Home | History | Annotate | Download | only in MC
      1 //===- MCAssembler.h - Object File Generation -------------------*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 
     10 #ifndef LLVM_MC_MCASSEMBLER_H
     11 #define LLVM_MC_MCASSEMBLER_H
     12 
     13 #include "llvm/ADT/DenseMap.h"
     14 #include "llvm/ADT/DenseSet.h"
     15 #include "llvm/ADT/PointerIntPair.h"
     16 #include "llvm/ADT/SmallPtrSet.h"
     17 #include "llvm/ADT/SmallString.h"
     18 #include "llvm/ADT/ilist.h"
     19 #include "llvm/ADT/ilist_node.h"
     20 #include "llvm/MC/MCDirectives.h"
     21 #include "llvm/MC/MCFixup.h"
     22 #include "llvm/MC/MCInst.h"
     23 #include "llvm/MC/MCLinkerOptimizationHint.h"
     24 #include "llvm/MC/MCSubtargetInfo.h"
     25 #include "llvm/Support/Casting.h"
     26 #include "llvm/Support/DataTypes.h"
     27 #include <algorithm>
     28 #include <vector> // FIXME: Shouldn't be needed.
     29 
     30 namespace llvm {
     31 class raw_ostream;
     32 class MCAsmLayout;
     33 class MCAssembler;
     34 class MCContext;
     35 class MCCodeEmitter;
     36 class MCExpr;
     37 class MCFragment;
     38 class MCObjectWriter;
     39 class MCSection;
     40 class MCSectionData;
     41 class MCSubtargetInfo;
     42 class MCSymbol;
     43 class MCSymbolData;
     44 class MCValue;
     45 class MCAsmBackend;
     46 
     47 class MCFragment : public ilist_node<MCFragment> {
     48   friend class MCAsmLayout;
     49 
     50   MCFragment(const MCFragment&) = delete;
     51   void operator=(const MCFragment&) = delete;
     52 
     53 public:
     54   enum FragmentType {
     55     FT_Align,
     56     FT_Data,
     57     FT_CompactEncodedInst,
     58     FT_Fill,
     59     FT_Relaxable,
     60     FT_Org,
     61     FT_Dwarf,
     62     FT_DwarfFrame,
     63     FT_LEB
     64   };
     65 
     66 private:
     67   FragmentType Kind;
     68 
     69   /// Parent - The data for the section this fragment is in.
     70   MCSectionData *Parent;
     71 
     72   /// Atom - The atom this fragment is in, as represented by it's defining
     73   /// symbol.
     74   MCSymbolData *Atom;
     75 
     76   /// @name Assembler Backend Data
     77   /// @{
     78   //
     79   // FIXME: This could all be kept private to the assembler implementation.
     80 
     81   /// Offset - The offset of this fragment in its section. This is ~0 until
     82   /// initialized.
     83   uint64_t Offset;
     84 
     85   /// LayoutOrder - The layout order of this fragment.
     86   unsigned LayoutOrder;
     87 
     88   /// @}
     89 
     90 protected:
     91   MCFragment(FragmentType Kind, MCSectionData *Parent = nullptr);
     92 
     93 public:
     94   // Only for sentinel.
     95   MCFragment();
     96   virtual ~MCFragment();
     97 
     98   FragmentType getKind() const { return Kind; }
     99 
    100   MCSectionData *getParent() const { return Parent; }
    101   void setParent(MCSectionData *Value) { Parent = Value; }
    102 
    103   MCSymbolData *getAtom() const { return Atom; }
    104   void setAtom(MCSymbolData *Value) { Atom = Value; }
    105 
    106   unsigned getLayoutOrder() const { return LayoutOrder; }
    107   void setLayoutOrder(unsigned Value) { LayoutOrder = Value; }
    108 
    109   /// \brief Does this fragment have instructions emitted into it? By default
    110   /// this is false, but specific fragment types may set it to true.
    111   virtual bool hasInstructions() const { return false; }
    112 
    113   /// \brief Should this fragment be placed at the end of an aligned bundle?
    114   virtual bool alignToBundleEnd() const { return false; }
    115   virtual void setAlignToBundleEnd(bool V) { }
    116 
    117   /// \brief Get the padding size that must be inserted before this fragment.
    118   /// Used for bundling. By default, no padding is inserted.
    119   /// Note that padding size is restricted to 8 bits. This is an optimization
    120   /// to reduce the amount of space used for each fragment. In practice, larger
    121   /// padding should never be required.
    122   virtual uint8_t getBundlePadding() const {
    123     return 0;
    124   }
    125 
    126   /// \brief Set the padding size for this fragment. By default it's a no-op,
    127   /// and only some fragments have a meaningful implementation.
    128   virtual void setBundlePadding(uint8_t N) {
    129   }
    130 
    131   void dump();
    132 };
    133 
    134 /// Interface implemented by fragments that contain encoded instructions and/or
    135 /// data.
    136 ///
    137 class MCEncodedFragment : public MCFragment {
    138   virtual void anchor();
    139 
    140   uint8_t BundlePadding;
    141 public:
    142   MCEncodedFragment(MCFragment::FragmentType FType, MCSectionData *SD = nullptr)
    143     : MCFragment(FType, SD), BundlePadding(0)
    144   {
    145   }
    146   ~MCEncodedFragment() override;
    147 
    148   virtual SmallVectorImpl<char> &getContents() = 0;
    149   virtual const SmallVectorImpl<char> &getContents() const = 0;
    150 
    151   uint8_t getBundlePadding() const override {
    152     return BundlePadding;
    153   }
    154 
    155   void setBundlePadding(uint8_t N) override {
    156     BundlePadding = N;
    157   }
    158 
    159   static bool classof(const MCFragment *F) {
    160     MCFragment::FragmentType Kind = F->getKind();
    161     switch (Kind) {
    162       default:
    163         return false;
    164       case MCFragment::FT_Relaxable:
    165       case MCFragment::FT_CompactEncodedInst:
    166       case MCFragment::FT_Data:
    167         return true;
    168     }
    169   }
    170 };
    171 
    172 /// Interface implemented by fragments that contain encoded instructions and/or
    173 /// data and also have fixups registered.
    174 ///
    175 class MCEncodedFragmentWithFixups : public MCEncodedFragment {
    176   void anchor() override;
    177 
    178 public:
    179   MCEncodedFragmentWithFixups(MCFragment::FragmentType FType,
    180                               MCSectionData *SD = nullptr)
    181     : MCEncodedFragment(FType, SD)
    182   {
    183   }
    184 
    185   ~MCEncodedFragmentWithFixups() override;
    186 
    187   typedef SmallVectorImpl<MCFixup>::const_iterator const_fixup_iterator;
    188   typedef SmallVectorImpl<MCFixup>::iterator fixup_iterator;
    189 
    190   virtual SmallVectorImpl<MCFixup> &getFixups() = 0;
    191   virtual const SmallVectorImpl<MCFixup> &getFixups() const = 0;
    192 
    193   virtual fixup_iterator fixup_begin() = 0;
    194   virtual const_fixup_iterator fixup_begin() const  = 0;
    195   virtual fixup_iterator fixup_end() = 0;
    196   virtual const_fixup_iterator fixup_end() const = 0;
    197 
    198   static bool classof(const MCFragment *F) {
    199     MCFragment::FragmentType Kind = F->getKind();
    200     return Kind == MCFragment::FT_Relaxable || Kind == MCFragment::FT_Data;
    201   }
    202 };
    203 
    204 /// Fragment for data and encoded instructions.
    205 ///
    206 class MCDataFragment : public MCEncodedFragmentWithFixups {
    207   void anchor() override;
    208 
    209   /// \brief Does this fragment contain encoded instructions anywhere in it?
    210   bool HasInstructions;
    211 
    212   /// \brief Should this fragment be aligned to the end of a bundle?
    213   bool AlignToBundleEnd;
    214 
    215   SmallVector<char, 32> Contents;
    216 
    217   /// Fixups - The list of fixups in this fragment.
    218   SmallVector<MCFixup, 4> Fixups;
    219 public:
    220   MCDataFragment(MCSectionData *SD = nullptr)
    221     : MCEncodedFragmentWithFixups(FT_Data, SD),
    222       HasInstructions(false), AlignToBundleEnd(false)
    223   {
    224   }
    225 
    226   SmallVectorImpl<char> &getContents() override { return Contents; }
    227   const SmallVectorImpl<char> &getContents() const override {
    228     return Contents;
    229   }
    230 
    231   SmallVectorImpl<MCFixup> &getFixups() override {
    232     return Fixups;
    233   }
    234 
    235   const SmallVectorImpl<MCFixup> &getFixups() const override {
    236     return Fixups;
    237   }
    238 
    239   bool hasInstructions() const override { return HasInstructions; }
    240   virtual void setHasInstructions(bool V) { HasInstructions = V; }
    241 
    242   bool alignToBundleEnd() const override { return AlignToBundleEnd; }
    243   void setAlignToBundleEnd(bool V) override { AlignToBundleEnd = V; }
    244 
    245   fixup_iterator fixup_begin() override { return Fixups.begin(); }
    246   const_fixup_iterator fixup_begin() const override { return Fixups.begin(); }
    247 
    248   fixup_iterator fixup_end() override {return Fixups.end();}
    249   const_fixup_iterator fixup_end() const override {return Fixups.end();}
    250 
    251   static bool classof(const MCFragment *F) {
    252     return F->getKind() == MCFragment::FT_Data;
    253   }
    254 };
    255 
    256 /// This is a compact (memory-size-wise) fragment for holding an encoded
    257 /// instruction (non-relaxable) that has no fixups registered. When applicable,
    258 /// it can be used instead of MCDataFragment and lead to lower memory
    259 /// consumption.
    260 ///
    261 class MCCompactEncodedInstFragment : public MCEncodedFragment {
    262   void anchor() override;
    263 
    264   /// \brief Should this fragment be aligned to the end of a bundle?
    265   bool AlignToBundleEnd;
    266 
    267   SmallVector<char, 4> Contents;
    268 public:
    269   MCCompactEncodedInstFragment(MCSectionData *SD = nullptr)
    270     : MCEncodedFragment(FT_CompactEncodedInst, SD), AlignToBundleEnd(false)
    271   {
    272   }
    273 
    274   bool hasInstructions() const override {
    275     return true;
    276   }
    277 
    278   SmallVectorImpl<char> &getContents() override { return Contents; }
    279   const SmallVectorImpl<char> &getContents() const override { return Contents; }
    280 
    281   bool alignToBundleEnd() const override { return AlignToBundleEnd; }
    282   void setAlignToBundleEnd(bool V) override { AlignToBundleEnd = V; }
    283 
    284   static bool classof(const MCFragment *F) {
    285     return F->getKind() == MCFragment::FT_CompactEncodedInst;
    286   }
    287 };
    288 
    289 /// A relaxable fragment holds on to its MCInst, since it may need to be
    290 /// relaxed during the assembler layout and relaxation stage.
    291 ///
    292 class MCRelaxableFragment : public MCEncodedFragmentWithFixups {
    293   void anchor() override;
    294 
    295   /// Inst - The instruction this is a fragment for.
    296   MCInst Inst;
    297 
    298   /// STI - The MCSubtargetInfo in effect when the instruction was encoded.
    299   /// Keep a copy instead of a reference to make sure that updates to STI
    300   /// in the assembler are not seen here.
    301   const MCSubtargetInfo STI;
    302 
    303   /// Contents - Binary data for the currently encoded instruction.
    304   SmallVector<char, 8> Contents;
    305 
    306   /// Fixups - The list of fixups in this fragment.
    307   SmallVector<MCFixup, 1> Fixups;
    308 
    309 public:
    310   MCRelaxableFragment(const MCInst &Inst, const MCSubtargetInfo &STI,
    311                       MCSectionData *SD = nullptr)
    312       : MCEncodedFragmentWithFixups(FT_Relaxable, SD), Inst(Inst), STI(STI) {}
    313 
    314   SmallVectorImpl<char> &getContents() override { return Contents; }
    315   const SmallVectorImpl<char> &getContents() const override { return Contents; }
    316 
    317   const MCInst &getInst() const { return Inst; }
    318   void setInst(const MCInst& Value) { Inst = Value; }
    319 
    320   const MCSubtargetInfo &getSubtargetInfo() { return STI; }
    321 
    322   SmallVectorImpl<MCFixup> &getFixups() override {
    323     return Fixups;
    324   }
    325 
    326   const SmallVectorImpl<MCFixup> &getFixups() const override {
    327     return Fixups;
    328   }
    329 
    330   bool hasInstructions() const override { return true; }
    331 
    332   fixup_iterator fixup_begin() override { return Fixups.begin(); }
    333   const_fixup_iterator fixup_begin() const override { return Fixups.begin(); }
    334 
    335   fixup_iterator fixup_end() override {return Fixups.end();}
    336   const_fixup_iterator fixup_end() const override {return Fixups.end();}
    337 
    338   static bool classof(const MCFragment *F) {
    339     return F->getKind() == MCFragment::FT_Relaxable;
    340   }
    341 };
    342 
    343 class MCAlignFragment : public MCFragment {
    344   virtual void anchor();
    345 
    346   /// Alignment - The alignment to ensure, in bytes.
    347   unsigned Alignment;
    348 
    349   /// Value - Value to use for filling padding bytes.
    350   int64_t Value;
    351 
    352   /// ValueSize - The size of the integer (in bytes) of \p Value.
    353   unsigned ValueSize;
    354 
    355   /// MaxBytesToEmit - The maximum number of bytes to emit; if the alignment
    356   /// cannot be satisfied in this width then this fragment is ignored.
    357   unsigned MaxBytesToEmit;
    358 
    359   /// EmitNops - Flag to indicate that (optimal) NOPs should be emitted instead
    360   /// of using the provided value. The exact interpretation of this flag is
    361   /// target dependent.
    362   bool EmitNops : 1;
    363 
    364 public:
    365   MCAlignFragment(unsigned Alignment, int64_t Value, unsigned ValueSize,
    366                   unsigned MaxBytesToEmit, MCSectionData *SD = nullptr)
    367       : MCFragment(FT_Align, SD), Alignment(Alignment), Value(Value),
    368         ValueSize(ValueSize), MaxBytesToEmit(MaxBytesToEmit), EmitNops(false) {}
    369 
    370   /// @name Accessors
    371   /// @{
    372 
    373   unsigned getAlignment() const { return Alignment; }
    374 
    375   int64_t getValue() const { return Value; }
    376 
    377   unsigned getValueSize() const { return ValueSize; }
    378 
    379   unsigned getMaxBytesToEmit() const { return MaxBytesToEmit; }
    380 
    381   bool hasEmitNops() const { return EmitNops; }
    382   void setEmitNops(bool Value) { EmitNops = Value; }
    383 
    384   /// @}
    385 
    386   static bool classof(const MCFragment *F) {
    387     return F->getKind() == MCFragment::FT_Align;
    388   }
    389 };
    390 
    391 class MCFillFragment : public MCFragment {
    392   virtual void anchor();
    393 
    394   /// Value - Value to use for filling bytes.
    395   int64_t Value;
    396 
    397   /// ValueSize - The size (in bytes) of \p Value to use when filling, or 0 if
    398   /// this is a virtual fill fragment.
    399   unsigned ValueSize;
    400 
    401   /// Size - The number of bytes to insert.
    402   uint64_t Size;
    403 
    404 public:
    405   MCFillFragment(int64_t Value, unsigned ValueSize, uint64_t Size,
    406                  MCSectionData *SD = nullptr)
    407       : MCFragment(FT_Fill, SD), Value(Value), ValueSize(ValueSize),
    408         Size(Size) {
    409     assert((!ValueSize || (Size % ValueSize) == 0) &&
    410            "Fill size must be a multiple of the value size!");
    411   }
    412 
    413   /// @name Accessors
    414   /// @{
    415 
    416   int64_t getValue() const { return Value; }
    417 
    418   unsigned getValueSize() const { return ValueSize; }
    419 
    420   uint64_t getSize() const { return Size; }
    421 
    422   /// @}
    423 
    424   static bool classof(const MCFragment *F) {
    425     return F->getKind() == MCFragment::FT_Fill;
    426   }
    427 };
    428 
    429 class MCOrgFragment : public MCFragment {
    430   virtual void anchor();
    431 
    432   /// Offset - The offset this fragment should start at.
    433   const MCExpr *Offset;
    434 
    435   /// Value - Value to use for filling bytes.
    436   int8_t Value;
    437 
    438 public:
    439   MCOrgFragment(const MCExpr &Offset, int8_t Value, MCSectionData *SD = nullptr)
    440       : MCFragment(FT_Org, SD), Offset(&Offset), Value(Value) {}
    441 
    442   /// @name Accessors
    443   /// @{
    444 
    445   const MCExpr &getOffset() const { return *Offset; }
    446 
    447   uint8_t getValue() const { return Value; }
    448 
    449   /// @}
    450 
    451   static bool classof(const MCFragment *F) {
    452     return F->getKind() == MCFragment::FT_Org;
    453   }
    454 };
    455 
    456 class MCLEBFragment : public MCFragment {
    457   virtual void anchor();
    458 
    459   /// Value - The value this fragment should contain.
    460   const MCExpr *Value;
    461 
    462   /// IsSigned - True if this is a sleb128, false if uleb128.
    463   bool IsSigned;
    464 
    465   SmallString<8> Contents;
    466 public:
    467   MCLEBFragment(const MCExpr &Value_, bool IsSigned_,
    468                 MCSectionData *SD = nullptr)
    469     : MCFragment(FT_LEB, SD),
    470       Value(&Value_), IsSigned(IsSigned_) { Contents.push_back(0); }
    471 
    472   /// @name Accessors
    473   /// @{
    474 
    475   const MCExpr &getValue() const { return *Value; }
    476 
    477   bool isSigned() const { return IsSigned; }
    478 
    479   SmallString<8> &getContents() { return Contents; }
    480   const SmallString<8> &getContents() const { return Contents; }
    481 
    482   /// @}
    483 
    484   static bool classof(const MCFragment *F) {
    485     return F->getKind() == MCFragment::FT_LEB;
    486   }
    487 };
    488 
    489 class MCDwarfLineAddrFragment : public MCFragment {
    490   virtual void anchor();
    491 
    492   /// LineDelta - the value of the difference between the two line numbers
    493   /// between two .loc dwarf directives.
    494   int64_t LineDelta;
    495 
    496   /// AddrDelta - The expression for the difference of the two symbols that
    497   /// make up the address delta between two .loc dwarf directives.
    498   const MCExpr *AddrDelta;
    499 
    500   SmallString<8> Contents;
    501 
    502 public:
    503   MCDwarfLineAddrFragment(int64_t LineDelta, const MCExpr &AddrDelta,
    504                           MCSectionData *SD = nullptr)
    505       : MCFragment(FT_Dwarf, SD), LineDelta(LineDelta), AddrDelta(&AddrDelta) {
    506     Contents.push_back(0);
    507   }
    508 
    509   /// @name Accessors
    510   /// @{
    511 
    512   int64_t getLineDelta() const { return LineDelta; }
    513 
    514   const MCExpr &getAddrDelta() const { return *AddrDelta; }
    515 
    516   SmallString<8> &getContents() { return Contents; }
    517   const SmallString<8> &getContents() const { return Contents; }
    518 
    519   /// @}
    520 
    521   static bool classof(const MCFragment *F) {
    522     return F->getKind() == MCFragment::FT_Dwarf;
    523   }
    524 };
    525 
    526 class MCDwarfCallFrameFragment : public MCFragment {
    527   virtual void anchor();
    528 
    529   /// AddrDelta - The expression for the difference of the two symbols that
    530   /// make up the address delta between two .cfi_* dwarf directives.
    531   const MCExpr *AddrDelta;
    532 
    533   SmallString<8> Contents;
    534 
    535 public:
    536   MCDwarfCallFrameFragment(const MCExpr &AddrDelta, MCSectionData *SD = nullptr)
    537       : MCFragment(FT_DwarfFrame, SD), AddrDelta(&AddrDelta) {
    538     Contents.push_back(0);
    539   }
    540 
    541   /// @name Accessors
    542   /// @{
    543 
    544   const MCExpr &getAddrDelta() const { return *AddrDelta; }
    545 
    546   SmallString<8> &getContents() { return Contents; }
    547   const SmallString<8> &getContents() const { return Contents; }
    548 
    549   /// @}
    550 
    551   static bool classof(const MCFragment *F) {
    552     return F->getKind() == MCFragment::FT_DwarfFrame;
    553   }
    554 };
    555 
    556 // FIXME: Should this be a separate class, or just merged into MCSection? Since
    557 // we anticipate the fast path being through an MCAssembler, the only reason to
    558 // keep it out is for API abstraction.
    559 class MCSectionData : public ilist_node<MCSectionData> {
    560   friend class MCAsmLayout;
    561 
    562   MCSectionData(const MCSectionData&) = delete;
    563   void operator=(const MCSectionData&) = delete;
    564 
    565 public:
    566   typedef iplist<MCFragment> FragmentListType;
    567 
    568   typedef FragmentListType::const_iterator const_iterator;
    569   typedef FragmentListType::iterator iterator;
    570 
    571   typedef FragmentListType::const_reverse_iterator const_reverse_iterator;
    572   typedef FragmentListType::reverse_iterator reverse_iterator;
    573 
    574   /// \brief Express the state of bundle locked groups while emitting code.
    575   enum BundleLockStateType {
    576     NotBundleLocked,
    577     BundleLocked,
    578     BundleLockedAlignToEnd
    579   };
    580 private:
    581   FragmentListType Fragments;
    582   const MCSection *Section;
    583 
    584   /// Ordinal - The section index in the assemblers section list.
    585   unsigned Ordinal;
    586 
    587   /// LayoutOrder - The index of this section in the layout order.
    588   unsigned LayoutOrder;
    589 
    590   /// Alignment - The maximum alignment seen in this section.
    591   unsigned Alignment;
    592 
    593   /// \brief Keeping track of bundle-locked state.
    594   BundleLockStateType BundleLockState;
    595 
    596   /// \brief Current nesting depth of bundle_lock directives.
    597   unsigned BundleLockNestingDepth;
    598 
    599   /// \brief We've seen a bundle_lock directive but not its first instruction
    600   /// yet.
    601   bool BundleGroupBeforeFirstInst;
    602 
    603   /// @name Assembler Backend Data
    604   /// @{
    605   //
    606   // FIXME: This could all be kept private to the assembler implementation.
    607 
    608   /// HasInstructions - Whether this section has had instructions emitted into
    609   /// it.
    610   unsigned HasInstructions : 1;
    611 
    612   /// Mapping from subsection number to insertion point for subsection numbers
    613   /// below that number.
    614   SmallVector<std::pair<unsigned, MCFragment *>, 1> SubsectionFragmentMap;
    615 
    616   /// @}
    617 
    618 public:
    619   // Only for use as sentinel.
    620   MCSectionData();
    621   MCSectionData(const MCSection &Section, MCAssembler *A = nullptr);
    622 
    623   const MCSection &getSection() const { return *Section; }
    624 
    625   unsigned getAlignment() const { return Alignment; }
    626   void setAlignment(unsigned Value) { Alignment = Value; }
    627 
    628   bool hasInstructions() const { return HasInstructions; }
    629   void setHasInstructions(bool Value) { HasInstructions = Value; }
    630 
    631   unsigned getOrdinal() const { return Ordinal; }
    632   void setOrdinal(unsigned Value) { Ordinal = Value; }
    633 
    634   unsigned getLayoutOrder() const { return LayoutOrder; }
    635   void setLayoutOrder(unsigned Value) { LayoutOrder = Value; }
    636 
    637   /// @name Fragment Access
    638   /// @{
    639 
    640   const FragmentListType &getFragmentList() const { return Fragments; }
    641   FragmentListType &getFragmentList() { return Fragments; }
    642 
    643   iterator begin() { return Fragments.begin(); }
    644   const_iterator begin() const { return Fragments.begin(); }
    645 
    646   iterator end() { return Fragments.end(); }
    647   const_iterator end() const { return Fragments.end(); }
    648 
    649   reverse_iterator rbegin() { return Fragments.rbegin(); }
    650   const_reverse_iterator rbegin() const { return Fragments.rbegin(); }
    651 
    652   reverse_iterator rend() { return Fragments.rend(); }
    653   const_reverse_iterator rend() const { return Fragments.rend(); }
    654 
    655   size_t size() const { return Fragments.size(); }
    656 
    657   bool empty() const { return Fragments.empty(); }
    658 
    659   iterator getSubsectionInsertionPoint(unsigned Subsection);
    660 
    661   bool isBundleLocked() const {
    662     return BundleLockState != NotBundleLocked;
    663   }
    664 
    665   BundleLockStateType getBundleLockState() const {
    666     return BundleLockState;
    667   }
    668 
    669   void setBundleLockState(BundleLockStateType NewState);
    670 
    671   bool isBundleGroupBeforeFirstInst() const {
    672     return BundleGroupBeforeFirstInst;
    673   }
    674 
    675   void setBundleGroupBeforeFirstInst(bool IsFirst) {
    676     BundleGroupBeforeFirstInst = IsFirst;
    677   }
    678 
    679   void dump();
    680 
    681   /// @}
    682 };
    683 
    684 // FIXME: Same concerns as with SectionData.
    685 class MCSymbolData : public ilist_node<MCSymbolData> {
    686   const MCSymbol *Symbol;
    687 
    688   /// Fragment - The fragment this symbol's value is relative to, if any. Also
    689   /// stores if this symbol is visible outside this translation unit (bit 0) or
    690   /// if it is private extern (bit 1).
    691   PointerIntPair<MCFragment *, 2> Fragment;
    692 
    693   union {
    694     /// Offset - The offset to apply to the fragment address to form this
    695     /// symbol's value.
    696     uint64_t Offset;
    697 
    698     /// CommonSize - The size of the symbol, if it is 'common'.
    699     uint64_t CommonSize;
    700   };
    701 
    702   /// SymbolSize - An expression describing how to calculate the size of
    703   /// a symbol. If a symbol has no size this field will be NULL.
    704   const MCExpr *SymbolSize;
    705 
    706   /// CommonAlign - The alignment of the symbol, if it is 'common', or -1.
    707   //
    708   // FIXME: Pack this in with other fields?
    709   unsigned CommonAlign;
    710 
    711   /// Flags - The Flags field is used by object file implementations to store
    712   /// additional per symbol information which is not easily classified.
    713   uint32_t Flags;
    714 
    715   /// Index - Index field, for use by the object file implementation.
    716   uint64_t Index;
    717 
    718 public:
    719   // Only for use as sentinel.
    720   MCSymbolData();
    721   MCSymbolData(const MCSymbol &Symbol, MCFragment *Fragment, uint64_t Offset,
    722                MCAssembler *A = nullptr);
    723 
    724   /// @name Accessors
    725   /// @{
    726 
    727   const MCSymbol &getSymbol() const { return *Symbol; }
    728 
    729   MCFragment *getFragment() const { return Fragment.getPointer(); }
    730   void setFragment(MCFragment *Value) { Fragment.setPointer(Value); }
    731 
    732   uint64_t getOffset() const {
    733     assert(!isCommon());
    734     return Offset;
    735   }
    736   void setOffset(uint64_t Value) {
    737     assert(!isCommon());
    738     Offset = Value;
    739   }
    740 
    741   /// @}
    742   /// @name Symbol Attributes
    743   /// @{
    744 
    745   bool isExternal() const { return Fragment.getInt() & 1; }
    746   void setExternal(bool Value) {
    747     Fragment.setInt((Fragment.getInt() & ~1) | unsigned(Value));
    748   }
    749 
    750   bool isPrivateExtern() const { return Fragment.getInt() & 2; }
    751   void setPrivateExtern(bool Value) {
    752     Fragment.setInt((Fragment.getInt() & ~2) | (unsigned(Value) << 1));
    753   }
    754 
    755   /// isCommon - Is this a 'common' symbol.
    756   bool isCommon() const { return CommonAlign != -1U; }
    757 
    758   /// setCommon - Mark this symbol as being 'common'.
    759   ///
    760   /// \param Size - The size of the symbol.
    761   /// \param Align - The alignment of the symbol.
    762   void setCommon(uint64_t Size, unsigned Align) {
    763     assert(getOffset() == 0);
    764     CommonSize = Size;
    765     CommonAlign = Align;
    766   }
    767 
    768   /// getCommonSize - Return the size of a 'common' symbol.
    769   uint64_t getCommonSize() const {
    770     assert(isCommon() && "Not a 'common' symbol!");
    771     return CommonSize;
    772   }
    773 
    774   void setSize(const MCExpr *SS) {
    775     SymbolSize = SS;
    776   }
    777 
    778   const MCExpr *getSize() const {
    779     return SymbolSize;
    780   }
    781 
    782 
    783   /// getCommonAlignment - Return the alignment of a 'common' symbol.
    784   unsigned getCommonAlignment() const {
    785     assert(isCommon() && "Not a 'common' symbol!");
    786     return CommonAlign;
    787   }
    788 
    789   /// getFlags - Get the (implementation defined) symbol flags.
    790   uint32_t getFlags() const { return Flags; }
    791 
    792   /// setFlags - Set the (implementation defined) symbol flags.
    793   void setFlags(uint32_t Value) { Flags = Value; }
    794 
    795   /// modifyFlags - Modify the flags via a mask
    796   void modifyFlags(uint32_t Value, uint32_t Mask) {
    797     Flags = (Flags & ~Mask) | Value;
    798   }
    799 
    800   /// getIndex - Get the (implementation defined) index.
    801   uint64_t getIndex() const { return Index; }
    802 
    803   /// setIndex - Set the (implementation defined) index.
    804   void setIndex(uint64_t Value) { Index = Value; }
    805 
    806   /// @}
    807 
    808   void dump() const;
    809 };
    810 
    811 // FIXME: This really doesn't belong here. See comments below.
    812 struct IndirectSymbolData {
    813   MCSymbol *Symbol;
    814   MCSectionData *SectionData;
    815 };
    816 
    817 // FIXME: Ditto this. Purely so the Streamer and the ObjectWriter can talk
    818 // to one another.
    819 struct DataRegionData {
    820   // This enum should be kept in sync w/ the mach-o definition in
    821   // llvm/Object/MachOFormat.h.
    822   enum KindTy { Data = 1, JumpTable8, JumpTable16, JumpTable32 } Kind;
    823   MCSymbol *Start;
    824   MCSymbol *End;
    825 };
    826 
    827 class MCAssembler {
    828   friend class MCAsmLayout;
    829 
    830 public:
    831   typedef iplist<MCSectionData> SectionDataListType;
    832   typedef iplist<MCSymbolData> SymbolDataListType;
    833 
    834   typedef SectionDataListType::const_iterator const_iterator;
    835   typedef SectionDataListType::iterator iterator;
    836 
    837   typedef SymbolDataListType::const_iterator const_symbol_iterator;
    838   typedef SymbolDataListType::iterator symbol_iterator;
    839 
    840   typedef iterator_range<symbol_iterator> symbol_range;
    841   typedef iterator_range<const_symbol_iterator> const_symbol_range;
    842 
    843   typedef std::vector<std::string> FileNameVectorType;
    844   typedef FileNameVectorType::const_iterator const_file_name_iterator;
    845 
    846   typedef std::vector<IndirectSymbolData>::const_iterator
    847     const_indirect_symbol_iterator;
    848   typedef std::vector<IndirectSymbolData>::iterator indirect_symbol_iterator;
    849 
    850   typedef std::vector<DataRegionData>::const_iterator
    851     const_data_region_iterator;
    852   typedef std::vector<DataRegionData>::iterator data_region_iterator;
    853 
    854   /// MachO specific deployment target version info.
    855   // A Major version of 0 indicates that no version information was supplied
    856   // and so the corresponding load command should not be emitted.
    857   typedef struct {
    858     MCVersionMinType Kind;
    859     unsigned Major;
    860     unsigned Minor;
    861     unsigned Update;
    862   } VersionMinInfoType;
    863 private:
    864   MCAssembler(const MCAssembler&) = delete;
    865   void operator=(const MCAssembler&) = delete;
    866 
    867   MCContext &Context;
    868 
    869   MCAsmBackend &Backend;
    870 
    871   MCCodeEmitter &Emitter;
    872 
    873   MCObjectWriter &Writer;
    874 
    875   raw_ostream &OS;
    876 
    877   iplist<MCSectionData> Sections;
    878 
    879   iplist<MCSymbolData> Symbols;
    880 
    881   DenseSet<const MCSymbol *> LocalsUsedInReloc;
    882 
    883   /// The map of sections to their associated assembler backend data.
    884   //
    885   // FIXME: Avoid this indirection?
    886   DenseMap<const MCSection*, MCSectionData*> SectionMap;
    887 
    888   /// The map of symbols to their associated assembler backend data.
    889   //
    890   // FIXME: Avoid this indirection?
    891   DenseMap<const MCSymbol*, MCSymbolData*> SymbolMap;
    892 
    893   std::vector<IndirectSymbolData> IndirectSymbols;
    894 
    895   std::vector<DataRegionData> DataRegions;
    896 
    897   /// The list of linker options to propagate into the object file.
    898   std::vector<std::vector<std::string> > LinkerOptions;
    899 
    900   /// List of declared file names
    901   FileNameVectorType FileNames;
    902 
    903   /// The set of function symbols for which a .thumb_func directive has
    904   /// been seen.
    905   //
    906   // FIXME: We really would like this in target specific code rather than
    907   // here. Maybe when the relocation stuff moves to target specific,
    908   // this can go with it? The streamer would need some target specific
    909   // refactoring too.
    910   mutable SmallPtrSet<const MCSymbol*, 64> ThumbFuncs;
    911 
    912   /// \brief The bundle alignment size currently set in the assembler.
    913   ///
    914   /// By default it's 0, which means bundling is disabled.
    915   unsigned BundleAlignSize;
    916 
    917   unsigned RelaxAll : 1;
    918   unsigned SubsectionsViaSymbols : 1;
    919 
    920   /// ELF specific e_header flags
    921   // It would be good if there were an MCELFAssembler class to hold this.
    922   // ELF header flags are used both by the integrated and standalone assemblers.
    923   // Access to the flags is necessary in cases where assembler directives affect
    924   // which flags to be set.
    925   unsigned ELFHeaderEFlags;
    926 
    927   /// Used to communicate Linker Optimization Hint information between
    928   /// the Streamer and the .o writer
    929   MCLOHContainer LOHContainer;
    930 
    931   VersionMinInfoType VersionMinInfo;
    932 private:
    933   /// Evaluate a fixup to a relocatable expression and the value which should be
    934   /// placed into the fixup.
    935   ///
    936   /// \param Layout The layout to use for evaluation.
    937   /// \param Fixup The fixup to evaluate.
    938   /// \param DF The fragment the fixup is inside.
    939   /// \param Target [out] On return, the relocatable expression the fixup
    940   /// evaluates to.
    941   /// \param Value [out] On return, the value of the fixup as currently laid
    942   /// out.
    943   /// \return Whether the fixup value was fully resolved. This is true if the
    944   /// \p Value result is fixed, otherwise the value may change due to
    945   /// relocation.
    946   bool evaluateFixup(const MCAsmLayout &Layout,
    947                      const MCFixup &Fixup, const MCFragment *DF,
    948                      MCValue &Target, uint64_t &Value) const;
    949 
    950   /// Check whether a fixup can be satisfied, or whether it needs to be relaxed
    951   /// (increased in size, in order to hold its value correctly).
    952   bool fixupNeedsRelaxation(const MCFixup &Fixup, const MCRelaxableFragment *DF,
    953                             const MCAsmLayout &Layout) const;
    954 
    955   /// Check whether the given fragment needs relaxation.
    956   bool fragmentNeedsRelaxation(const MCRelaxableFragment *IF,
    957                                const MCAsmLayout &Layout) const;
    958 
    959   /// \brief Perform one layout iteration and return true if any offsets
    960   /// were adjusted.
    961   bool layoutOnce(MCAsmLayout &Layout);
    962 
    963   /// \brief Perform one layout iteration of the given section and return true
    964   /// if any offsets were adjusted.
    965   bool layoutSectionOnce(MCAsmLayout &Layout, MCSectionData &SD);
    966 
    967   bool relaxInstruction(MCAsmLayout &Layout, MCRelaxableFragment &IF);
    968 
    969   bool relaxLEB(MCAsmLayout &Layout, MCLEBFragment &IF);
    970 
    971   bool relaxDwarfLineAddr(MCAsmLayout &Layout, MCDwarfLineAddrFragment &DF);
    972   bool relaxDwarfCallFrameFragment(MCAsmLayout &Layout,
    973                                    MCDwarfCallFrameFragment &DF);
    974 
    975   /// finishLayout - Finalize a layout, including fragment lowering.
    976   void finishLayout(MCAsmLayout &Layout);
    977 
    978   std::pair<uint64_t, bool> handleFixup(const MCAsmLayout &Layout,
    979                                         MCFragment &F, const MCFixup &Fixup);
    980 
    981 public:
    982   void addLocalUsedInReloc(const MCSymbol &Sym);
    983   bool isLocalUsedInReloc(const MCSymbol &Sym) const;
    984 
    985   /// Compute the effective fragment size assuming it is laid out at the given
    986   /// \p SectionAddress and \p FragmentOffset.
    987   uint64_t computeFragmentSize(const MCAsmLayout &Layout,
    988                                const MCFragment &F) const;
    989 
    990   /// Find the symbol which defines the atom containing the given symbol, or
    991   /// null if there is no such symbol.
    992   const MCSymbolData *getAtom(const MCSymbolData *Symbol) const;
    993 
    994   /// Check whether a particular symbol is visible to the linker and is required
    995   /// in the symbol table, or whether it can be discarded by the assembler. This
    996   /// also effects whether the assembler treats the label as potentially
    997   /// defining a separate atom.
    998   bool isSymbolLinkerVisible(const MCSymbol &SD) const;
    999 
   1000   /// Emit the section contents using the given object writer.
   1001   void writeSectionData(const MCSectionData *Section,
   1002                         const MCAsmLayout &Layout) const;
   1003 
   1004   /// Check whether a given symbol has been flagged with .thumb_func.
   1005   bool isThumbFunc(const MCSymbol *Func) const;
   1006 
   1007   /// Flag a function symbol as the target of a .thumb_func directive.
   1008   void setIsThumbFunc(const MCSymbol *Func) { ThumbFuncs.insert(Func); }
   1009 
   1010   /// ELF e_header flags
   1011   unsigned getELFHeaderEFlags() const {return ELFHeaderEFlags;}
   1012   void setELFHeaderEFlags(unsigned Flags) { ELFHeaderEFlags = Flags;}
   1013 
   1014   /// MachO deployment target version information.
   1015   const VersionMinInfoType &getVersionMinInfo() const { return VersionMinInfo; }
   1016   void setVersionMinInfo(MCVersionMinType Kind, unsigned Major, unsigned Minor,
   1017                          unsigned Update) {
   1018     VersionMinInfo.Kind = Kind;
   1019     VersionMinInfo.Major = Major;
   1020     VersionMinInfo.Minor = Minor;
   1021     VersionMinInfo.Update = Update;
   1022   }
   1023 
   1024 public:
   1025   /// Construct a new assembler instance.
   1026   ///
   1027   /// \param OS The stream to output to.
   1028   //
   1029   // FIXME: How are we going to parameterize this? Two obvious options are stay
   1030   // concrete and require clients to pass in a target like object. The other
   1031   // option is to make this abstract, and have targets provide concrete
   1032   // implementations as we do with AsmParser.
   1033   MCAssembler(MCContext &Context_, MCAsmBackend &Backend_,
   1034               MCCodeEmitter &Emitter_, MCObjectWriter &Writer_,
   1035               raw_ostream &OS);
   1036   ~MCAssembler();
   1037 
   1038   /// Reuse an assembler instance
   1039   ///
   1040   void reset();
   1041 
   1042   MCContext &getContext() const { return Context; }
   1043 
   1044   MCAsmBackend &getBackend() const { return Backend; }
   1045 
   1046   MCCodeEmitter &getEmitter() const { return Emitter; }
   1047 
   1048   MCObjectWriter &getWriter() const { return Writer; }
   1049 
   1050   /// Finish - Do final processing and write the object to the output stream.
   1051   /// \p Writer is used for custom object writer (as the MCJIT does),
   1052   /// if not specified it is automatically created from backend.
   1053   void Finish();
   1054 
   1055   // FIXME: This does not belong here.
   1056   bool getSubsectionsViaSymbols() const {
   1057     return SubsectionsViaSymbols;
   1058   }
   1059   void setSubsectionsViaSymbols(bool Value) {
   1060     SubsectionsViaSymbols = Value;
   1061   }
   1062 
   1063   bool getRelaxAll() const { return RelaxAll; }
   1064   void setRelaxAll(bool Value) { RelaxAll = Value; }
   1065 
   1066   bool isBundlingEnabled() const {
   1067     return BundleAlignSize != 0;
   1068   }
   1069 
   1070   unsigned getBundleAlignSize() const {
   1071     return BundleAlignSize;
   1072   }
   1073 
   1074   void setBundleAlignSize(unsigned Size) {
   1075     assert((Size == 0 || !(Size & (Size - 1))) &&
   1076            "Expect a power-of-two bundle align size");
   1077     BundleAlignSize = Size;
   1078   }
   1079 
   1080   /// @name Section List Access
   1081   /// @{
   1082 
   1083   const SectionDataListType &getSectionList() const { return Sections; }
   1084   SectionDataListType &getSectionList() { return Sections; }
   1085 
   1086   iterator begin() { return Sections.begin(); }
   1087   const_iterator begin() const { return Sections.begin(); }
   1088 
   1089   iterator end() { return Sections.end(); }
   1090   const_iterator end() const { return Sections.end(); }
   1091 
   1092   size_t size() const { return Sections.size(); }
   1093 
   1094   /// @}
   1095   /// @name Symbol List Access
   1096   /// @{
   1097 
   1098   const SymbolDataListType &getSymbolList() const { return Symbols; }
   1099   SymbolDataListType &getSymbolList() { return Symbols; }
   1100 
   1101   symbol_iterator symbol_begin() { return Symbols.begin(); }
   1102   const_symbol_iterator symbol_begin() const { return Symbols.begin(); }
   1103 
   1104   symbol_iterator symbol_end() { return Symbols.end(); }
   1105   const_symbol_iterator symbol_end() const { return Symbols.end(); }
   1106 
   1107   symbol_range symbols() { return make_range(symbol_begin(), symbol_end()); }
   1108   const_symbol_range symbols() const { return make_range(symbol_begin(), symbol_end()); }
   1109 
   1110   size_t symbol_size() const { return Symbols.size(); }
   1111 
   1112   /// @}
   1113   /// @name Indirect Symbol List Access
   1114   /// @{
   1115 
   1116   // FIXME: This is a total hack, this should not be here. Once things are
   1117   // factored so that the streamer has direct access to the .o writer, it can
   1118   // disappear.
   1119   std::vector<IndirectSymbolData> &getIndirectSymbols() {
   1120     return IndirectSymbols;
   1121   }
   1122 
   1123   indirect_symbol_iterator indirect_symbol_begin() {
   1124     return IndirectSymbols.begin();
   1125   }
   1126   const_indirect_symbol_iterator indirect_symbol_begin() const {
   1127     return IndirectSymbols.begin();
   1128   }
   1129 
   1130   indirect_symbol_iterator indirect_symbol_end() {
   1131     return IndirectSymbols.end();
   1132   }
   1133   const_indirect_symbol_iterator indirect_symbol_end() const {
   1134     return IndirectSymbols.end();
   1135   }
   1136 
   1137   size_t indirect_symbol_size() const { return IndirectSymbols.size(); }
   1138 
   1139   /// @}
   1140   /// @name Linker Option List Access
   1141   /// @{
   1142 
   1143   std::vector<std::vector<std::string> > &getLinkerOptions() {
   1144     return LinkerOptions;
   1145   }
   1146 
   1147   /// @}
   1148   /// @name Data Region List Access
   1149   /// @{
   1150 
   1151   // FIXME: This is a total hack, this should not be here. Once things are
   1152   // factored so that the streamer has direct access to the .o writer, it can
   1153   // disappear.
   1154   std::vector<DataRegionData> &getDataRegions() {
   1155     return DataRegions;
   1156   }
   1157 
   1158   data_region_iterator data_region_begin() {
   1159     return DataRegions.begin();
   1160   }
   1161   const_data_region_iterator data_region_begin() const {
   1162     return DataRegions.begin();
   1163   }
   1164 
   1165   data_region_iterator data_region_end() {
   1166     return DataRegions.end();
   1167   }
   1168   const_data_region_iterator data_region_end() const {
   1169     return DataRegions.end();
   1170   }
   1171 
   1172   size_t data_region_size() const { return DataRegions.size(); }
   1173 
   1174   /// @}
   1175   /// @name Data Region List Access
   1176   /// @{
   1177 
   1178   // FIXME: This is a total hack, this should not be here. Once things are
   1179   // factored so that the streamer has direct access to the .o writer, it can
   1180   // disappear.
   1181   MCLOHContainer & getLOHContainer() {
   1182     return LOHContainer;
   1183   }
   1184   const MCLOHContainer & getLOHContainer() const {
   1185     return const_cast<MCAssembler *>(this)->getLOHContainer();
   1186   }
   1187   /// @}
   1188   /// @name Backend Data Access
   1189   /// @{
   1190 
   1191   MCSectionData &getSectionData(const MCSection &Section) const {
   1192     MCSectionData *Entry = SectionMap.lookup(&Section);
   1193     assert(Entry && "Missing section data!");
   1194     return *Entry;
   1195   }
   1196 
   1197   MCSectionData &getOrCreateSectionData(const MCSection &Section,
   1198                                         bool *Created = nullptr) {
   1199     MCSectionData *&Entry = SectionMap[&Section];
   1200 
   1201     if (Created) *Created = !Entry;
   1202     if (!Entry)
   1203       Entry = new MCSectionData(Section, this);
   1204 
   1205     return *Entry;
   1206   }
   1207 
   1208   bool hasSymbolData(const MCSymbol &Symbol) const {
   1209     return SymbolMap.lookup(&Symbol) != nullptr;
   1210   }
   1211 
   1212   MCSymbolData &getSymbolData(const MCSymbol &Symbol) {
   1213     return const_cast<MCSymbolData &>(
   1214         static_cast<const MCAssembler &>(*this).getSymbolData(Symbol));
   1215   }
   1216 
   1217   const MCSymbolData &getSymbolData(const MCSymbol &Symbol) const {
   1218     MCSymbolData *Entry = SymbolMap.lookup(&Symbol);
   1219     assert(Entry && "Missing symbol data!");
   1220     return *Entry;
   1221   }
   1222 
   1223   MCSymbolData &getOrCreateSymbolData(const MCSymbol &Symbol,
   1224                                       bool *Created = nullptr) {
   1225     MCSymbolData *&Entry = SymbolMap[&Symbol];
   1226 
   1227     if (Created) *Created = !Entry;
   1228     if (!Entry)
   1229       Entry = new MCSymbolData(Symbol, nullptr, 0, this);
   1230 
   1231     return *Entry;
   1232   }
   1233 
   1234   const_file_name_iterator file_names_begin() const {
   1235     return FileNames.begin();
   1236   }
   1237 
   1238   const_file_name_iterator file_names_end() const {
   1239     return FileNames.end();
   1240   }
   1241 
   1242   void addFileName(StringRef FileName) {
   1243     if (std::find(file_names_begin(), file_names_end(), FileName) ==
   1244         file_names_end())
   1245       FileNames.push_back(FileName);
   1246   }
   1247 
   1248   /// \brief Write the necessary bundle padding to the given object writer.
   1249   /// Expects a fragment \p F containing instructions and its size \p FSize.
   1250   void writeFragmentPadding(const MCFragment &F, uint64_t FSize,
   1251                             MCObjectWriter *OW) const;
   1252 
   1253   /// @}
   1254 
   1255   void dump();
   1256 };
   1257 
   1258 /// \brief Compute the amount of padding required before the fragment \p F to
   1259 /// obey bundling restrictions, where \p FOffset is the fragment's offset in
   1260 /// its section and \p FSize is the fragment's size.
   1261 uint64_t computeBundlePadding(const MCAssembler &Assembler,
   1262                               const MCFragment *F,
   1263                               uint64_t FOffset, uint64_t FSize);
   1264 
   1265 } // end namespace llvm
   1266 
   1267 #endif
   1268