1 //===- ThreadSafetyCommon.cpp ----------------------------------*- C++ --*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Implementation of the interfaces declared in ThreadSafetyCommon.h 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "clang/Analysis/Analyses/ThreadSafetyCommon.h" 15 #include "clang/AST/Attr.h" 16 #include "clang/AST/DeclCXX.h" 17 #include "clang/AST/DeclObjC.h" 18 #include "clang/AST/ExprCXX.h" 19 #include "clang/AST/StmtCXX.h" 20 #include "clang/Analysis/Analyses/PostOrderCFGView.h" 21 #include "clang/Analysis/Analyses/ThreadSafetyTIL.h" 22 #include "clang/Analysis/Analyses/ThreadSafetyTraverse.h" 23 #include "clang/Analysis/AnalysisContext.h" 24 #include "clang/Analysis/CFG.h" 25 #include "clang/Basic/OperatorKinds.h" 26 #include "clang/Basic/SourceLocation.h" 27 #include "clang/Basic/SourceManager.h" 28 #include "llvm/ADT/DenseMap.h" 29 #include "llvm/ADT/SmallVector.h" 30 #include "llvm/ADT/StringRef.h" 31 #include <algorithm> 32 #include <climits> 33 #include <vector> 34 using namespace clang; 35 using namespace threadSafety; 36 37 // From ThreadSafetyUtil.h 38 std::string threadSafety::getSourceLiteralString(const clang::Expr *CE) { 39 switch (CE->getStmtClass()) { 40 case Stmt::IntegerLiteralClass: 41 return cast<IntegerLiteral>(CE)->getValue().toString(10, true); 42 case Stmt::StringLiteralClass: { 43 std::string ret("\""); 44 ret += cast<StringLiteral>(CE)->getString(); 45 ret += "\""; 46 return ret; 47 } 48 case Stmt::CharacterLiteralClass: 49 case Stmt::CXXNullPtrLiteralExprClass: 50 case Stmt::GNUNullExprClass: 51 case Stmt::CXXBoolLiteralExprClass: 52 case Stmt::FloatingLiteralClass: 53 case Stmt::ImaginaryLiteralClass: 54 case Stmt::ObjCStringLiteralClass: 55 default: 56 return "#lit"; 57 } 58 } 59 60 // Return true if E is a variable that points to an incomplete Phi node. 61 static bool isIncompletePhi(const til::SExpr *E) { 62 if (const auto *Ph = dyn_cast<til::Phi>(E)) 63 return Ph->status() == til::Phi::PH_Incomplete; 64 return false; 65 } 66 67 typedef SExprBuilder::CallingContext CallingContext; 68 69 70 til::SExpr *SExprBuilder::lookupStmt(const Stmt *S) { 71 auto It = SMap.find(S); 72 if (It != SMap.end()) 73 return It->second; 74 return nullptr; 75 } 76 77 78 til::SCFG *SExprBuilder::buildCFG(CFGWalker &Walker) { 79 Walker.walk(*this); 80 return Scfg; 81 } 82 83 static bool isCalleeArrow(const Expr *E) { 84 const MemberExpr *ME = dyn_cast<MemberExpr>(E->IgnoreParenCasts()); 85 return ME ? ME->isArrow() : false; 86 } 87 88 89 /// \brief Translate a clang expression in an attribute to a til::SExpr. 90 /// Constructs the context from D, DeclExp, and SelfDecl. 91 /// 92 /// \param AttrExp The expression to translate. 93 /// \param D The declaration to which the attribute is attached. 94 /// \param DeclExp An expression involving the Decl to which the attribute 95 /// is attached. E.g. the call to a function. 96 CapabilityExpr SExprBuilder::translateAttrExpr(const Expr *AttrExp, 97 const NamedDecl *D, 98 const Expr *DeclExp, 99 VarDecl *SelfDecl) { 100 // If we are processing a raw attribute expression, with no substitutions. 101 if (!DeclExp) 102 return translateAttrExpr(AttrExp, nullptr); 103 104 CallingContext Ctx(nullptr, D); 105 106 // Examine DeclExp to find SelfArg and FunArgs, which are used to substitute 107 // for formal parameters when we call buildMutexID later. 108 if (const MemberExpr *ME = dyn_cast<MemberExpr>(DeclExp)) { 109 Ctx.SelfArg = ME->getBase(); 110 Ctx.SelfArrow = ME->isArrow(); 111 } else if (const CXXMemberCallExpr *CE = 112 dyn_cast<CXXMemberCallExpr>(DeclExp)) { 113 Ctx.SelfArg = CE->getImplicitObjectArgument(); 114 Ctx.SelfArrow = isCalleeArrow(CE->getCallee()); 115 Ctx.NumArgs = CE->getNumArgs(); 116 Ctx.FunArgs = CE->getArgs(); 117 } else if (const CallExpr *CE = dyn_cast<CallExpr>(DeclExp)) { 118 Ctx.NumArgs = CE->getNumArgs(); 119 Ctx.FunArgs = CE->getArgs(); 120 } else if (const CXXConstructExpr *CE = 121 dyn_cast<CXXConstructExpr>(DeclExp)) { 122 Ctx.SelfArg = nullptr; // Will be set below 123 Ctx.NumArgs = CE->getNumArgs(); 124 Ctx.FunArgs = CE->getArgs(); 125 } else if (D && isa<CXXDestructorDecl>(D)) { 126 // There's no such thing as a "destructor call" in the AST. 127 Ctx.SelfArg = DeclExp; 128 } 129 130 // Hack to handle constructors, where self cannot be recovered from 131 // the expression. 132 if (SelfDecl && !Ctx.SelfArg) { 133 DeclRefExpr SelfDRE(SelfDecl, false, SelfDecl->getType(), VK_LValue, 134 SelfDecl->getLocation()); 135 Ctx.SelfArg = &SelfDRE; 136 137 // If the attribute has no arguments, then assume the argument is "this". 138 if (!AttrExp) 139 return translateAttrExpr(Ctx.SelfArg, nullptr); 140 else // For most attributes. 141 return translateAttrExpr(AttrExp, &Ctx); 142 } 143 144 // If the attribute has no arguments, then assume the argument is "this". 145 if (!AttrExp) 146 return translateAttrExpr(Ctx.SelfArg, nullptr); 147 else // For most attributes. 148 return translateAttrExpr(AttrExp, &Ctx); 149 } 150 151 152 /// \brief Translate a clang expression in an attribute to a til::SExpr. 153 // This assumes a CallingContext has already been created. 154 CapabilityExpr SExprBuilder::translateAttrExpr(const Expr *AttrExp, 155 CallingContext *Ctx) { 156 if (!AttrExp) 157 return CapabilityExpr(nullptr, false); 158 159 if (auto* SLit = dyn_cast<StringLiteral>(AttrExp)) { 160 if (SLit->getString() == StringRef("*")) 161 // The "*" expr is a universal lock, which essentially turns off 162 // checks until it is removed from the lockset. 163 return CapabilityExpr(new (Arena) til::Wildcard(), false); 164 else 165 // Ignore other string literals for now. 166 return CapabilityExpr(nullptr, false); 167 } 168 169 bool Neg = false; 170 if (auto *OE = dyn_cast<CXXOperatorCallExpr>(AttrExp)) { 171 if (OE->getOperator() == OO_Exclaim) { 172 Neg = true; 173 AttrExp = OE->getArg(0); 174 } 175 } 176 else if (auto *UO = dyn_cast<UnaryOperator>(AttrExp)) { 177 if (UO->getOpcode() == UO_LNot) { 178 Neg = true; 179 AttrExp = UO->getSubExpr(); 180 } 181 } 182 183 til::SExpr *E = translate(AttrExp, Ctx); 184 185 // Trap mutex expressions like nullptr, or 0. 186 // Any literal value is nonsense. 187 if (!E || isa<til::Literal>(E)) 188 return CapabilityExpr(nullptr, false); 189 190 // Hack to deal with smart pointers -- strip off top-level pointer casts. 191 if (auto *CE = dyn_cast_or_null<til::Cast>(E)) { 192 if (CE->castOpcode() == til::CAST_objToPtr) 193 return CapabilityExpr(CE->expr(), Neg); 194 } 195 return CapabilityExpr(E, Neg); 196 } 197 198 199 200 // Translate a clang statement or expression to a TIL expression. 201 // Also performs substitution of variables; Ctx provides the context. 202 // Dispatches on the type of S. 203 til::SExpr *SExprBuilder::translate(const Stmt *S, CallingContext *Ctx) { 204 if (!S) 205 return nullptr; 206 207 // Check if S has already been translated and cached. 208 // This handles the lookup of SSA names for DeclRefExprs here. 209 if (til::SExpr *E = lookupStmt(S)) 210 return E; 211 212 switch (S->getStmtClass()) { 213 case Stmt::DeclRefExprClass: 214 return translateDeclRefExpr(cast<DeclRefExpr>(S), Ctx); 215 case Stmt::CXXThisExprClass: 216 return translateCXXThisExpr(cast<CXXThisExpr>(S), Ctx); 217 case Stmt::MemberExprClass: 218 return translateMemberExpr(cast<MemberExpr>(S), Ctx); 219 case Stmt::CallExprClass: 220 return translateCallExpr(cast<CallExpr>(S), Ctx); 221 case Stmt::CXXMemberCallExprClass: 222 return translateCXXMemberCallExpr(cast<CXXMemberCallExpr>(S), Ctx); 223 case Stmt::CXXOperatorCallExprClass: 224 return translateCXXOperatorCallExpr(cast<CXXOperatorCallExpr>(S), Ctx); 225 case Stmt::UnaryOperatorClass: 226 return translateUnaryOperator(cast<UnaryOperator>(S), Ctx); 227 case Stmt::BinaryOperatorClass: 228 case Stmt::CompoundAssignOperatorClass: 229 return translateBinaryOperator(cast<BinaryOperator>(S), Ctx); 230 231 case Stmt::ArraySubscriptExprClass: 232 return translateArraySubscriptExpr(cast<ArraySubscriptExpr>(S), Ctx); 233 case Stmt::ConditionalOperatorClass: 234 return translateAbstractConditionalOperator( 235 cast<ConditionalOperator>(S), Ctx); 236 case Stmt::BinaryConditionalOperatorClass: 237 return translateAbstractConditionalOperator( 238 cast<BinaryConditionalOperator>(S), Ctx); 239 240 // We treat these as no-ops 241 case Stmt::ParenExprClass: 242 return translate(cast<ParenExpr>(S)->getSubExpr(), Ctx); 243 case Stmt::ExprWithCleanupsClass: 244 return translate(cast<ExprWithCleanups>(S)->getSubExpr(), Ctx); 245 case Stmt::CXXBindTemporaryExprClass: 246 return translate(cast<CXXBindTemporaryExpr>(S)->getSubExpr(), Ctx); 247 248 // Collect all literals 249 case Stmt::CharacterLiteralClass: 250 case Stmt::CXXNullPtrLiteralExprClass: 251 case Stmt::GNUNullExprClass: 252 case Stmt::CXXBoolLiteralExprClass: 253 case Stmt::FloatingLiteralClass: 254 case Stmt::ImaginaryLiteralClass: 255 case Stmt::IntegerLiteralClass: 256 case Stmt::StringLiteralClass: 257 case Stmt::ObjCStringLiteralClass: 258 return new (Arena) til::Literal(cast<Expr>(S)); 259 260 case Stmt::DeclStmtClass: 261 return translateDeclStmt(cast<DeclStmt>(S), Ctx); 262 default: 263 break; 264 } 265 if (const CastExpr *CE = dyn_cast<CastExpr>(S)) 266 return translateCastExpr(CE, Ctx); 267 268 return new (Arena) til::Undefined(S); 269 } 270 271 272 273 til::SExpr *SExprBuilder::translateDeclRefExpr(const DeclRefExpr *DRE, 274 CallingContext *Ctx) { 275 const ValueDecl *VD = cast<ValueDecl>(DRE->getDecl()->getCanonicalDecl()); 276 277 // Function parameters require substitution and/or renaming. 278 if (const ParmVarDecl *PV = dyn_cast_or_null<ParmVarDecl>(VD)) { 279 const FunctionDecl *FD = 280 cast<FunctionDecl>(PV->getDeclContext())->getCanonicalDecl(); 281 unsigned I = PV->getFunctionScopeIndex(); 282 283 if (Ctx && Ctx->FunArgs && FD == Ctx->AttrDecl->getCanonicalDecl()) { 284 // Substitute call arguments for references to function parameters 285 assert(I < Ctx->NumArgs); 286 return translate(Ctx->FunArgs[I], Ctx->Prev); 287 } 288 // Map the param back to the param of the original function declaration 289 // for consistent comparisons. 290 VD = FD->getParamDecl(I); 291 } 292 293 // For non-local variables, treat it as a referenced to a named object. 294 return new (Arena) til::LiteralPtr(VD); 295 } 296 297 298 til::SExpr *SExprBuilder::translateCXXThisExpr(const CXXThisExpr *TE, 299 CallingContext *Ctx) { 300 // Substitute for 'this' 301 if (Ctx && Ctx->SelfArg) 302 return translate(Ctx->SelfArg, Ctx->Prev); 303 assert(SelfVar && "We have no variable for 'this'!"); 304 return SelfVar; 305 } 306 307 static const ValueDecl *getValueDeclFromSExpr(const til::SExpr *E) { 308 if (auto *V = dyn_cast<til::Variable>(E)) 309 return V->clangDecl(); 310 if (auto *Ph = dyn_cast<til::Phi>(E)) 311 return Ph->clangDecl(); 312 if (auto *P = dyn_cast<til::Project>(E)) 313 return P->clangDecl(); 314 if (auto *L = dyn_cast<til::LiteralPtr>(E)) 315 return L->clangDecl(); 316 return 0; 317 } 318 319 static bool hasCppPointerType(const til::SExpr *E) { 320 auto *VD = getValueDeclFromSExpr(E); 321 if (VD && VD->getType()->isPointerType()) 322 return true; 323 if (auto *C = dyn_cast<til::Cast>(E)) 324 return C->castOpcode() == til::CAST_objToPtr; 325 326 return false; 327 } 328 329 // Grab the very first declaration of virtual method D 330 static const CXXMethodDecl *getFirstVirtualDecl(const CXXMethodDecl *D) { 331 while (true) { 332 D = D->getCanonicalDecl(); 333 CXXMethodDecl::method_iterator I = D->begin_overridden_methods(), 334 E = D->end_overridden_methods(); 335 if (I == E) 336 return D; // Method does not override anything 337 D = *I; // FIXME: this does not work with multiple inheritance. 338 } 339 return nullptr; 340 } 341 342 til::SExpr *SExprBuilder::translateMemberExpr(const MemberExpr *ME, 343 CallingContext *Ctx) { 344 til::SExpr *BE = translate(ME->getBase(), Ctx); 345 til::SExpr *E = new (Arena) til::SApply(BE); 346 347 const ValueDecl *D = ME->getMemberDecl(); 348 if (auto *VD = dyn_cast<CXXMethodDecl>(D)) 349 D = getFirstVirtualDecl(VD); 350 351 til::Project *P = new (Arena) til::Project(E, D); 352 if (hasCppPointerType(BE)) 353 P->setArrow(true); 354 return P; 355 } 356 357 358 til::SExpr *SExprBuilder::translateCallExpr(const CallExpr *CE, 359 CallingContext *Ctx, 360 const Expr *SelfE) { 361 if (CapabilityExprMode) { 362 // Handle LOCK_RETURNED 363 const FunctionDecl *FD = CE->getDirectCallee()->getMostRecentDecl(); 364 if (LockReturnedAttr* At = FD->getAttr<LockReturnedAttr>()) { 365 CallingContext LRCallCtx(Ctx); 366 LRCallCtx.AttrDecl = CE->getDirectCallee(); 367 LRCallCtx.SelfArg = SelfE; 368 LRCallCtx.NumArgs = CE->getNumArgs(); 369 LRCallCtx.FunArgs = CE->getArgs(); 370 return const_cast<til::SExpr*>( 371 translateAttrExpr(At->getArg(), &LRCallCtx).sexpr()); 372 } 373 } 374 375 til::SExpr *E = translate(CE->getCallee(), Ctx); 376 for (const auto *Arg : CE->arguments()) { 377 til::SExpr *A = translate(Arg, Ctx); 378 E = new (Arena) til::Apply(E, A); 379 } 380 return new (Arena) til::Call(E, CE); 381 } 382 383 384 til::SExpr *SExprBuilder::translateCXXMemberCallExpr( 385 const CXXMemberCallExpr *ME, CallingContext *Ctx) { 386 if (CapabilityExprMode) { 387 // Ignore calls to get() on smart pointers. 388 if (ME->getMethodDecl()->getNameAsString() == "get" && 389 ME->getNumArgs() == 0) { 390 auto *E = translate(ME->getImplicitObjectArgument(), Ctx); 391 return new (Arena) til::Cast(til::CAST_objToPtr, E); 392 // return E; 393 } 394 } 395 return translateCallExpr(cast<CallExpr>(ME), Ctx, 396 ME->getImplicitObjectArgument()); 397 } 398 399 400 til::SExpr *SExprBuilder::translateCXXOperatorCallExpr( 401 const CXXOperatorCallExpr *OCE, CallingContext *Ctx) { 402 if (CapabilityExprMode) { 403 // Ignore operator * and operator -> on smart pointers. 404 OverloadedOperatorKind k = OCE->getOperator(); 405 if (k == OO_Star || k == OO_Arrow) { 406 auto *E = translate(OCE->getArg(0), Ctx); 407 return new (Arena) til::Cast(til::CAST_objToPtr, E); 408 // return E; 409 } 410 } 411 return translateCallExpr(cast<CallExpr>(OCE), Ctx); 412 } 413 414 415 til::SExpr *SExprBuilder::translateUnaryOperator(const UnaryOperator *UO, 416 CallingContext *Ctx) { 417 switch (UO->getOpcode()) { 418 case UO_PostInc: 419 case UO_PostDec: 420 case UO_PreInc: 421 case UO_PreDec: 422 return new (Arena) til::Undefined(UO); 423 424 case UO_AddrOf: { 425 if (CapabilityExprMode) { 426 // interpret &Graph::mu_ as an existential. 427 if (DeclRefExpr* DRE = dyn_cast<DeclRefExpr>(UO->getSubExpr())) { 428 if (DRE->getDecl()->isCXXInstanceMember()) { 429 // This is a pointer-to-member expression, e.g. &MyClass::mu_. 430 // We interpret this syntax specially, as a wildcard. 431 auto *W = new (Arena) til::Wildcard(); 432 return new (Arena) til::Project(W, DRE->getDecl()); 433 } 434 } 435 } 436 // otherwise, & is a no-op 437 return translate(UO->getSubExpr(), Ctx); 438 } 439 440 // We treat these as no-ops 441 case UO_Deref: 442 case UO_Plus: 443 return translate(UO->getSubExpr(), Ctx); 444 445 case UO_Minus: 446 return new (Arena) 447 til::UnaryOp(til::UOP_Minus, translate(UO->getSubExpr(), Ctx)); 448 case UO_Not: 449 return new (Arena) 450 til::UnaryOp(til::UOP_BitNot, translate(UO->getSubExpr(), Ctx)); 451 case UO_LNot: 452 return new (Arena) 453 til::UnaryOp(til::UOP_LogicNot, translate(UO->getSubExpr(), Ctx)); 454 455 // Currently unsupported 456 case UO_Real: 457 case UO_Imag: 458 case UO_Extension: 459 return new (Arena) til::Undefined(UO); 460 } 461 return new (Arena) til::Undefined(UO); 462 } 463 464 465 til::SExpr *SExprBuilder::translateBinOp(til::TIL_BinaryOpcode Op, 466 const BinaryOperator *BO, 467 CallingContext *Ctx, bool Reverse) { 468 til::SExpr *E0 = translate(BO->getLHS(), Ctx); 469 til::SExpr *E1 = translate(BO->getRHS(), Ctx); 470 if (Reverse) 471 return new (Arena) til::BinaryOp(Op, E1, E0); 472 else 473 return new (Arena) til::BinaryOp(Op, E0, E1); 474 } 475 476 477 til::SExpr *SExprBuilder::translateBinAssign(til::TIL_BinaryOpcode Op, 478 const BinaryOperator *BO, 479 CallingContext *Ctx, 480 bool Assign) { 481 const Expr *LHS = BO->getLHS(); 482 const Expr *RHS = BO->getRHS(); 483 til::SExpr *E0 = translate(LHS, Ctx); 484 til::SExpr *E1 = translate(RHS, Ctx); 485 486 const ValueDecl *VD = nullptr; 487 til::SExpr *CV = nullptr; 488 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(LHS)) { 489 VD = DRE->getDecl(); 490 CV = lookupVarDecl(VD); 491 } 492 493 if (!Assign) { 494 til::SExpr *Arg = CV ? CV : new (Arena) til::Load(E0); 495 E1 = new (Arena) til::BinaryOp(Op, Arg, E1); 496 E1 = addStatement(E1, nullptr, VD); 497 } 498 if (VD && CV) 499 return updateVarDecl(VD, E1); 500 return new (Arena) til::Store(E0, E1); 501 } 502 503 504 til::SExpr *SExprBuilder::translateBinaryOperator(const BinaryOperator *BO, 505 CallingContext *Ctx) { 506 switch (BO->getOpcode()) { 507 case BO_PtrMemD: 508 case BO_PtrMemI: 509 return new (Arena) til::Undefined(BO); 510 511 case BO_Mul: return translateBinOp(til::BOP_Mul, BO, Ctx); 512 case BO_Div: return translateBinOp(til::BOP_Div, BO, Ctx); 513 case BO_Rem: return translateBinOp(til::BOP_Rem, BO, Ctx); 514 case BO_Add: return translateBinOp(til::BOP_Add, BO, Ctx); 515 case BO_Sub: return translateBinOp(til::BOP_Sub, BO, Ctx); 516 case BO_Shl: return translateBinOp(til::BOP_Shl, BO, Ctx); 517 case BO_Shr: return translateBinOp(til::BOP_Shr, BO, Ctx); 518 case BO_LT: return translateBinOp(til::BOP_Lt, BO, Ctx); 519 case BO_GT: return translateBinOp(til::BOP_Lt, BO, Ctx, true); 520 case BO_LE: return translateBinOp(til::BOP_Leq, BO, Ctx); 521 case BO_GE: return translateBinOp(til::BOP_Leq, BO, Ctx, true); 522 case BO_EQ: return translateBinOp(til::BOP_Eq, BO, Ctx); 523 case BO_NE: return translateBinOp(til::BOP_Neq, BO, Ctx); 524 case BO_And: return translateBinOp(til::BOP_BitAnd, BO, Ctx); 525 case BO_Xor: return translateBinOp(til::BOP_BitXor, BO, Ctx); 526 case BO_Or: return translateBinOp(til::BOP_BitOr, BO, Ctx); 527 case BO_LAnd: return translateBinOp(til::BOP_LogicAnd, BO, Ctx); 528 case BO_LOr: return translateBinOp(til::BOP_LogicOr, BO, Ctx); 529 530 case BO_Assign: return translateBinAssign(til::BOP_Eq, BO, Ctx, true); 531 case BO_MulAssign: return translateBinAssign(til::BOP_Mul, BO, Ctx); 532 case BO_DivAssign: return translateBinAssign(til::BOP_Div, BO, Ctx); 533 case BO_RemAssign: return translateBinAssign(til::BOP_Rem, BO, Ctx); 534 case BO_AddAssign: return translateBinAssign(til::BOP_Add, BO, Ctx); 535 case BO_SubAssign: return translateBinAssign(til::BOP_Sub, BO, Ctx); 536 case BO_ShlAssign: return translateBinAssign(til::BOP_Shl, BO, Ctx); 537 case BO_ShrAssign: return translateBinAssign(til::BOP_Shr, BO, Ctx); 538 case BO_AndAssign: return translateBinAssign(til::BOP_BitAnd, BO, Ctx); 539 case BO_XorAssign: return translateBinAssign(til::BOP_BitXor, BO, Ctx); 540 case BO_OrAssign: return translateBinAssign(til::BOP_BitOr, BO, Ctx); 541 542 case BO_Comma: 543 // The clang CFG should have already processed both sides. 544 return translate(BO->getRHS(), Ctx); 545 } 546 return new (Arena) til::Undefined(BO); 547 } 548 549 550 til::SExpr *SExprBuilder::translateCastExpr(const CastExpr *CE, 551 CallingContext *Ctx) { 552 clang::CastKind K = CE->getCastKind(); 553 switch (K) { 554 case CK_LValueToRValue: { 555 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(CE->getSubExpr())) { 556 til::SExpr *E0 = lookupVarDecl(DRE->getDecl()); 557 if (E0) 558 return E0; 559 } 560 til::SExpr *E0 = translate(CE->getSubExpr(), Ctx); 561 return E0; 562 // FIXME!! -- get Load working properly 563 // return new (Arena) til::Load(E0); 564 } 565 case CK_NoOp: 566 case CK_DerivedToBase: 567 case CK_UncheckedDerivedToBase: 568 case CK_ArrayToPointerDecay: 569 case CK_FunctionToPointerDecay: { 570 til::SExpr *E0 = translate(CE->getSubExpr(), Ctx); 571 return E0; 572 } 573 default: { 574 // FIXME: handle different kinds of casts. 575 til::SExpr *E0 = translate(CE->getSubExpr(), Ctx); 576 if (CapabilityExprMode) 577 return E0; 578 return new (Arena) til::Cast(til::CAST_none, E0); 579 } 580 } 581 } 582 583 584 til::SExpr * 585 SExprBuilder::translateArraySubscriptExpr(const ArraySubscriptExpr *E, 586 CallingContext *Ctx) { 587 til::SExpr *E0 = translate(E->getBase(), Ctx); 588 til::SExpr *E1 = translate(E->getIdx(), Ctx); 589 return new (Arena) til::ArrayIndex(E0, E1); 590 } 591 592 593 til::SExpr * 594 SExprBuilder::translateAbstractConditionalOperator( 595 const AbstractConditionalOperator *CO, CallingContext *Ctx) { 596 auto *C = translate(CO->getCond(), Ctx); 597 auto *T = translate(CO->getTrueExpr(), Ctx); 598 auto *E = translate(CO->getFalseExpr(), Ctx); 599 return new (Arena) til::IfThenElse(C, T, E); 600 } 601 602 603 til::SExpr * 604 SExprBuilder::translateDeclStmt(const DeclStmt *S, CallingContext *Ctx) { 605 DeclGroupRef DGrp = S->getDeclGroup(); 606 for (DeclGroupRef::iterator I = DGrp.begin(), E = DGrp.end(); I != E; ++I) { 607 if (VarDecl *VD = dyn_cast_or_null<VarDecl>(*I)) { 608 Expr *E = VD->getInit(); 609 til::SExpr* SE = translate(E, Ctx); 610 611 // Add local variables with trivial type to the variable map 612 QualType T = VD->getType(); 613 if (T.isTrivialType(VD->getASTContext())) { 614 return addVarDecl(VD, SE); 615 } 616 else { 617 // TODO: add alloca 618 } 619 } 620 } 621 return nullptr; 622 } 623 624 625 626 // If (E) is non-trivial, then add it to the current basic block, and 627 // update the statement map so that S refers to E. Returns a new variable 628 // that refers to E. 629 // If E is trivial returns E. 630 til::SExpr *SExprBuilder::addStatement(til::SExpr* E, const Stmt *S, 631 const ValueDecl *VD) { 632 if (!E || !CurrentBB || E->block() || til::ThreadSafetyTIL::isTrivial(E)) 633 return E; 634 if (VD) 635 E = new (Arena) til::Variable(E, VD); 636 CurrentInstructions.push_back(E); 637 if (S) 638 insertStmt(S, E); 639 return E; 640 } 641 642 643 // Returns the current value of VD, if known, and nullptr otherwise. 644 til::SExpr *SExprBuilder::lookupVarDecl(const ValueDecl *VD) { 645 auto It = LVarIdxMap.find(VD); 646 if (It != LVarIdxMap.end()) { 647 assert(CurrentLVarMap[It->second].first == VD); 648 return CurrentLVarMap[It->second].second; 649 } 650 return nullptr; 651 } 652 653 654 // if E is a til::Variable, update its clangDecl. 655 static void maybeUpdateVD(til::SExpr *E, const ValueDecl *VD) { 656 if (!E) 657 return; 658 if (til::Variable *V = dyn_cast<til::Variable>(E)) { 659 if (!V->clangDecl()) 660 V->setClangDecl(VD); 661 } 662 } 663 664 // Adds a new variable declaration. 665 til::SExpr *SExprBuilder::addVarDecl(const ValueDecl *VD, til::SExpr *E) { 666 maybeUpdateVD(E, VD); 667 LVarIdxMap.insert(std::make_pair(VD, CurrentLVarMap.size())); 668 CurrentLVarMap.makeWritable(); 669 CurrentLVarMap.push_back(std::make_pair(VD, E)); 670 return E; 671 } 672 673 674 // Updates a current variable declaration. (E.g. by assignment) 675 til::SExpr *SExprBuilder::updateVarDecl(const ValueDecl *VD, til::SExpr *E) { 676 maybeUpdateVD(E, VD); 677 auto It = LVarIdxMap.find(VD); 678 if (It == LVarIdxMap.end()) { 679 til::SExpr *Ptr = new (Arena) til::LiteralPtr(VD); 680 til::SExpr *St = new (Arena) til::Store(Ptr, E); 681 return St; 682 } 683 CurrentLVarMap.makeWritable(); 684 CurrentLVarMap.elem(It->second).second = E; 685 return E; 686 } 687 688 689 // Make a Phi node in the current block for the i^th variable in CurrentVarMap. 690 // If E != null, sets Phi[CurrentBlockInfo->ArgIndex] = E. 691 // If E == null, this is a backedge and will be set later. 692 void SExprBuilder::makePhiNodeVar(unsigned i, unsigned NPreds, til::SExpr *E) { 693 unsigned ArgIndex = CurrentBlockInfo->ProcessedPredecessors; 694 assert(ArgIndex > 0 && ArgIndex < NPreds); 695 696 til::SExpr *CurrE = CurrentLVarMap[i].second; 697 if (CurrE->block() == CurrentBB) { 698 // We already have a Phi node in the current block, 699 // so just add the new variable to the Phi node. 700 til::Phi *Ph = dyn_cast<til::Phi>(CurrE); 701 assert(Ph && "Expecting Phi node."); 702 if (E) 703 Ph->values()[ArgIndex] = E; 704 return; 705 } 706 707 // Make a new phi node: phi(..., E) 708 // All phi args up to the current index are set to the current value. 709 til::Phi *Ph = new (Arena) til::Phi(Arena, NPreds); 710 Ph->values().setValues(NPreds, nullptr); 711 for (unsigned PIdx = 0; PIdx < ArgIndex; ++PIdx) 712 Ph->values()[PIdx] = CurrE; 713 if (E) 714 Ph->values()[ArgIndex] = E; 715 Ph->setClangDecl(CurrentLVarMap[i].first); 716 // If E is from a back-edge, or either E or CurrE are incomplete, then 717 // mark this node as incomplete; we may need to remove it later. 718 if (!E || isIncompletePhi(E) || isIncompletePhi(CurrE)) { 719 Ph->setStatus(til::Phi::PH_Incomplete); 720 } 721 722 // Add Phi node to current block, and update CurrentLVarMap[i] 723 CurrentArguments.push_back(Ph); 724 if (Ph->status() == til::Phi::PH_Incomplete) 725 IncompleteArgs.push_back(Ph); 726 727 CurrentLVarMap.makeWritable(); 728 CurrentLVarMap.elem(i).second = Ph; 729 } 730 731 732 // Merge values from Map into the current variable map. 733 // This will construct Phi nodes in the current basic block as necessary. 734 void SExprBuilder::mergeEntryMap(LVarDefinitionMap Map) { 735 assert(CurrentBlockInfo && "Not processing a block!"); 736 737 if (!CurrentLVarMap.valid()) { 738 // Steal Map, using copy-on-write. 739 CurrentLVarMap = std::move(Map); 740 return; 741 } 742 if (CurrentLVarMap.sameAs(Map)) 743 return; // Easy merge: maps from different predecessors are unchanged. 744 745 unsigned NPreds = CurrentBB->numPredecessors(); 746 unsigned ESz = CurrentLVarMap.size(); 747 unsigned MSz = Map.size(); 748 unsigned Sz = std::min(ESz, MSz); 749 750 for (unsigned i=0; i<Sz; ++i) { 751 if (CurrentLVarMap[i].first != Map[i].first) { 752 // We've reached the end of variables in common. 753 CurrentLVarMap.makeWritable(); 754 CurrentLVarMap.downsize(i); 755 break; 756 } 757 if (CurrentLVarMap[i].second != Map[i].second) 758 makePhiNodeVar(i, NPreds, Map[i].second); 759 } 760 if (ESz > MSz) { 761 CurrentLVarMap.makeWritable(); 762 CurrentLVarMap.downsize(Map.size()); 763 } 764 } 765 766 767 // Merge a back edge into the current variable map. 768 // This will create phi nodes for all variables in the variable map. 769 void SExprBuilder::mergeEntryMapBackEdge() { 770 // We don't have definitions for variables on the backedge, because we 771 // haven't gotten that far in the CFG. Thus, when encountering a back edge, 772 // we conservatively create Phi nodes for all variables. Unnecessary Phi 773 // nodes will be marked as incomplete, and stripped out at the end. 774 // 775 // An Phi node is unnecessary if it only refers to itself and one other 776 // variable, e.g. x = Phi(y, y, x) can be reduced to x = y. 777 778 assert(CurrentBlockInfo && "Not processing a block!"); 779 780 if (CurrentBlockInfo->HasBackEdges) 781 return; 782 CurrentBlockInfo->HasBackEdges = true; 783 784 CurrentLVarMap.makeWritable(); 785 unsigned Sz = CurrentLVarMap.size(); 786 unsigned NPreds = CurrentBB->numPredecessors(); 787 788 for (unsigned i=0; i < Sz; ++i) { 789 makePhiNodeVar(i, NPreds, nullptr); 790 } 791 } 792 793 794 // Update the phi nodes that were initially created for a back edge 795 // once the variable definitions have been computed. 796 // I.e., merge the current variable map into the phi nodes for Blk. 797 void SExprBuilder::mergePhiNodesBackEdge(const CFGBlock *Blk) { 798 til::BasicBlock *BB = lookupBlock(Blk); 799 unsigned ArgIndex = BBInfo[Blk->getBlockID()].ProcessedPredecessors; 800 assert(ArgIndex > 0 && ArgIndex < BB->numPredecessors()); 801 802 for (til::SExpr *PE : BB->arguments()) { 803 til::Phi *Ph = dyn_cast_or_null<til::Phi>(PE); 804 assert(Ph && "Expecting Phi Node."); 805 assert(Ph->values()[ArgIndex] == nullptr && "Wrong index for back edge."); 806 807 til::SExpr *E = lookupVarDecl(Ph->clangDecl()); 808 assert(E && "Couldn't find local variable for Phi node."); 809 Ph->values()[ArgIndex] = E; 810 } 811 } 812 813 void SExprBuilder::enterCFG(CFG *Cfg, const NamedDecl *D, 814 const CFGBlock *First) { 815 // Perform initial setup operations. 816 unsigned NBlocks = Cfg->getNumBlockIDs(); 817 Scfg = new (Arena) til::SCFG(Arena, NBlocks); 818 819 // allocate all basic blocks immediately, to handle forward references. 820 BBInfo.resize(NBlocks); 821 BlockMap.resize(NBlocks, nullptr); 822 // create map from clang blockID to til::BasicBlocks 823 for (auto *B : *Cfg) { 824 auto *BB = new (Arena) til::BasicBlock(Arena); 825 BB->reserveInstructions(B->size()); 826 BlockMap[B->getBlockID()] = BB; 827 } 828 829 CurrentBB = lookupBlock(&Cfg->getEntry()); 830 auto Parms = isa<ObjCMethodDecl>(D) ? cast<ObjCMethodDecl>(D)->parameters() 831 : cast<FunctionDecl>(D)->parameters(); 832 for (auto *Pm : Parms) { 833 QualType T = Pm->getType(); 834 if (!T.isTrivialType(Pm->getASTContext())) 835 continue; 836 837 // Add parameters to local variable map. 838 // FIXME: right now we emulate params with loads; that should be fixed. 839 til::SExpr *Lp = new (Arena) til::LiteralPtr(Pm); 840 til::SExpr *Ld = new (Arena) til::Load(Lp); 841 til::SExpr *V = addStatement(Ld, nullptr, Pm); 842 addVarDecl(Pm, V); 843 } 844 } 845 846 847 void SExprBuilder::enterCFGBlock(const CFGBlock *B) { 848 // Intialize TIL basic block and add it to the CFG. 849 CurrentBB = lookupBlock(B); 850 CurrentBB->reservePredecessors(B->pred_size()); 851 Scfg->add(CurrentBB); 852 853 CurrentBlockInfo = &BBInfo[B->getBlockID()]; 854 855 // CurrentLVarMap is moved to ExitMap on block exit. 856 // FIXME: the entry block will hold function parameters. 857 // assert(!CurrentLVarMap.valid() && "CurrentLVarMap already initialized."); 858 } 859 860 861 void SExprBuilder::handlePredecessor(const CFGBlock *Pred) { 862 // Compute CurrentLVarMap on entry from ExitMaps of predecessors 863 864 CurrentBB->addPredecessor(BlockMap[Pred->getBlockID()]); 865 BlockInfo *PredInfo = &BBInfo[Pred->getBlockID()]; 866 assert(PredInfo->UnprocessedSuccessors > 0); 867 868 if (--PredInfo->UnprocessedSuccessors == 0) 869 mergeEntryMap(std::move(PredInfo->ExitMap)); 870 else 871 mergeEntryMap(PredInfo->ExitMap.clone()); 872 873 ++CurrentBlockInfo->ProcessedPredecessors; 874 } 875 876 877 void SExprBuilder::handlePredecessorBackEdge(const CFGBlock *Pred) { 878 mergeEntryMapBackEdge(); 879 } 880 881 882 void SExprBuilder::enterCFGBlockBody(const CFGBlock *B) { 883 // The merge*() methods have created arguments. 884 // Push those arguments onto the basic block. 885 CurrentBB->arguments().reserve( 886 static_cast<unsigned>(CurrentArguments.size()), Arena); 887 for (auto *A : CurrentArguments) 888 CurrentBB->addArgument(A); 889 } 890 891 892 void SExprBuilder::handleStatement(const Stmt *S) { 893 til::SExpr *E = translate(S, nullptr); 894 addStatement(E, S); 895 } 896 897 898 void SExprBuilder::handleDestructorCall(const VarDecl *VD, 899 const CXXDestructorDecl *DD) { 900 til::SExpr *Sf = new (Arena) til::LiteralPtr(VD); 901 til::SExpr *Dr = new (Arena) til::LiteralPtr(DD); 902 til::SExpr *Ap = new (Arena) til::Apply(Dr, Sf); 903 til::SExpr *E = new (Arena) til::Call(Ap); 904 addStatement(E, nullptr); 905 } 906 907 908 909 void SExprBuilder::exitCFGBlockBody(const CFGBlock *B) { 910 CurrentBB->instructions().reserve( 911 static_cast<unsigned>(CurrentInstructions.size()), Arena); 912 for (auto *V : CurrentInstructions) 913 CurrentBB->addInstruction(V); 914 915 // Create an appropriate terminator 916 unsigned N = B->succ_size(); 917 auto It = B->succ_begin(); 918 if (N == 1) { 919 til::BasicBlock *BB = *It ? lookupBlock(*It) : nullptr; 920 // TODO: set index 921 unsigned Idx = BB ? BB->findPredecessorIndex(CurrentBB) : 0; 922 auto *Tm = new (Arena) til::Goto(BB, Idx); 923 CurrentBB->setTerminator(Tm); 924 } 925 else if (N == 2) { 926 til::SExpr *C = translate(B->getTerminatorCondition(true), nullptr); 927 til::BasicBlock *BB1 = *It ? lookupBlock(*It) : nullptr; 928 ++It; 929 til::BasicBlock *BB2 = *It ? lookupBlock(*It) : nullptr; 930 // FIXME: make sure these arent' critical edges. 931 auto *Tm = new (Arena) til::Branch(C, BB1, BB2); 932 CurrentBB->setTerminator(Tm); 933 } 934 } 935 936 937 void SExprBuilder::handleSuccessor(const CFGBlock *Succ) { 938 ++CurrentBlockInfo->UnprocessedSuccessors; 939 } 940 941 942 void SExprBuilder::handleSuccessorBackEdge(const CFGBlock *Succ) { 943 mergePhiNodesBackEdge(Succ); 944 ++BBInfo[Succ->getBlockID()].ProcessedPredecessors; 945 } 946 947 948 void SExprBuilder::exitCFGBlock(const CFGBlock *B) { 949 CurrentArguments.clear(); 950 CurrentInstructions.clear(); 951 CurrentBlockInfo->ExitMap = std::move(CurrentLVarMap); 952 CurrentBB = nullptr; 953 CurrentBlockInfo = nullptr; 954 } 955 956 957 void SExprBuilder::exitCFG(const CFGBlock *Last) { 958 for (auto *Ph : IncompleteArgs) { 959 if (Ph->status() == til::Phi::PH_Incomplete) 960 simplifyIncompleteArg(Ph); 961 } 962 963 CurrentArguments.clear(); 964 CurrentInstructions.clear(); 965 IncompleteArgs.clear(); 966 } 967 968 969 /* 970 void printSCFG(CFGWalker &Walker) { 971 llvm::BumpPtrAllocator Bpa; 972 til::MemRegionRef Arena(&Bpa); 973 SExprBuilder SxBuilder(Arena); 974 til::SCFG *Scfg = SxBuilder.buildCFG(Walker); 975 TILPrinter::print(Scfg, llvm::errs()); 976 } 977 */ 978