 goto GC_Extend;
   3240 
   3241 GC_T:
   3242                 if (fp->fInputIdx >= fActiveLimit)         goto GC_Done;
   3243                 c = UTEXT_NEXT32(fInputText);
   3244                 fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText);
   3245                 if (sets[URX_GC_T]->contains(c))       goto GC_T;
   3246                 (void)UTEXT_PREVIOUS32(fInputText);
   3247                 fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText);
   3248                 goto GC_Extend;
   3249 
   3250 GC_Extend:
   3251                 // Combining characters are consumed here
   3252                 for (;;) {
   3253                     if (fp->fInputIdx >= fActiveLimit) {
   3254                         break;
   3255                     }
   3256                     c = UTEXT_CURRENT32(fInputText);
   3257                     if (sets[URX_GC_EXTEND]->contains(c) == FALSE) {
   3258                         break;
   3259                     }
   3260                     (void)UTEXT_NEXT32(fInputText);
   3261                     fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText);
   3262                 }
   3263                 goto GC_Done;
   3264 
   3265 GC_Control:
   3266                 // Most control chars stand alone (don't combine with combining chars),
   3267                 //   except for that CR/LF sequence is a single grapheme cluster.
   3268                 if (c == 0x0d && fp->fInputIdx < fActiveLimit && UTEXT_CURRENT32(fInputText) == 0x0a) {
   3269                     c = UTEXT_NEXT32(fInputText);
   3270                     fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText);
   3271                 }
   3272 
   3273 GC_Done:
   3274                 if (fp->fInputIdx >= fActiveLimit) {
   3275                     fHitEnd = TRUE;
   3276                 }
   3277                 break;
   3278             }
   3279 
   3280 
   3281 
   3282 
   3283         case URX_BACKSLASH_Z:          // Test for end of Input
   3284             if (fp->fInputIdx < fAnchorLimit) {
   3285                 fp = (REStackFrame *)fStack->popFrame(fFrameSize);
   3286             } else {
   3287                 fHitEnd = TRUE;
   3288                 fRequireEnd = TRUE;
   3289             }
   3290             break;
   3291 
   3292 
   3293 
   3294         case URX_STATIC_SETREF:
   3295             {
   3296                 // Test input character against one of the predefined sets
   3297                 //    (Word Characters, for example)
   3298                 // The high bit of the op value is a flag for the match polarity.
   3299                 //    0:   success if input char is in set.
   3300                 //    1:   success if input char is not in set.
   3301                 if (fp->fInputIdx >= fActiveLimit) {
   3302                     fHitEnd = TRUE;
   3303                     fp = (REStackFrame *)fStack->popFrame(fFrameSize);
   3304                     break;
   3305                 }
   3306 
   3307                 UBool success = ((opValue & URX_NEG_SET) == URX_NEG_SET);
   3308                 opValue &= ~URX_NEG_SET;
   3309                 U_ASSERT(opValue > 0 && opValue < URX_LAST_SET);
   3310 
   3311                 UTEXT_SETNATIVEINDEX(fInputText, fp->fInputIdx);
   3312                 UChar32 c = UTEXT_NEXT32(fInputText);
   3313                 if (c < 256) {
   3314                     Regex8BitSet *s8 = &fPattern->fStaticSets8[opValue];
   3315                     if (s8->contains(c)) {
   3316                         success = !success;
   3317                     }
   3318                 } else {
   3319                     const UnicodeSet *s = fPattern->fStaticSets[opValue];
   3320                     if (s->contains(c)) {
   3321                         success = !success;
   3322                     }
   3323                 }
   3324                 if (success) {
   3325                     fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText);
   3326                 } else {
   3327                     // the character wasn't in the set.
   3328                     fp = (REStackFrame *)fStack->popFrame(fFrameSize);
   3329                 }
   3330             }
   3331             break;
   3332 
   3333 
   3334         case URX_STAT_SETREF_N:
   3335             {
   3336                 // Test input character for NOT being a member of  one of
   3337                 //    the predefined sets (Word Characters, for example)
   3338                 if (fp->fInputIdx >= fActiveLimit) {
   3339                     fHitEnd = TRUE;
   3340                     fp = (REStackFrame *)fStack->popFrame(fFrameSize);
   3341                     break;
   3342                 }
   3343 
   3344                 U_ASSERT(opValue > 0 && opValue < URX_LAST_SET);
   3345 
   3346                 UTEXT_SETNATIVEINDEX(fInputText, fp->fInputIdx);
   3347 
   3348                 UChar32 c = UTEXT_NEXT32(fInputText);
   3349                 if (c < 256) {
   3350                     Regex8BitSet *s8 = &fPattern->fStaticSets8[opValue];
   3351                     if (s8->contains(c) == FALSE) {
   3352                         fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText);
   3353                         break;
   3354                     }
   3355                 } else {
   3356                     const UnicodeSet *s = fPattern->fStaticSets[opValue];
   3357                     if (s->contains(c) == FALSE) {
   3358                         fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText);
   3359                         break;
   3360                     }
   3361                 }
   3362                 // the character wasn't in the set.
   3363                 fp = (REStackFrame *)fStack->popFrame(fFrameSize);
   3364             }
   3365             break;
   3366 
   3367 
   3368         case URX_SETREF:
   3369             if (fp->fInputIdx >= fActiveLimit) {
   3370                 fHitEnd = TRUE;
   3371                 fp = (REStackFrame *)fStack->popFrame(fFrameSize);
   3372                 break;
   3373             } else {
   3374                 UTEXT_SETNATIVEINDEX(fInputText, fp->fInputIdx);
   3375 
   3376                 // There is input left.  Pick up one char and test it for set membership.
   3377                 UChar32 c = UTEXT_NEXT32(fInputText);
   3378                 U_ASSERT(opValue > 0 && opValue < sets->size());
   3379                 if (c<256) {
   3380                     Regex8BitSet *s8 = &fPattern->fSets8[opValue];
   3381                     if (s8->contains(c)) {
   3382                         fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText);
   3383                         break;
   3384                     }
   3385                 } else {
   3386                     UnicodeSet *s = (UnicodeSet *)sets->elementAt(opValue);
   3387                     if (s->contains(c)) {
   3388                         // The character is in the set.  A Match.
   3389                         fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText);
   3390                         break;
   3391                     }
   3392                 }
   3393 
   3394                 // the character wasn't in the set.
   3395                 fp = (REStackFrame *)fStack->popFrame(fFrameSize);
   3396             }
   3397             break;
   3398 
   3399 
   3400         case URX_DOTANY:
   3401             {
   3402                 // . matches anything, but stops at end-of-line.
   3403                 if (fp->fInputIdx >= fActiveLimit) {
   3404                     // At end of input.  Match failed.  Backtrack out.
   3405                     fHitEnd = TRUE;
   3406                     fp = (REStackFrame *)fStack->popFrame(fFrameSize);
   3407                     break;
   3408                 }
   3409 
   3410                 UTEXT_SETNATIVEINDEX(fInputText, fp->fInputIdx);
   3411 
   3412                 // There is input left.  Advance over one char, unless we've hit end-of-line
   3413                 UChar32 c = UTEXT_NEXT32(fInputText);
   3414                 if (isLineTerminator(c)) {
   3415                     // End of line in normal mode.   . does not match.
   3416                         fp = (REStackFrame *)fStack->popFrame(fFrameSize);
   3417                     break;
   3418                 }
   3419                 fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText);
   3420             }
   3421             break;
   3422 
   3423 
   3424         case URX_DOTANY_ALL:
   3425             {
   3426                 // ., in dot-matches-all (including new lines) mode
   3427                 if (fp->fInputIdx >= fActiveLimit) {
   3428                     // At end of input.  Match failed.  Backtrack out.
   3429                     fHitEnd = TRUE;
   3430                     fp = (REStackFrame *)fStack->popFrame(fFrameSize);
   3431                     break;
   3432                 }
   3433 
   3434                 UTEXT_SETNATIVEINDEX(fInputText, fp->fInputIdx);
   3435 
   3436                 // There is input left.  Advance over one char, except if we are
   3437                 //   at a cr/lf, advance over both of them.
   3438                 UChar32 c;
   3439                 c = UTEXT_NEXT32(fInputText);
   3440                 fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText);
   3441                 if (c==0x0d && fp->fInputIdx < fActiveLimit) {
   3442                     // In the case of a CR/LF, we need to advance over both.
   3443                     UChar32 nextc = UTEXT_CURRENT32(fInputText);
   3444                     if (nextc == 0x0a) {
   3445                         (void)UTEXT_NEXT32(fInputText);
   3446                         fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText);
   3447                     }
   3448                 }
   3449             }
   3450             break;
   3451 
   3452 
   3453         case URX_DOTANY_UNIX:
   3454             {
   3455                 // '.' operator, matches all, but stops at end-of-line.
   3456                 //   UNIX_LINES mode, so 0x0a is the only recognized line ending.
   3457                 if (fp->fInputIdx >= fActiveLimit) {
   3458                     // At end of input.  Match failed.  Backtrack out.
   3459                     fHitEnd = TRUE;
   3460                     fp = (REStackFrame *)fStack->popFrame(fFrameSize);
   3461                     break;
   3462                 }
   3463 
   3464                 UTEXT_SETNATIVEINDEX(fInputText, fp->fInputIdx);
   3465 
   3466                 // There is input left.  Advance over one char, unless we've hit end-of-line
   3467                 UChar32 c = UTEXT_NEXT32(fInputText);
   3468                 if (c == 0x0a) {
   3469                     // End of line in normal mode.   '.' does not match the \n
   3470                     fp = (REStackFrame *)fStack->popFrame(fFrameSize);
   3471                 } else {
   3472                     fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText);
   3473                 }
   3474             }
   3475             break;
   3476 
   3477 
   3478         case URX_JMP:
   3479             fp->fPatIdx = opValue;
   3480             break;
   3481 
   3482         case URX_FAIL:
   3483             isMatch = FALSE;
   3484             goto breakFromLoop;
   3485 
   3486         case URX_JMP_SAV:
   3487             U_ASSERT(opValue < fPattern->fCompiledPat->size());
   3488             fp = StateSave(fp, fp->fPatIdx, status);       // State save to loc following current
   3489             fp->fPatIdx = opValue;                         // Then JMP.
   3490             break;
   3491 
   3492         case URX_JMP_SAV_X:
   3493             // This opcode is used with (x)+, when x can match a zero length string.
   3494             // Same as JMP_SAV, except conditional on the match having made forward progress.
   3495             // Destination of the JMP must be a URX_STO_INP_LOC, from which we get the
   3496             //   data address of the input position at the start of the loop.
   3497             {
   3498                 U_ASSERT(opValue > 0 && opValue < fPattern->fCompiledPat->size());
   3499                 int32_t  stoOp = (int32_t)pat[opValue-1];
   3500                 U_ASSERT(URX_TYPE(stoOp) == URX_STO_INP_LOC);
   3501                 int32_t  frameLoc = URX_VAL(stoOp);
   3502                 U_ASSERT(frameLoc >= 0 && frameLoc < fFrameSize);
   3503                 int64_t prevInputIdx = fp->fExtra[frameLoc];
   3504                 U_ASSERT(prevInputIdx <= fp->fInputIdx);
   3505                 if (prevInputIdx < fp->fInputIdx) {
   3506                     // The match did make progress.  Repeat the loop.
   3507                     fp = StateSave(fp, fp->fPatIdx, status);  // State save to loc following current
   3508                     fp->fPatIdx = opValue;
   3509                     fp->fExtra[frameLoc] = fp->fInputIdx;
   3510                 }
   3511                 // If the input position did not advance, we do nothing here,
   3512                 //   execution will fall out of the loop.
   3513             }
   3514             break;
   3515 
   3516         case URX_CTR_INIT:
   3517             {
   3518                 U_ASSERT(opValue >= 0 && opValue < fFrameSize-2);
   3519                 fp->fExtra[opValue] = 0;                 //  Set the loop counter variable to zero
   3520 
   3521                 // Pick up the three extra operands that CTR_INIT has, and
   3522                 //    skip the pattern location counter past
   3523                 int32_t instrOperandLoc = (int32_t)fp->fPatIdx;
   3524                 fp->fPatIdx += 3;
   3525                 int32_t loopLoc  = URX_VAL(pat[instrOperandLoc]);
   3526                 int32_t minCount = (int32_t)pat[instrOperandLoc+1];
   3527                 int32_t maxCount = (int32_t)pat[instrOperandLoc+2];
   3528                 U_ASSERT(minCount>=0);
   3529                 U_ASSERT(maxCount>=minCount || maxCount==-1);
   3530                 U_ASSERT(loopLoc>=fp->fPatIdx);
   3531 
   3532                 if (minCount == 0) {
   3533                     fp = StateSave(fp, loopLoc+1, status);
   3534                 }
   3535                 if (maxCount == -1) {
   3536                     fp->fExtra[opValue+1] = fp->fInputIdx;   //  For loop breaking.
   3537                 } else if (maxCount == 0) {
   3538                     fp = (REStackFrame *)fStack->popFrame(fFrameSize);
   3539                 }
   3540             }
   3541             break;
   3542 
   3543         case URX_CTR_LOOP:
   3544             {
   3545                 U_ASSERT(opValue>0 && opValue < fp->fPatIdx-2);
   3546                 int32_t initOp = (int32_t)pat[opValue];
   3547                 U_ASSERT(URX_TYPE(initOp) == URX_CTR_INIT);
   3548                 int64_t *pCounter = &fp->fExtra[URX_VAL(initOp)];
   3549                 int32_t minCount  = (int32_t)pat[opValue+2];
   3550                 int32_t maxCount  = (int32_t)pat[opValue+3];
   3551                 (*pCounter)++;
   3552                 if ((uint64_t)*pCounter >= (uint32_t)maxCount && maxCount != -1) {
   3553                     U_ASSERT(*pCounter == maxCount);
   3554                     break;
   3555                 }
   3556                 if (*pCounter >= minCount) {
   3557                     if (maxCount == -1) {
   3558                         // Loop has no hard upper bound.
   3559                         // Check that it is progressing through the input, break if it is not.
   3560                         int64_t *pLastInputIdx =  &fp->fExtra[URX_VAL(initOp) + 1];
   3561                         if (fp->fInputIdx == *pLastInputIdx) {
   3562                             break;
   3563                         } else {
   3564                             *pLastInputIdx = fp->fInputIdx;
   3565                         }
   3566                     }
   3567                     fp = StateSave(fp, fp->fPatIdx, status);
   3568                 }
   3569                 fp->fPatIdx = opValue + 4;    // Loop back.
   3570             }
   3571             break;
   3572 
   3573         case URX_CTR_INIT_NG:
   3574             {
   3575                 // Initialize a non-greedy loop
   3576                 U_ASSERT(opValue >= 0 && opValue < fFrameSize-2);
   3577                 fp->fExtra[opValue] = 0;                 //  Set the loop counter variable to zero
   3578 
   3579                 // Pick up the three extra operands that CTR_INIT_NG has, and
   3580                 //    skip the pattern location counter past
   3581                 int32_t instrOperandLoc = (int32_t)fp->fPatIdx;
   3582                 fp->fPatIdx += 3;
   3583                 int32_t loopLoc  = URX_VAL(pat[instrOperandLoc]);
   3584                 int32_t minCount = (int32_t)pat[instrOperandLoc+1];
   3585                 int32_t maxCount = (int32_t)pat[instrOperandLoc+2];
   3586                 U_ASSERT(minCount>=0);
   3587                 U_ASSERT(maxCount>=minCount || maxCount==-1);
   3588                 U_ASSERT(loopLoc>fp->fPatIdx);
   3589                 if (maxCount == -1) {
   3590                     fp->fExtra[opValue+1] = fp->fInputIdx;   //  Save initial input index for loop breaking.
   3591                 }
   3592 
   3593                 if (minCount == 0) {
   3594                     if (maxCount != 0) {
   3595                         fp = StateSave(fp, fp->fPatIdx, status);
   3596                     }
   3597                     fp->fPatIdx = loopLoc+1;   // Continue with stuff after repeated block
   3598                 }
   3599             }
   3600             break;
   3601 
   3602         case URX_CTR_LOOP_NG:
   3603             {
   3604                 // Non-greedy {min, max} loops
   3605                 U_ASSERT(opValue>0 && opValue < fp->fPatIdx-2);
   3606                 int32_t initOp = (int32_t)pat[opValue];
   3607                 U_ASSERT(URX_TYPE(initOp) == URX_CTR_INIT_NG);
   3608                 int64_t *pCounter = &fp->fExtra[URX_VAL(initOp)];
   3609                 int32_t minCount  = (int32_t)pat[opValue+2];
   3610                 int32_t maxCount  = (int32_t)pat[opValue+3];
   3611 
   3612                 (*pCounter)++;
   3613                 if ((uint64_t)*pCounter >= (uint32_t)maxCount && maxCount != -1) {
   3614                     // The loop has matched the maximum permitted number of times.
   3615                     //   Break out of here with no action.  Matching will
   3616                     //   continue with the following pattern.
   3617                     U_ASSERT(*pCounter == maxCount);
   3618                     break;
   3619                 }
   3620 
   3621                 if (*pCounter < minCount) {
   3622                     // We haven't met the minimum number of matches yet.
   3623                     //   Loop back for another one.
   3624                     fp->fPatIdx = opValue + 4;    // Loop back.
   3625                 } else {
   3626                     // We do have the minimum number of matches.
   3627 
   3628                     // If there is no upper bound on the loop iterations, check that the input index
   3629                     // is progressing, and stop the loop if it is not.
   3630                     if (maxCount == -1) {
   3631                         int64_t *pLastInputIdx =  &fp->fExtra[URX_VAL(initOp) + 1];
   3632                         if (fp->fInputIdx == *pLastInputIdx) {
   3633                             break;
   3634                         }
   3635                         *pLastInputIdx = fp->fInputIdx;
   3636                     }
   3637 
   3638                     // Loop Continuation: we will fall into the pattern following the loop
   3639                     //   (non-greedy, don't execute loop body first), but first do
   3640                     //   a state save to the top of the loop, so that a match failure
   3641                     //   in the following pattern will try another iteration of the loop.
   3642                     fp = StateSave(fp, opValue + 4, status);
   3643                 }
   3644             }
   3645             break;
   3646 
   3647         case URX_STO_SP:
   3648             U_ASSERT(opValue >= 0 && opValue < fPattern->fDataSize);
   3649             fData[opValue] = fStack->size();
   3650             break;
   3651 
   3652         case URX_LD_SP:
   3653             {
   3654                 U_ASSERT(opValue >= 0 && opValue < fPattern->fDataSize);
   3655                 int32_t newStackSize = (int32_t)fData[opValue];
   3656                 U_ASSERT(newStackSize <= fStack->size());
   3657                 int64_t *newFP = fStack->getBuffer() + newStackSize - fFrameSize;
   3658                 if (newFP == (int64_t *)fp) {
   3659                     break;
   3660                 }
   3661                 int32_t i;
   3662                 for (i=0; i<fFrameSize; i++) {
   3663                     newFP[i] = ((int64_t *)fp)[i];
   3664                 }
   3665                 fp = (REStackFrame *)newFP;
   3666                 fStack->setSize(newStackSize);
   3667             }
   3668             break;
   3669 
   3670         case URX_BACKREF:
   3671             {
   3672                 U_ASSERT(opValue < fFrameSize);
   3673                 int64_t groupStartIdx = fp->fExtra[opValue];
   3674                 int64_t groupEndIdx   = fp->fExtra[opValue+1];
   3675                 U_ASSERT(groupStartIdx <= groupEndIdx);
   3676                 if (groupStartIdx < 0) {
   3677                     // This capture group has not participated in the match thus far,
   3678                     fp = (REStackFrame *)fStack->popFrame(fFrameSize);   // FAIL, no match.
   3679                     break;
   3680                 }
   3681                 UTEXT_SETNATIVEINDEX(fAltInputText, groupStartIdx);
   3682                 UTEXT_SETNATIVEINDEX(fInputText, fp->fInputIdx);
   3683 
   3684                 //   Note: if the capture group match was of an empty string the backref
   3685                 //         match succeeds.  Verified by testing:  Perl matches succeed
   3686                 //         in this case, so we do too.
   3687 
   3688                 UBool success = TRUE;
   3689                 for (;;) {
   3690                     if (utext_getNativeIndex(fAltInputText) >= groupEndIdx) {
   3691                         success = TRUE;
   3692                         break;
   3693                     }
   3694                     if (utext_getNativeIndex(fInputText) >= fActiveLimit) {
   3695                         success = FALSE;
   3696                         fHitEnd = TRUE;
   3697                         break;
   3698                     }
   3699                     UChar32 captureGroupChar = utext_next32(fAltInputText);
   3700                     UChar32 inputChar = utext_next32(fInputText);
   3701                     if (inputChar != captureGroupChar) {
   3702                         success = FALSE;
   3703                         break;
   3704                     }
   3705                 }
   3706 
   3707                 if (success) {
   3708                     fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText);
   3709                 } else {
   3710                     fp = (REStackFrame *)fStack->popFrame(fFrameSize);
   3711                 }
   3712             }
   3713             break;
   3714 
   3715 
   3716 
   3717         case URX_BACKREF_I:
   3718             {
   3719                 U_ASSERT(opValue < fFrameSize);
   3720                 int64_t groupStartIdx = fp->fExtra[opValue];
   3721                 int64_t groupEndIdx   = fp->fExtra[opValue+1];
   3722                 U_ASSERT(groupStartIdx <= groupEndIdx);
   3723                 if (groupStartIdx < 0) {
   3724                     // This capture group has not participated in the match thus far,
   3725                     fp = (REStackFrame *)fStack->popFrame(fFrameSize);   // FAIL, no match.
   3726                     break;
   3727                 }
   3728                 utext_setNativeIndex(fAltInputText, groupStartIdx);
   3729                 utext_setNativeIndex(fInputText, fp->fInputIdx);
   3730                 CaseFoldingUTextIterator captureGroupItr(*fAltInputText);
   3731                 CaseFoldingUTextIterator inputItr(*fInputText);
   3732 
   3733                 //   Note: if the capture group match was of an empty string the backref
   3734                 //         match succeeds.  Verified by testing:  Perl matches succeed
   3735                 //         in this case, so we do too.
   3736 
   3737                 UBool success = TRUE;
   3738                 for (;;) {
   3739                     if (!captureGroupItr.inExpansion() && utext_getNativeIndex(fAltInputText) >= groupEndIdx) {
   3740                         success = TRUE;
   3741                         break;
   3742                     }
   3743                     if (!inputItr.inExpansion() && utext_getNativeIndex(fInputText) >= fActiveLimit) {
   3744                         success = FALSE;
   3745                         fHitEnd = TRUE;
   3746                         break;
   3747                     }
   3748                     UChar32 captureGroupChar = captureGroupItr.next();
   3749                     UChar32 inputChar = inputItr.next();
   3750                     if (inputChar != captureGroupChar) {
   3751                         success = FALSE;
   3752                         break;
   3753                     }
   3754                 }
   3755 
   3756                 if (success && inputItr.inExpansion()) {
   3757                     // We otained a match by consuming part of a string obtained from
   3758                     // case-folding a single code point of the input text.
   3759                     // This does not count as an overall match.
   3760                     success = FALSE;
   3761                 }
   3762 
   3763                 if (success) {
   3764                     fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText);
   3765                 } else {
   3766                     fp = (REStackFrame *)fStack->popFrame(fFrameSize);
   3767                 }
   3768 
   3769             }
   3770             break;
   3771 
   3772         case URX_STO_INP_LOC:
   3773             {
   3774                 U_ASSERT(opValue >= 0 && opValue < fFrameSize);
   3775                 fp->fExtra[opValue] = fp->fInputIdx;
   3776             }
   3777             break;
   3778 
   3779         case URX_JMPX:
   3780             {
   3781                 int32_t instrOperandLoc = (int32_t)fp->fPatIdx;
   3782                 fp->fPatIdx += 1;
   3783                 int32_t dataLoc  = URX_VAL(pat[instrOperandLoc]);
   3784                 U_ASSERT(dataLoc >= 0 && dataLoc < fFrameSize);
   3785                 int64_t savedInputIdx = fp->fExtra[dataLoc];
   3786                 U_ASSERT(savedInputIdx <= fp->fInputIdx);
   3787                 if (savedInputIdx < fp->fInputIdx) {
   3788                     fp->fPatIdx = opValue;                               // JMP
   3789                 } else {
   3790                      fp = (REStackFrame *)fStack->popFrame(fFrameSize);   // FAIL, no progress in loop.
   3791                 }
   3792             }
   3793             break;
   3794 
   3795         case URX_LA_START:
   3796             {
   3797                 // Entering a lookahead block.
   3798                 // Save Stack Ptr, Input Pos.
   3799                 U_ASSERT(opValue>=0 && opValue+1<fPattern->fDataSize);
   3800                 fData[opValue]   = fStack->size();
   3801                 fData[opValue+1] = fp->fInputIdx;
   3802                 fActiveStart     = fLookStart;          // Set the match region change for
   3803                 fActiveLimit     = fLookLimit;          //   transparent bounds.
   3804             }
   3805             break;
   3806 
   3807         case URX_LA_END:
   3808             {
   3809                 // Leaving a look-ahead block.
   3810                 //  restore Stack Ptr, Input Pos to positions they had on entry to block.
   3811                 U_ASSERT(opValue>=0 && opValue+1<fPattern->fDataSize);
   3812                 int32_t stackSize = fStack->size();
   3813                 int32_t newStackSize =(int32_t)fData[opValue];
   3814                 U_ASSERT(stackSize >= newStackSize);
   3815                 if (stackSize > newStackSize) {
   3816                     // Copy the current top frame back to the new (cut back) top frame.
   3817                     //   This makes the capture groups from within the look-ahead
   3818                     //   expression available.
   3819                     int64_t *newFP = fStack->getBuffer() + newStackSize - fFrameSize;
   3820                     int32_t i;
   3821                     for (i=0; i<fFrameSize; i++) {
   3822                         newFP[i] = ((int64_t *)fp)[i];
   3823                     }
   3824                     fp = (REStackFrame *)newFP;
   3825                     fStack->setSize(newStackSize);
   3826                 }
   3827                 fp->fInputIdx = fData[opValue+1];
   3828 
   3829                 // Restore the active region bounds in the input string; they may have
   3830                 //    been changed because of transparent bounds on a Region.
   3831                 fActiveStart = fRegionStart;
   3832                 fActiveLimit = fRegionLimit;
   3833             }
   3834             break;
   3835 
   3836         case URX_ONECHAR_I:
   3837             // Case insensitive one char.  The char from the pattern is already case folded.
   3838             // Input text is not, but case folding the input can not reduce two or more code
   3839             // points to one.
   3840             if (fp->fInputIdx < fActiveLimit) {
   3841                 UTEXT_SETNATIVEINDEX(fInputText, fp->fInputIdx);
   3842 
   3843                 UChar32 c = UTEXT_NEXT32(fInputText);
   3844                 if (u_foldCase(c, U_FOLD_CASE_DEFAULT) == opValue) {
   3845                     fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText);
   3846                     break;
   3847                 }
   3848             } else {
   3849                 fHitEnd = TRUE;
   3850             }
   3851 
   3852             fp = (REStackFrame *)fStack->popFrame(fFrameSize);
   3853             break;
   3854 
   3855         case URX_STRING_I:
   3856             {
   3857                 // Case-insensitive test input against a literal string.
   3858                 // Strings require two slots in the compiled pattern, one for the
   3859                 //   offset to the string text, and one for the length.
   3860                 //   The compiled string has already been case folded.
   3861                 {
   3862                     const UChar *patternString = litText + opValue;
   3863                     int32_t      patternStringIdx  = 0;
   3864 
   3865                     op      = (int32_t)pat[fp->fPatIdx];
   3866                     fp->fPatIdx++;
   3867                     opType  = URX_TYPE(op);
   3868                     opValue = URX_VAL(op);
   3869                     U_ASSERT(opType == URX_STRING_LEN);
   3870                     int32_t patternStringLen = opValue;  // Length of the string from the pattern.
   3871 
   3872 
   3873                     UChar32   cPattern;
   3874                     UChar32   cText;
   3875                     UBool     success = TRUE;
   3876 
   3877                     UTEXT_SETNATIVEINDEX(fInputText, fp->fInputIdx);
   3878                     CaseFoldingUTextIterator inputIterator(*fInputText);
   3879                     while (patternStringIdx < patternStringLen) {
   3880                         if (!inputIterator.inExpansion() && UTEXT_GETNATIVEINDEX(fInputText) >= fActiveLimit) {
   3881                             success = FALSE;
   3882                             fHitEnd = TRUE;
   3883                             break;
   3884                         }
   3885                         U16_NEXT(patternString, patternStringIdx, patternStringLen, cPattern);
   3886                         cText = inputIterator.next();
   3887                         if (cText != cPattern) {
   3888                             success = FALSE;
   3889                             break;
   3890                         }
   3891                     }
   3892                     if (inputIterator.inExpansion()) {
   3893                         success = FALSE;
   3894                     }
   3895 
   3896                     if (success) {
   3897                         fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText);
   3898                     } else {
   3899                         fp = (REStackFrame *)fStack->popFrame(fFrameSize);
   3900                     }
   3901                 }
   3902             }
   3903             break;
   3904 
   3905         case URX_LB_START:
   3906             {
   3907                 // Entering a look-behind block.
   3908                 // Save Stack Ptr, Input Pos.
   3909                 //   TODO:  implement transparent bounds.  Ticket #6067
   3910                 U_ASSERT(opValue>=0 && opValue+1<fPattern->fDataSize);
   3911                 fData[opValue]   = fStack->size();
   3912                 fData[opValue+1] = fp->fInputIdx;
   3913                 // Init the variable containing the start index for attempted matches.
   3914                 fData[opValue+2] = -1;
   3915                 // Save input string length, then reset to pin any matches to end at
   3916                 //   the current position.
   3917                 fData[opValue+3] = fActiveLimit;
   3918                 fActiveLimit     = fp->fInputIdx;
   3919             }
   3920             break;
   3921 
   3922 
   3923         case URX_LB_CONT:
   3924             {
   3925                 // Positive Look-Behind, at top of loop checking for matches of LB expression
   3926                 //    at all possible input starting positions.
   3927 
   3928                 // Fetch the min and max possible match lengths.  They are the operands
   3929                 //   of this op in the pattern.
   3930                 int32_t minML = (int32_t)pat[fp->fPatIdx++];
   3931                 int32_t maxML = (int32_t)pat[fp->fPatIdx++];
   3932                 U_ASSERT(minML <= maxML);
   3933                 U_ASSERT(minML >= 0);
   3934 
   3935                 // Fetch (from data) the last input index where a match was attempted.
   3936                 U_ASSERT(opValue>=0 && opValue+1<fPattern->fDataSize);
   3937                 int64_t  *lbStartIdx = &fData[opValue+2];
   3938                 if (*lbStartIdx < 0) {
   3939                     // First time through loop.
   3940                     *lbStartIdx = fp->fInputIdx - minML;
   3941                 } else {
   3942                     // 2nd through nth time through the loop.
   3943                     // Back up start position for match by one.
   3944                     if (*lbStartIdx == 0) {
   3945                         (*lbStartIdx)--;
   3946                     } else {
   3947                         UTEXT_SETNATIVEINDEX(fInputText, *lbStartIdx);
   3948                         (void)UTEXT_PREVIOUS32(fInputText);
   3949                         *lbStartIdx = UTEXT_GETNATIVEINDEX(fInputText);
   3950                     }
   3951                 }
   3952 
   3953                 if (*lbStartIdx < 0 || *lbStartIdx < fp->fInputIdx - maxML) {
   3954                     // We have tried all potential match starting points without
   3955                     //  getting a match.  Backtrack out, and out of the
   3956                     //   Look Behind altogether.
   3957                     fp = (REStackFrame *)fStack->popFrame(fFrameSize);
   3958                     int64_t restoreInputLen = fData[opValue+3];
   3959                     U_ASSERT(restoreInputLen >= fActiveLimit);
   3960                     U_ASSERT(restoreInputLen <= fInputLength);
   3961                     fActiveLimit = restoreInputLen;
   3962                     break;
   3963                 }
   3964 
   3965                 //    Save state to this URX_LB_CONT op, so failure to match will repeat the loop.
   3966                 //      (successful match will fall off the end of the loop.)
   3967                 fp = StateSave(fp, fp->fPatIdx-3, status);
   3968                 fp->fInputIdx = *lbStartIdx;
   3969             }
   3970             break;
   3971 
   3972         case URX_LB_END:
   3973             // End of a look-behind block, after a successful match.
   3974             {
   3975                 U_ASSERT(opValue>=0 && opValue+1<fPattern->fDataSize);
   3976                 if (fp->fInputIdx != fActiveLimit) {
   3977                     //  The look-behind expression matched, but the match did not
   3978                     //    extend all the way to the point that we are looking behind from.
   3979                     //  FAIL out of here, which will take us back to the LB_CONT, which
   3980                     //     will retry the match starting at another position or fail
   3981                     //     the look-behind altogether, whichever is appropriate.
   3982                     fp = (REStackFrame *)fStack->popFrame(fFrameSize);
   3983                     break;
   3984                 }
   3985 
   3986                 // Look-behind match is good.  Restore the orignal input string length,
   3987                 //   which had been truncated to pin the end of the lookbehind match to the
   3988                 //   position being looked-behind.
   3989                 int64_t originalInputLen = fData[opValue+3];
   3990                 U_ASSERT(originalInputLen >= fActiveLimit);
   3991                 U_ASSERT(originalInputLen <= fInputLength);
   3992                 fActiveLimit = originalInputLen;
   3993             }
   3994             break;
   3995 
   3996 
   3997         case URX_LBN_CONT:
   3998             {
   3999                 // Negative Look-Behind, at top of loop checking for matches of LB expression
   4000                 //    at all possible input starting positions.
   4001 
   4002                 // Fetch the extra parameters of this op.
   4003                 int32_t minML       = (int32_t)pat[fp->fPatIdx++];
   4004                 int32_t maxML       = (int32_t)pat[fp->fPatIdx++];
   4005                 int32_t continueLoc = (int32_t)pat[fp->fPatIdx++];
   4006                         continueLoc = URX_VAL(continueLoc);
   4007                 U_ASSERT(minML <= maxML);
   4008                 U_ASSERT(minML >= 0);
   4009                 U_ASSERT(continueLoc > fp->fPatIdx);
   4010 
   4011                 // Fetch (from data) the last input index where a match was attempted.
   4012                 U_ASSERT(opValue>=0 && opValue+1<fPattern->fDataSize);
   4013                 int64_t  *lbStartIdx = &fData[opValue+2];
   4014                 if (*lbStartIdx < 0) {
   4015                     // First time through loop.
   4016                     *lbStartIdx = fp->fInputIdx - minML;
   4017                 } else {
   4018                     // 2nd through nth time through the loop.
   4019                     // Back up start position for match by one.
   4020                     if (*lbStartIdx == 0) {
   4021                         (*lbStartIdx)--;
   4022                     } else {
   4023                         UTEXT_SETNATIVEINDEX(fInputText, *lbStartIdx);
   4024                         (void)UTEXT_PREVIOUS32(fInputText);
   4025                         *lbStartIdx = UTEXT_GETNATIVEINDEX(fInputText);
   4026                     }
   4027                 }
   4028 
   4029                 if (*lbStartIdx < 0 || *lbStartIdx < fp->fInputIdx - maxML) {
   4030                     // We have tried all potential match starting points without
   4031                     //  getting a match, which means that the negative lookbehind as
   4032                     //  a whole has succeeded.  Jump forward to the continue location
   4033                     int64_t restoreInputLen = fData[opValue+3];
   4034                     U_ASSERT(restoreInputLen >= fActiveLimit);
   4035                     U_ASSERT(restoreInputLen <= fInputLength);
   4036                     fActiveLimit = restoreInputLen;
   4037                     fp->fPatIdx = continueLoc;
   4038                     break;
   4039                 }
   4040 
   4041                 //    Save state to this URX_LB_CONT op, so failure to match will repeat the loop.
   4042                 //      (successful match will cause a FAIL out of the loop altogether.)
   4043                 fp = StateSave(fp, fp->fPatIdx-4, status);
   4044                 fp->fInputIdx = *lbStartIdx;
   4045             }
   4046             break;
   4047 
   4048         case URX_LBN_END:
   4049             // End of a negative look-behind block, after a successful match.
   4050             {
   4051                 U_ASSERT(opValue>=0 && opValue+1<fPattern->fDataSize);
   4052                 if (fp->fInputIdx != fActiveLimit) {
   4053                     //  The look-behind expression matched, but the match did not
   4054                     //    extend all the way to the point that we are looking behind from.
   4055                     //  FAIL out of here, which will take us back to the LB_CONT, which
   4056                     //     will retry the match starting at another position or succeed
   4057                     //     the look-behind altogether, whichever is appropriate.
   4058                     fp = (REStackFrame *)fStack->popFrame(fFrameSize);
   4059                     break;
   4060                 }
   4061 
   4062                 // Look-behind expression matched, which means look-behind test as
   4063                 //   a whole Fails
   4064 
   4065                 //   Restore the orignal input string length, which had been truncated
   4066                 //   inorder to pin the end of the lookbehind match
   4067                 //   to the position being looked-behind.
   4068                 int64_t originalInputLen = fData[opValue+3];
   4069                 U_ASSERT(originalInputLen >= fActiveLimit);
   4070                 U_ASSERT(originalInputLen <= fInputLength);
   4071                 fActiveLimit = originalInputLen;
   4072 
   4073                 // Restore original stack position, discarding any state saved
   4074                 //   by the successful pattern match.
   4075                 U_ASSERT(opValue>=0 && opValue+1<fPattern->fDataSize);
   4076                 int32_t newStackSize = (int32_t)fData[opValue];
   4077                 U_ASSERT(fStack->size() > newStackSize);
   4078                 fStack->setSize(newStackSize);
   4079 
   4080                 //  FAIL, which will take control back to someplace
   4081                 //  prior to entering the look-behind test.
   4082                 fp = (REStackFrame *)fStack->popFrame(fFrameSize);
   4083             }
   4084             break;
   4085 
   4086 
   4087         case URX_LOOP_SR_I:
   4088             // Loop Initialization for the optimized implementation of
   4089             //     [some character set]*
   4090             //   This op scans through all matching input.
   4091             //   The following LOOP_C op emulates stack unwinding if the following pattern fails.
   4092             {
   4093                 U_ASSERT(opValue > 0 && opValue < sets->size());
   4094                 Regex8BitSet *s8 = &fPattern->fSets8[opValue];
   4095                 UnicodeSet   *s  = (UnicodeSet *)sets->elementAt(opValue);
   4096 
   4097                 // Loop through input, until either the input is exhausted or
   4098                 //   we reach a character that is not a member of the set.
   4099                 int64_t ix = fp->fInputIdx;
   4100                 UTEXT_SETNATIVEINDEX(fInputText, ix);
   4101                 for (;;) {
   4102                     if (ix >= fActiveLimit) {
   4103                         fHitEnd = TRUE;
   4104                         break;
   4105                     }
   4106                     UChar32 c = UTEXT_NEXT32(fInputText);
   4107                     if (c<256) {
   4108                         if (s8->contains(c) == FALSE) {
   4109                             break;
   4110                         }
   4111                     } else {
   4112                         if (s->contains(c) == FALSE) {
   4113                             break;
   4114                         }
   4115                     }
   4116                     ix = UTEXT_GETNATIVEINDEX(fInputText);
   4117                 }
   4118 
   4119                 // If there were no matching characters, skip over the loop altogether.
   4120                 //   The loop doesn't run at all, a * op always succeeds.
   4121                 if (ix == fp->fInputIdx) {
   4122                     fp->fPatIdx++;   // skip the URX_LOOP_C op.
   4123                     break;
   4124                 }
   4125 
   4126                 // Peek ahead in the compiled pattern, to the URX_LOOP_C that
   4127                 //   must follow.  It's operand is the stack location
   4128                 //   that holds the starting input index for the match of this [set]*
   4129                 int32_t loopcOp = (int32_t)pat[fp->fPatIdx];
   4130                 U_ASSERT(URX_TYPE(loopcOp) == URX_LOOP_C);
   4131                 int32_t stackLoc = URX_VAL(loopcOp);
   4132                 U_ASSERT(stackLoc >= 0 && stackLoc < fFrameSize);
   4133                 fp->fExtra[stackLoc] = fp->fInputIdx;
   4134                 fp->fInputIdx = ix;
   4135 
   4136                 // Save State to the URX_LOOP_C op that follows this one,
   4137                 //   so that match failures in the following code will return to there.
   4138                 //   Then bump the pattern idx so the LOOP_C is skipped on the way out of here.
   4139                 fp = StateSave(fp, fp->fPatIdx, status);
   4140                 fp->fPatIdx++;
   4141             }
   4142             break;
   4143 
   4144 
   4145         case URX_LOOP_DOT_I:
   4146             // Loop Initialization for the optimized implementation of .*
   4147             //   This op scans through all remaining input.
   4148             //   The following LOOP_C op emulates stack unwinding if the following pattern fails.
   4149             {
   4150                 // Loop through input until the input is exhausted (we reach an end-of-line)
   4151                 // In DOTALL mode, we can just go straight to the end of the input.
   4152                 int64_t ix;
   4153                 if ((opValue & 1) == 1) {
   4154                     // Dot-matches-All mode.  Jump straight to the end of the string.
   4155                     ix = fActiveLimit;
   4156                     fHitEnd = TRUE;
   4157                 } else {
   4158                     // NOT DOT ALL mode.  Line endings do not match '.'
   4159                     // Scan forward until a line ending or end of input.
   4160                     ix = fp->fInputIdx;
   4161                     UTEXT_SETNATIVEINDEX(fInputText, ix);
   4162                     for (;;) {
   4163                         if (ix >= fActiveLimit) {
   4164                             fHitEnd = TRUE;
   4165                             break;
   4166                         }
   4167                         UChar32 c = UTEXT_NEXT32(fInputText);
   4168                         if ((c & 0x7f) <= 0x29) {          // Fast filter of non-new-line-s
   4169                             if ((c == 0x0a) ||             //  0x0a is newline in both modes.
   4170                                (((opValue & 2) == 0) &&    // IF not UNIX_LINES mode
   4171                                     isLineTerminator(c))) {
   4172                                 //  char is a line ending.  Exit the scanning loop.
   4173                                 break;
   4174                             }
   4175                         }
   4176                         ix = UTEXT_GETNATIVEINDEX(fInputText);
   4177                     }
   4178                 }
   4179 
   4180                 // If there were no matching characters, skip over the loop altogether.
   4181                 //   The loop doesn't run at all, a * op always succeeds.
   4182                 if (ix == fp->fInputIdx) {
   4183                     fp->fPatIdx++;   // skip the URX_LOOP_C op.
   4184                     break;
   4185                 }
   4186 
   4187                 // Peek ahead in the compiled pattern, to the URX_LOOP_C that
   4188                 //   must follow.  It's operand is the stack location
   4189                 //   that holds the starting input index for the match of this .*
   4190                 int32_t loopcOp = (int32_t)pat[fp->fPatIdx];
   4191                 U_ASSERT(URX_TYPE(loopcOp) == URX_LOOP_C);
   4192                 int32_t stackLoc = URX_VAL(loopcOp);
   4193                 U_ASSERT(stackLoc >= 0 && stackLoc < fFrameSize);
   4194                 fp->fExtra[stackLoc] = fp->fInputIdx;
   4195                 fp->fInputIdx = ix;
   4196 
   4197                 // Save State to the URX_LOOP_C op that follows this one,
   4198                 //   so that match failures in the following code will return to there.
   4199                 //   Then bump the pattern idx so the LOOP_C is skipped on the way out of here.
   4200                 fp = StateSave(fp, fp->fPatIdx, status);
   4201                 fp->fPatIdx++;
   4202             }
   4203             break;
   4204 
   4205 
   4206         case URX_LOOP_C:
   4207             {
   4208                 U_ASSERT(opValue>=0 && opValue<fFrameSize);
   4209                 backSearchIndex = fp->fExtra[opValue];
   4210                 U_ASSERT(backSearchIndex <= fp->fInputIdx);
   4211                 if (backSearchIndex == fp->fInputIdx) {
   4212                     // We've backed up the input idx to the point that the loop started.
   4213                     // The loop is done.  Leave here without saving state.
   4214                     //  Subsequent failures won't come back here.
   4215                     break;
   4216                 }
   4217                 // Set up for the next iteration of the loop, with input index
   4218                 //   backed up by one from the last time through,
   4219                 //   and a state save to this instruction in case the following code fails again.
   4220                 //   (We're going backwards because this loop emulates stack unwinding, not
   4221                 //    the initial scan forward.)
   4222                 U_ASSERT(fp->fInputIdx > 0);
   4223                 UTEXT_SETNATIVEINDEX(fInputText, fp->fInputIdx);
   4224                 UChar32 prevC = UTEXT_PREVIOUS32(fInputText);
   4225                 fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText);
   4226 
   4227                 UChar32 twoPrevC = UTEXT_PREVIOUS32(fInputText);
   4228                 if (prevC == 0x0a &&
   4229                     fp->fInputIdx > backSearchIndex &&
   4230                     twoPrevC == 0x0d) {
   4231                     int32_t prevOp = (int32_t)pat[fp->fPatIdx-2];
   4232                     if (URX_TYPE(prevOp) == URX_LOOP_DOT_I) {
   4233                         // .*, stepping back over CRLF pair.
   4234                         fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText);
   4235                     }
   4236                 }
   4237 
   4238 
   4239                 fp = StateSave(fp, fp->fPatIdx-1, status);
   4240             }
   4241             break;
   4242 
   4243 
   4244 
   4245         default:
   4246             // Trouble.  The compiled pattern contains an entry with an
   4247             //           unrecognized type tag.
   4248             U_ASSERT(FALSE);
   4249         }
   4250 
   4251         if (U_FAILURE(status)) {
   4252             isMatch = FALSE;
   4253             break;
   4254         }
   4255     }
   4256 
   4257 breakFromLoop:
   4258     fMatch = isMatch;
   4259     if (isMatch) {
   4260         fLastMatchEnd = fMatchEnd;
   4261         fMatchStart   = startIdx;
   4262         fMatchEnd     = fp->fInputIdx;
   4263     }
   4264 
   4265 #ifdef REGEX_RUN_DEBUG
   4266     if (fTraceDebug) {
   4267         if (isMatch) {
   4268             printf("Match.  start=%ld   end=%ld\n\n", fMatchStart, fMatchEnd);
   4269         } else {
   4270             printf("No match\n\n");
   4271         }
   4272     }
   4273 #endif
   4274 
   4275     fFrame = fp;                // The active stack frame when the engine stopped.
   4276                                 //   Contains the capture group results that we need to
   4277                                 //    access later.
   4278     return;
   4279 }
   4280 
   4281 
   4282 //--------------------------------------------------------------------------------
   4283 //
   4284 //   MatchChunkAt   This is the actual matching engine. Like MatchAt, but with the
   4285 //                  assumption that the entire string is available in the UText's
   4286 //                  chunk buffer. For now, that means we can use int32_t indexes,
   4287 //                  except for anything that needs to be saved (like group starts
   4288 //                  and ends).
   4289 //
   4290 //                  startIdx:    begin matching a this index.
   4291 //                  toEnd:       if true, match must extend to end of the input region
   4292 //
   4293 //--------------------------------------------------------------------------------
   4294 void RegexMatcher::MatchChunkAt(int32_t startIdx, UBool toEnd, UErrorCode &status) {
   4295     UBool       isMatch  = FALSE;      // True if the we have a match.
   4296 
   4297     int32_t     backSearchIndex = INT32_MAX; // used after greedy single-character matches for searching backwards
   4298 
   4299     int32_t     op;                    // Operation from the compiled pattern, split into
   4300     int32_t     opType;                //    the opcode
   4301     int32_t     opValue;               //    and the operand value.
   4302 
   4303 #ifdef REGEX_RUN_DEBUG
   4304     if (fTraceDebug) {
   4305         printf("MatchAt(startIdx=%d)\n", startIdx);
   4306         printf("Original Pattern: ");
   4307         UChar32 c = utext_next32From(fPattern->fPattern, 0);
   4308         while (c != U_SENTINEL) {
   4309             if (c<32 || c>256) {
   4310                 c = '.';
   4311             }
   4312             printf("%c", c);
   4313 
   4314             c = UTEXT_NEXT32(fPattern->fPattern);
   4315         }
   4316         printf("\n");
   4317         printf("Input String: ");
   4318         c = utext_next32From(fInputText, 0);
   4319         while (c != U_SENTINEL) {
   4320             if (c<32 || c>256) {
   4321                 c = '.';
   4322             }
   4323             printf("%c", c);
   4324 
   4325             c = UTEXT_NEXT32(fInputText);
   4326         }
   4327         printf("\n");
   4328         printf("\n");
   4329     }
   4330 #endif
   4331 
   4332     if (U_FAILURE(status)) {
   4333         return;
   4334     }
   4335 
   4336     //  Cache frequently referenced items from the compiled pattern
   4337     //
   4338     int64_t             *pat           = fPattern->fCompiledPat->getBuffer();
   4339 
   4340     const UChar         *litText       = fPattern->fLiteralText.getBuffer();
   4341     UVector             *sets          = fPattern->fSets;
   4342 
   4343     const UChar         *inputBuf      = fInputText->chunkContents;
   4344 
   4345     fFrameSize = fPattern->fFrameSize;
   4346     REStackFrame        *fp            = resetStack();
   4347 
   4348     fp->fPatIdx   = 0;
   4349     fp->fInputIdx = startIdx;
   4350 
   4351     // Zero out the pattern's static data
   4352     int32_t i;
   4353     for (i = 0; i<fPattern->fDataSize; i++) {
   4354         fData[i] = 0;
   4355     }
   4356 
   4357     //
   4358     //  Main loop for interpreting the compiled pattern.
   4359     //  One iteration of the loop per pattern operation performed.
   4360     //
   4361     for (;;) {
   4362         op      = (int32_t)pat[fp->fPatIdx];
   4363         opType  = URX_TYPE(op);
   4364         opValue = URX_VAL(op);
   4365 #ifdef REGEX_RUN_DEBUG
   4366         if (fTraceDebug) {
   4367             UTEXT_SETNATIVEINDEX(fInputText, fp->fInputIdx);
   4368             printf("inputIdx=%ld   inputChar=%x   sp=%3ld   activeLimit=%ld  ", fp->fInputIdx,
   4369                    UTEXT_CURRENT32(fInputText), (int64_t *)fp-fStack->getBuffer(), fActiveLimit);
   4370             fPattern->dumpOp(fp->fPatIdx);
   4371         }
   4372 #endif
   4373         fp->fPatIdx++;
   4374 
   4375         switch (opType) {
   4376 
   4377 
   4378         case URX_NOP:
   4379             break;
   4380 
   4381 
   4382         case URX_BACKTRACK:
   4383             // Force a backtrack.  In some circumstances, the pattern compiler
   4384             //   will notice that the pattern can't possibly match anything, and will
   4385             //   emit one of these at that point.
   4386             fp = (REStackFrame *)fStack->popFrame(fFrameSize);
   4387             break;
   4388 
   4389 
   4390         case URX_ONECHAR:
   4391             if (fp->fInputIdx < fActiveLimit) {
   4392                 UChar32 c;
   4393                 U16_NEXT(inputBuf, fp->fInputIdx, fActiveLimit, c);
   4394                 if (c == opValue) {
   4395                     break;
   4396                 }
   4397             } else {
   4398                 fHitEnd = TRUE;
   4399             }
   4400             fp = (REStackFrame *)fStack->popFrame(fFrameSize);
   4401             break;
   4402 
   4403 
   4404         case URX_STRING:
   4405             {
   4406                 // Test input against a literal string.
   4407                 // Strings require two slots in the compiled pattern, one for the
   4408                 //   offset to the string text, and one for the length.
   4409                 int32_t   stringStartIdx = opValue;
   4410                 int32_t   stringLen;
   4411 
   4412                 op      = (int32_t)pat[fp->fPatIdx];     // Fetch the second operand
   4413                 fp->fPatIdx++;
   4414                 opType    = URX_TYPE(op);
   4415                 stringLen = URX_VAL(op);
   4416                 U_ASSERT(opType == URX_STRING_LEN);
   4417                 U_ASSERT(stringLen >= 2);
   4418 
   4419                 const UChar * pInp = inputBuf + fp->fInputIdx;
   4420                 const UChar * pInpLimit = inputBuf + fActiveLimit;
   4421                 const UChar * pPat = litText+stringStartIdx;
   4422                 const UChar * pEnd = pInp + stringLen;
   4423                 UBool success = TRUE;
   4424                 while (pInp < pEnd) {
   4425                     if (pInp >= pInpLimit) {
   4426                         fHitEnd = TRUE;
   4427                         success = FALSE;
   4428                         break;
   4429                     }
   4430                     if (*pInp++ != *pPat++) {
   4431                         success = FALSE;
   4432                         break;
   4433                     }
   4434                 }
   4435 
   4436                 if (success) {
   4437                     fp->fInputIdx += stringLen;
   4438                 } else {
   4439                     fp = (REStackFrame *)fStack->popFrame(fFrameSize);
   4440                 }
   4441             }
   4442             break;
   4443 
   4444 
   4445         case URX_STATE_SAVE:
   4446             fp = StateSave(fp, opValue, status);
   4447             break;
   4448 
   4449 
   4450         case URX_END:
   4451             // The match loop will exit via this path on a successful match,
   4452             //   when we reach the end of the pattern.
   4453             if (toEnd && fp->fInputIdx != fActiveLimit) {
   4454                 // The pattern matched, but not to the end of input.  Try some more.
   4455                 fp = (REStackFrame *)fStack->popFrame(fFrameSize);
   4456                 break;
   4457             }
   4458             isMatch = TRUE;
   4459             goto  breakFromLoop;
   4460 
   4461             // Start and End Capture stack frame variables are laid out out like this:
   4462             //  fp->fExtra[opValue]  - The start of a completed capture group
   4463             //             opValue+1 - The end   of a completed capture group
   4464             //             opValue+2 - the start of a capture group whose end
   4465             //                          has not yet been reached (and might not ever be).
   4466         case URX_START_CAPTURE:
   4467             U_ASSERT(opValue >= 0 && opValue < fFrameSize-3);
   4468             fp->fExtra[opValue+2] = fp->fInputIdx;
   4469             break;
   4470 
   4471 
   4472         case URX_END_CAPTURE:
   4473             U_ASSERT(opValue >= 0 && opValue < fFrameSize-3);
   4474             U_ASSERT(fp->fExtra[opValue+2] >= 0);            // Start pos for this group must be set.
   4475             fp->fExtra[opValue]   = fp->fExtra[opValue+2];   // Tentative start becomes real.
   4476             fp->fExtra[opValue+1] = fp->fInputIdx;           // End position
   4477             U_ASSERT(fp->fExtra[opValue] <= fp->fExtra[opValue+1]);
   4478             break;
   4479 
   4480 
   4481         case URX_DOLLAR:                   //  $, test for End of line
   4482             //     or for position before new line at end of input
   4483             if (fp->fInputIdx < fAnchorLimit-2) {
   4484                 // We are no where near the end of input.  Fail.
   4485                 //   This is the common case.  Keep it first.
   4486                 fp = (REStackFrame *)fStack->popFrame(fFrameSize);
   4487                 break;
   4488             }
   4489             if (fp->fInputIdx >= fAnchorLimit) {
   4490                 // We really are at the end of input.  Success.
   4491                 fHitEnd = TRUE;
   4492                 fRequireEnd = TRUE;
   4493                 break;
   4494             }
   4495 
   4496             // If we are positioned just before a new-line that is located at the
   4497             //   end of input, succeed.
   4498             if (fp->fInputIdx == fAnchorLimit-1) {
   4499                 UChar32 c;
   4500                 U16_GET(inputBuf, fAnchorStart, fp->fInputIdx, fAnchorLimit, c);
   4501 
   4502                 if (isLineTerminator(c)) {
   4503                     if ( !(c==0x0a && fp->fInputIdx>fAnchorStart && inputBuf[fp->fInputIdx-1]==0x0d)) {
   4504                         // At new-line at end of input. Success
   4505                         fHitEnd = TRUE;
   4506                         fRequireEnd = TRUE;
   4507                         break;
   4508                     }
   4509                 }
   4510             } else if (fp->fInputIdx == fAnchorLimit-2 &&
   4511                 inputBuf[fp->fInputIdx]==0x0d && inputBuf[fp->fInputIdx+1]==0x0a) {
   4512                     fHitEnd = TRUE;
   4513                     fRequireEnd = TRUE;
   4514                     break;                         // At CR/LF at end of input.  Success
   4515             }
   4516 
   4517             fp = (REStackFrame *)fStack->popFrame(fFrameSize);
   4518 
   4519             break;
   4520 
   4521 
   4522         case URX_DOLLAR_D:                   //  $, test for End of Line, in UNIX_LINES mode.
   4523             if (fp->fInputIdx >= fAnchorLimit-1) {
   4524                 // Either at the last character of input, or off the end.
   4525                 if (fp->fInputIdx == fAnchorLimit-1) {
   4526                     // At last char of input.  Success if it's a new line.
   4527                     if (inputBuf[fp->fInputIdx] == 0x0a) {
   4528                         fHitEnd = TRUE;
   4529                         fRequireEnd = TRUE;
   4530                         break;
   4531                     }
   4532                 } else {
   4533                     // Off the end of input.  Success.
   4534                     fHitEnd = TRUE;
   4535                     fRequireEnd = TRUE;
   4536                     break;
   4537                 }
   4538             }
   4539 
   4540             // Not at end of input.  Back-track out.
   4541             fp = (REStackFrame *)fStack->popFrame(fFrameSize);
   4542             break;
   4543 
   4544 
   4545         case URX_DOLLAR_M:                //  $, test for End of line in multi-line mode
   4546             {
   4547                 if (fp->fInputIdx >= fAnchorLimit) {
   4548                     // We really are at the end of input.  Success.
   4549                     fHitEnd = TRUE;
   4550                     fRequireEnd = TRUE;
   4551                     break;
   4552                 }
   4553                 // If we are positioned just before a new-line, succeed.
   4554                 // It makes no difference where the new-line is within the input.
   4555                 UChar32 c = inputBuf[fp->fInputIdx];
   4556                 if (isLineTerminator(c)) {
   4557                     // At a line end, except for the odd chance of  being in the middle of a CR/LF sequence
   4558                     //  In multi-line mode, hitting a new-line just before the end of input does not
   4559                     //   set the hitEnd or requireEnd flags
   4560                     if ( !(c==0x0a && fp->fInputIdx>fAnchorStart && inputBuf[fp->fInputIdx-1]==0x0d)) {
   4561                         break;
   4562                     }
   4563                 }
   4564                 // not at a new line.  Fail.
   4565                 fp = (REStackFrame *)fStack->popFrame(fFrameSize);
   4566             }
   4567             break;
   4568 
   4569 
   4570         case URX_DOLLAR_MD:                //  $, test for End of line in multi-line and UNIX_LINES mode
   4571             {
   4572                 if (fp->fInputIdx >= fAnchorLimit) {
   4573                     // We really are at the end of input.  Success.
   4574                     fHitEnd = TRUE;
   4575                     fRequireEnd = TRUE;  // Java set requireEnd in this case, even though
   4576                     break;               //   adding a new-line would not lose the match.
   4577                 }
   4578                 // If we are not positioned just before a new-line, the test fails; backtrack out.
   4579                 // It makes no difference where the new-line is within the input.
   4580                 if (inputBuf[fp->fInputIdx] != 0x0a) {
   4581                     fp = (REStackFrame *)fStack->popFrame(fFrameSize);
   4582                 }
   4583             }
   4584             break;
   4585 
   4586 
   4587         case URX_CARET:                    //  ^, test for start of line
   4588             if (fp->fInputIdx != fAnchorStart) {
   4589                 fp = (REStackFrame *)fStack->popFrame(fFrameSize);
   4590             }
   4591             break;
   4592 
   4593 
   4594         case URX_CARET_M:                   //  ^, test for start of line in mulit-line mode
   4595             {
   4596                 if (fp->fInputIdx == fAnchorStart) {
   4597                     // We are at the start input.  Success.
   4598                     break;
   4599                 }
   4600                 // Check whether character just before the current pos is a new-line
   4601                 //   unless we are at the end of input
   4602                 UChar  c = inputBuf[fp->fInputIdx - 1];
   4603                 if ((fp->fInputIdx < fAnchorLimit) &&
   4604                     isLineTerminator(c)) {
   4605                     //  It's a new-line.  ^ is true.  Success.
   4606                     //  TODO:  what should be done with positions between a CR and LF?
   4607                     break;
   4608                 }
   4609                 // Not at the start of a line.  Fail.
   4610                 fp = (REStackFrame *)fStack->popFrame(fFrameSize);
   4611             }
   4612             break;
   4613 
   4614 
   4615         case URX_CARET_M_UNIX:       //  ^, test for start of line in mulit-line + Unix-line mode
   4616             {
   4617                 U_ASSERT(fp->fInputIdx >= fAnchorStart);
   4618                 if (fp->fInputIdx <= fAnchorStart) {
   4619                     // We are at the start input.  Success.
   4620                     break;
   4621                 }
   4622                 // Check whether character just before the current pos is a new-line
   4623                 U_ASSERT(fp->fInputIdx <= fAnchorLimit);
   4624                 UChar  c = inputBuf[fp->fInputIdx - 1];
   4625                 if (c != 0x0a) {
   4626                     // Not at the start of a line.  Back-track out.
   4627                     fp = (REStackFrame *)fStack->popFrame(fFrameSize);
   4628                 }
   4629             }
   4630             break;
   4631 
   4632         case URX_BACKSLASH_B:          // Test for word boundaries
   4633             {
   4634                 UBool success = isChunkWordBoundary((int32_t)fp->fInputIdx);
   4635                 success ^= (UBool)(opValue != 0);     // flip sense for \B
   4636                 if (!success) {
   4637                     fp = (REStackFrame *)fStack->popFrame(fFrameSize);
   4638                 }
   4639             }
   4640             break;
   4641 
   4642 
   4643         case URX_BACKSLASH_BU:          // Test for word boundaries, Unicode-style
   4644             {
   4645                 UBool success = isUWordBoundary(fp->fInputIdx);
   4646                 success ^= (UBool)(opValue != 0);     // flip sense for \B
   4647                 if (!success) {
   4648                     fp = (REStackFrame *)fStack->popFrame(fFrameSize);
   4649                 }
   4650             }
   4651             break;
   4652 
   4653 
   4654         case URX_BACKSLASH_D:            // Test for decimal digit
   4655             {
   4656                 if (fp->fInputIdx >= fActiveLimit) {
   4657                     fHitEnd = TRUE;
   4658                     fp = (REStackFrame *)fStack->popFrame(fFrameSize);
   4659                     break;
   4660                 }
   4661 
   4662                 UChar32 c;
   4663                 U16_NEXT(inputBuf, fp->fInputIdx, fActiveLimit, c);
   4664                 int8_t ctype = u_charType(c);     // TODO:  make a unicode set for this.  Will be faster.
   4665                 UBool success = (ctype == U_DECIMAL_DIGIT_NUMBER);
   4666                 success ^= (UBool)(opValue != 0);        // flip sense for \D
   4667                 if (!success) {
   4668                     fp = (REStackFrame *)fStack->popFrame(fFrameSize);
   4669                 }
   4670             }
   4671             break;
   4672 
   4673 
   4674         case URX_BACKSLASH_G:          // Test for position at end of previous match
   4675             if (!((fMatch && fp->fInputIdx==fMatchEnd) || (fMatch==FALSE && fp->fInputIdx==fActiveStart))) {
   4676                 fp = (REStackFrame *)fStack->popFrame(fFrameSize);
   4677             }
   4678             break;
   4679 
   4680 
   4681         case URX_BACKSLASH_H:            // Test for \h, horizontal white space.
   4682             {
   4683                 if (fp->fInputIdx >= fActiveLimit) {
   4684                     fHitEnd = TRUE;
   4685                     fp = (REStackFrame *)fStack->popFrame(fFrameSize);
   4686                     break;
   4687                 }
   4688                 UChar32 c;
   4689                 U16_NEXT(inputBuf, fp->fInputIdx, fActiveLimit, c);
   4690                 int8_t ctype = u_charType(c);
   4691                 UBool success = (ctype == U_SPACE_SEPARATOR || c == 9);  // SPACE_SEPARATOR || TAB
   4692                 success ^= (UBool)(opValue != 0);        // flip sense for \H
   4693                 if (!success) {
   4694                     fp = (REStackFrame *)fStack->popFrame(fFrameSize);
   4695                 }
   4696             }
   4697             break;
   4698 
   4699 
   4700         case URX_BACKSLASH_R:            // Test for \R, any line break sequence.
   4701             {
   4702                 if (fp->fInputIdx >= fActiveLimit) {
   4703                     fHitEnd = TRUE;
   4704                     fp = (REStackFrame *)fStack->popFrame(fFrameSize);
   4705                     break;
   4706                 }
   4707                 UChar32 c;
   4708                 U16_NEXT(inputBuf, fp->fInputIdx, fActiveLimit, c);
   4709                 if (isLineTerminator(c)) {
   4710                     if (c == 0x0d && fp->fInputIdx < fActiveLimit) {
   4711                         // Check for CR/LF sequence. Consume both together when found.
   4712                         UChar c2;
   4713                         U16_NEXT(inputBuf, fp->fInputIdx, fActiveLimit, c2);
   4714                         if (c2 != 0x0a) {
   4715                             U16_PREV(inputBuf, 0, fp->fInputIdx, c2);
   4716                         }
   4717                     }
   4718                 } else {
   4719                     fp = (REStackFrame *)fStack->popFrame(fFrameSize);
   4720                 }
   4721             }
   4722             break;
   4723 
   4724 
   4725         case URX_BACKSLASH_V:         // Any single code point line ending.
   4726             {
   4727                 if (fp->fInputIdx >= fActiveLimit) {
   4728                     fHitEnd = TRUE;
   4729                     fp = (REStackFrame *)fStack->popFrame(fFrameSize);
   4730                     break;
   4731                 }
   4732                 UChar32 c;
   4733                 U16_NEXT(inputBuf, fp->fInputIdx, fActiveLimit, c);
   4734                 UBool success = isLineTerminator(c);
   4735                 success ^= (UBool)(opValue != 0);        // flip sense for \V
   4736                 if (!success) {
   4737                     fp = (REStackFrame *)fStack->popFrame(fFrameSize);
   4738                 }
   4739             }
   4740             break;
   4741 
   4742 
   4743 
   4744         case URX_BACKSLASH_X:
   4745         //  Match a Grapheme, as defined by Unicode TR 29.
   4746         //  Differs slightly from Perl, which consumes combining marks independently
   4747         //    of context.
   4748         {
   4749 
   4750             // Fail if at end of input
   4751             if (fp->fInputIdx >= fActiveLimit) {
   4752                 fHitEnd = TRUE;
   4753                 fp = (REStackFrame *)fStack->popFrame(fFrameSize);
   4754                 break;
   4755             }
   4756 
   4757             // Examine (and consume) the current char.
   4758             //   Dispatch into a little state machine, based on the char.
   4759             UChar32  c;
   4760             U16_NEXT(inputBuf, fp->fInputIdx, fActiveLimit, c);
   4761             UnicodeSet **sets = fPattern->fStaticSets;
   4762             if (sets[URX_GC_NORMAL]->contains(c))  goto GC_Extend;
   4763             if (sets[URX_GC_CONTROL]->contains(c)) goto GC_Control;
   4764             if (sets[URX_GC_L]->contains(c))       goto GC_L;
   4765             if (sets[URX_GC_LV]->contains(c))      goto GC_V;
   4766             if (sets[URX_GC_LVT]->contains(c))     goto GC_T;
   4767             if (sets[URX_GC_V]->contains(c))       goto GC_V;
   4768             if (sets[URX_GC_T]->contains(c))       goto GC_T;
   4769             goto GC_Extend;
   4770 
   4771 
   4772 
   4773 GC_L:
   4774             if (fp->fInputIdx >= fActiveLimit)         goto GC_Done;
   4775             U16_NEXT(inputBuf, fp->fInputIdx, fActiveLimit, c);
   4776             if (sets[URX_GC_L]->contains(c))       goto GC_L;
   4777             if (sets[URX_GC_LV]->contains(c))      goto GC_V;
   4778             if (sets[URX_GC_LVT]->contains(c))     goto GC_T;
   4779             if (sets[URX_GC_V]->contains(c))       goto GC_V;
   4780             U16_PREV(inputBuf, 0, fp->fInputIdx, c);
   4781             goto GC_Extend;
   4782 
   4783 GC_V:
   4784             if (fp->fInputIdx >= fActiveLimit)         goto GC_Done;
   4785             U16_NEXT(inputBuf, fp->fInputIdx, fActiveLimit, c);
   4786             if (sets[URX_GC_V]->contains(c))       goto GC_V;
   4787             if (sets[URX_GC_T]->contains(c))       goto GC_T;
   4788             U16_PREV(inputBuf, 0, fp->fInputIdx, c);
   4789             goto GC_Extend;
   4790 
   4791 GC_T:
   4792             if (fp->fInputIdx >= fActiveLimit)         goto GC_Done;
   4793             U16_NEXT(inputBuf, fp->fInputIdx, fActiveLimit, c);
   4794             if (sets[URX_GC_T]->contains(c))       goto GC_T;
   4795             U16_PREV(inputBuf, 0, fp->fInputIdx, c);
   4796             goto GC_Extend;
   4797 
   4798 GC_Extend:
   4799             // Combining characters are consumed here
   4800             for (;;) {
   4801                 if (fp->fInputIdx >= fActiveLimit) {
   4802                     break;
   4803                 }
   4804                 U16_NEXT(inputBuf, fp->fInputIdx, fActiveLimit, c);
   4805                 if (sets[URX_GC_EXTEND]->contains(c) == FALSE) {
   4806                     U16_BACK_1(inputBuf, 0, fp->fInputIdx);
   4807                     break;
   4808                 }
   4809             }
   4810             goto GC_Done;
   4811 
   4812 GC_Control:
   4813             // Most control chars stand alone (don't combine with combining chars),
   4814             //   except for that CR/LF sequence is a single grapheme cluster.
   4815             if (c == 0x0d && fp->fInputIdx < fActiveLimit && inputBuf[fp->fInputIdx] == 0x0a) {
   4816                 fp->fInputIdx++;
   4817             }
   4818 
   4819 GC_Done:
   4820             if (fp->fInputIdx >= fActiveLimit) {
   4821                 fHitEnd = TRUE;
   4822             }
   4823             break;
   4824         }
   4825 
   4826 
   4827 
   4828 
   4829         case URX_BACKSLASH_Z:          // Test for end of Input
   4830             if (fp->fInputIdx < fAnchorLimit) {
   4831                 fp = (REStackFrame *)fStack->popFrame(fFrameSize);
   4832             } else {
   4833                 fHitEnd = TRUE;
   4834                 fRequireEnd = TRUE;
   4835             }
   4836             break;
   4837 
   4838 
   4839 
   4840         case URX_STATIC_SETREF:
   4841             {
   4842                 // Test input character against one of the predefined sets
   4843                 //    (Word Characters, for example)
   4844                 // The high bit of the op value is a flag for the match polarity.
   4845                 //    0:   success if input char is in set.
   4846                 //    1:   success if input char is not in set.
   4847                 if (fp->fInputIdx >= fActiveLimit) {
   4848                     fHitEnd = TRUE;
   4849                     fp = (REStackFrame *)fStack->popFrame(fFrameSize);
   4850                     break;
   4851                 }
   4852 
   4853                 UBool success = ((opValue & URX_NEG_SET) == URX_NEG_SET);
   4854                 opValue &= ~URX_NEG_SET;
   4855                 U_ASSERT(opValue > 0 && opValue < URX_LAST_SET);
   4856 
   4857                 UChar32 c;
   4858                 U16_NEXT(inputBuf, fp->fInputIdx, fActiveLimit, c);
   4859                 if (c < 256) {
   4860                     Regex8BitSet *s8 = &fPattern->fStaticSets8[opValue];
   4861                     if (s8->contains(c)) {
   4862                         success = !success;
   4863                     }
   4864                 } else {
   4865                     const UnicodeSet *s = fPattern->fStaticSets[opValue];
   4866                     if (s->contains(c)) {
   4867                         success = !success;
   4868                     }
   4869                 }
   4870                 if (!success) {
   4871                     fp = (REStackFrame *)fStack->popFrame(fFrameSize);
   4872                 }
   4873             }
   4874             break;
   4875 
   4876 
   4877         case URX_STAT_SETREF_N:
   4878             {
   4879                 // Test input character for NOT being a member of  one of
   4880                 //    the predefined sets (Word Characters, for example)
   4881                 if (fp->fInputIdx >= fActiveLimit) {
   4882                     fHitEnd = TRUE;
   4883                     fp = (REStackFrame *)fStack->popFrame(fFrameSize);
   4884                     break;
   4885                 }
   4886 
   4887                 U_ASSERT(opValue > 0 && opValue < URX_LAST_SET);
   4888 
   4889                 UChar32  c;
   4890                 U16_NEXT(inputBuf, fp->fInputIdx, fActiveLimit, c);
   4891                 if (c < 256) {
   4892                     Regex8BitSet *s8 = &fPattern->fStaticSets8[opValue];
   4893                     if (s8->contains(c) == FALSE) {
   4894                         break;
   4895                     }
   4896                 } else {
   4897                     const UnicodeSet *s = fPattern->fStaticSets[opValue];
   4898                     if (s->contains(c) == FALSE) {
   4899                         break;
   4900                     }
   4901                 }
   4902                 fp = (REStackFrame *)fStack->popFrame(fFrameSize);
   4903             }
   4904             break;
   4905 
   4906 
   4907         case URX_SETREF:
   4908             {
   4909                 if (fp->fInputIdx >= fActiveLimit) {
   4910                     fHitEnd = TRUE;
   4911                     fp = (REStackFrame *)fStack->popFrame(fFrameSize);
   4912                     break;
   4913                 }
   4914 
   4915                 U_ASSERT(opValue > 0 && opValue < sets->size());
   4916 
   4917                 // There is input left.  Pick up one char and test it for set membership.
   4918                 UChar32  c;
   4919                 U16_NEXT(inputBuf, fp->fInputIdx, fActiveLimit, c);
   4920                 if (c<256) {
   4921                     Regex8BitSet *s8 = &fPattern->fSets8[opValue];
   4922                     if (s8->contains(c)) {
   4923                         // The character is in the set.  A Match.
   4924                         break;
   4925                     }
   4926                 } else {
   4927                     UnicodeSet *s = (UnicodeSet *)sets->elementAt(opValue);
   4928                     if (s->contains(c)) {
   4929                         // The character is in the set.  A Match.
   4930                         break;
   4931                     }
   4932                 }
   4933 
   4934                 // the character wasn't in the set.
   4935                 fp = (REStackFrame *)fStack->popFrame(fFrameSize);
   4936             }
   4937             break;
   4938 
   4939 
   4940         case URX_DOTANY:
   4941             {
   4942                 // . matches anything, but stops at end-of-line.
   4943                 if (fp->fInputIdx >= fActiveLimit) {
   4944                     // At end of input.  Match failed.  Backtrack out.
   4945                     fHitEnd = TRUE;
   4946                     fp = (REStackFrame *)fStack->popFrame(fFrameSize);
   4947                     break;
   4948                 }
   4949 
   4950                 // There is input left.  Advance over one char, unless we've hit end-of-line
   4951                 UChar32  c;
   4952                 U16_NEXT(inputBuf, fp->fInputIdx, fActiveLimit, c);
   4953                 if (isLineTerminator(c)) {
   4954                     // End of line in normal mode.   . does not match.
   4955                     fp = (REStackFrame *)fStack->popFrame(fFrameSize);
   4956                     break;
   4957                 }
   4958             }
   4959             break;
   4960 
   4961 
   4962         case URX_DOTANY_ALL:
   4963             {
   4964                 // . in dot-matches-all (including new lines) mode
   4965                 if (fp->fInputIdx >= fActiveLimit) {
   4966                     // At end of input.  Match failed.  Backtrack out.
   4967                     fHitEnd = TRUE;
   4968                     fp = (REStackFrame *)fStack->popFrame(fFrameSize);
   4969                     break;
   4970                 }
   4971 
   4972                 // There is input left.  Advance over one char, except if we are
   4973                 //   at a cr/lf, advance over both of them.
   4974                 UChar32 c;
   4975                 U16_NEXT(inputBuf, fp->fInputIdx, fActiveLimit, c);
   4976                 if (c==0x0d && fp->fInputIdx < fActiveLimit) {
   4977                     // In the case of a CR/LF, we need to advance over both.
   4978                     if (inputBuf[fp->fInputIdx] == 0x0a) {
   4979                         U16_FWD_1(inputBuf, fp->fInputIdx, fActiveLimit);
   4980                     }
   4981                 }
   4982             }
   4983             break;
   4984 
   4985 
   4986         case URX_DOTANY_UNIX:
   4987             {
   4988                 // '.' operator, matches all, but stops at end-of-line.
   4989                 //   UNIX_LINES mode, so 0x0a is the only recognized line ending.
   4990                 if (fp->fInputIdx >= fActiveLimit) {
   4991                     // At end of input.  Match failed.  Backtrack out.
   4992                     fHitEnd = TRUE;
   4993                     fp = (REStackFrame *)fStack->popFrame(fFrameSize);
   4994                     break;
   4995                 }
   4996 
   4997                 // There is input left.  Advance over one char, unless we've hit end-of-line
   4998                 UChar32 c;
   4999                 U16_NEXT(inputBuf, fp->fInputIdx, fActiveLimit, c);
   5000                 if (c == 0x0a) {
   5001                     // End of line in normal mode.   '.' does not match the \n
   5002                     fp = (REStackFrame *)fStack->popFrame(fFrameSize);
   5003                 }
   5004             }
   5005             break;
   5006 
   5007 
   5008         case URX_JMP:
   5009             fp->fPatIdx = opValue;
   5010             break;
   5011 
   5012         case URX_FAIL:
   5013             isMatch = FALSE;
   5014             goto breakFromLoop;
   5015 
   5016         case URX_JMP_SAV:
   5017             U_ASSERT(opValue < fPattern->fCompiledPat->size());
   5018             fp = StateSave(fp, fp->fPatIdx, status);       // State save to loc following current
   5019             fp->fPatIdx = opValue;                         // Then JMP.
   5020             break;
   5021 
   5022         case URX_JMP_SAV_X:
   5023             // This opcode is used with (x)+, when x can match a zero length string.
   5024             // Same as JMP_SAV, except conditional on the match having made forward progress.
   5025             // Destination of the JMP must be a URX_STO_INP_LOC, from which we get the
   5026             //   data address of the input position at the start of the loop.
   5027             {
   5028                 U_ASSERT(opValue > 0 && opValue < fPattern->fCompiledPat->size());
   5029                 int32_t  stoOp = (int32_t)pat[opValue-1];
   5030                 U_ASSERT(URX_TYPE(stoOp) == URX_STO_INP_LOC);
   5031                 int32_t  frameLoc = URX_VAL(stoOp);
   5032                 U_ASSERT(frameLoc >= 0 && frameLoc < fFrameSize);
   5033                 int32_t prevInputIdx = (int32_t)fp->fExtra[frameLoc];
   5034                 U_ASSERT(prevInputIdx <= fp->fInputIdx);
   5035                 if (prevInputIdx < fp->fInputIdx) {
   5036                     // The match did make progress.  Repeat the loop.
   5037                     fp = StateSave(fp, fp->fPatIdx, status);  // State save to loc following current
   5038                     fp->fPatIdx = opValue;
   5039                     fp->fExtra[frameLoc] = fp->fInputIdx;
   5040                 }
   5041                 // If the input position did not advance, we do nothing here,
   5042                 //   execution will fall out of the loop.
   5043             }
   5044             break;
   5045 
   5046         case URX_CTR_INIT:
   5047             {
   5048                 U_ASSERT(opValue >= 0 && opValue < fFrameSize-2);
   5049                 fp->fExtra[opValue] = 0;                 //  Set the loop counter variable to zero
   5050 
   5051                 // Pick up the three extra operands that CTR_INIT has, and
   5052                 //    skip the pattern location counter past
   5053                 int32_t instrOperandLoc = (int32_t)fp->fPatIdx;
   5054                 fp->fPatIdx += 3;
   5055                 int32_t loopLoc  = URX_VAL(pat[instrOperandLoc]);
   5056                 int32_t minCount = (int32_t)pat[instrOperandLoc+1];
   5057                 int32_t maxCount = (int32_t)pat[instrOperandLoc+2];
   5058                 U_ASSERT(minCount>=0);
   5059                 U_ASSERT(maxCount>=minCount || maxCount==-1);
   5060                 U_ASSERT(loopLoc>=fp->fPatIdx);
   5061 
   5062                 if (minCount == 0) {
   5063                     fp = StateSave(fp, loopLoc+1, status);
   5064                 }
   5065                 if (maxCount == -1) {
   5066                     fp->fExtra[opValue+1] = fp->fInputIdx;   //  For loop breaking.
   5067                 } else if (maxCount == 0) {
   5068                     fp = (REStackFrame *)fStack->popFrame(fFrameSize);
   5069                 }
   5070             }
   5071             break;
   5072 
   5073         case URX_CTR_LOOP:
   5074             {
   5075                 U_ASSERT(opValue>0 && opValue < fp->fPatIdx-2);
   5076                 int32_t initOp = (int32_t)pat[opValue];
   5077                 U_ASSERT(URX_TYPE(initOp) == URX_CTR_INIT);
   5078                 int64_t *pCounter = &fp->fExtra[URX_VAL(initOp)];
   5079                 int32_t minCount  = (int32_t)pat[opValue+2];
   5080                 int32_t maxCount  = (int32_t)pat[opValue+3];
   5081                 (*pCounter)++;
   5082                 if ((uint64_t)*pCounter >= (uint32_t)maxCount && maxCount != -1) {
   5083                     U_ASSERT(*pCounter == maxCount);
   5084                     break;
   5085                 }
   5086                 if (*pCounter >= minCount) {
   5087                     if (maxCount == -1) {
   5088                         // Loop has no hard upper bound.
   5089                         // Check that it is progressing through the input, break if it is not.
   5090                         int64_t *pLastInputIdx =  &fp->fExtra[URX_VAL(initOp) + 1];
   5091                         if (fp->fInputIdx == *pLastInputIdx) {
   5092                             break;
   5093                         } else {
   5094                             *pLastInputIdx = fp->fInputIdx;
   5095                         }
   5096                     }
   5097                     fp = StateSave(fp, fp->fPatIdx, status);
   5098                 }
   5099                 fp->fPatIdx = opValue + 4;    // Loop back.
   5100             }
   5101             break;
   5102 
   5103         case URX_CTR_INIT_NG:
   5104             {
   5105                 // Initialize a non-greedy loop
   5106                 U_ASSERT(opValue >= 0 && opValue < fFrameSize-2);
   5107                 fp->fExtra[opValue] = 0;                 //  Set the loop counter variable to zero
   5108 
   5109                 // Pick up the three extra operands that CTR_INIT_NG has, and
   5110                 //    skip the pattern location counter past
   5111                 int32_t instrOperandLoc = (int32_t)fp->fPatIdx;
   5112                 fp->fPatIdx += 3;
   5113                 int32_t loopLoc  = URX_VAL(pat[instrOperandLoc]);
   5114                 int32_t minCount = (int32_t)pat[instrOperandLoc+1];
   5115                 int32_t maxCount = (int32_t)pat[instrOperandLoc+2];
   5116                 U_ASSERT(minCount>=0);
   5117                 U_ASSERT(maxCount>=minCount || maxCount==-1);
   5118                 U_ASSERT(loopLoc>fp->fPatIdx);
   5119                 if (maxCount == -1) {
   5120                     fp->fExtra[opValue+1] = fp->fInputIdx;   //  Save initial input index for loop breaking.
   5121                 }
   5122 
   5123                 if (minCount == 0) {
   5124                     if (maxCount != 0) {
   5125                         fp = StateSave(fp, fp->fPatIdx, status);
   5126                     }
   5127                     fp->fPatIdx = loopLoc+1;   // Continue with stuff after repeated block
   5128                 }
   5129             }
   5130             break;
   5131 
   5132         case URX_CTR_LOOP_NG:
   5133             {
   5134                 // Non-greedy {min, max} loops
   5135                 U_ASSERT(opValue>0 && opValue < fp->fPatIdx-2);
   5136                 int32_t initOp = (int32_t)pat[opValue];
   5137                 U_ASSERT(URX_TYPE(initOp) == URX_CTR_INIT_NG);
   5138                 int64_t *pCounter = &fp->fExtra[URX_VAL(initOp)];
   5139                 int32_t minCount  = (int32_t)pat[opValue+2];
   5140                 int32_t maxCount  = (int32_t)pat[opValue+3];
   5141 
   5142                 (*pCounter)++;
   5143                 if ((uint64_t)*pCounter >= (uint32_t)maxCount && maxCount != -1) {
   5144                     // The loop has matched the maximum permitted number of times.
   5145                     //   Break out of here with no action.  Matching will
   5146                     //   continue with the following pattern.
   5147                     U_ASSERT(*pCounter == maxCount);
   5148                     break;
   5149                 }
   5150 
   5151                 if (*pCounter < minCount) {
   5152                     // We haven't met the minimum number of matches yet.
   5153                     //   Loop back for another one.
   5154                     fp->fPatIdx = opValue + 4;    // Loop back.
   5155                 } else {
   5156                     // We do have the minimum number of matches.
   5157 
   5158                     // If there is no upper bound on the loop iterations, check that the input index
   5159                     // is progressing, and stop the loop if it is not.
   5160                     if (maxCount == -1) {
   5161                         int64_t *pLastInputIdx =  &fp->fExtra[URX_VAL(initOp) + 1];
   5162                         if (fp->fInputIdx == *pLastInputIdx) {
   5163                             break;
   5164                         }
   5165                         *pLastInputIdx = fp->fInputIdx;
   5166                     }
   5167 
   5168                     // Loop Continuation: we will fall into the pattern following the loop
   5169                     //   (non-greedy, don't execute loop body first), but first do
   5170                     //   a state save to the top of the loop, so that a match failure
   5171                     //   in the following pattern will try another iteration of the loop.
   5172                     fp = StateSave(fp, opValue + 4, status);
   5173                 }
   5174             }
   5175             break;
   5176 
   5177         case URX_STO_SP:
   5178             U_ASSERT(opValue >= 0 && opValue < fPattern->fDataSize);
   5179             fData[opValue] = fStack->size();
   5180             break;
   5181 
   5182         case URX_LD_SP:
   5183             {
   5184                 U_ASSERT(opValue >= 0 && opValue < fPattern->fDataSize);
   5185                 int32_t newStackSize = (int32_t)fData[opValue];
   5186                 U_ASSERT(newStackSize <= fStack->size());
   5187                 int64_t *newFP = fStack->getBuffer() + newStackSize - fFrameSize;
   5188                 if (newFP == (int64_t *)fp) {
   5189                     break;
   5190                 }
   5191                 int32_t i;
   5192                 for (i=0; i<fFrameSize; i++) {
   5193                     newFP[i] = ((int64_t *)fp)[i];
   5194                 }
   5195                 fp = (REStackFrame *)newFP;
   5196                 fStack->setSize(newStackSize);
   5197             }
   5198             break;
   5199 
   5200         case URX_BACKREF:
   5201             {
   5202                 U_ASSERT(opValue < fFrameSize);
   5203                 int64_t groupStartIdx = fp->fExtra[opValue];
   5204                 int64_t groupEndIdx   = fp->fExtra[opValue+1];
   5205                 U_ASSERT(groupStartIdx <= groupEndIdx);
   5206                 int64_t inputIndex = fp->fInputIdx;
   5207                 if (groupStartIdx < 0) {
   5208                     // This capture group has not participated in the match thus far,
   5209                     fp = (REStackFrame *)fStack->popFrame(fFrameSize);   // FAIL, no match.
   5210                     break;
   5211                 }
   5212                 UBool success = TRUE;
   5213                 for (int64_t groupIndex = groupStartIdx; groupIndex < groupEndIdx; ++groupIndex,++inputIndex) {
   5214                     if (inputIndex >= fActiveLimit) {
   5215                         success = FALSE;
   5216                         fHitEnd = TRUE;
   5217                         break;
   5218                     }
   5219                     if (inputBuf[groupIndex] != inputBuf[inputIndex]) {
   5220                         success = FALSE;
   5221                         break;
   5222                     }
   5223                 }
   5224                 if (success) {
   5225                     fp->fInputIdx = inputIndex;
   5226                 } else {
   5227                     fp = (REStackFrame *)fStack->popFrame(fFrameSize);
   5228                 }
   5229             }
   5230             break;
   5231 
   5232         case URX_BACKREF_I:
   5233             {
   5234                 U_ASSERT(opValue < fFrameSize);
   5235                 int64_t groupStartIdx = fp->fExtra[opValue];
   5236                 int64_t groupEndIdx   = fp->fExtra[opValue+1];
   5237                 U_ASSERT(groupStartIdx <= groupEndIdx);
   5238                 if (groupStartIdx < 0) {
   5239                     // This capture group has not participated in the match thus far,
   5240                     fp = (REStackFrame *)fStack->popFrame(fFrameSize);   // FAIL, no match.
   5241                     break;
   5242                 }
   5243                 CaseFoldingUCharIterator captureGroupItr(inputBuf, groupStartIdx, groupEndIdx);
   5244                 CaseFoldingUCharIterator inputItr(inputBuf, fp->fInputIdx, fActiveLimit);
   5245 
   5246                 //   Note: if the capture group match was of an empty string the backref
   5247                 //         match succeeds.  Verified by testing:  Perl matches succeed
   5248                 //         in this case, so we do too.
   5249 
   5250                 UBool success = TRUE;
   5251                 for (;;) {
   5252                     UChar32 captureGroupChar = captureGroupItr.next();
   5253                     if (captureGroupChar == U_SENTINEL) {
   5254                         success = TRUE;
   5255                         break;
   5256                     }
   5257                     UChar32 inputChar = inputItr.next();
   5258                     if (inputChar == U_SENTINEL) {
   5259                         success = FALSE;
   5260                         fHitEnd = TRUE;
   5261                         break;
   5262                     }
   5263                     if (inputChar != captureGroupChar) {
   5264                         success = FALSE;
   5265                         break;
   5266                     }
   5267                 }
   5268 
   5269                 if (success && inputItr.inExpansion()) {
   5270                     // We otained a match by consuming part of a string obtained from
   5271                     // case-folding a single code point of the input text.
   5272                     // This does not count as an overall match.
   5273                     success = FALSE;
   5274                 }
   5275 
   5276                 if (success) {
   5277                     fp->fInputIdx = inputItr.getIndex();
   5278                 } else {
   5279                     fp = (REStackFrame *)fStack->popFrame(fFrameSize);
   5280                 }
   5281             }
   5282             break;
   5283 
   5284         case URX_STO_INP_LOC:
   5285             {
   5286                 U_ASSERT(opValue >= 0 && opValue < fFrameSize);
   5287                 fp->fExtra[opValue] = fp->fInputIdx;
   5288             }
   5289             break;
   5290 
   5291         case URX_JMPX:
   5292             {
   5293                 int32_t instrOperandLoc = (int32_t)fp->fPatIdx;
   5294                 fp->fPatIdx += 1;
   5295                 int32_t dataLoc  = URX_VAL(pat[instrOperandLoc]);
   5296                 U_ASSERT(dataLoc >= 0 && dataLoc < fFrameSize);
   5297                 int32_t savedInputIdx = (int32_t)fp->fExtra[dataLoc];
   5298                 U_ASSERT(savedInputIdx <= fp->fInputIdx);
   5299                 if (savedInputIdx < fp->fInputIdx) {
   5300                     fp->fPatIdx = opValue;                               // JMP
   5301                 } else {
   5302                     fp = (REStackFrame *)fStack->popFrame(fFrameSize);   // FAIL, no progress in loop.
   5303                 }
   5304             }
   5305             break;
   5306 
   5307         case URX_LA_START:
   5308             {
   5309                 // Entering a lookahead block.
   5310                 // Save Stack Ptr, Input Pos.
   5311                 U_ASSERT(opValue>=0 && opValue+1<fPattern->fDataSize);
   5312                 fData[opValue]   = fStack->size();
   5313                 fData[opValue+1] = fp->fInputIdx;
   5314                 fActiveStart     = fLookStart;          // Set the match region change for
   5315                 fActiveLimit     = fLookLimit;          //   transparent bounds.
   5316             }
   5317             break;
   5318 
   5319         case URX_LA_END:
   5320             {
   5321                 // Leaving a look-ahead block.
   5322                 //  restore Stack Ptr, Input Pos to positions they had on entry to block.
   5323                 U_ASSERT(opValue>=0 && opValue+1<fPattern->fDataSize);
   5324                 int32_t stackSize = fStack->size();
   5325                 int32_t newStackSize = (int32_t)fData[opValue];
   5326                 U_ASSERT(stackSize >= newStackSize);
   5327                 if (stackSize > newStackSize) {
   5328                     // Copy the current top frame back to the new (cut back) top frame.
   5329                     //   This makes the capture groups from within the look-ahead
   5330                     //   expression available.
   5331                     int64_t *newFP = fStack->getBuffer() + newStackSize - fFrameSize;
   5332                     int32_t i;
   5333                     for (i=0; i<fFrameSize; i++) {
   5334                         newFP[i] = ((int64_t *)fp)[i];
   5335                     }
   5336                     fp = (REStackFrame *)newFP;
   5337                     fStack->setSize(newStackSize);
   5338                 }
   5339                 fp->fInputIdx = fData[opValue+1];
   5340 
   5341                 // Restore the active region bounds in the input string; they may have
   5342                 //    been changed because of transparent bounds on a Region.
   5343                 fActiveStart = fRegionStart;
   5344                 fActiveLimit = fRegionLimit;
   5345             }
   5346             break;
   5347 
   5348         case URX_ONECHAR_I:
   5349             if (fp->fInputIdx < fActiveLimit) {
   5350                 UChar32 c;
   5351                 U16_NEXT(inputBuf, fp->fInputIdx, fActiveLimit, c);
   5352                 if (u_foldCase(c, U_FOLD_CASE_DEFAULT) == opValue) {
   5353                     break;
   5354                 }
   5355             } else {
   5356                 fHitEnd = TRUE;
   5357             }
   5358             fp = (REStackFrame *)fStack->popFrame(fFrameSize);
   5359             break;
   5360 
   5361         case URX_STRING_I:
   5362             // Case-insensitive test input against a literal string.
   5363             // Strings require two slots in the compiled pattern, one for the
   5364             //   offset to the string text, and one for the length.
   5365             //   The compiled string has already been case folded.
   5366             {
   5367                 const UChar *patternString = litText + opValue;
   5368 
   5369                 op      = (int32_t)pat[fp->fPatIdx];
   5370                 fp->fPatIdx++;
   5371                 opType  = URX_TYPE(op);
   5372                 opValue = URX_VAL(op);
   5373                 U_ASSERT(opType == URX_STRING_LEN);
   5374                 int32_t patternStringLen = opValue;  // Length of the string from the pattern.
   5375 
   5376                 UChar32      cText;
   5377                 UChar32      cPattern;
   5378                 UBool        success = TRUE;
   5379                 int32_t      patternStringIdx  = 0;
   5380                 CaseFoldingUCharIterator inputIterator(inputBuf, fp->fInputIdx, fActiveLimit);
   5381                 while (patternStringIdx < patternStringLen) {
   5382                     U16_NEXT(patternString, patternStringIdx, patternStringLen, cPattern);
   5383                     cText = inputIterator.next();
   5384                     if (cText != cPattern) {
   5385                         success = FALSE;
   5386                         if (cText == U_SENTINEL) {
   5387                             fHitEnd = TRUE;
   5388                         }
   5389                         break;
   5390                     }
   5391                 }
   5392                 if (inputIterator.inExpansion()) {
   5393                     success = FALSE;
   5394                 }
   5395 
   5396                 if (success) {
   5397                     fp->fInputIdx = inputIterator.getIndex();
   5398                 } else {
   5399                     fp = (REStackFrame *)fStack->popFrame(fFrameSize);
   5400                 }
   5401             }
   5402             break;
   5403 
   5404         case URX_LB_START:
   5405             {
   5406                 // Entering a look-behind block.
   5407                 // Save Stack Ptr, Input Pos.
   5408                 //   TODO:  implement transparent bounds.  Ticket #6067
   5409                 U_ASSERT(opValue>=0 && opValue+1<fPattern->fDataSize);
   5410                 fData[opValue]   = fStack->size();
   5411                 fData[opValue+1] = fp->fInputIdx;
   5412                 // Init the variable containing the start index for attempted matches.
   5413                 fData[opValue+2] = -1;
   5414                 // Save input string length, then reset to pin any matches to end at
   5415                 //   the current position.
   5416                 fData[opValue+3] = fActiveLimit;
   5417                 fActiveLimit     = fp->fInputIdx;
   5418             }
   5419             break;
   5420 
   5421 
   5422         case URX_LB_CONT:
   5423             {
   5424                 // Positive Look-Behind, at top of loop checking for matches of LB expression
   5425                 //    at all possible input starting positions.
   5426 
   5427                 // Fetch the min and max possible match lengths.  They are the operands
   5428                 //   of this op in the pattern.
   5429                 int32_t minML = (int32_t)pat[fp->fPatIdx++];
   5430                 int32_t maxML = (int32_t)pat[fp->fPatIdx++];
   5431                 U_ASSERT(minML <= maxML);
   5432                 U_ASSERT(minML >= 0);
   5433 
   5434                 // Fetch (from data) the last input index where a match was attempted.
   5435                 U_ASSERT(opValue>=0 && opValue+1<fPattern->fDataSize);
   5436                 int64_t  *lbStartIdx = &fData[opValue+2];
   5437                 if (*lbStartIdx < 0) {
   5438                     // First time through loop.
   5439                     *lbStartIdx = fp->fInputIdx - minML;
   5440                 } else {
   5441                     // 2nd through nth time through the loop.
   5442                     // Back up start position for match by one.
   5443                     if (*lbStartIdx == 0) {
   5444                         (*lbStartIdx)--;
   5445                     } else {
   5446                         U16_BACK_1(inputBuf, 0, *lbStartIdx);
   5447                     }
   5448                 }
   5449 
   5450                 if (*lbStartIdx < 0 || *lbStartIdx < fp->fInputIdx - maxML) {
   5451                     // We have tried all potential match starting points without
   5452                     //  getting a match.  Backtrack out, and out of the
   5453                     //   Look Behind altogether.
   5454                     fp = (REStackFrame *)fStack->popFrame(fFrameSize);
   5455                     int64_t restoreInputLen = fData[opValue+3];
   5456                     U_ASSERT(restoreInputLen >= fActiveLimit);
   5457                     U_ASSERT(restoreInputLen <= fInputLength);
   5458                     fActiveLimit = restoreInputLen;
   5459                     break;
   5460                 }
   5461 
   5462                 //    Save state to this URX_LB_CONT op, so failure to match will repeat the loop.
   5463                 //      (successful match will fall off the end of the loop.)
   5464                 fp = StateSave(fp, fp->fPatIdx-3, status);
   5465                 fp->fInputIdx =  *lbStartIdx;
   5466             }
   5467             break;
   5468 
   5469         case URX_LB_END:
   5470             // End of a look-behind block, after a successful match.
   5471             {
   5472                 U_ASSERT(opValue>=0 && opValue+1<fPattern->fDataSize);
   5473                 if (fp->fInputIdx != fActiveLimit) {
   5474                     //  The look-behind expression matched, but the match did not
   5475                     //    extend all the way to the point that we are looking behind from.
   5476                     //  FAIL out of here, which will take us back to the LB_CONT, which
   5477                     //     will retry the match starting at another position or fail
   5478                     //     the look-behind altogether, whichever is appropriate.
   5479                     fp = (REStackFrame *)fStack->popFrame(fFrameSize);
   5480                     break;
   5481                 }
   5482 
   5483                 // Look-behind match is good.  Restore the orignal input string length,
   5484                 //   which had been truncated to pin the end of the lookbehind match to the
   5485                 //   position being looked-behind.
   5486                 int64_t originalInputLen = fData[opValue+3];
   5487                 U_ASSERT(originalInputLen >= fActiveLimit);
   5488                 U_ASSERT(originalInputLen <= fInputLength);
   5489                 fActiveLimit = originalInputLen;
   5490             }
   5491             break;
   5492 
   5493 
   5494         case URX_LBN_CONT:
   5495             {
   5496                 // Negative Look-Behind, at top of loop checking for matches of LB expression
   5497                 //    at all possible input starting positions.
   5498 
   5499                 // Fetch the extra parameters of this op.
   5500                 int32_t minML       = (int32_t)pat[fp->fPatIdx++];
   5501                 int32_t maxML       = (int32_t)pat[fp->fPatIdx++];
   5502                 int32_t continueLoc = (int32_t)pat[fp->fPatIdx++];
   5503                 continueLoc = URX_VAL(continueLoc);
   5504                 U_ASSERT(minML <= maxML);
   5505                 U_ASSERT(minML >= 0);
   5506                 U_ASSERT(continueLoc > fp->fPatIdx);
   5507 
   5508                 // Fetch (from data) the last input index where a match was attempted.
   5509                 U_ASSERT(opValue>=0 && opValue+1<fPattern->fDataSize);
   5510                 int64_t  *lbStartIdx = &fData[opValue+2];
   5511                 if (*lbStartIdx < 0) {
   5512                     // First time through loop.
   5513                     *lbStartIdx = fp->fInputIdx - minML;
   5514                 } else {
   5515                     // 2nd through nth time through the loop.
   5516                     // Back up start position for match by one.
   5517                     if (*lbStartIdx == 0) {
   5518                         (*lbStartIdx)--;   // Because U16_BACK is unsafe starting at 0.
   5519                     } else {
   5520                         U16_BACK_1(inputBuf, 0, *lbStartIdx);
   5521                     }
   5522                 }
   5523 
   5524                 if (*lbStartIdx < 0 || *lbStartIdx < fp->fInputIdx - maxML) {
   5525                     // We have tried all potential match starting points without
   5526                     //  getting a match, which means that the negative lookbehind as
   5527                     //  a whole has succeeded.  Jump forward to the continue location
   5528                     int64_t restoreInputLen = fData[opValue+3];
   5529                     U_ASSERT(restoreInputLen >= fActiveLimit);
   5530                     U_ASSERT(restoreInputLen <= fInputLength);
   5531                     fActiveLimit = restoreInputLen;
   5532                     fp->fPatIdx = continueLoc;
   5533                     break;
   5534                 }
   5535 
   5536                 //    Save state to this URX_LB_CONT op, so failure to match will repeat the loop.
   5537                 //      (successful match will cause a FAIL out of the loop altogether.)
   5538                 fp = StateSave(fp, fp->fPatIdx-4, status);
   5539                 fp->fInputIdx =  *lbStartIdx;
   5540             }
   5541             break;
   5542 
   5543         case URX_LBN_END:
   5544             // End of a negative look-behind block, after a successful match.
   5545             {
   5546                 U_ASSERT(opValue>=0 && opValue+1<fPattern->fDataSize);
   5547                 if (fp->fInputIdx != fActiveLimit) {
   5548                     //  The look-behind expression matched, but the match did not
   5549                     //    extend all the way to the point that we are looking behind from.
   5550                     //  FAIL out of here, which will take us back to the LB_CONT, which
   5551                     //     will retry the match starting at another position or succeed
   5552                     //     the look-behind altogether, whichever is appropriate.
   5553                     fp = (REStackFrame *)fStack->popFrame(fFrameSize);
   5554                     break;
   5555                 }
   5556 
   5557                 // Look-behind expression matched, which means look-behind test as
   5558                 //   a whole Fails
   5559 
   5560                 //   Restore the orignal input string length, which had been truncated
   5561                 //   inorder to pin the end of the lookbehind match
   5562                 //   to the position being looked-behind.
   5563                 int64_t originalInputLen = fData[opValue+3];
   5564                 U_ASSERT(originalInputLen >= fActiveLimit);
   5565                 U_ASSERT(originalInputLen <= fInputLength);
   5566                 fActiveLimit = originalInputLen;
   5567 
   5568                 // Restore original stack position, discarding any state saved
   5569                 //   by the successful pattern match.
   5570                 U_ASSERT(opValue>=0 && opValue+1<fPattern->fDataSize);
   5571                 int32_t newStackSize = (int32_t)fData[opValue];
   5572                 U_ASSERT(fStack->size() > newStackSize);
   5573                 fStack->setSize(newStackSize);
   5574 
   5575                 //  FAIL, which will take control back to someplace
   5576                 //  prior to entering the look-behind test.
   5577                 fp = (REStackFrame *)fStack->popFrame(fFrameSize);
   5578             }
   5579             break;
   5580 
   5581 
   5582         case URX_LOOP_SR_I:
   5583             // Loop Initialization for the optimized implementation of
   5584             //     [some character set]*
   5585             //   This op scans through all matching input.
   5586             //   The following LOOP_C op emulates stack unwinding if the following pattern fails.
   5587             {
   5588                 U_ASSERT(opValue > 0 && opValue < sets->size());
   5589                 Regex8BitSet *s8 = &fPattern->fSets8[opValue];
   5590                 UnicodeSet   *s  = (UnicodeSet *)sets->elementAt(opValue);
   5591 
   5592                 // Loop through input, until either the input is exhausted or
   5593                 //   we reach a character that is not a member of the set.
   5594                 int32_t ix = (int32_t)fp->fInputIdx;
   5595                 for (;;) {
   5596                     if (ix >= fActiveLimit) {
   5597                         fHitEnd = TRUE;
   5598                         break;
   5599                     }
   5600                     UChar32   c;
   5601                     U16_NEXT(inputBuf, ix, fActiveLimit, c);
   5602                     if (c<256) {
   5603                         if (s8->contains(c) == FALSE) {
   5604                             U16_BACK_1(inputBuf, 0, ix);
   5605                             break;
   5606                         }
   5607                     } else {
   5608                         if (s->contains(c) == FALSE) {
   5609                             U16_BACK_1(inputBuf, 0, ix);
   5610                             break;
   5611                         }
   5612                     }
   5613                 }
   5614 
   5615                 // If there were no matching characters, skip over the loop altogether.
   5616                 //   The loop doesn't run at all, a * op always succeeds.
   5617                 if (ix == fp->fInputIdx) {
   5618                     fp->fPatIdx++;   // skip the URX_LOOP_C op.
   5619                     break;
   5620                 }
   5621 
   5622                 // Peek ahead in the compiled pattern, to the URX_LOOP_C that
   5623                 //   must follow.  It's operand is the stack location
   5624                 //   that holds the starting input index for the match of this [set]*
   5625                 int32_t loopcOp = (int32_t)pat[fp->fPatIdx];
   5626                 U_ASSERT(URX_TYPE(loopcOp) == URX_LOOP_C);
   5627                 int32_t stackLoc = URX_VAL(loopcOp);
   5628                 U_ASSERT(stackLoc >= 0 && stackLoc < fFrameSize);
   5629                 fp->fExtra[stackLoc] = fp->fInputIdx;
   5630                 fp->fInputIdx = ix;
   5631 
   5632                 // Save State to the URX_LOOP_C op that follows this one,
   5633                 //   so that match failures in the following code will return to there.
   5634                 //   Then bump the pattern idx so the LOOP_C is skipped on the way out of here.
   5635                 fp = StateSave(fp, fp->fPatIdx, status);
   5636                 fp->fPatIdx++;
   5637             }
   5638             break;
   5639 
   5640 
   5641         case URX_LOOP_DOT_I:
   5642             // Loop Initialization for the optimized implementation of .*
   5643             //   This op scans through all remaining input.
   5644             //   The following LOOP_C op emulates stack unwinding if the following pattern fails.
   5645             {
   5646                 // Loop through input until the input is exhausted (we reach an end-of-line)
   5647                 // In DOTALL mode, we can just go straight to the end of the input.
   5648                 int32_t ix;
   5649                 if ((opValue & 1) == 1) {
   5650                     // Dot-matches-All mode.  Jump straight to the end of the string.
   5651                     ix = (int32_t)fActiveLimit;
   5652                     fHitEnd = TRUE;
   5653                 } else {
   5654                     // NOT DOT ALL mode.  Line endings do not match '.'
   5655                     // Scan forward until a line ending or end of input.
   5656                     ix = (int32_t)fp->fInputIdx;
   5657                     for (;;) {
   5658                         if (ix >= fActiveLimit) {
   5659                             fHitEnd = TRUE;
   5660                             break;
   5661                         }
   5662                         UChar32   c;
   5663                         U16_NEXT(inputBuf, ix, fActiveLimit, c);   // c = inputBuf[ix++]
   5664                         if ((c & 0x7f) <= 0x29) {          // Fast filter of non-new-line-s
   5665                             if ((c == 0x0a) ||             //  0x0a is newline in both modes.
   5666                                 (((opValue & 2) == 0) &&    // IF not UNIX_LINES mode
   5667                                    isLineTerminator(c))) {
   5668                                 //  char is a line ending.  Put the input pos back to the
   5669                                 //    line ending char, and exit the scanning loop.
   5670                                 U16_BACK_1(inputBuf, 0, ix);
   5671                                 break;
   5672                             }
   5673                         }
   5674                     }
   5675                 }
   5676 
   5677                 // If there were no matching characters, skip over the loop altogether.
   5678                 //   The loop doesn't run at all, a * op always succeeds.
   5679                 if (ix == fp->fInputIdx) {
   5680                     fp->fPatIdx++;   // skip the URX_LOOP_C op.
   5681                     break;
   5682                 }
   5683 
   5684                 // Peek ahead in the compiled pattern, to the URX_LOOP_C that
   5685                 //   must follow.  It's operand is the stack location
   5686                 //   that holds the starting input index for the match of this .*
   5687                 int32_t loopcOp = (int32_t)pat[fp->fPatIdx];
   5688                 U_ASSERT(URX_TYPE(loopcOp) == URX_LOOP_C);
   5689                 int32_t stackLoc = URX_VAL(loopcOp);
   5690                 U_ASSERT(stackLoc >= 0 && stackLoc < fFrameSize);
   5691                 fp->fExtra[stackLoc] = fp->fInputIdx;
   5692                 fp->fInputIdx = ix;
   5693 
   5694                 // Save State to the URX_LOOP_C op that follows this one,
   5695                 //   so that match failures in the following code will return to there.
   5696                 //   Then bump the pattern idx so the LOOP_C is skipped on the way out of here.
   5697                 fp = StateSave(fp, fp->fPatIdx, status);
   5698                 fp->fPatIdx++;
   5699             }
   5700             break;
   5701 
   5702 
   5703         case URX_LOOP_C:
   5704             {
   5705                 U_ASSERT(opValue>=0 && opValue<fFrameSize);
   5706                 backSearchIndex = (int32_t)fp->fExtra[opValue];
   5707                 U_ASSERT(backSearchIndex <= fp->fInputIdx);
   5708                 if (backSearchIndex == fp->fInputIdx) {
   5709                     // We've backed up the input idx to the point that the loop started.
   5710                     // The loop is done.  Leave here without saving state.
   5711                     //  Subsequent failures won't come back here.
   5712                     break;
   5713                 }
   5714                 // Set up for the next iteration of the loop, with input index
   5715                 //   backed up by one from the last time through,
   5716                 //   and a state save to this instruction in case the following code fails again.
   5717                 //   (We're going backwards because this loop emulates stack unwinding, not
   5718                 //    the initial scan forward.)
   5719                 U_ASSERT(fp->fInputIdx > 0);
   5720                 UChar32 prevC;
   5721                 U16_PREV(inputBuf, 0, fp->fInputIdx, prevC); // !!!: should this 0 be one of f*Limit?
   5722 
   5723                 if (prevC == 0x0a &&
   5724                     fp->fInputIdx > backSearchIndex &&
   5725                     inputBuf[fp->fInputIdx-1] == 0x0d) {
   5726                     int32_t prevOp = (int32_t)pat[fp->fPatIdx-2];
   5727                     if (URX_TYPE(prevOp) == URX_LOOP_DOT_I) {
   5728                         // .*, stepping back over CRLF pair.
   5729                         U16_BACK_1(inputBuf, 0, fp->fInputIdx);
   5730                     }
   5731                 }
   5732 
   5733 
   5734                 fp = StateSave(fp, fp->fPatIdx-1, status);
   5735             }
   5736             break;
   5737 
   5738 
   5739 
   5740         default:
   5741             // Trouble.  The compiled pattern contains an entry with an
   5742             //           unrecognized type tag.
   5743             U_ASSERT(FALSE);
   5744         }
   5745 
   5746         if (U_FAILURE(status)) {
   5747             isMatch = FALSE;
   5748             break;
   5749         }
   5750     }
   5751 
   5752 breakFromLoop:
   5753     fMatch = isMatch;
   5754     if (isMatch) {
   5755         fLastMatchEnd = fMatchEnd;
   5756         fMatchStart   = startIdx;
   5757         fMatchEnd     = fp->fInputIdx;
   5758     }
   5759 
   5760 #ifdef REGEX_RUN_DEBUG
   5761     if (fTraceDebug) {
   5762         if (isMatch) {
   5763             printf("Match.  start=%ld   end=%ld\n\n", fMatchStart, fMatchEnd);
   5764         } else {
   5765             printf("No match\n\n");
   5766         }
   5767     }
   5768 #endif
   5769 
   5770     fFrame = fp;                // The active stack frame when the engine stopped.
   5771                                 //   Contains the capture group results that we need to
   5772                                 //    access later.
   5773 
   5774     return;
   5775 }
   5776 
   5777 
   5778 UOBJECT_DEFINE_RTTI_IMPLEMENTATION(RegexMatcher)
   5779 
   5780 U_NAMESPACE_END
   5781 
   5782 #endif  // !UCONFIG_NO_REGULAR_EXPRESSIONS
   5783