Home | History | Annotate | Download | only in CodeGen
      1 //===-- CodeGen/MachineFrameInfo.h - Abstract Stack Frame Rep. --*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // The file defines the MachineFrameInfo class.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #ifndef LLVM_CODEGEN_MACHINEFRAMEINFO_H
     15 #define LLVM_CODEGEN_MACHINEFRAMEINFO_H
     16 
     17 #include "llvm/ADT/SmallVector.h"
     18 #include "llvm/Support/DataTypes.h"
     19 #include <cassert>
     20 #include <vector>
     21 
     22 namespace llvm {
     23 class raw_ostream;
     24 class DataLayout;
     25 class TargetRegisterClass;
     26 class Type;
     27 class MachineFunction;
     28 class MachineBasicBlock;
     29 class TargetFrameLowering;
     30 class TargetMachine;
     31 class BitVector;
     32 class Value;
     33 class AllocaInst;
     34 
     35 /// The CalleeSavedInfo class tracks the information need to locate where a
     36 /// callee saved register is in the current frame.
     37 class CalleeSavedInfo {
     38   unsigned Reg;
     39   int FrameIdx;
     40 
     41 public:
     42   explicit CalleeSavedInfo(unsigned R, int FI = 0)
     43   : Reg(R), FrameIdx(FI) {}
     44 
     45   // Accessors.
     46   unsigned getReg()                        const { return Reg; }
     47   int getFrameIdx()                        const { return FrameIdx; }
     48   void setFrameIdx(int FI)                       { FrameIdx = FI; }
     49 };
     50 
     51 /// The MachineFrameInfo class represents an abstract stack frame until
     52 /// prolog/epilog code is inserted.  This class is key to allowing stack frame
     53 /// representation optimizations, such as frame pointer elimination.  It also
     54 /// allows more mundane (but still important) optimizations, such as reordering
     55 /// of abstract objects on the stack frame.
     56 ///
     57 /// To support this, the class assigns unique integer identifiers to stack
     58 /// objects requested clients.  These identifiers are negative integers for
     59 /// fixed stack objects (such as arguments passed on the stack) or nonnegative
     60 /// for objects that may be reordered.  Instructions which refer to stack
     61 /// objects use a special MO_FrameIndex operand to represent these frame
     62 /// indexes.
     63 ///
     64 /// Because this class keeps track of all references to the stack frame, it
     65 /// knows when a variable sized object is allocated on the stack.  This is the
     66 /// sole condition which prevents frame pointer elimination, which is an
     67 /// important optimization on register-poor architectures.  Because original
     68 /// variable sized alloca's in the source program are the only source of
     69 /// variable sized stack objects, it is safe to decide whether there will be
     70 /// any variable sized objects before all stack objects are known (for
     71 /// example, register allocator spill code never needs variable sized
     72 /// objects).
     73 ///
     74 /// When prolog/epilog code emission is performed, the final stack frame is
     75 /// built and the machine instructions are modified to refer to the actual
     76 /// stack offsets of the object, eliminating all MO_FrameIndex operands from
     77 /// the program.
     78 ///
     79 /// @brief Abstract Stack Frame Information
     80 class MachineFrameInfo {
     81 
     82   // StackObject - Represent a single object allocated on the stack.
     83   struct StackObject {
     84     // SPOffset - The offset of this object from the stack pointer on entry to
     85     // the function.  This field has no meaning for a variable sized element.
     86     int64_t SPOffset;
     87 
     88     // The size of this object on the stack. 0 means a variable sized object,
     89     // ~0ULL means a dead object.
     90     uint64_t Size;
     91 
     92     // Alignment - The required alignment of this stack slot.
     93     unsigned Alignment;
     94 
     95     // isImmutable - If true, the value of the stack object is set before
     96     // entering the function and is not modified inside the function. By
     97     // default, fixed objects are immutable unless marked otherwise.
     98     bool isImmutable;
     99 
    100     // isSpillSlot - If true the stack object is used as spill slot. It
    101     // cannot alias any other memory objects.
    102     bool isSpillSlot;
    103 
    104     /// Alloca - If this stack object is originated from an Alloca instruction
    105     /// this value saves the original IR allocation. Can be NULL.
    106     const AllocaInst *Alloca;
    107 
    108     // PreAllocated - If true, the object was mapped into the local frame
    109     // block and doesn't need additional handling for allocation beyond that.
    110     bool PreAllocated;
    111 
    112     // If true, an LLVM IR value might point to this object.
    113     // Normally, spill slots and fixed-offset objects don't alias IR-accessible
    114     // objects, but there are exceptions (on PowerPC, for example, some byval
    115     // arguments have ABI-prescribed offsets).
    116     bool isAliased;
    117 
    118     StackObject(uint64_t Sz, unsigned Al, int64_t SP, bool IM,
    119                 bool isSS, const AllocaInst *Val, bool A)
    120       : SPOffset(SP), Size(Sz), Alignment(Al), isImmutable(IM),
    121         isSpillSlot(isSS), Alloca(Val), PreAllocated(false), isAliased(A) {}
    122   };
    123 
    124   /// StackAlignment - The alignment of the stack.
    125   unsigned StackAlignment;
    126 
    127   /// StackRealignable - Can the stack be realigned.
    128   bool StackRealignable;
    129 
    130   /// Objects - The list of stack objects allocated...
    131   ///
    132   std::vector<StackObject> Objects;
    133 
    134   /// NumFixedObjects - This contains the number of fixed objects contained on
    135   /// the stack.  Because fixed objects are stored at a negative index in the
    136   /// Objects list, this is also the index to the 0th object in the list.
    137   ///
    138   unsigned NumFixedObjects;
    139 
    140   /// HasVarSizedObjects - This boolean keeps track of whether any variable
    141   /// sized objects have been allocated yet.
    142   ///
    143   bool HasVarSizedObjects;
    144 
    145   /// FrameAddressTaken - This boolean keeps track of whether there is a call
    146   /// to builtin \@llvm.frameaddress.
    147   bool FrameAddressTaken;
    148 
    149   /// ReturnAddressTaken - This boolean keeps track of whether there is a call
    150   /// to builtin \@llvm.returnaddress.
    151   bool ReturnAddressTaken;
    152 
    153   /// HasStackMap - This boolean keeps track of whether there is a call
    154   /// to builtin \@llvm.experimental.stackmap.
    155   bool HasStackMap;
    156 
    157   /// HasPatchPoint - This boolean keeps track of whether there is a call
    158   /// to builtin \@llvm.experimental.patchpoint.
    159   bool HasPatchPoint;
    160 
    161   /// StackSize - The prolog/epilog code inserter calculates the final stack
    162   /// offsets for all of the fixed size objects, updating the Objects list
    163   /// above.  It then updates StackSize to contain the number of bytes that need
    164   /// to be allocated on entry to the function.
    165   ///
    166   uint64_t StackSize;
    167 
    168   /// OffsetAdjustment - The amount that a frame offset needs to be adjusted to
    169   /// have the actual offset from the stack/frame pointer.  The exact usage of
    170   /// this is target-dependent, but it is typically used to adjust between
    171   /// SP-relative and FP-relative offsets.  E.G., if objects are accessed via
    172   /// SP then OffsetAdjustment is zero; if FP is used, OffsetAdjustment is set
    173   /// to the distance between the initial SP and the value in FP.  For many
    174   /// targets, this value is only used when generating debug info (via
    175   /// TargetRegisterInfo::getFrameIndexOffset); when generating code, the
    176   /// corresponding adjustments are performed directly.
    177   int OffsetAdjustment;
    178 
    179   /// MaxAlignment - The prolog/epilog code inserter may process objects
    180   /// that require greater alignment than the default alignment the target
    181   /// provides. To handle this, MaxAlignment is set to the maximum alignment
    182   /// needed by the objects on the current frame.  If this is greater than the
    183   /// native alignment maintained by the compiler, dynamic alignment code will
    184   /// be needed.
    185   ///
    186   unsigned MaxAlignment;
    187 
    188   /// AdjustsStack - Set to true if this function adjusts the stack -- e.g.,
    189   /// when calling another function. This is only valid during and after
    190   /// prolog/epilog code insertion.
    191   bool AdjustsStack;
    192 
    193   /// HasCalls - Set to true if this function has any function calls.
    194   bool HasCalls;
    195 
    196   /// StackProtectorIdx - The frame index for the stack protector.
    197   int StackProtectorIdx;
    198 
    199   /// FunctionContextIdx - The frame index for the function context. Used for
    200   /// SjLj exceptions.
    201   int FunctionContextIdx;
    202 
    203   /// MaxCallFrameSize - This contains the size of the largest call frame if the
    204   /// target uses frame setup/destroy pseudo instructions (as defined in the
    205   /// TargetFrameInfo class).  This information is important for frame pointer
    206   /// elimination.  If is only valid during and after prolog/epilog code
    207   /// insertion.
    208   ///
    209   unsigned MaxCallFrameSize;
    210 
    211   /// CSInfo - The prolog/epilog code inserter fills in this vector with each
    212   /// callee saved register saved in the frame.  Beyond its use by the prolog/
    213   /// epilog code inserter, this data used for debug info and exception
    214   /// handling.
    215   std::vector<CalleeSavedInfo> CSInfo;
    216 
    217   /// CSIValid - Has CSInfo been set yet?
    218   bool CSIValid;
    219 
    220   /// LocalFrameObjects - References to frame indices which are mapped
    221   /// into the local frame allocation block. <FrameIdx, LocalOffset>
    222   SmallVector<std::pair<int, int64_t>, 32> LocalFrameObjects;
    223 
    224   /// LocalFrameSize - Size of the pre-allocated local frame block.
    225   int64_t LocalFrameSize;
    226 
    227   /// Required alignment of the local object blob, which is the strictest
    228   /// alignment of any object in it.
    229   unsigned LocalFrameMaxAlign;
    230 
    231   /// Whether the local object blob needs to be allocated together. If not,
    232   /// PEI should ignore the isPreAllocated flags on the stack objects and
    233   /// just allocate them normally.
    234   bool UseLocalStackAllocationBlock;
    235 
    236   /// Whether the "realign-stack" option is on.
    237   bool RealignOption;
    238 
    239   /// True if the function includes inline assembly that adjusts the stack
    240   /// pointer.
    241   bool HasInlineAsmWithSPAdjust;
    242 
    243   /// True if the function contains a call to the llvm.vastart intrinsic.
    244   bool HasVAStart;
    245 
    246   /// True if this is a varargs function that contains a musttail call.
    247   bool HasMustTailInVarArgFunc;
    248 
    249 public:
    250   explicit MachineFrameInfo(unsigned StackAlign, bool isStackRealign,
    251                             bool RealignOpt)
    252       : StackAlignment(StackAlign), StackRealignable(isStackRealign),
    253         RealignOption(RealignOpt) {
    254     StackSize = NumFixedObjects = OffsetAdjustment = MaxAlignment = 0;
    255     HasVarSizedObjects = false;
    256     FrameAddressTaken = false;
    257     ReturnAddressTaken = false;
    258     HasStackMap = false;
    259     HasPatchPoint = false;
    260     AdjustsStack = false;
    261     HasCalls = false;
    262     StackProtectorIdx = -1;
    263     FunctionContextIdx = -1;
    264     MaxCallFrameSize = 0;
    265     CSIValid = false;
    266     LocalFrameSize = 0;
    267     LocalFrameMaxAlign = 0;
    268     UseLocalStackAllocationBlock = false;
    269     HasInlineAsmWithSPAdjust = false;
    270     HasVAStart = false;
    271     HasMustTailInVarArgFunc = false;
    272   }
    273 
    274   /// hasStackObjects - Return true if there are any stack objects in this
    275   /// function.
    276   ///
    277   bool hasStackObjects() const { return !Objects.empty(); }
    278 
    279   /// hasVarSizedObjects - This method may be called any time after instruction
    280   /// selection is complete to determine if the stack frame for this function
    281   /// contains any variable sized objects.
    282   ///
    283   bool hasVarSizedObjects() const { return HasVarSizedObjects; }
    284 
    285   /// getStackProtectorIndex/setStackProtectorIndex - Return the index for the
    286   /// stack protector object.
    287   ///
    288   int getStackProtectorIndex() const { return StackProtectorIdx; }
    289   void setStackProtectorIndex(int I) { StackProtectorIdx = I; }
    290 
    291   /// getFunctionContextIndex/setFunctionContextIndex - Return the index for the
    292   /// function context object. This object is used for SjLj exceptions.
    293   int getFunctionContextIndex() const { return FunctionContextIdx; }
    294   void setFunctionContextIndex(int I) { FunctionContextIdx = I; }
    295 
    296   /// isFrameAddressTaken - This method may be called any time after instruction
    297   /// selection is complete to determine if there is a call to
    298   /// \@llvm.frameaddress in this function.
    299   bool isFrameAddressTaken() const { return FrameAddressTaken; }
    300   void setFrameAddressIsTaken(bool T) { FrameAddressTaken = T; }
    301 
    302   /// isReturnAddressTaken - This method may be called any time after
    303   /// instruction selection is complete to determine if there is a call to
    304   /// \@llvm.returnaddress in this function.
    305   bool isReturnAddressTaken() const { return ReturnAddressTaken; }
    306   void setReturnAddressIsTaken(bool s) { ReturnAddressTaken = s; }
    307 
    308   /// hasStackMap - This method may be called any time after instruction
    309   /// selection is complete to determine if there is a call to builtin
    310   /// \@llvm.experimental.stackmap.
    311   bool hasStackMap() const { return HasStackMap; }
    312   void setHasStackMap(bool s = true) { HasStackMap = s; }
    313 
    314   /// hasPatchPoint - This method may be called any time after instruction
    315   /// selection is complete to determine if there is a call to builtin
    316   /// \@llvm.experimental.patchpoint.
    317   bool hasPatchPoint() const { return HasPatchPoint; }
    318   void setHasPatchPoint(bool s = true) { HasPatchPoint = s; }
    319 
    320   /// getObjectIndexBegin - Return the minimum frame object index.
    321   ///
    322   int getObjectIndexBegin() const { return -NumFixedObjects; }
    323 
    324   /// getObjectIndexEnd - Return one past the maximum frame object index.
    325   ///
    326   int getObjectIndexEnd() const { return (int)Objects.size()-NumFixedObjects; }
    327 
    328   /// getNumFixedObjects - Return the number of fixed objects.
    329   unsigned getNumFixedObjects() const { return NumFixedObjects; }
    330 
    331   /// getNumObjects - Return the number of objects.
    332   ///
    333   unsigned getNumObjects() const { return Objects.size(); }
    334 
    335   /// mapLocalFrameObject - Map a frame index into the local object block
    336   void mapLocalFrameObject(int ObjectIndex, int64_t Offset) {
    337     LocalFrameObjects.push_back(std::pair<int, int64_t>(ObjectIndex, Offset));
    338     Objects[ObjectIndex + NumFixedObjects].PreAllocated = true;
    339   }
    340 
    341   /// getLocalFrameObjectMap - Get the local offset mapping for a for an object
    342   std::pair<int, int64_t> getLocalFrameObjectMap(int i) {
    343     assert (i >= 0 && (unsigned)i < LocalFrameObjects.size() &&
    344             "Invalid local object reference!");
    345     return LocalFrameObjects[i];
    346   }
    347 
    348   /// getLocalFrameObjectCount - Return the number of objects allocated into
    349   /// the local object block.
    350   int64_t getLocalFrameObjectCount() { return LocalFrameObjects.size(); }
    351 
    352   /// setLocalFrameSize - Set the size of the local object blob.
    353   void setLocalFrameSize(int64_t sz) { LocalFrameSize = sz; }
    354 
    355   /// getLocalFrameSize - Get the size of the local object blob.
    356   int64_t getLocalFrameSize() const { return LocalFrameSize; }
    357 
    358   /// setLocalFrameMaxAlign - Required alignment of the local object blob,
    359   /// which is the strictest alignment of any object in it.
    360   void setLocalFrameMaxAlign(unsigned Align) { LocalFrameMaxAlign = Align; }
    361 
    362   /// getLocalFrameMaxAlign - Return the required alignment of the local
    363   /// object blob.
    364   unsigned getLocalFrameMaxAlign() const { return LocalFrameMaxAlign; }
    365 
    366   /// getUseLocalStackAllocationBlock - Get whether the local allocation blob
    367   /// should be allocated together or let PEI allocate the locals in it
    368   /// directly.
    369   bool getUseLocalStackAllocationBlock() {return UseLocalStackAllocationBlock;}
    370 
    371   /// setUseLocalStackAllocationBlock - Set whether the local allocation blob
    372   /// should be allocated together or let PEI allocate the locals in it
    373   /// directly.
    374   void setUseLocalStackAllocationBlock(bool v) {
    375     UseLocalStackAllocationBlock = v;
    376   }
    377 
    378   /// isObjectPreAllocated - Return true if the object was pre-allocated into
    379   /// the local block.
    380   bool isObjectPreAllocated(int ObjectIdx) const {
    381     assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
    382            "Invalid Object Idx!");
    383     return Objects[ObjectIdx+NumFixedObjects].PreAllocated;
    384   }
    385 
    386   /// getObjectSize - Return the size of the specified object.
    387   ///
    388   int64_t getObjectSize(int ObjectIdx) const {
    389     assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
    390            "Invalid Object Idx!");
    391     return Objects[ObjectIdx+NumFixedObjects].Size;
    392   }
    393 
    394   /// setObjectSize - Change the size of the specified stack object.
    395   void setObjectSize(int ObjectIdx, int64_t Size) {
    396     assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
    397            "Invalid Object Idx!");
    398     Objects[ObjectIdx+NumFixedObjects].Size = Size;
    399   }
    400 
    401   /// getObjectAlignment - Return the alignment of the specified stack object.
    402   unsigned getObjectAlignment(int ObjectIdx) const {
    403     assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
    404            "Invalid Object Idx!");
    405     return Objects[ObjectIdx+NumFixedObjects].Alignment;
    406   }
    407 
    408   /// setObjectAlignment - Change the alignment of the specified stack object.
    409   void setObjectAlignment(int ObjectIdx, unsigned Align) {
    410     assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
    411            "Invalid Object Idx!");
    412     Objects[ObjectIdx+NumFixedObjects].Alignment = Align;
    413     ensureMaxAlignment(Align);
    414   }
    415 
    416   /// getObjectAllocation - Return the underlying Alloca of the specified
    417   /// stack object if it exists. Returns 0 if none exists.
    418   const AllocaInst* getObjectAllocation(int ObjectIdx) const {
    419     assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
    420            "Invalid Object Idx!");
    421     return Objects[ObjectIdx+NumFixedObjects].Alloca;
    422   }
    423 
    424   /// getObjectOffset - Return the assigned stack offset of the specified object
    425   /// from the incoming stack pointer.
    426   ///
    427   int64_t getObjectOffset(int ObjectIdx) const {
    428     assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
    429            "Invalid Object Idx!");
    430     assert(!isDeadObjectIndex(ObjectIdx) &&
    431            "Getting frame offset for a dead object?");
    432     return Objects[ObjectIdx+NumFixedObjects].SPOffset;
    433   }
    434 
    435   /// setObjectOffset - Set the stack frame offset of the specified object.  The
    436   /// offset is relative to the stack pointer on entry to the function.
    437   ///
    438   void setObjectOffset(int ObjectIdx, int64_t SPOffset) {
    439     assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
    440            "Invalid Object Idx!");
    441     assert(!isDeadObjectIndex(ObjectIdx) &&
    442            "Setting frame offset for a dead object?");
    443     Objects[ObjectIdx+NumFixedObjects].SPOffset = SPOffset;
    444   }
    445 
    446   /// getStackSize - Return the number of bytes that must be allocated to hold
    447   /// all of the fixed size frame objects.  This is only valid after
    448   /// Prolog/Epilog code insertion has finalized the stack frame layout.
    449   ///
    450   uint64_t getStackSize() const { return StackSize; }
    451 
    452   /// setStackSize - Set the size of the stack...
    453   ///
    454   void setStackSize(uint64_t Size) { StackSize = Size; }
    455 
    456   /// Estimate and return the size of the stack frame.
    457   unsigned estimateStackSize(const MachineFunction &MF) const;
    458 
    459   /// getOffsetAdjustment - Return the correction for frame offsets.
    460   ///
    461   int getOffsetAdjustment() const { return OffsetAdjustment; }
    462 
    463   /// setOffsetAdjustment - Set the correction for frame offsets.
    464   ///
    465   void setOffsetAdjustment(int Adj) { OffsetAdjustment = Adj; }
    466 
    467   /// getMaxAlignment - Return the alignment in bytes that this function must be
    468   /// aligned to, which is greater than the default stack alignment provided by
    469   /// the target.
    470   ///
    471   unsigned getMaxAlignment() const { return MaxAlignment; }
    472 
    473   /// ensureMaxAlignment - Make sure the function is at least Align bytes
    474   /// aligned.
    475   void ensureMaxAlignment(unsigned Align);
    476 
    477   /// AdjustsStack - Return true if this function adjusts the stack -- e.g.,
    478   /// when calling another function. This is only valid during and after
    479   /// prolog/epilog code insertion.
    480   bool adjustsStack() const { return AdjustsStack; }
    481   void setAdjustsStack(bool V) { AdjustsStack = V; }
    482 
    483   /// hasCalls - Return true if the current function has any function calls.
    484   bool hasCalls() const { return HasCalls; }
    485   void setHasCalls(bool V) { HasCalls = V; }
    486 
    487   /// Returns true if the function contains any stack-adjusting inline assembly.
    488   bool hasInlineAsmWithSPAdjust() const { return HasInlineAsmWithSPAdjust; }
    489   void setHasInlineAsmWithSPAdjust(bool B) { HasInlineAsmWithSPAdjust = B; }
    490 
    491   /// Returns true if the function calls the llvm.va_start intrinsic.
    492   bool hasVAStart() const { return HasVAStart; }
    493   void setHasVAStart(bool B) { HasVAStart = B; }
    494 
    495   /// Returns true if the function is variadic and contains a musttail call.
    496   bool hasMustTailInVarArgFunc() const { return HasMustTailInVarArgFunc; }
    497   void setHasMustTailInVarArgFunc(bool B) { HasMustTailInVarArgFunc = B; }
    498 
    499   /// getMaxCallFrameSize - Return the maximum size of a call frame that must be
    500   /// allocated for an outgoing function call.  This is only available if
    501   /// CallFrameSetup/Destroy pseudo instructions are used by the target, and
    502   /// then only during or after prolog/epilog code insertion.
    503   ///
    504   unsigned getMaxCallFrameSize() const { return MaxCallFrameSize; }
    505   void setMaxCallFrameSize(unsigned S) { MaxCallFrameSize = S; }
    506 
    507   /// CreateFixedObject - Create a new object at a fixed location on the stack.
    508   /// All fixed objects should be created before other objects are created for
    509   /// efficiency. By default, fixed objects are not pointed to by LLVM IR
    510   /// values. This returns an index with a negative value.
    511   ///
    512   int CreateFixedObject(uint64_t Size, int64_t SPOffset, bool Immutable,
    513                         bool isAliased = false);
    514 
    515   /// CreateFixedSpillStackObject - Create a spill slot at a fixed location
    516   /// on the stack.  Returns an index with a negative value.
    517   int CreateFixedSpillStackObject(uint64_t Size, int64_t SPOffset);
    518 
    519   /// isFixedObjectIndex - Returns true if the specified index corresponds to a
    520   /// fixed stack object.
    521   bool isFixedObjectIndex(int ObjectIdx) const {
    522     return ObjectIdx < 0 && (ObjectIdx >= -(int)NumFixedObjects);
    523   }
    524 
    525   /// isAliasedObjectIndex - Returns true if the specified index corresponds
    526   /// to an object that might be pointed to by an LLVM IR value.
    527   bool isAliasedObjectIndex(int ObjectIdx) const {
    528     assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
    529            "Invalid Object Idx!");
    530     return Objects[ObjectIdx+NumFixedObjects].isAliased;
    531   }
    532 
    533   /// isImmutableObjectIndex - Returns true if the specified index corresponds
    534   /// to an immutable object.
    535   bool isImmutableObjectIndex(int ObjectIdx) const {
    536     assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
    537            "Invalid Object Idx!");
    538     return Objects[ObjectIdx+NumFixedObjects].isImmutable;
    539   }
    540 
    541   /// isSpillSlotObjectIndex - Returns true if the specified index corresponds
    542   /// to a spill slot..
    543   bool isSpillSlotObjectIndex(int ObjectIdx) const {
    544     assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
    545            "Invalid Object Idx!");
    546     return Objects[ObjectIdx+NumFixedObjects].isSpillSlot;
    547   }
    548 
    549   /// isDeadObjectIndex - Returns true if the specified index corresponds to
    550   /// a dead object.
    551   bool isDeadObjectIndex(int ObjectIdx) const {
    552     assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
    553            "Invalid Object Idx!");
    554     return Objects[ObjectIdx+NumFixedObjects].Size == ~0ULL;
    555   }
    556 
    557   /// CreateStackObject - Create a new statically sized stack object, returning
    558   /// a nonnegative identifier to represent it.
    559   ///
    560   int CreateStackObject(uint64_t Size, unsigned Alignment, bool isSS,
    561                         const AllocaInst *Alloca = nullptr);
    562 
    563   /// CreateSpillStackObject - Create a new statically sized stack object that
    564   /// represents a spill slot, returning a nonnegative identifier to represent
    565   /// it.
    566   ///
    567   int CreateSpillStackObject(uint64_t Size, unsigned Alignment);
    568 
    569   /// RemoveStackObject - Remove or mark dead a statically sized stack object.
    570   ///
    571   void RemoveStackObject(int ObjectIdx) {
    572     // Mark it dead.
    573     Objects[ObjectIdx+NumFixedObjects].Size = ~0ULL;
    574   }
    575 
    576   /// CreateVariableSizedObject - Notify the MachineFrameInfo object that a
    577   /// variable sized object has been created.  This must be created whenever a
    578   /// variable sized object is created, whether or not the index returned is
    579   /// actually used.
    580   ///
    581   int CreateVariableSizedObject(unsigned Alignment, const AllocaInst *Alloca);
    582 
    583   /// getCalleeSavedInfo - Returns a reference to call saved info vector for the
    584   /// current function.
    585   const std::vector<CalleeSavedInfo> &getCalleeSavedInfo() const {
    586     return CSInfo;
    587   }
    588 
    589   /// setCalleeSavedInfo - Used by prolog/epilog inserter to set the function's
    590   /// callee saved information.
    591   void setCalleeSavedInfo(const std::vector<CalleeSavedInfo> &CSI) {
    592     CSInfo = CSI;
    593   }
    594 
    595   /// isCalleeSavedInfoValid - Has the callee saved info been calculated yet?
    596   bool isCalleeSavedInfoValid() const { return CSIValid; }
    597 
    598   void setCalleeSavedInfoValid(bool v) { CSIValid = v; }
    599 
    600   /// getPristineRegs - Return a set of physical registers that are pristine on
    601   /// entry to the MBB.
    602   ///
    603   /// Pristine registers hold a value that is useless to the current function,
    604   /// but that must be preserved - they are callee saved registers that have not
    605   /// been saved yet.
    606   ///
    607   /// Before the PrologueEpilogueInserter has placed the CSR spill code, this
    608   /// method always returns an empty set.
    609   BitVector getPristineRegs(const MachineBasicBlock *MBB) const;
    610 
    611   /// print - Used by the MachineFunction printer to print information about
    612   /// stack objects. Implemented in MachineFunction.cpp
    613   ///
    614   void print(const MachineFunction &MF, raw_ostream &OS) const;
    615 
    616   /// dump - Print the function to stderr.
    617   void dump(const MachineFunction &MF) const;
    618 };
    619 
    620 } // End llvm namespace
    621 
    622 #endif
    623