Home | History | Annotate | Download | only in IR
      1 //===--------- llvm/DataLayout.h - Data size & alignment info ---*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file defines layout properties related to datatype size/offset/alignment
     11 // information.  It uses lazy annotations to cache information about how
     12 // structure types are laid out and used.
     13 //
     14 // This structure should be created once, filled in if the defaults are not
     15 // correct and then passed around by const&.  None of the members functions
     16 // require modification to the object.
     17 //
     18 //===----------------------------------------------------------------------===//
     19 
     20 #ifndef LLVM_IR_DATALAYOUT_H
     21 #define LLVM_IR_DATALAYOUT_H
     22 
     23 #include "llvm/ADT/DenseMap.h"
     24 #include "llvm/ADT/SmallVector.h"
     25 #include "llvm/IR/DerivedTypes.h"
     26 #include "llvm/IR/Type.h"
     27 #include "llvm/Pass.h"
     28 #include "llvm/Support/DataTypes.h"
     29 
     30 // This needs to be outside of the namespace, to avoid conflict with llvm-c
     31 // decl.
     32 typedef struct LLVMOpaqueTargetData *LLVMTargetDataRef;
     33 
     34 namespace llvm {
     35 
     36 class Value;
     37 class Type;
     38 class IntegerType;
     39 class StructType;
     40 class StructLayout;
     41 class Triple;
     42 class GlobalVariable;
     43 class LLVMContext;
     44 template<typename T>
     45 class ArrayRef;
     46 
     47 /// Enum used to categorize the alignment types stored by LayoutAlignElem
     48 enum AlignTypeEnum {
     49   INVALID_ALIGN = 0,
     50   INTEGER_ALIGN = 'i',
     51   VECTOR_ALIGN = 'v',
     52   FLOAT_ALIGN = 'f',
     53   AGGREGATE_ALIGN = 'a'
     54 };
     55 
     56 // FIXME: Currently the DataLayout string carries a "preferred alignment"
     57 // for types. As the DataLayout is module/global, this should likely be
     58 // sunk down to an FTTI element that is queried rather than a global
     59 // preference.
     60 
     61 /// \brief Layout alignment element.
     62 ///
     63 /// Stores the alignment data associated with a given alignment type (integer,
     64 /// vector, float) and type bit width.
     65 ///
     66 /// \note The unusual order of elements in the structure attempts to reduce
     67 /// padding and make the structure slightly more cache friendly.
     68 struct LayoutAlignElem {
     69   /// \brief Alignment type from \c AlignTypeEnum
     70   unsigned AlignType : 8;
     71   unsigned TypeBitWidth : 24;
     72   unsigned ABIAlign : 16;
     73   unsigned PrefAlign : 16;
     74 
     75   static LayoutAlignElem get(AlignTypeEnum align_type, unsigned abi_align,
     76                              unsigned pref_align, uint32_t bit_width);
     77   bool operator==(const LayoutAlignElem &rhs) const;
     78 };
     79 
     80 /// \brief Layout pointer alignment element.
     81 ///
     82 /// Stores the alignment data associated with a given pointer and address space.
     83 ///
     84 /// \note The unusual order of elements in the structure attempts to reduce
     85 /// padding and make the structure slightly more cache friendly.
     86 struct PointerAlignElem {
     87   unsigned ABIAlign;
     88   unsigned PrefAlign;
     89   uint32_t TypeByteWidth;
     90   uint32_t AddressSpace;
     91 
     92   /// Initializer
     93   static PointerAlignElem get(uint32_t AddressSpace, unsigned ABIAlign,
     94                               unsigned PrefAlign, uint32_t TypeByteWidth);
     95   bool operator==(const PointerAlignElem &rhs) const;
     96 };
     97 
     98 /// \brief A parsed version of the target data layout string in and methods for
     99 /// querying it.
    100 ///
    101 /// The target data layout string is specified *by the target* - a frontend
    102 /// generating LLVM IR is required to generate the right target data for the
    103 /// target being codegen'd to.
    104 class DataLayout {
    105 private:
    106   /// Defaults to false.
    107   bool BigEndian;
    108 
    109   unsigned StackNaturalAlign;
    110 
    111   enum ManglingModeT {
    112     MM_None,
    113     MM_ELF,
    114     MM_MachO,
    115     MM_WinCOFF,
    116     MM_WinCOFFX86,
    117     MM_Mips
    118   };
    119   ManglingModeT ManglingMode;
    120 
    121   SmallVector<unsigned char, 8> LegalIntWidths;
    122 
    123   /// \brief Primitive type alignment data.
    124   SmallVector<LayoutAlignElem, 16> Alignments;
    125 
    126   /// \brief The string representation used to create this DataLayout
    127   std::string StringRepresentation;
    128 
    129   typedef SmallVector<PointerAlignElem, 8> PointersTy;
    130   PointersTy Pointers;
    131 
    132   PointersTy::const_iterator
    133   findPointerLowerBound(uint32_t AddressSpace) const {
    134     return const_cast<DataLayout *>(this)->findPointerLowerBound(AddressSpace);
    135   }
    136 
    137   PointersTy::iterator findPointerLowerBound(uint32_t AddressSpace);
    138 
    139   /// This member is a signal that a requested alignment type and bit width were
    140   /// not found in the SmallVector.
    141   static const LayoutAlignElem InvalidAlignmentElem;
    142 
    143   /// This member is a signal that a requested pointer type and bit width were
    144   /// not found in the DenseSet.
    145   static const PointerAlignElem InvalidPointerElem;
    146 
    147   // The StructType -> StructLayout map.
    148   mutable void *LayoutMap;
    149 
    150   void setAlignment(AlignTypeEnum align_type, unsigned abi_align,
    151                     unsigned pref_align, uint32_t bit_width);
    152   unsigned getAlignmentInfo(AlignTypeEnum align_type, uint32_t bit_width,
    153                             bool ABIAlign, Type *Ty) const;
    154   void setPointerAlignment(uint32_t AddrSpace, unsigned ABIAlign,
    155                            unsigned PrefAlign, uint32_t TypeByteWidth);
    156 
    157   /// Internal helper method that returns requested alignment for type.
    158   unsigned getAlignment(Type *Ty, bool abi_or_pref) const;
    159 
    160   /// \brief Valid alignment predicate.
    161   ///
    162   /// Predicate that tests a LayoutAlignElem reference returned by get() against
    163   /// InvalidAlignmentElem.
    164   bool validAlignment(const LayoutAlignElem &align) const {
    165     return &align != &InvalidAlignmentElem;
    166   }
    167 
    168   /// \brief Valid pointer predicate.
    169   ///
    170   /// Predicate that tests a PointerAlignElem reference returned by get()
    171   /// against \c InvalidPointerElem.
    172   bool validPointer(const PointerAlignElem &align) const {
    173     return &align != &InvalidPointerElem;
    174   }
    175 
    176   /// Parses a target data specification string. Assert if the string is
    177   /// malformed.
    178   void parseSpecifier(StringRef LayoutDescription);
    179 
    180   // Free all internal data structures.
    181   void clear();
    182 
    183 public:
    184   /// Constructs a DataLayout from a specification string. See reset().
    185   explicit DataLayout(StringRef LayoutDescription) : LayoutMap(nullptr) {
    186     reset(LayoutDescription);
    187   }
    188 
    189   /// Initialize target data from properties stored in the module.
    190   explicit DataLayout(const Module *M);
    191 
    192   void init(const Module *M);
    193 
    194   DataLayout(const DataLayout &DL) : LayoutMap(nullptr) { *this = DL; }
    195 
    196   DataLayout &operator=(const DataLayout &DL) {
    197     clear();
    198     StringRepresentation = DL.StringRepresentation;
    199     BigEndian = DL.isBigEndian();
    200     StackNaturalAlign = DL.StackNaturalAlign;
    201     ManglingMode = DL.ManglingMode;
    202     LegalIntWidths = DL.LegalIntWidths;
    203     Alignments = DL.Alignments;
    204     Pointers = DL.Pointers;
    205     return *this;
    206   }
    207 
    208   bool operator==(const DataLayout &Other) const;
    209   bool operator!=(const DataLayout &Other) const { return !(*this == Other); }
    210 
    211   ~DataLayout(); // Not virtual, do not subclass this class
    212 
    213   /// Parse a data layout string (with fallback to default values).
    214   void reset(StringRef LayoutDescription);
    215 
    216   /// Layout endianness...
    217   bool isLittleEndian() const { return !BigEndian; }
    218   bool isBigEndian() const { return BigEndian; }
    219 
    220   /// \brief Returns the string representation of the DataLayout.
    221   ///
    222   /// This representation is in the same format accepted by the string
    223   /// constructor above. This should not be used to compare two DataLayout as
    224   /// different string can represent the same layout.
    225   std::string getStringRepresentation() const { return StringRepresentation; }
    226 
    227   /// \brief Test if the DataLayout was constructed from an empty string.
    228   bool isDefault() const { return StringRepresentation.empty(); }
    229 
    230   /// \brief Returns true if the specified type is known to be a native integer
    231   /// type supported by the CPU.
    232   ///
    233   /// For example, i64 is not native on most 32-bit CPUs and i37 is not native
    234   /// on any known one. This returns false if the integer width is not legal.
    235   ///
    236   /// The width is specified in bits.
    237   bool isLegalInteger(unsigned Width) const {
    238     for (unsigned LegalIntWidth : LegalIntWidths)
    239       if (LegalIntWidth == Width)
    240         return true;
    241     return false;
    242   }
    243 
    244   bool isIllegalInteger(unsigned Width) const { return !isLegalInteger(Width); }
    245 
    246   /// Returns true if the given alignment exceeds the natural stack alignment.
    247   bool exceedsNaturalStackAlignment(unsigned Align) const {
    248     return (StackNaturalAlign != 0) && (Align > StackNaturalAlign);
    249   }
    250 
    251   unsigned getStackAlignment() const { return StackNaturalAlign; }
    252 
    253   bool hasMicrosoftFastStdCallMangling() const {
    254     return ManglingMode == MM_WinCOFFX86;
    255   }
    256 
    257   bool hasLinkerPrivateGlobalPrefix() const { return ManglingMode == MM_MachO; }
    258 
    259   const char *getLinkerPrivateGlobalPrefix() const {
    260     if (ManglingMode == MM_MachO)
    261       return "l";
    262     return "";
    263   }
    264 
    265   char getGlobalPrefix() const {
    266     switch (ManglingMode) {
    267     case MM_None:
    268     case MM_ELF:
    269     case MM_Mips:
    270     case MM_WinCOFF:
    271       return '\0';
    272     case MM_MachO:
    273     case MM_WinCOFFX86:
    274       return '_';
    275     }
    276     llvm_unreachable("invalid mangling mode");
    277   }
    278 
    279   const char *getPrivateGlobalPrefix() const {
    280     switch (ManglingMode) {
    281     case MM_None:
    282       return "";
    283     case MM_ELF:
    284       return ".L";
    285     case MM_Mips:
    286       return "$";
    287     case MM_MachO:
    288     case MM_WinCOFF:
    289     case MM_WinCOFFX86:
    290       return "L";
    291     }
    292     llvm_unreachable("invalid mangling mode");
    293   }
    294 
    295   static const char *getManglingComponent(const Triple &T);
    296 
    297   /// \brief Returns true if the specified type fits in a native integer type
    298   /// supported by the CPU.
    299   ///
    300   /// For example, if the CPU only supports i32 as a native integer type, then
    301   /// i27 fits in a legal integer type but i45 does not.
    302   bool fitsInLegalInteger(unsigned Width) const {
    303     for (unsigned LegalIntWidth : LegalIntWidths)
    304       if (Width <= LegalIntWidth)
    305         return true;
    306     return false;
    307   }
    308 
    309   /// Layout pointer alignment
    310   /// FIXME: The defaults need to be removed once all of
    311   /// the backends/clients are updated.
    312   unsigned getPointerABIAlignment(unsigned AS = 0) const;
    313 
    314   /// Return target's alignment for stack-based pointers
    315   /// FIXME: The defaults need to be removed once all of
    316   /// the backends/clients are updated.
    317   unsigned getPointerPrefAlignment(unsigned AS = 0) const;
    318 
    319   /// Layout pointer size
    320   /// FIXME: The defaults need to be removed once all of
    321   /// the backends/clients are updated.
    322   unsigned getPointerSize(unsigned AS = 0) const;
    323 
    324   /// Layout pointer size, in bits
    325   /// FIXME: The defaults need to be removed once all of
    326   /// the backends/clients are updated.
    327   unsigned getPointerSizeInBits(unsigned AS = 0) const {
    328     return getPointerSize(AS) * 8;
    329   }
    330 
    331   /// Layout pointer size, in bits, based on the type.  If this function is
    332   /// called with a pointer type, then the type size of the pointer is returned.
    333   /// If this function is called with a vector of pointers, then the type size
    334   /// of the pointer is returned.  This should only be called with a pointer or
    335   /// vector of pointers.
    336   unsigned getPointerTypeSizeInBits(Type *) const;
    337 
    338   unsigned getPointerTypeSize(Type *Ty) const {
    339     return getPointerTypeSizeInBits(Ty) / 8;
    340   }
    341 
    342   /// Size examples:
    343   ///
    344   /// Type        SizeInBits  StoreSizeInBits  AllocSizeInBits[*]
    345   /// ----        ----------  ---------------  ---------------
    346   ///  i1            1           8                8
    347   ///  i8            8           8                8
    348   ///  i19          19          24               32
    349   ///  i32          32          32               32
    350   ///  i100        100         104              128
    351   ///  i128        128         128              128
    352   ///  Float        32          32               32
    353   ///  Double       64          64               64
    354   ///  X86_FP80     80          80               96
    355   ///
    356   /// [*] The alloc size depends on the alignment, and thus on the target.
    357   ///     These values are for x86-32 linux.
    358 
    359   /// \brief Returns the number of bits necessary to hold the specified type.
    360   ///
    361   /// For example, returns 36 for i36 and 80 for x86_fp80. The type passed must
    362   /// have a size (Type::isSized() must return true).
    363   uint64_t getTypeSizeInBits(Type *Ty) const;
    364 
    365   /// \brief Returns the maximum number of bytes that may be overwritten by
    366   /// storing the specified type.
    367   ///
    368   /// For example, returns 5 for i36 and 10 for x86_fp80.
    369   uint64_t getTypeStoreSize(Type *Ty) const {
    370     return (getTypeSizeInBits(Ty) + 7) / 8;
    371   }
    372 
    373   /// \brief Returns the maximum number of bits that may be overwritten by
    374   /// storing the specified type; always a multiple of 8.
    375   ///
    376   /// For example, returns 40 for i36 and 80 for x86_fp80.
    377   uint64_t getTypeStoreSizeInBits(Type *Ty) const {
    378     return 8 * getTypeStoreSize(Ty);
    379   }
    380 
    381   /// \brief Returns the offset in bytes between successive objects of the
    382   /// specified type, including alignment padding.
    383   ///
    384   /// This is the amount that alloca reserves for this type. For example,
    385   /// returns 12 or 16 for x86_fp80, depending on alignment.
    386   uint64_t getTypeAllocSize(Type *Ty) const {
    387     // Round up to the next alignment boundary.
    388     return RoundUpToAlignment(getTypeStoreSize(Ty), getABITypeAlignment(Ty));
    389   }
    390 
    391   /// \brief Returns the offset in bits between successive objects of the
    392   /// specified type, including alignment padding; always a multiple of 8.
    393   ///
    394   /// This is the amount that alloca reserves for this type. For example,
    395   /// returns 96 or 128 for x86_fp80, depending on alignment.
    396   uint64_t getTypeAllocSizeInBits(Type *Ty) const {
    397     return 8 * getTypeAllocSize(Ty);
    398   }
    399 
    400   /// \brief Returns the minimum ABI-required alignment for the specified type.
    401   unsigned getABITypeAlignment(Type *Ty) const;
    402 
    403   /// \brief Returns the minimum ABI-required alignment for an integer type of
    404   /// the specified bitwidth.
    405   unsigned getABIIntegerTypeAlignment(unsigned BitWidth) const;
    406 
    407   /// \brief Returns the preferred stack/global alignment for the specified
    408   /// type.
    409   ///
    410   /// This is always at least as good as the ABI alignment.
    411   unsigned getPrefTypeAlignment(Type *Ty) const;
    412 
    413   /// \brief Returns the preferred alignment for the specified type, returned as
    414   /// log2 of the value (a shift amount).
    415   unsigned getPreferredTypeAlignmentShift(Type *Ty) const;
    416 
    417   /// \brief Returns an integer type with size at least as big as that of a
    418   /// pointer in the given address space.
    419   IntegerType *getIntPtrType(LLVMContext &C, unsigned AddressSpace = 0) const;
    420 
    421   /// \brief Returns an integer (vector of integer) type with size at least as
    422   /// big as that of a pointer of the given pointer (vector of pointer) type.
    423   Type *getIntPtrType(Type *) const;
    424 
    425   /// \brief Returns the smallest integer type with size at least as big as
    426   /// Width bits.
    427   Type *getSmallestLegalIntType(LLVMContext &C, unsigned Width = 0) const;
    428 
    429   /// \brief Returns the largest legal integer type, or null if none are set.
    430   Type *getLargestLegalIntType(LLVMContext &C) const {
    431     unsigned LargestSize = getLargestLegalIntTypeSize();
    432     return (LargestSize == 0) ? nullptr : Type::getIntNTy(C, LargestSize);
    433   }
    434 
    435   /// \brief Returns the size of largest legal integer type size, or 0 if none
    436   /// are set.
    437   unsigned getLargestLegalIntTypeSize() const;
    438 
    439   /// \brief Returns the offset from the beginning of the type for the specified
    440   /// indices.
    441   ///
    442   /// This is used to implement getelementptr.
    443   uint64_t getIndexedOffset(Type *Ty, ArrayRef<Value *> Indices) const;
    444 
    445   /// \brief Returns a StructLayout object, indicating the alignment of the
    446   /// struct, its size, and the offsets of its fields.
    447   ///
    448   /// Note that this information is lazily cached.
    449   const StructLayout *getStructLayout(StructType *Ty) const;
    450 
    451   /// \brief Returns the preferred alignment of the specified global.
    452   ///
    453   /// This includes an explicitly requested alignment (if the global has one).
    454   unsigned getPreferredAlignment(const GlobalVariable *GV) const;
    455 
    456   /// \brief Returns the preferred alignment of the specified global, returned
    457   /// in log form.
    458   ///
    459   /// This includes an explicitly requested alignment (if the global has one).
    460   unsigned getPreferredAlignmentLog(const GlobalVariable *GV) const;
    461 };
    462 
    463 inline DataLayout *unwrap(LLVMTargetDataRef P) {
    464   return reinterpret_cast<DataLayout *>(P);
    465 }
    466 
    467 inline LLVMTargetDataRef wrap(const DataLayout *P) {
    468   return reinterpret_cast<LLVMTargetDataRef>(const_cast<DataLayout *>(P));
    469 }
    470 
    471 /// Used to lazily calculate structure layout information for a target machine,
    472 /// based on the DataLayout structure.
    473 class StructLayout {
    474   uint64_t StructSize;
    475   unsigned StructAlignment;
    476   unsigned NumElements;
    477   uint64_t MemberOffsets[1]; // variable sized array!
    478 public:
    479   uint64_t getSizeInBytes() const { return StructSize; }
    480 
    481   uint64_t getSizeInBits() const { return 8 * StructSize; }
    482 
    483   unsigned getAlignment() const { return StructAlignment; }
    484 
    485   /// \brief Given a valid byte offset into the structure, returns the structure
    486   /// index that contains it.
    487   unsigned getElementContainingOffset(uint64_t Offset) const;
    488 
    489   uint64_t getElementOffset(unsigned Idx) const {
    490     assert(Idx < NumElements && "Invalid element idx!");
    491     return MemberOffsets[Idx];
    492   }
    493 
    494   uint64_t getElementOffsetInBits(unsigned Idx) const {
    495     return getElementOffset(Idx) * 8;
    496   }
    497 
    498 private:
    499   friend class DataLayout; // Only DataLayout can create this class
    500   StructLayout(StructType *ST, const DataLayout &DL);
    501 };
    502 
    503 // The implementation of this method is provided inline as it is particularly
    504 // well suited to constant folding when called on a specific Type subclass.
    505 inline uint64_t DataLayout::getTypeSizeInBits(Type *Ty) const {
    506   assert(Ty->isSized() && "Cannot getTypeInfo() on a type that is unsized!");
    507   switch (Ty->getTypeID()) {
    508   case Type::LabelTyID:
    509     return getPointerSizeInBits(0);
    510   case Type::PointerTyID:
    511     return getPointerSizeInBits(Ty->getPointerAddressSpace());
    512   case Type::ArrayTyID: {
    513     ArrayType *ATy = cast<ArrayType>(Ty);
    514     return ATy->getNumElements() *
    515            getTypeAllocSizeInBits(ATy->getElementType());
    516   }
    517   case Type::StructTyID:
    518     // Get the layout annotation... which is lazily created on demand.
    519     return getStructLayout(cast<StructType>(Ty))->getSizeInBits();
    520   case Type::IntegerTyID:
    521     return Ty->getIntegerBitWidth();
    522   case Type::HalfTyID:
    523     return 16;
    524   case Type::FloatTyID:
    525     return 32;
    526   case Type::DoubleTyID:
    527   case Type::X86_MMXTyID:
    528     return 64;
    529   case Type::PPC_FP128TyID:
    530   case Type::FP128TyID:
    531     return 128;
    532   // In memory objects this is always aligned to a higher boundary, but
    533   // only 80 bits contain information.
    534   case Type::X86_FP80TyID:
    535     return 80;
    536   case Type::VectorTyID: {
    537     VectorType *VTy = cast<VectorType>(Ty);
    538     return VTy->getNumElements() * getTypeSizeInBits(VTy->getElementType());
    539   }
    540   default:
    541     llvm_unreachable("DataLayout::getTypeSizeInBits(): Unsupported type");
    542   }
    543 }
    544 
    545 } // End llvm namespace
    546 
    547 #endif
    548