Home | History | Annotate | Download | only in Target
      1 //===-- llvm/Target/TargetFrameLowering.h ---------------------------*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // Interface to describe the layout of a stack frame on the target machine.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #ifndef LLVM_TARGET_TARGETFRAMELOWERING_H
     15 #define LLVM_TARGET_TARGETFRAMELOWERING_H
     16 
     17 #include "llvm/CodeGen/MachineBasicBlock.h"
     18 #include <utility>
     19 #include <vector>
     20 
     21 namespace llvm {
     22   class CalleeSavedInfo;
     23   class MachineFunction;
     24   class RegScavenger;
     25 
     26 /// Information about stack frame layout on the target.  It holds the direction
     27 /// of stack growth, the known stack alignment on entry to each function, and
     28 /// the offset to the locals area.
     29 ///
     30 /// The offset to the local area is the offset from the stack pointer on
     31 /// function entry to the first location where function data (local variables,
     32 /// spill locations) can be stored.
     33 class TargetFrameLowering {
     34 public:
     35   enum StackDirection {
     36     StackGrowsUp,        // Adding to the stack increases the stack address
     37     StackGrowsDown       // Adding to the stack decreases the stack address
     38   };
     39 
     40   // Maps a callee saved register to a stack slot with a fixed offset.
     41   struct SpillSlot {
     42     unsigned Reg;
     43     int Offset; // Offset relative to stack pointer on function entry.
     44   };
     45 private:
     46   StackDirection StackDir;
     47   unsigned StackAlignment;
     48   unsigned TransientStackAlignment;
     49   int LocalAreaOffset;
     50   bool StackRealignable;
     51 public:
     52   TargetFrameLowering(StackDirection D, unsigned StackAl, int LAO,
     53                       unsigned TransAl = 1, bool StackReal = true)
     54     : StackDir(D), StackAlignment(StackAl), TransientStackAlignment(TransAl),
     55       LocalAreaOffset(LAO), StackRealignable(StackReal) {}
     56 
     57   virtual ~TargetFrameLowering();
     58 
     59   // These methods return information that describes the abstract stack layout
     60   // of the target machine.
     61 
     62   /// getStackGrowthDirection - Return the direction the stack grows
     63   ///
     64   StackDirection getStackGrowthDirection() const { return StackDir; }
     65 
     66   /// getStackAlignment - This method returns the number of bytes to which the
     67   /// stack pointer must be aligned on entry to a function.  Typically, this
     68   /// is the largest alignment for any data object in the target.
     69   ///
     70   unsigned getStackAlignment() const { return StackAlignment; }
     71 
     72   /// getTransientStackAlignment - This method returns the number of bytes to
     73   /// which the stack pointer must be aligned at all times, even between
     74   /// calls.
     75   ///
     76   unsigned getTransientStackAlignment() const {
     77     return TransientStackAlignment;
     78   }
     79 
     80   /// isStackRealignable - This method returns whether the stack can be
     81   /// realigned.
     82   bool isStackRealignable() const {
     83     return StackRealignable;
     84   }
     85 
     86   /// getOffsetOfLocalArea - This method returns the offset of the local area
     87   /// from the stack pointer on entrance to a function.
     88   ///
     89   int getOffsetOfLocalArea() const { return LocalAreaOffset; }
     90 
     91   /// isFPCloseToIncomingSP - Return true if the frame pointer is close to
     92   /// the incoming stack pointer, false if it is close to the post-prologue
     93   /// stack pointer.
     94   virtual bool isFPCloseToIncomingSP() const { return true; }
     95 
     96   /// assignCalleeSavedSpillSlots - Allows target to override spill slot
     97   /// assignment logic.  If implemented, assignCalleeSavedSpillSlots() should
     98   /// assign frame slots to all CSI entries and return true.  If this method
     99   /// returns false, spill slots will be assigned using generic implementation.
    100   /// assignCalleeSavedSpillSlots() may add, delete or rearrange elements of
    101   /// CSI.
    102   virtual bool
    103   assignCalleeSavedSpillSlots(MachineFunction &MF,
    104                               const TargetRegisterInfo *TRI,
    105                               std::vector<CalleeSavedInfo> &CSI) const {
    106     return false;
    107   }
    108 
    109   /// getCalleeSavedSpillSlots - This method returns a pointer to an array of
    110   /// pairs, that contains an entry for each callee saved register that must be
    111   /// spilled to a particular stack location if it is spilled.
    112   ///
    113   /// Each entry in this array contains a <register,offset> pair, indicating the
    114   /// fixed offset from the incoming stack pointer that each register should be
    115   /// spilled at. If a register is not listed here, the code generator is
    116   /// allowed to spill it anywhere it chooses.
    117   ///
    118   virtual const SpillSlot *
    119   getCalleeSavedSpillSlots(unsigned &NumEntries) const {
    120     NumEntries = 0;
    121     return nullptr;
    122   }
    123 
    124   /// targetHandlesStackFrameRounding - Returns true if the target is
    125   /// responsible for rounding up the stack frame (probably at emitPrologue
    126   /// time).
    127   virtual bool targetHandlesStackFrameRounding() const {
    128     return false;
    129   }
    130 
    131   /// emitProlog/emitEpilog - These methods insert prolog and epilog code into
    132   /// the function.
    133   virtual void emitPrologue(MachineFunction &MF) const = 0;
    134   virtual void emitEpilogue(MachineFunction &MF,
    135                             MachineBasicBlock &MBB) const = 0;
    136 
    137   /// Adjust the prologue to have the function use segmented stacks. This works
    138   /// by adding a check even before the "normal" function prologue.
    139   virtual void adjustForSegmentedStacks(MachineFunction &MF) const { }
    140 
    141   /// Adjust the prologue to add Erlang Run-Time System (ERTS) specific code in
    142   /// the assembly prologue to explicitly handle the stack.
    143   virtual void adjustForHiPEPrologue(MachineFunction &MF) const { }
    144 
    145   /// Adjust the prologue to add an allocation at a fixed offset from the frame
    146   /// pointer.
    147   virtual void adjustForFrameAllocatePrologue(MachineFunction &MF) const { }
    148 
    149   /// spillCalleeSavedRegisters - Issues instruction(s) to spill all callee
    150   /// saved registers and returns true if it isn't possible / profitable to do
    151   /// so by issuing a series of store instructions via
    152   /// storeRegToStackSlot(). Returns false otherwise.
    153   virtual bool spillCalleeSavedRegisters(MachineBasicBlock &MBB,
    154                                          MachineBasicBlock::iterator MI,
    155                                         const std::vector<CalleeSavedInfo> &CSI,
    156                                          const TargetRegisterInfo *TRI) const {
    157     return false;
    158   }
    159 
    160   /// restoreCalleeSavedRegisters - Issues instruction(s) to restore all callee
    161   /// saved registers and returns true if it isn't possible / profitable to do
    162   /// so by issuing a series of load instructions via loadRegToStackSlot().
    163   /// Returns false otherwise.
    164   virtual bool restoreCalleeSavedRegisters(MachineBasicBlock &MBB,
    165                                            MachineBasicBlock::iterator MI,
    166                                         const std::vector<CalleeSavedInfo> &CSI,
    167                                         const TargetRegisterInfo *TRI) const {
    168     return false;
    169   }
    170 
    171   /// hasFP - Return true if the specified function should have a dedicated
    172   /// frame pointer register. For most targets this is true only if the function
    173   /// has variable sized allocas or if frame pointer elimination is disabled.
    174   virtual bool hasFP(const MachineFunction &MF) const = 0;
    175 
    176   /// hasReservedCallFrame - Under normal circumstances, when a frame pointer is
    177   /// not required, we reserve argument space for call sites in the function
    178   /// immediately on entry to the current function. This eliminates the need for
    179   /// add/sub sp brackets around call sites. Returns true if the call frame is
    180   /// included as part of the stack frame.
    181   virtual bool hasReservedCallFrame(const MachineFunction &MF) const {
    182     return !hasFP(MF);
    183   }
    184 
    185   /// canSimplifyCallFramePseudos - When possible, it's best to simplify the
    186   /// call frame pseudo ops before doing frame index elimination. This is
    187   /// possible only when frame index references between the pseudos won't
    188   /// need adjusting for the call frame adjustments. Normally, that's true
    189   /// if the function has a reserved call frame or a frame pointer. Some
    190   /// targets (Thumb2, for example) may have more complicated criteria,
    191   /// however, and can override this behavior.
    192   virtual bool canSimplifyCallFramePseudos(const MachineFunction &MF) const {
    193     return hasReservedCallFrame(MF) || hasFP(MF);
    194   }
    195 
    196   // needsFrameIndexResolution - Do we need to perform FI resolution for
    197   // this function. Normally, this is required only when the function
    198   // has any stack objects. However, targets may want to override this.
    199   virtual bool needsFrameIndexResolution(const MachineFunction &MF) const;
    200 
    201   /// getFrameIndexOffset - Returns the displacement from the frame register to
    202   /// the stack frame of the specified index.
    203   virtual int getFrameIndexOffset(const MachineFunction &MF, int FI) const;
    204 
    205   /// getFrameIndexReference - This method should return the base register
    206   /// and offset used to reference a frame index location. The offset is
    207   /// returned directly, and the base register is returned via FrameReg.
    208   virtual int getFrameIndexReference(const MachineFunction &MF, int FI,
    209                                      unsigned &FrameReg) const;
    210 
    211   /// Same as above, except that the 'base register' will always be RSP, not
    212   /// RBP on x86.  This is used exclusively for lowering STATEPOINT nodes.
    213   /// TODO: This should really be a parameterizable choice.
    214   virtual int getFrameIndexReferenceFromSP(const MachineFunction &MF, int FI,
    215                                           unsigned &FrameReg) const {
    216     // default to calling normal version, we override this on x86 only
    217     llvm_unreachable("unimplemented for non-x86");
    218     return 0;
    219   }
    220 
    221   /// processFunctionBeforeCalleeSavedScan - This method is called immediately
    222   /// before PrologEpilogInserter scans the physical registers used to determine
    223   /// what callee saved registers should be spilled. This method is optional.
    224   virtual void processFunctionBeforeCalleeSavedScan(MachineFunction &MF,
    225                                              RegScavenger *RS = nullptr) const {
    226 
    227   }
    228 
    229   /// processFunctionBeforeFrameFinalized - This method is called immediately
    230   /// before the specified function's frame layout (MF.getFrameInfo()) is
    231   /// finalized.  Once the frame is finalized, MO_FrameIndex operands are
    232   /// replaced with direct constants.  This method is optional.
    233   ///
    234   virtual void processFunctionBeforeFrameFinalized(MachineFunction &MF,
    235                                              RegScavenger *RS = nullptr) const {
    236   }
    237 
    238   /// eliminateCallFramePseudoInstr - This method is called during prolog/epilog
    239   /// code insertion to eliminate call frame setup and destroy pseudo
    240   /// instructions (but only if the Target is using them).  It is responsible
    241   /// for eliminating these instructions, replacing them with concrete
    242   /// instructions.  This method need only be implemented if using call frame
    243   /// setup/destroy pseudo instructions.
    244   ///
    245   virtual void
    246   eliminateCallFramePseudoInstr(MachineFunction &MF,
    247                                 MachineBasicBlock &MBB,
    248                                 MachineBasicBlock::iterator MI) const {
    249     llvm_unreachable("Call Frame Pseudo Instructions do not exist on this "
    250                      "target!");
    251   }
    252 };
    253 
    254 } // End llvm namespace
    255 
    256 #endif
    257