Home | History | Annotate | Download | only in Hexagon
      1 //===-- HexagonInstrInfo.cpp - Hexagon Instruction Information ------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file contains the Hexagon implementation of the TargetInstrInfo class.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "HexagonInstrInfo.h"
     15 #include "Hexagon.h"
     16 #include "HexagonRegisterInfo.h"
     17 #include "HexagonSubtarget.h"
     18 #include "llvm/ADT/STLExtras.h"
     19 #include "llvm/ADT/SmallVector.h"
     20 #include "llvm/CodeGen/DFAPacketizer.h"
     21 #include "llvm/CodeGen/MachineFrameInfo.h"
     22 #include "llvm/CodeGen/MachineInstrBuilder.h"
     23 #include "llvm/CodeGen/MachineMemOperand.h"
     24 #include "llvm/CodeGen/MachineRegisterInfo.h"
     25 #include "llvm/CodeGen/PseudoSourceValue.h"
     26 #include "llvm/Support/Debug.h"
     27 #include "llvm/Support/MathExtras.h"
     28 #include "llvm/Support/raw_ostream.h"
     29 
     30 using namespace llvm;
     31 
     32 #define DEBUG_TYPE "hexagon-instrinfo"
     33 
     34 #define GET_INSTRINFO_CTOR_DTOR
     35 #define GET_INSTRMAP_INFO
     36 #include "HexagonGenInstrInfo.inc"
     37 #include "HexagonGenDFAPacketizer.inc"
     38 
     39 ///
     40 /// Constants for Hexagon instructions.
     41 ///
     42 const int Hexagon_MEMW_OFFSET_MAX = 4095;
     43 const int Hexagon_MEMW_OFFSET_MIN = -4096;
     44 const int Hexagon_MEMD_OFFSET_MAX = 8191;
     45 const int Hexagon_MEMD_OFFSET_MIN = -8192;
     46 const int Hexagon_MEMH_OFFSET_MAX = 2047;
     47 const int Hexagon_MEMH_OFFSET_MIN = -2048;
     48 const int Hexagon_MEMB_OFFSET_MAX = 1023;
     49 const int Hexagon_MEMB_OFFSET_MIN = -1024;
     50 const int Hexagon_ADDI_OFFSET_MAX = 32767;
     51 const int Hexagon_ADDI_OFFSET_MIN = -32768;
     52 const int Hexagon_MEMD_AUTOINC_MAX = 56;
     53 const int Hexagon_MEMD_AUTOINC_MIN = -64;
     54 const int Hexagon_MEMW_AUTOINC_MAX = 28;
     55 const int Hexagon_MEMW_AUTOINC_MIN = -32;
     56 const int Hexagon_MEMH_AUTOINC_MAX = 14;
     57 const int Hexagon_MEMH_AUTOINC_MIN = -16;
     58 const int Hexagon_MEMB_AUTOINC_MAX = 7;
     59 const int Hexagon_MEMB_AUTOINC_MIN = -8;
     60 
     61 // Pin the vtable to this file.
     62 void HexagonInstrInfo::anchor() {}
     63 
     64 HexagonInstrInfo::HexagonInstrInfo(HexagonSubtarget &ST)
     65     : HexagonGenInstrInfo(Hexagon::ADJCALLSTACKDOWN, Hexagon::ADJCALLSTACKUP),
     66       RI(), Subtarget(ST) {}
     67 
     68 /// isLoadFromStackSlot - If the specified machine instruction is a direct
     69 /// load from a stack slot, return the virtual or physical register number of
     70 /// the destination along with the FrameIndex of the loaded stack slot.  If
     71 /// not, return 0.  This predicate must return 0 if the instruction has
     72 /// any side effects other than loading from the stack slot.
     73 unsigned HexagonInstrInfo::isLoadFromStackSlot(const MachineInstr *MI,
     74                                              int &FrameIndex) const {
     75 
     76 
     77   switch (MI->getOpcode()) {
     78   default: break;
     79   case Hexagon::L2_loadri_io:
     80   case Hexagon::L2_loadrd_io:
     81   case Hexagon::L2_loadrh_io:
     82   case Hexagon::L2_loadrb_io:
     83   case Hexagon::L2_loadrub_io:
     84     if (MI->getOperand(2).isFI() &&
     85         MI->getOperand(1).isImm() && (MI->getOperand(1).getImm() == 0)) {
     86       FrameIndex = MI->getOperand(2).getIndex();
     87       return MI->getOperand(0).getReg();
     88     }
     89     break;
     90   }
     91   return 0;
     92 }
     93 
     94 
     95 /// isStoreToStackSlot - If the specified machine instruction is a direct
     96 /// store to a stack slot, return the virtual or physical register number of
     97 /// the source reg along with the FrameIndex of the loaded stack slot.  If
     98 /// not, return 0.  This predicate must return 0 if the instruction has
     99 /// any side effects other than storing to the stack slot.
    100 unsigned HexagonInstrInfo::isStoreToStackSlot(const MachineInstr *MI,
    101                                             int &FrameIndex) const {
    102   switch (MI->getOpcode()) {
    103   default: break;
    104   case Hexagon::S2_storeri_io:
    105   case Hexagon::S2_storerd_io:
    106   case Hexagon::S2_storerh_io:
    107   case Hexagon::S2_storerb_io:
    108     if (MI->getOperand(2).isFI() &&
    109         MI->getOperand(1).isImm() && (MI->getOperand(1).getImm() == 0)) {
    110       FrameIndex = MI->getOperand(0).getIndex();
    111       return MI->getOperand(2).getReg();
    112     }
    113     break;
    114   }
    115   return 0;
    116 }
    117 
    118 
    119 unsigned
    120 HexagonInstrInfo::InsertBranch(MachineBasicBlock &MBB,MachineBasicBlock *TBB,
    121                              MachineBasicBlock *FBB,
    122                              const SmallVectorImpl<MachineOperand> &Cond,
    123                              DebugLoc DL) const{
    124 
    125     int BOpc   = Hexagon::J2_jump;
    126     int BccOpc = Hexagon::J2_jumpt;
    127 
    128     assert(TBB && "InsertBranch must not be told to insert a fallthrough");
    129 
    130     int regPos = 0;
    131     // Check if ReverseBranchCondition has asked to reverse this branch
    132     // If we want to reverse the branch an odd number of times, we want
    133     // JMP_f.
    134     if (!Cond.empty() && Cond[0].isImm() && Cond[0].getImm() == 0) {
    135       BccOpc = Hexagon::J2_jumpf;
    136       regPos = 1;
    137     }
    138 
    139     if (!FBB) {
    140       if (Cond.empty()) {
    141         // Due to a bug in TailMerging/CFG Optimization, we need to add a
    142         // special case handling of a predicated jump followed by an
    143         // unconditional jump. If not, Tail Merging and CFG Optimization go
    144         // into an infinite loop.
    145         MachineBasicBlock *NewTBB, *NewFBB;
    146         SmallVector<MachineOperand, 4> Cond;
    147         MachineInstr *Term = MBB.getFirstTerminator();
    148         if (isPredicated(Term) && !AnalyzeBranch(MBB, NewTBB, NewFBB, Cond,
    149                                                  false)) {
    150           MachineBasicBlock *NextBB =
    151             std::next(MachineFunction::iterator(&MBB));
    152           if (NewTBB == NextBB) {
    153             ReverseBranchCondition(Cond);
    154             RemoveBranch(MBB);
    155             return InsertBranch(MBB, TBB, nullptr, Cond, DL);
    156           }
    157         }
    158         BuildMI(&MBB, DL, get(BOpc)).addMBB(TBB);
    159       } else {
    160         // If Cond[0] is a basic block, insert ENDLOOP0.
    161         if (Cond[0].isMBB())
    162           BuildMI(&MBB, DL, get(Hexagon::ENDLOOP0)).addMBB(Cond[0].getMBB());
    163         else
    164           BuildMI(&MBB, DL,
    165                   get(BccOpc)).addReg(Cond[regPos].getReg()).addMBB(TBB);
    166       }
    167       return 1;
    168     }
    169 
    170     // We don't handle ENDLOOP0 with a conditional branch in AnalyzeBranch.
    171     BuildMI(&MBB, DL, get(BccOpc)).addReg(Cond[regPos].getReg()).addMBB(TBB);
    172     BuildMI(&MBB, DL, get(BOpc)).addMBB(FBB);
    173     return 2;
    174 }
    175 
    176 
    177 bool HexagonInstrInfo::AnalyzeBranch(MachineBasicBlock &MBB,
    178                                      MachineBasicBlock *&TBB,
    179                                  MachineBasicBlock *&FBB,
    180                                  SmallVectorImpl<MachineOperand> &Cond,
    181                                  bool AllowModify) const {
    182   TBB = nullptr;
    183   FBB = nullptr;
    184 
    185   // If the block has no terminators, it just falls into the block after it.
    186   MachineBasicBlock::instr_iterator I = MBB.instr_end();
    187   if (I == MBB.instr_begin())
    188     return false;
    189 
    190   // A basic block may looks like this:
    191   //
    192   //  [   insn
    193   //     EH_LABEL
    194   //      insn
    195   //      insn
    196   //      insn
    197   //     EH_LABEL
    198   //      insn     ]
    199   //
    200   // It has two succs but does not have a terminator
    201   // Don't know how to handle it.
    202   do {
    203     --I;
    204     if (I->isEHLabel())
    205       return true;
    206   } while (I != MBB.instr_begin());
    207 
    208   I = MBB.instr_end();
    209   --I;
    210 
    211   while (I->isDebugValue()) {
    212     if (I == MBB.instr_begin())
    213       return false;
    214     --I;
    215   }
    216 
    217   bool JumpToBlock = I->getOpcode() == Hexagon::J2_jump &&
    218                      I->getOperand(0).isMBB();
    219   // Delete the JMP if it's equivalent to a fall-through.
    220   if (AllowModify && JumpToBlock &&
    221       MBB.isLayoutSuccessor(I->getOperand(0).getMBB())) {
    222     DEBUG(dbgs()<< "\nErasing the jump to successor block\n";);
    223     I->eraseFromParent();
    224     I = MBB.instr_end();
    225     if (I == MBB.instr_begin())
    226       return false;
    227     --I;
    228   }
    229   if (!isUnpredicatedTerminator(I))
    230     return false;
    231 
    232   // Get the last instruction in the block.
    233   MachineInstr *LastInst = I;
    234   MachineInstr *SecondLastInst = nullptr;
    235   // Find one more terminator if present.
    236   do {
    237     if (&*I != LastInst && !I->isBundle() && isUnpredicatedTerminator(I)) {
    238       if (!SecondLastInst)
    239         SecondLastInst = I;
    240       else
    241         // This is a third branch.
    242         return true;
    243     }
    244     if (I == MBB.instr_begin())
    245       break;
    246     --I;
    247   } while(I);
    248 
    249   int LastOpcode = LastInst->getOpcode();
    250   int SecLastOpcode = SecondLastInst ? SecondLastInst->getOpcode() : 0;
    251   // If the branch target is not a basic block, it could be a tail call.
    252   // (It is, if the target is a function.)
    253   if (LastOpcode == Hexagon::J2_jump && !LastInst->getOperand(0).isMBB())
    254     return true;
    255   if (SecLastOpcode == Hexagon::J2_jump &&
    256       !SecondLastInst->getOperand(0).isMBB())
    257     return true;
    258 
    259   bool LastOpcodeHasJMP_c = PredOpcodeHasJMP_c(LastOpcode);
    260   bool LastOpcodeHasNot = PredOpcodeHasNot(LastOpcode);
    261 
    262   // If there is only one terminator instruction, process it.
    263   if (LastInst && !SecondLastInst) {
    264     if (LastOpcode == Hexagon::J2_jump) {
    265       TBB = LastInst->getOperand(0).getMBB();
    266       return false;
    267     }
    268     if (LastOpcode == Hexagon::ENDLOOP0) {
    269       TBB = LastInst->getOperand(0).getMBB();
    270       Cond.push_back(LastInst->getOperand(0));
    271       return false;
    272     }
    273     if (LastOpcodeHasJMP_c) {
    274       TBB = LastInst->getOperand(1).getMBB();
    275       if (LastOpcodeHasNot) {
    276         Cond.push_back(MachineOperand::CreateImm(0));
    277       }
    278       Cond.push_back(LastInst->getOperand(0));
    279       return false;
    280     }
    281     // Otherwise, don't know what this is.
    282     return true;
    283   }
    284 
    285   bool SecLastOpcodeHasJMP_c = PredOpcodeHasJMP_c(SecLastOpcode);
    286   bool SecLastOpcodeHasNot = PredOpcodeHasNot(SecLastOpcode);
    287   if (SecLastOpcodeHasJMP_c && (LastOpcode == Hexagon::J2_jump)) {
    288     TBB =  SecondLastInst->getOperand(1).getMBB();
    289     if (SecLastOpcodeHasNot)
    290       Cond.push_back(MachineOperand::CreateImm(0));
    291     Cond.push_back(SecondLastInst->getOperand(0));
    292     FBB = LastInst->getOperand(0).getMBB();
    293     return false;
    294   }
    295 
    296   // If the block ends with two Hexagon:JMPs, handle it.  The second one is not
    297   // executed, so remove it.
    298   if (SecLastOpcode == Hexagon::J2_jump && LastOpcode == Hexagon::J2_jump) {
    299     TBB = SecondLastInst->getOperand(0).getMBB();
    300     I = LastInst;
    301     if (AllowModify)
    302       I->eraseFromParent();
    303     return false;
    304   }
    305 
    306   // If the block ends with an ENDLOOP, and JMP, handle it.
    307   if (SecLastOpcode == Hexagon::ENDLOOP0 &&
    308       LastOpcode == Hexagon::J2_jump) {
    309     TBB = SecondLastInst->getOperand(0).getMBB();
    310     Cond.push_back(SecondLastInst->getOperand(0));
    311     FBB = LastInst->getOperand(0).getMBB();
    312     return false;
    313   }
    314 
    315   // Otherwise, can't handle this.
    316   return true;
    317 }
    318 
    319 
    320 unsigned HexagonInstrInfo::RemoveBranch(MachineBasicBlock &MBB) const {
    321   MachineBasicBlock::iterator I = MBB.end();
    322   if (I == MBB.begin()) return 0;
    323   --I;
    324   unsigned Opc1 = I->getOpcode();
    325   switch (Opc1) {
    326     case Hexagon::J2_jump:
    327     case Hexagon::J2_jumpt:
    328     case Hexagon::J2_jumpf:
    329     case Hexagon::ENDLOOP0:
    330       I->eraseFromParent();
    331       break;
    332     default:
    333       return 0;
    334   }
    335 
    336   I = MBB.end();
    337 
    338   if (I == MBB.begin()) return 1;
    339   --I;
    340   unsigned Opc2 = I->getOpcode();
    341   switch (Opc2) {
    342     case Hexagon::J2_jumpt:
    343     case Hexagon::J2_jumpf:
    344     case Hexagon::ENDLOOP0:
    345       I->eraseFromParent();
    346       return 2;
    347     default:
    348       return 1;
    349   }
    350 }
    351 
    352 
    353 /// \brief For a comparison instruction, return the source registers in
    354 /// \p SrcReg and \p SrcReg2 if having two register operands, and the value it
    355 /// compares against in CmpValue. Return true if the comparison instruction
    356 /// can be analyzed.
    357 bool HexagonInstrInfo::analyzeCompare(const MachineInstr *MI,
    358                                       unsigned &SrcReg, unsigned &SrcReg2,
    359                                       int &Mask, int &Value) const {
    360   unsigned Opc = MI->getOpcode();
    361 
    362   // Set mask and the first source register.
    363   switch (Opc) {
    364     case Hexagon::C2_cmpeqp:
    365     case Hexagon::C2_cmpeqi:
    366     case Hexagon::C2_cmpeq:
    367     case Hexagon::C2_cmpgtp:
    368     case Hexagon::C2_cmpgtup:
    369     case Hexagon::C2_cmpgtui:
    370     case Hexagon::C2_cmpgtu:
    371     case Hexagon::C2_cmpgti:
    372     case Hexagon::C2_cmpgt:
    373       SrcReg = MI->getOperand(1).getReg();
    374       Mask = ~0;
    375       break;
    376     case Hexagon::A4_cmpbeqi:
    377     case Hexagon::A4_cmpbeq:
    378     case Hexagon::A4_cmpbgtui:
    379     case Hexagon::A4_cmpbgtu:
    380     case Hexagon::A4_cmpbgt:
    381       SrcReg = MI->getOperand(1).getReg();
    382       Mask = 0xFF;
    383       break;
    384     case Hexagon::A4_cmpheqi:
    385     case Hexagon::A4_cmpheq:
    386     case Hexagon::A4_cmphgtui:
    387     case Hexagon::A4_cmphgtu:
    388     case Hexagon::A4_cmphgt:
    389       SrcReg = MI->getOperand(1).getReg();
    390       Mask = 0xFFFF;
    391       break;
    392   }
    393 
    394   // Set the value/second source register.
    395   switch (Opc) {
    396     case Hexagon::C2_cmpeqp:
    397     case Hexagon::C2_cmpeq:
    398     case Hexagon::C2_cmpgtp:
    399     case Hexagon::C2_cmpgtup:
    400     case Hexagon::C2_cmpgtu:
    401     case Hexagon::C2_cmpgt:
    402     case Hexagon::A4_cmpbeq:
    403     case Hexagon::A4_cmpbgtu:
    404     case Hexagon::A4_cmpbgt:
    405     case Hexagon::A4_cmpheq:
    406     case Hexagon::A4_cmphgtu:
    407     case Hexagon::A4_cmphgt:
    408       SrcReg2 = MI->getOperand(2).getReg();
    409       return true;
    410 
    411     case Hexagon::C2_cmpeqi:
    412     case Hexagon::C2_cmpgtui:
    413     case Hexagon::C2_cmpgti:
    414     case Hexagon::A4_cmpbeqi:
    415     case Hexagon::A4_cmpbgtui:
    416     case Hexagon::A4_cmpheqi:
    417     case Hexagon::A4_cmphgtui:
    418       SrcReg2 = 0;
    419       Value = MI->getOperand(2).getImm();
    420       return true;
    421   }
    422 
    423   return false;
    424 }
    425 
    426 
    427 void HexagonInstrInfo::copyPhysReg(MachineBasicBlock &MBB,
    428                                  MachineBasicBlock::iterator I, DebugLoc DL,
    429                                  unsigned DestReg, unsigned SrcReg,
    430                                  bool KillSrc) const {
    431   if (Hexagon::IntRegsRegClass.contains(SrcReg, DestReg)) {
    432     BuildMI(MBB, I, DL, get(Hexagon::A2_tfr), DestReg).addReg(SrcReg);
    433     return;
    434   }
    435   if (Hexagon::DoubleRegsRegClass.contains(SrcReg, DestReg)) {
    436     BuildMI(MBB, I, DL, get(Hexagon::A2_tfrp), DestReg).addReg(SrcReg);
    437     return;
    438   }
    439   if (Hexagon::PredRegsRegClass.contains(SrcReg, DestReg)) {
    440     // Map Pd = Ps to Pd = or(Ps, Ps).
    441     BuildMI(MBB, I, DL, get(Hexagon::C2_or),
    442             DestReg).addReg(SrcReg).addReg(SrcReg);
    443     return;
    444   }
    445   if (Hexagon::DoubleRegsRegClass.contains(DestReg) &&
    446       Hexagon::IntRegsRegClass.contains(SrcReg)) {
    447     // We can have an overlap between single and double reg: r1:0 = r0.
    448     if(SrcReg == RI.getSubReg(DestReg, Hexagon::subreg_loreg)) {
    449         // r1:0 = r0
    450         BuildMI(MBB, I, DL, get(Hexagon::A2_tfrsi), (RI.getSubReg(DestReg,
    451                 Hexagon::subreg_hireg))).addImm(0);
    452     } else {
    453         // r1:0 = r1 or no overlap.
    454         BuildMI(MBB, I, DL, get(Hexagon::A2_tfr), (RI.getSubReg(DestReg,
    455                 Hexagon::subreg_loreg))).addReg(SrcReg);
    456         BuildMI(MBB, I, DL, get(Hexagon::A2_tfrsi), (RI.getSubReg(DestReg,
    457                 Hexagon::subreg_hireg))).addImm(0);
    458     }
    459     return;
    460   }
    461   if (Hexagon::CtrRegsRegClass.contains(DestReg) &&
    462       Hexagon::IntRegsRegClass.contains(SrcReg)) {
    463     BuildMI(MBB, I, DL, get(Hexagon::A2_tfrrcr), DestReg).addReg(SrcReg);
    464     return;
    465   }
    466   if (Hexagon::PredRegsRegClass.contains(SrcReg) &&
    467       Hexagon::IntRegsRegClass.contains(DestReg)) {
    468     BuildMI(MBB, I, DL, get(Hexagon::C2_tfrpr), DestReg).
    469       addReg(SrcReg, getKillRegState(KillSrc));
    470     return;
    471   }
    472   if (Hexagon::IntRegsRegClass.contains(SrcReg) &&
    473       Hexagon::PredRegsRegClass.contains(DestReg)) {
    474     BuildMI(MBB, I, DL, get(Hexagon::C2_tfrrp), DestReg).
    475       addReg(SrcReg, getKillRegState(KillSrc));
    476     return;
    477   }
    478 
    479   llvm_unreachable("Unimplemented");
    480 }
    481 
    482 
    483 void HexagonInstrInfo::
    484 storeRegToStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator I,
    485                     unsigned SrcReg, bool isKill, int FI,
    486                     const TargetRegisterClass *RC,
    487                     const TargetRegisterInfo *TRI) const {
    488 
    489   DebugLoc DL = MBB.findDebugLoc(I);
    490   MachineFunction &MF = *MBB.getParent();
    491   MachineFrameInfo &MFI = *MF.getFrameInfo();
    492   unsigned Align = MFI.getObjectAlignment(FI);
    493 
    494   MachineMemOperand *MMO =
    495       MF.getMachineMemOperand(
    496                       MachinePointerInfo(PseudoSourceValue::getFixedStack(FI)),
    497                       MachineMemOperand::MOStore,
    498                       MFI.getObjectSize(FI),
    499                       Align);
    500 
    501   if (Hexagon::IntRegsRegClass.hasSubClassEq(RC)) {
    502     BuildMI(MBB, I, DL, get(Hexagon::S2_storeri_io))
    503           .addFrameIndex(FI).addImm(0)
    504           .addReg(SrcReg, getKillRegState(isKill)).addMemOperand(MMO);
    505   } else if (Hexagon::DoubleRegsRegClass.hasSubClassEq(RC)) {
    506     BuildMI(MBB, I, DL, get(Hexagon::S2_storerd_io))
    507           .addFrameIndex(FI).addImm(0)
    508           .addReg(SrcReg, getKillRegState(isKill)).addMemOperand(MMO);
    509   } else if (Hexagon::PredRegsRegClass.hasSubClassEq(RC)) {
    510     BuildMI(MBB, I, DL, get(Hexagon::STriw_pred))
    511           .addFrameIndex(FI).addImm(0)
    512           .addReg(SrcReg, getKillRegState(isKill)).addMemOperand(MMO);
    513   } else {
    514     llvm_unreachable("Unimplemented");
    515   }
    516 }
    517 
    518 
    519 void HexagonInstrInfo::storeRegToAddr(
    520                                  MachineFunction &MF, unsigned SrcReg,
    521                                  bool isKill,
    522                                  SmallVectorImpl<MachineOperand> &Addr,
    523                                  const TargetRegisterClass *RC,
    524                                  SmallVectorImpl<MachineInstr*> &NewMIs) const
    525 {
    526   llvm_unreachable("Unimplemented");
    527 }
    528 
    529 
    530 void HexagonInstrInfo::
    531 loadRegFromStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator I,
    532                      unsigned DestReg, int FI,
    533                      const TargetRegisterClass *RC,
    534                      const TargetRegisterInfo *TRI) const {
    535   DebugLoc DL = MBB.findDebugLoc(I);
    536   MachineFunction &MF = *MBB.getParent();
    537   MachineFrameInfo &MFI = *MF.getFrameInfo();
    538   unsigned Align = MFI.getObjectAlignment(FI);
    539 
    540   MachineMemOperand *MMO =
    541       MF.getMachineMemOperand(
    542                       MachinePointerInfo(PseudoSourceValue::getFixedStack(FI)),
    543                       MachineMemOperand::MOLoad,
    544                       MFI.getObjectSize(FI),
    545                       Align);
    546   if (RC == &Hexagon::IntRegsRegClass) {
    547     BuildMI(MBB, I, DL, get(Hexagon::L2_loadri_io), DestReg)
    548           .addFrameIndex(FI).addImm(0).addMemOperand(MMO);
    549   } else if (RC == &Hexagon::DoubleRegsRegClass) {
    550     BuildMI(MBB, I, DL, get(Hexagon::L2_loadrd_io), DestReg)
    551           .addFrameIndex(FI).addImm(0).addMemOperand(MMO);
    552   } else if (RC == &Hexagon::PredRegsRegClass) {
    553     BuildMI(MBB, I, DL, get(Hexagon::LDriw_pred), DestReg)
    554           .addFrameIndex(FI).addImm(0).addMemOperand(MMO);
    555   } else {
    556     llvm_unreachable("Can't store this register to stack slot");
    557   }
    558 }
    559 
    560 
    561 void HexagonInstrInfo::loadRegFromAddr(MachineFunction &MF, unsigned DestReg,
    562                                         SmallVectorImpl<MachineOperand> &Addr,
    563                                         const TargetRegisterClass *RC,
    564                                  SmallVectorImpl<MachineInstr*> &NewMIs) const {
    565   llvm_unreachable("Unimplemented");
    566 }
    567 bool
    568 HexagonInstrInfo::expandPostRAPseudo(MachineBasicBlock::iterator MI) const {
    569   const HexagonRegisterInfo &TRI = getRegisterInfo();
    570   MachineRegisterInfo &MRI = MI->getParent()->getParent()->getRegInfo();
    571   MachineBasicBlock &MBB = *MI->getParent();
    572   DebugLoc DL = MI->getDebugLoc();
    573   unsigned Opc = MI->getOpcode();
    574 
    575   switch (Opc) {
    576     case Hexagon::TFR_PdTrue: {
    577       unsigned Reg = MI->getOperand(0).getReg();
    578       BuildMI(MBB, MI, DL, get(Hexagon::C2_orn), Reg)
    579         .addReg(Reg, RegState::Undef)
    580         .addReg(Reg, RegState::Undef);
    581       MBB.erase(MI);
    582       return true;
    583     }
    584     case Hexagon::TFR_PdFalse: {
    585       unsigned Reg = MI->getOperand(0).getReg();
    586       BuildMI(MBB, MI, DL, get(Hexagon::C2_andn), Reg)
    587         .addReg(Reg, RegState::Undef)
    588         .addReg(Reg, RegState::Undef);
    589       MBB.erase(MI);
    590       return true;
    591     }
    592     case Hexagon::VMULW: {
    593       // Expand a 64-bit vector multiply into 2 32-bit scalar multiplies.
    594       unsigned DstReg = MI->getOperand(0).getReg();
    595       unsigned Src1Reg = MI->getOperand(1).getReg();
    596       unsigned Src2Reg = MI->getOperand(2).getReg();
    597       unsigned Src1SubHi = TRI.getSubReg(Src1Reg, Hexagon::subreg_hireg);
    598       unsigned Src1SubLo = TRI.getSubReg(Src1Reg, Hexagon::subreg_loreg);
    599       unsigned Src2SubHi = TRI.getSubReg(Src2Reg, Hexagon::subreg_hireg);
    600       unsigned Src2SubLo = TRI.getSubReg(Src2Reg, Hexagon::subreg_loreg);
    601       BuildMI(MBB, MI, MI->getDebugLoc(), get(Hexagon::M2_mpyi),
    602               TRI.getSubReg(DstReg, Hexagon::subreg_hireg)).addReg(Src1SubHi)
    603           .addReg(Src2SubHi);
    604       BuildMI(MBB, MI, MI->getDebugLoc(), get(Hexagon::M2_mpyi),
    605               TRI.getSubReg(DstReg, Hexagon::subreg_loreg)).addReg(Src1SubLo)
    606           .addReg(Src2SubLo);
    607       MBB.erase(MI);
    608       MRI.clearKillFlags(Src1SubHi);
    609       MRI.clearKillFlags(Src1SubLo);
    610       MRI.clearKillFlags(Src2SubHi);
    611       MRI.clearKillFlags(Src2SubLo);
    612       return true;
    613     }
    614     case Hexagon::VMULW_ACC: {
    615       // Expand 64-bit vector multiply with addition into 2 scalar multiplies.
    616       unsigned DstReg = MI->getOperand(0).getReg();
    617       unsigned Src1Reg = MI->getOperand(1).getReg();
    618       unsigned Src2Reg = MI->getOperand(2).getReg();
    619       unsigned Src3Reg = MI->getOperand(3).getReg();
    620       unsigned Src1SubHi = TRI.getSubReg(Src1Reg, Hexagon::subreg_hireg);
    621       unsigned Src1SubLo = TRI.getSubReg(Src1Reg, Hexagon::subreg_loreg);
    622       unsigned Src2SubHi = TRI.getSubReg(Src2Reg, Hexagon::subreg_hireg);
    623       unsigned Src2SubLo = TRI.getSubReg(Src2Reg, Hexagon::subreg_loreg);
    624       unsigned Src3SubHi = TRI.getSubReg(Src3Reg, Hexagon::subreg_hireg);
    625       unsigned Src3SubLo = TRI.getSubReg(Src3Reg, Hexagon::subreg_loreg);
    626       BuildMI(MBB, MI, MI->getDebugLoc(), get(Hexagon::M2_maci),
    627               TRI.getSubReg(DstReg, Hexagon::subreg_hireg)).addReg(Src1SubHi)
    628           .addReg(Src2SubHi).addReg(Src3SubHi);
    629       BuildMI(MBB, MI, MI->getDebugLoc(), get(Hexagon::M2_maci),
    630               TRI.getSubReg(DstReg, Hexagon::subreg_loreg)).addReg(Src1SubLo)
    631           .addReg(Src2SubLo).addReg(Src3SubLo);
    632       MBB.erase(MI);
    633       MRI.clearKillFlags(Src1SubHi);
    634       MRI.clearKillFlags(Src1SubLo);
    635       MRI.clearKillFlags(Src2SubHi);
    636       MRI.clearKillFlags(Src2SubLo);
    637       MRI.clearKillFlags(Src3SubHi);
    638       MRI.clearKillFlags(Src3SubLo);
    639       return true;
    640     }
    641     case Hexagon::TCRETURNi:
    642       MI->setDesc(get(Hexagon::J2_jump));
    643       return true;
    644     case Hexagon::TCRETURNr:
    645       MI->setDesc(get(Hexagon::J2_jumpr));
    646       return true;
    647   }
    648 
    649   return false;
    650 }
    651 
    652 MachineInstr *HexagonInstrInfo::foldMemoryOperandImpl(MachineFunction &MF,
    653                                                       MachineInstr *MI,
    654                                                       ArrayRef<unsigned> Ops,
    655                                                       int FI) const {
    656   // Hexagon_TODO: Implement.
    657   return nullptr;
    658 }
    659 
    660 unsigned HexagonInstrInfo::createVR(MachineFunction* MF, MVT VT) const {
    661 
    662   MachineRegisterInfo &RegInfo = MF->getRegInfo();
    663   const TargetRegisterClass *TRC;
    664   if (VT == MVT::i1) {
    665     TRC = &Hexagon::PredRegsRegClass;
    666   } else if (VT == MVT::i32 || VT == MVT::f32) {
    667     TRC = &Hexagon::IntRegsRegClass;
    668   } else if (VT == MVT::i64 || VT == MVT::f64) {
    669     TRC = &Hexagon::DoubleRegsRegClass;
    670   } else {
    671     llvm_unreachable("Cannot handle this register class");
    672   }
    673 
    674   unsigned NewReg = RegInfo.createVirtualRegister(TRC);
    675   return NewReg;
    676 }
    677 
    678 bool HexagonInstrInfo::isExtendable(const MachineInstr *MI) const {
    679   const MCInstrDesc &MID = MI->getDesc();
    680   const uint64_t F = MID.TSFlags;
    681   if ((F >> HexagonII::ExtendablePos) & HexagonII::ExtendableMask)
    682     return true;
    683 
    684   // TODO: This is largely obsolete now. Will need to be removed
    685   // in consecutive patches.
    686   switch(MI->getOpcode()) {
    687     // TFR_FI Remains a special case.
    688     case Hexagon::TFR_FI:
    689       return true;
    690     default:
    691       return false;
    692   }
    693   return  false;
    694 }
    695 
    696 // This returns true in two cases:
    697 // - The OP code itself indicates that this is an extended instruction.
    698 // - One of MOs has been marked with HMOTF_ConstExtended flag.
    699 bool HexagonInstrInfo::isExtended(const MachineInstr *MI) const {
    700   // First check if this is permanently extended op code.
    701   const uint64_t F = MI->getDesc().TSFlags;
    702   if ((F >> HexagonII::ExtendedPos) & HexagonII::ExtendedMask)
    703     return true;
    704   // Use MO operand flags to determine if one of MI's operands
    705   // has HMOTF_ConstExtended flag set.
    706   for (MachineInstr::const_mop_iterator I = MI->operands_begin(),
    707        E = MI->operands_end(); I != E; ++I) {
    708     if (I->getTargetFlags() && HexagonII::HMOTF_ConstExtended)
    709       return true;
    710   }
    711   return  false;
    712 }
    713 
    714 bool HexagonInstrInfo::isBranch (const MachineInstr *MI) const {
    715   return MI->getDesc().isBranch();
    716 }
    717 
    718 bool HexagonInstrInfo::isNewValueInst(const MachineInstr *MI) const {
    719   if (isNewValueJump(MI))
    720     return true;
    721 
    722   if (isNewValueStore(MI))
    723     return true;
    724 
    725   return false;
    726 }
    727 
    728 bool HexagonInstrInfo::isSaveCalleeSavedRegsCall(const MachineInstr *MI) const {
    729   return MI->getOpcode() == Hexagon::SAVE_REGISTERS_CALL_V4;
    730 }
    731 
    732 bool HexagonInstrInfo::isPredicable(MachineInstr *MI) const {
    733   bool isPred = MI->getDesc().isPredicable();
    734 
    735   if (!isPred)
    736     return false;
    737 
    738   const int Opc = MI->getOpcode();
    739 
    740   switch(Opc) {
    741   case Hexagon::A2_tfrsi:
    742     return (isOperandExtended(MI, 1) && isConstExtended(MI)) || isInt<12>(MI->getOperand(1).getImm());
    743 
    744   case Hexagon::S2_storerd_io:
    745     return isShiftedUInt<6,3>(MI->getOperand(1).getImm());
    746 
    747   case Hexagon::S2_storeri_io:
    748   case Hexagon::S2_storerinew_io:
    749     return isShiftedUInt<6,2>(MI->getOperand(1).getImm());
    750 
    751   case Hexagon::S2_storerh_io:
    752   case Hexagon::S2_storerhnew_io:
    753     return isShiftedUInt<6,1>(MI->getOperand(1).getImm());
    754 
    755   case Hexagon::S2_storerb_io:
    756   case Hexagon::S2_storerbnew_io:
    757     return isUInt<6>(MI->getOperand(1).getImm());
    758 
    759   case Hexagon::L2_loadrd_io:
    760     return isShiftedUInt<6,3>(MI->getOperand(2).getImm());
    761 
    762   case Hexagon::L2_loadri_io:
    763     return isShiftedUInt<6,2>(MI->getOperand(2).getImm());
    764 
    765   case Hexagon::L2_loadrh_io:
    766   case Hexagon::L2_loadruh_io:
    767     return isShiftedUInt<6,1>(MI->getOperand(2).getImm());
    768 
    769   case Hexagon::L2_loadrb_io:
    770   case Hexagon::L2_loadrub_io:
    771     return isUInt<6>(MI->getOperand(2).getImm());
    772 
    773   case Hexagon::L2_loadrd_pi:
    774     return isShiftedInt<4,3>(MI->getOperand(3).getImm());
    775 
    776   case Hexagon::L2_loadri_pi:
    777     return isShiftedInt<4,2>(MI->getOperand(3).getImm());
    778 
    779   case Hexagon::L2_loadrh_pi:
    780   case Hexagon::L2_loadruh_pi:
    781     return isShiftedInt<4,1>(MI->getOperand(3).getImm());
    782 
    783   case Hexagon::L2_loadrb_pi:
    784   case Hexagon::L2_loadrub_pi:
    785     return isInt<4>(MI->getOperand(3).getImm());
    786 
    787   case Hexagon::S4_storeirb_io:
    788   case Hexagon::S4_storeirh_io:
    789   case Hexagon::S4_storeiri_io:
    790     return (isUInt<6>(MI->getOperand(1).getImm()) &&
    791             isInt<6>(MI->getOperand(2).getImm()));
    792 
    793   case Hexagon::A2_addi:
    794     return isInt<8>(MI->getOperand(2).getImm());
    795 
    796   case Hexagon::A2_aslh:
    797   case Hexagon::A2_asrh:
    798   case Hexagon::A2_sxtb:
    799   case Hexagon::A2_sxth:
    800   case Hexagon::A2_zxtb:
    801   case Hexagon::A2_zxth:
    802     return true;
    803   }
    804 
    805   return true;
    806 }
    807 
    808 // This function performs the following inversiones:
    809 //
    810 //  cPt    ---> cNotPt
    811 //  cNotPt ---> cPt
    812 //
    813 unsigned HexagonInstrInfo::getInvertedPredicatedOpcode(const int Opc) const {
    814   int InvPredOpcode;
    815   InvPredOpcode = isPredicatedTrue(Opc) ? Hexagon::getFalsePredOpcode(Opc)
    816                                         : Hexagon::getTruePredOpcode(Opc);
    817   if (InvPredOpcode >= 0) // Valid instruction with the inverted predicate.
    818     return InvPredOpcode;
    819 
    820   switch(Opc) {
    821     default: llvm_unreachable("Unexpected predicated instruction");
    822     case Hexagon::C2_ccombinewt:
    823       return Hexagon::C2_ccombinewf;
    824     case Hexagon::C2_ccombinewf:
    825       return Hexagon::C2_ccombinewt;
    826 
    827       // Dealloc_return.
    828     case Hexagon::L4_return_t:
    829       return Hexagon::L4_return_f;
    830     case Hexagon::L4_return_f:
    831       return Hexagon::L4_return_t;
    832   }
    833 }
    834 
    835 // New Value Store instructions.
    836 bool HexagonInstrInfo::isNewValueStore(const MachineInstr *MI) const {
    837   const uint64_t F = MI->getDesc().TSFlags;
    838 
    839   return ((F >> HexagonII::NVStorePos) & HexagonII::NVStoreMask);
    840 }
    841 
    842 bool HexagonInstrInfo::isNewValueStore(unsigned Opcode) const {
    843   const uint64_t F = get(Opcode).TSFlags;
    844 
    845   return ((F >> HexagonII::NVStorePos) & HexagonII::NVStoreMask);
    846 }
    847 
    848 int HexagonInstrInfo::getCondOpcode(int Opc, bool invertPredicate) const {
    849   enum Hexagon::PredSense inPredSense;
    850   inPredSense = invertPredicate ? Hexagon::PredSense_false :
    851                                   Hexagon::PredSense_true;
    852   int CondOpcode = Hexagon::getPredOpcode(Opc, inPredSense);
    853   if (CondOpcode >= 0) // Valid Conditional opcode/instruction
    854     return CondOpcode;
    855 
    856   // This switch case will be removed once all the instructions have been
    857   // modified to use relation maps.
    858   switch(Opc) {
    859   case Hexagon::TFRI_f:
    860     return !invertPredicate ? Hexagon::TFRI_cPt_f :
    861                               Hexagon::TFRI_cNotPt_f;
    862   case Hexagon::A2_combinew:
    863     return !invertPredicate ? Hexagon::C2_ccombinewt :
    864                               Hexagon::C2_ccombinewf;
    865 
    866   // DEALLOC_RETURN.
    867   case Hexagon::L4_return:
    868     return !invertPredicate ? Hexagon::L4_return_t:
    869                               Hexagon::L4_return_f;
    870   }
    871   llvm_unreachable("Unexpected predicable instruction");
    872 }
    873 
    874 
    875 bool HexagonInstrInfo::
    876 PredicateInstruction(MachineInstr *MI,
    877                      const SmallVectorImpl<MachineOperand> &Cond) const {
    878   int Opc = MI->getOpcode();
    879   assert (isPredicable(MI) && "Expected predicable instruction");
    880   bool invertJump = (!Cond.empty() && Cond[0].isImm() &&
    881                      (Cond[0].getImm() == 0));
    882 
    883   // This will change MI's opcode to its predicate version.
    884   // However, its operand list is still the old one, i.e. the
    885   // non-predicate one.
    886   MI->setDesc(get(getCondOpcode(Opc, invertJump)));
    887 
    888   int oper = -1;
    889   unsigned int GAIdx = 0;
    890 
    891   // Indicates whether the current MI has a GlobalAddress operand
    892   bool hasGAOpnd = false;
    893   std::vector<MachineOperand> tmpOpnds;
    894 
    895   // Indicates whether we need to shift operands to right.
    896   bool needShift = true;
    897 
    898   // The predicate is ALWAYS the FIRST input operand !!!
    899   if (MI->getNumOperands() == 0) {
    900     // The non-predicate version of MI does not take any operands,
    901     // i.e. no outs and no ins. In this condition, the predicate
    902     // operand will be directly placed at Operands[0]. No operand
    903     // shift is needed.
    904     // Example: BARRIER
    905     needShift = false;
    906     oper = -1;
    907   }
    908   else if (   MI->getOperand(MI->getNumOperands()-1).isReg()
    909            && MI->getOperand(MI->getNumOperands()-1).isDef()
    910            && !MI->getOperand(MI->getNumOperands()-1).isImplicit()) {
    911     // The non-predicate version of MI does not have any input operands.
    912     // In this condition, we extend the length of Operands[] by one and
    913     // copy the original last operand to the newly allocated slot.
    914     // At this moment, it is just a place holder. Later, we will put
    915     // predicate operand directly into it. No operand shift is needed.
    916     // Example: r0=BARRIER (this is a faked insn used here for illustration)
    917     MI->addOperand(MI->getOperand(MI->getNumOperands()-1));
    918     needShift = false;
    919     oper = MI->getNumOperands() - 2;
    920   }
    921   else {
    922     // We need to right shift all input operands by one. Duplicate the
    923     // last operand into the newly allocated slot.
    924     MI->addOperand(MI->getOperand(MI->getNumOperands()-1));
    925   }
    926 
    927   if (needShift)
    928   {
    929     // Operands[ MI->getNumOperands() - 2 ] has been copied into
    930     // Operands[ MI->getNumOperands() - 1 ], so we start from
    931     // Operands[ MI->getNumOperands() - 3 ].
    932     // oper is a signed int.
    933     // It is ok if "MI->getNumOperands()-3" is -3, -2, or -1.
    934     for (oper = MI->getNumOperands() - 3; oper >= 0; --oper)
    935     {
    936       MachineOperand &MO = MI->getOperand(oper);
    937 
    938       // Opnd[0] Opnd[1] Opnd[2] Opnd[3] Opnd[4]   Opnd[5]   Opnd[6]   Opnd[7]
    939       // <Def0>  <Def1>  <Use0>  <Use1>  <ImpDef0> <ImpDef1> <ImpUse0> <ImpUse1>
    940       //               /\~
    941       //              /||\~
    942       //               ||
    943       //        Predicate Operand here
    944       if (MO.isReg() && !MO.isUse() && !MO.isImplicit()) {
    945         break;
    946       }
    947       if (MO.isReg()) {
    948         MI->getOperand(oper+1).ChangeToRegister(MO.getReg(), MO.isDef(),
    949                                                 MO.isImplicit(), MO.isKill(),
    950                                                 MO.isDead(), MO.isUndef(),
    951                                                 MO.isDebug());
    952       }
    953       else if (MO.isImm()) {
    954         MI->getOperand(oper+1).ChangeToImmediate(MO.getImm());
    955       }
    956       else if (MO.isGlobal()) {
    957         // MI can not have more than one GlobalAddress operand.
    958         assert(hasGAOpnd == false && "MI can only have one GlobalAddress opnd");
    959 
    960         // There is no member function called "ChangeToGlobalAddress" in the
    961         // MachineOperand class (not like "ChangeToRegister" and
    962         // "ChangeToImmediate"). So we have to remove them from Operands[] list
    963         // first, and then add them back after we have inserted the predicate
    964         // operand. tmpOpnds[] is to remember these operands before we remove
    965         // them.
    966         tmpOpnds.push_back(MO);
    967 
    968         // Operands[oper] is a GlobalAddress operand;
    969         // Operands[oper+1] has been copied into Operands[oper+2];
    970         hasGAOpnd = true;
    971         GAIdx = oper;
    972         continue;
    973       }
    974       else {
    975         llvm_unreachable("Unexpected operand type");
    976       }
    977     }
    978   }
    979 
    980   int regPos = invertJump ? 1 : 0;
    981   MachineOperand PredMO = Cond[regPos];
    982 
    983   // [oper] now points to the last explicit Def. Predicate operand must be
    984   // located at [oper+1]. See diagram above.
    985   // This assumes that the predicate is always the first operand,
    986   // i.e. Operands[0+numResults], in the set of inputs
    987   // It is better to have an assert here to check this. But I don't know how
    988   // to write this assert because findFirstPredOperandIdx() would return -1
    989   if (oper < -1) oper = -1;
    990 
    991   MI->getOperand(oper+1).ChangeToRegister(PredMO.getReg(), PredMO.isDef(),
    992                                           PredMO.isImplicit(), false,
    993                                           PredMO.isDead(), PredMO.isUndef(),
    994                                           PredMO.isDebug());
    995 
    996   MachineRegisterInfo &RegInfo = MI->getParent()->getParent()->getRegInfo();
    997   RegInfo.clearKillFlags(PredMO.getReg());
    998 
    999   if (hasGAOpnd)
   1000   {
   1001     unsigned int i;
   1002 
   1003     // Operands[GAIdx] is the original GlobalAddress operand, which is
   1004     // already copied into tmpOpnds[0].
   1005     // Operands[GAIdx] now stores a copy of Operands[GAIdx-1]
   1006     // Operands[GAIdx+1] has already been copied into Operands[GAIdx+2],
   1007     // so we start from [GAIdx+2]
   1008     for (i = GAIdx + 2; i < MI->getNumOperands(); ++i)
   1009       tmpOpnds.push_back(MI->getOperand(i));
   1010 
   1011     // Remove all operands in range [ (GAIdx+1) ... (MI->getNumOperands()-1) ]
   1012     // It is very important that we always remove from the end of Operands[]
   1013     // MI->getNumOperands() is at least 2 if program goes to here.
   1014     for (i = MI->getNumOperands() - 1; i > GAIdx; --i)
   1015       MI->RemoveOperand(i);
   1016 
   1017     for (i = 0; i < tmpOpnds.size(); ++i)
   1018       MI->addOperand(tmpOpnds[i]);
   1019   }
   1020 
   1021   return true;
   1022 }
   1023 
   1024 
   1025 bool
   1026 HexagonInstrInfo::
   1027 isProfitableToIfCvt(MachineBasicBlock &MBB,
   1028                     unsigned NumCycles,
   1029                     unsigned ExtraPredCycles,
   1030                     const BranchProbability &Probability) const {
   1031   return true;
   1032 }
   1033 
   1034 
   1035 bool
   1036 HexagonInstrInfo::
   1037 isProfitableToIfCvt(MachineBasicBlock &TMBB,
   1038                     unsigned NumTCycles,
   1039                     unsigned ExtraTCycles,
   1040                     MachineBasicBlock &FMBB,
   1041                     unsigned NumFCycles,
   1042                     unsigned ExtraFCycles,
   1043                     const BranchProbability &Probability) const {
   1044   return true;
   1045 }
   1046 
   1047 // Returns true if an instruction is predicated irrespective of the predicate
   1048 // sense. For example, all of the following will return true.
   1049 // if (p0) R1 = add(R2, R3)
   1050 // if (!p0) R1 = add(R2, R3)
   1051 // if (p0.new) R1 = add(R2, R3)
   1052 // if (!p0.new) R1 = add(R2, R3)
   1053 bool HexagonInstrInfo::isPredicated(const MachineInstr *MI) const {
   1054   const uint64_t F = MI->getDesc().TSFlags;
   1055 
   1056   return ((F >> HexagonII::PredicatedPos) & HexagonII::PredicatedMask);
   1057 }
   1058 
   1059 bool HexagonInstrInfo::isPredicated(unsigned Opcode) const {
   1060   const uint64_t F = get(Opcode).TSFlags;
   1061 
   1062   return ((F >> HexagonII::PredicatedPos) & HexagonII::PredicatedMask);
   1063 }
   1064 
   1065 bool HexagonInstrInfo::isPredicatedTrue(const MachineInstr *MI) const {
   1066   const uint64_t F = MI->getDesc().TSFlags;
   1067 
   1068   assert(isPredicated(MI));
   1069   return (!((F >> HexagonII::PredicatedFalsePos) &
   1070             HexagonII::PredicatedFalseMask));
   1071 }
   1072 
   1073 bool HexagonInstrInfo::isPredicatedTrue(unsigned Opcode) const {
   1074   const uint64_t F = get(Opcode).TSFlags;
   1075 
   1076   // Make sure that the instruction is predicated.
   1077   assert((F>> HexagonII::PredicatedPos) & HexagonII::PredicatedMask);
   1078   return (!((F >> HexagonII::PredicatedFalsePos) &
   1079             HexagonII::PredicatedFalseMask));
   1080 }
   1081 
   1082 bool HexagonInstrInfo::isPredicatedNew(const MachineInstr *MI) const {
   1083   const uint64_t F = MI->getDesc().TSFlags;
   1084 
   1085   assert(isPredicated(MI));
   1086   return ((F >> HexagonII::PredicatedNewPos) & HexagonII::PredicatedNewMask);
   1087 }
   1088 
   1089 bool HexagonInstrInfo::isPredicatedNew(unsigned Opcode) const {
   1090   const uint64_t F = get(Opcode).TSFlags;
   1091 
   1092   assert(isPredicated(Opcode));
   1093   return ((F >> HexagonII::PredicatedNewPos) & HexagonII::PredicatedNewMask);
   1094 }
   1095 
   1096 // Returns true, if a ST insn can be promoted to a new-value store.
   1097 bool HexagonInstrInfo::mayBeNewStore(const MachineInstr *MI) const {
   1098   const uint64_t F = MI->getDesc().TSFlags;
   1099 
   1100   return ((F >> HexagonII::mayNVStorePos) &
   1101            HexagonII::mayNVStoreMask);
   1102 }
   1103 
   1104 bool
   1105 HexagonInstrInfo::DefinesPredicate(MachineInstr *MI,
   1106                                    std::vector<MachineOperand> &Pred) const {
   1107   for (unsigned oper = 0; oper < MI->getNumOperands(); ++oper) {
   1108     MachineOperand MO = MI->getOperand(oper);
   1109     if (MO.isReg() && MO.isDef()) {
   1110       const TargetRegisterClass* RC = RI.getMinimalPhysRegClass(MO.getReg());
   1111       if (RC == &Hexagon::PredRegsRegClass) {
   1112         Pred.push_back(MO);
   1113         return true;
   1114       }
   1115     }
   1116   }
   1117   return false;
   1118 }
   1119 
   1120 
   1121 bool
   1122 HexagonInstrInfo::
   1123 SubsumesPredicate(const SmallVectorImpl<MachineOperand> &Pred1,
   1124                   const SmallVectorImpl<MachineOperand> &Pred2) const {
   1125   // TODO: Fix this
   1126   return false;
   1127 }
   1128 
   1129 
   1130 //
   1131 // We indicate that we want to reverse the branch by
   1132 // inserting a 0 at the beginning of the Cond vector.
   1133 //
   1134 bool HexagonInstrInfo::
   1135 ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
   1136   if (!Cond.empty() && Cond[0].isMBB())
   1137     return true;
   1138   if (!Cond.empty() && Cond[0].isImm() && Cond[0].getImm() == 0) {
   1139     Cond.erase(Cond.begin());
   1140   } else {
   1141     Cond.insert(Cond.begin(), MachineOperand::CreateImm(0));
   1142   }
   1143   return false;
   1144 }
   1145 
   1146 
   1147 bool HexagonInstrInfo::
   1148 isProfitableToDupForIfCvt(MachineBasicBlock &MBB,unsigned NumInstrs,
   1149                           const BranchProbability &Probability) const {
   1150   return (NumInstrs <= 4);
   1151 }
   1152 
   1153 bool HexagonInstrInfo::isDeallocRet(const MachineInstr *MI) const {
   1154   switch (MI->getOpcode()) {
   1155   default: return false;
   1156   case Hexagon::L4_return:
   1157   case Hexagon::L4_return_t:
   1158   case Hexagon::L4_return_f:
   1159   case Hexagon::L4_return_tnew_pnt:
   1160   case Hexagon::L4_return_fnew_pnt:
   1161   case Hexagon::L4_return_tnew_pt:
   1162   case Hexagon::L4_return_fnew_pt:
   1163    return true;
   1164   }
   1165 }
   1166 
   1167 
   1168 bool HexagonInstrInfo::
   1169 isValidOffset(const int Opcode, const int Offset) const {
   1170   // This function is to check whether the "Offset" is in the correct range of
   1171   // the given "Opcode". If "Offset" is not in the correct range, "ADD_ri" is
   1172   // inserted to calculate the final address. Due to this reason, the function
   1173   // assumes that the "Offset" has correct alignment.
   1174   // We used to assert if the offset was not properly aligned, however,
   1175   // there are cases where a misaligned pointer recast can cause this
   1176   // problem, and we need to allow for it. The front end warns of such
   1177   // misaligns with respect to load size.
   1178 
   1179   switch(Opcode) {
   1180 
   1181   case Hexagon::L2_loadri_io:
   1182   case Hexagon::S2_storeri_io:
   1183     return (Offset >= Hexagon_MEMW_OFFSET_MIN) &&
   1184       (Offset <= Hexagon_MEMW_OFFSET_MAX);
   1185 
   1186   case Hexagon::L2_loadrd_io:
   1187   case Hexagon::S2_storerd_io:
   1188     return (Offset >= Hexagon_MEMD_OFFSET_MIN) &&
   1189       (Offset <= Hexagon_MEMD_OFFSET_MAX);
   1190 
   1191   case Hexagon::L2_loadrh_io:
   1192   case Hexagon::L2_loadruh_io:
   1193   case Hexagon::S2_storerh_io:
   1194     return (Offset >= Hexagon_MEMH_OFFSET_MIN) &&
   1195       (Offset <= Hexagon_MEMH_OFFSET_MAX);
   1196 
   1197   case Hexagon::L2_loadrb_io:
   1198   case Hexagon::S2_storerb_io:
   1199   case Hexagon::L2_loadrub_io:
   1200     return (Offset >= Hexagon_MEMB_OFFSET_MIN) &&
   1201       (Offset <= Hexagon_MEMB_OFFSET_MAX);
   1202 
   1203   case Hexagon::A2_addi:
   1204   case Hexagon::TFR_FI:
   1205     return (Offset >= Hexagon_ADDI_OFFSET_MIN) &&
   1206       (Offset <= Hexagon_ADDI_OFFSET_MAX);
   1207 
   1208   case Hexagon::L4_iadd_memopw_io:
   1209   case Hexagon::L4_isub_memopw_io:
   1210   case Hexagon::L4_add_memopw_io:
   1211   case Hexagon::L4_sub_memopw_io:
   1212   case Hexagon::L4_and_memopw_io:
   1213   case Hexagon::L4_or_memopw_io:
   1214     return (0 <= Offset && Offset <= 255);
   1215 
   1216   case Hexagon::L4_iadd_memoph_io:
   1217   case Hexagon::L4_isub_memoph_io:
   1218   case Hexagon::L4_add_memoph_io:
   1219   case Hexagon::L4_sub_memoph_io:
   1220   case Hexagon::L4_and_memoph_io:
   1221   case Hexagon::L4_or_memoph_io:
   1222     return (0 <= Offset && Offset <= 127);
   1223 
   1224   case Hexagon::L4_iadd_memopb_io:
   1225   case Hexagon::L4_isub_memopb_io:
   1226   case Hexagon::L4_add_memopb_io:
   1227   case Hexagon::L4_sub_memopb_io:
   1228   case Hexagon::L4_and_memopb_io:
   1229   case Hexagon::L4_or_memopb_io:
   1230     return (0 <= Offset && Offset <= 63);
   1231 
   1232   // LDri_pred and STriw_pred are pseudo operations, so it has to take offset of
   1233   // any size. Later pass knows how to handle it.
   1234   case Hexagon::STriw_pred:
   1235   case Hexagon::LDriw_pred:
   1236     return true;
   1237 
   1238   case Hexagon::J2_loop0i:
   1239     return isUInt<10>(Offset);
   1240 
   1241   // INLINEASM is very special.
   1242   case Hexagon::INLINEASM:
   1243     return true;
   1244   }
   1245 
   1246   llvm_unreachable("No offset range is defined for this opcode. "
   1247                    "Please define it in the above switch statement!");
   1248 }
   1249 
   1250 
   1251 //
   1252 // Check if the Offset is a valid auto-inc imm by Load/Store Type.
   1253 //
   1254 bool HexagonInstrInfo::
   1255 isValidAutoIncImm(const EVT VT, const int Offset) const {
   1256 
   1257   if (VT == MVT::i64) {
   1258       return (Offset >= Hexagon_MEMD_AUTOINC_MIN &&
   1259               Offset <= Hexagon_MEMD_AUTOINC_MAX &&
   1260               (Offset & 0x7) == 0);
   1261   }
   1262   if (VT == MVT::i32) {
   1263       return (Offset >= Hexagon_MEMW_AUTOINC_MIN &&
   1264               Offset <= Hexagon_MEMW_AUTOINC_MAX &&
   1265               (Offset & 0x3) == 0);
   1266   }
   1267   if (VT == MVT::i16) {
   1268       return (Offset >= Hexagon_MEMH_AUTOINC_MIN &&
   1269               Offset <= Hexagon_MEMH_AUTOINC_MAX &&
   1270               (Offset & 0x1) == 0);
   1271   }
   1272   if (VT == MVT::i8) {
   1273       return (Offset >= Hexagon_MEMB_AUTOINC_MIN &&
   1274               Offset <= Hexagon_MEMB_AUTOINC_MAX);
   1275   }
   1276   llvm_unreachable("Not an auto-inc opc!");
   1277 }
   1278 
   1279 
   1280 bool HexagonInstrInfo::
   1281 isMemOp(const MachineInstr *MI) const {
   1282 //  return MI->getDesc().mayLoad() && MI->getDesc().mayStore();
   1283 
   1284   switch (MI->getOpcode())
   1285   {
   1286   default: return false;
   1287   case Hexagon::L4_iadd_memopw_io:
   1288   case Hexagon::L4_isub_memopw_io:
   1289   case Hexagon::L4_add_memopw_io:
   1290   case Hexagon::L4_sub_memopw_io:
   1291   case Hexagon::L4_and_memopw_io:
   1292   case Hexagon::L4_or_memopw_io:
   1293   case Hexagon::L4_iadd_memoph_io:
   1294   case Hexagon::L4_isub_memoph_io:
   1295   case Hexagon::L4_add_memoph_io:
   1296   case Hexagon::L4_sub_memoph_io:
   1297   case Hexagon::L4_and_memoph_io:
   1298   case Hexagon::L4_or_memoph_io:
   1299   case Hexagon::L4_iadd_memopb_io:
   1300   case Hexagon::L4_isub_memopb_io:
   1301   case Hexagon::L4_add_memopb_io:
   1302   case Hexagon::L4_sub_memopb_io:
   1303   case Hexagon::L4_and_memopb_io:
   1304   case Hexagon::L4_or_memopb_io:
   1305   case Hexagon::L4_ior_memopb_io:
   1306   case Hexagon::L4_ior_memoph_io:
   1307   case Hexagon::L4_ior_memopw_io:
   1308   case Hexagon::L4_iand_memopb_io:
   1309   case Hexagon::L4_iand_memoph_io:
   1310   case Hexagon::L4_iand_memopw_io:
   1311     return true;
   1312   }
   1313   return false;
   1314 }
   1315 
   1316 
   1317 bool HexagonInstrInfo::
   1318 isSpillPredRegOp(const MachineInstr *MI) const {
   1319   switch (MI->getOpcode()) {
   1320     default: return false;
   1321     case Hexagon::STriw_pred :
   1322     case Hexagon::LDriw_pred :
   1323       return true;
   1324   }
   1325 }
   1326 
   1327 bool HexagonInstrInfo::isNewValueJumpCandidate(const MachineInstr *MI) const {
   1328   switch (MI->getOpcode()) {
   1329     default: return false;
   1330     case Hexagon::C2_cmpeq:
   1331     case Hexagon::C2_cmpeqi:
   1332     case Hexagon::C2_cmpgt:
   1333     case Hexagon::C2_cmpgti:
   1334     case Hexagon::C2_cmpgtu:
   1335     case Hexagon::C2_cmpgtui:
   1336       return true;
   1337   }
   1338 }
   1339 
   1340 bool HexagonInstrInfo::
   1341 isConditionalTransfer (const MachineInstr *MI) const {
   1342   switch (MI->getOpcode()) {
   1343     default: return false;
   1344     case Hexagon::A2_tfrt:
   1345     case Hexagon::A2_tfrf:
   1346     case Hexagon::C2_cmoveit:
   1347     case Hexagon::C2_cmoveif:
   1348     case Hexagon::A2_tfrtnew:
   1349     case Hexagon::A2_tfrfnew:
   1350     case Hexagon::C2_cmovenewit:
   1351     case Hexagon::C2_cmovenewif:
   1352       return true;
   1353   }
   1354 }
   1355 
   1356 bool HexagonInstrInfo::isConditionalALU32 (const MachineInstr* MI) const {
   1357   switch (MI->getOpcode())
   1358   {
   1359     default: return false;
   1360     case Hexagon::A2_paddf:
   1361     case Hexagon::A2_paddfnew:
   1362     case Hexagon::A2_paddt:
   1363     case Hexagon::A2_paddtnew:
   1364     case Hexagon::A2_pandf:
   1365     case Hexagon::A2_pandfnew:
   1366     case Hexagon::A2_pandt:
   1367     case Hexagon::A2_pandtnew:
   1368     case Hexagon::A4_paslhf:
   1369     case Hexagon::A4_paslhfnew:
   1370     case Hexagon::A4_paslht:
   1371     case Hexagon::A4_paslhtnew:
   1372     case Hexagon::A4_pasrhf:
   1373     case Hexagon::A4_pasrhfnew:
   1374     case Hexagon::A4_pasrht:
   1375     case Hexagon::A4_pasrhtnew:
   1376     case Hexagon::A2_porf:
   1377     case Hexagon::A2_porfnew:
   1378     case Hexagon::A2_port:
   1379     case Hexagon::A2_portnew:
   1380     case Hexagon::A2_psubf:
   1381     case Hexagon::A2_psubfnew:
   1382     case Hexagon::A2_psubt:
   1383     case Hexagon::A2_psubtnew:
   1384     case Hexagon::A2_pxorf:
   1385     case Hexagon::A2_pxorfnew:
   1386     case Hexagon::A2_pxort:
   1387     case Hexagon::A2_pxortnew:
   1388     case Hexagon::A4_psxthf:
   1389     case Hexagon::A4_psxthfnew:
   1390     case Hexagon::A4_psxtht:
   1391     case Hexagon::A4_psxthtnew:
   1392     case Hexagon::A4_psxtbf:
   1393     case Hexagon::A4_psxtbfnew:
   1394     case Hexagon::A4_psxtbt:
   1395     case Hexagon::A4_psxtbtnew:
   1396     case Hexagon::A4_pzxtbf:
   1397     case Hexagon::A4_pzxtbfnew:
   1398     case Hexagon::A4_pzxtbt:
   1399     case Hexagon::A4_pzxtbtnew:
   1400     case Hexagon::A4_pzxthf:
   1401     case Hexagon::A4_pzxthfnew:
   1402     case Hexagon::A4_pzxtht:
   1403     case Hexagon::A4_pzxthtnew:
   1404     case Hexagon::A2_paddit:
   1405     case Hexagon::A2_paddif:
   1406     case Hexagon::C2_ccombinewt:
   1407     case Hexagon::C2_ccombinewf:
   1408       return true;
   1409   }
   1410 }
   1411 
   1412 bool HexagonInstrInfo::
   1413 isConditionalLoad (const MachineInstr* MI) const {
   1414   switch (MI->getOpcode())
   1415   {
   1416     default: return false;
   1417     case Hexagon::L2_ploadrdt_io :
   1418     case Hexagon::L2_ploadrdf_io:
   1419     case Hexagon::L2_ploadrit_io:
   1420     case Hexagon::L2_ploadrif_io:
   1421     case Hexagon::L2_ploadrht_io:
   1422     case Hexagon::L2_ploadrhf_io:
   1423     case Hexagon::L2_ploadrbt_io:
   1424     case Hexagon::L2_ploadrbf_io:
   1425     case Hexagon::L2_ploadruht_io:
   1426     case Hexagon::L2_ploadruhf_io:
   1427     case Hexagon::L2_ploadrubt_io:
   1428     case Hexagon::L2_ploadrubf_io:
   1429     case Hexagon::L2_ploadrdt_pi:
   1430     case Hexagon::L2_ploadrdf_pi:
   1431     case Hexagon::L2_ploadrit_pi:
   1432     case Hexagon::L2_ploadrif_pi:
   1433     case Hexagon::L2_ploadrht_pi:
   1434     case Hexagon::L2_ploadrhf_pi:
   1435     case Hexagon::L2_ploadrbt_pi:
   1436     case Hexagon::L2_ploadrbf_pi:
   1437     case Hexagon::L2_ploadruht_pi:
   1438     case Hexagon::L2_ploadruhf_pi:
   1439     case Hexagon::L2_ploadrubt_pi:
   1440     case Hexagon::L2_ploadrubf_pi:
   1441     case Hexagon::L4_ploadrdt_rr:
   1442     case Hexagon::L4_ploadrdf_rr:
   1443     case Hexagon::L4_ploadrbt_rr:
   1444     case Hexagon::L4_ploadrbf_rr:
   1445     case Hexagon::L4_ploadrubt_rr:
   1446     case Hexagon::L4_ploadrubf_rr:
   1447     case Hexagon::L4_ploadrht_rr:
   1448     case Hexagon::L4_ploadrhf_rr:
   1449     case Hexagon::L4_ploadruht_rr:
   1450     case Hexagon::L4_ploadruhf_rr:
   1451     case Hexagon::L4_ploadrit_rr:
   1452     case Hexagon::L4_ploadrif_rr:
   1453       return true;
   1454   }
   1455 }
   1456 
   1457 // Returns true if an instruction is a conditional store.
   1458 //
   1459 // Note: It doesn't include conditional new-value stores as they can't be
   1460 // converted to .new predicate.
   1461 //
   1462 //               p.new NV store [ if(p0.new)memw(R0+#0)=R2.new ]
   1463 //                ^           ^
   1464 //               /             \ (not OK. it will cause new-value store to be
   1465 //              /               X conditional on p0.new while R2 producer is
   1466 //             /                 \ on p0)
   1467 //            /                   \.
   1468 //     p.new store                 p.old NV store
   1469 // [if(p0.new)memw(R0+#0)=R2]    [if(p0)memw(R0+#0)=R2.new]
   1470 //            ^                  ^
   1471 //             \                /
   1472 //              \              /
   1473 //               \            /
   1474 //                 p.old store
   1475 //             [if (p0)memw(R0+#0)=R2]
   1476 //
   1477 // The above diagram shows the steps involoved in the conversion of a predicated
   1478 // store instruction to its .new predicated new-value form.
   1479 //
   1480 // The following set of instructions further explains the scenario where
   1481 // conditional new-value store becomes invalid when promoted to .new predicate
   1482 // form.
   1483 //
   1484 // { 1) if (p0) r0 = add(r1, r2)
   1485 //   2) p0 = cmp.eq(r3, #0) }
   1486 //
   1487 //   3) if (p0) memb(r1+#0) = r0  --> this instruction can't be grouped with
   1488 // the first two instructions because in instr 1, r0 is conditional on old value
   1489 // of p0 but its use in instr 3 is conditional on p0 modified by instr 2 which
   1490 // is not valid for new-value stores.
   1491 bool HexagonInstrInfo::
   1492 isConditionalStore (const MachineInstr* MI) const {
   1493   switch (MI->getOpcode())
   1494   {
   1495     default: return false;
   1496     case Hexagon::S4_storeirbt_io:
   1497     case Hexagon::S4_storeirbf_io:
   1498     case Hexagon::S4_pstorerbt_rr:
   1499     case Hexagon::S4_pstorerbf_rr:
   1500     case Hexagon::S2_pstorerbt_io:
   1501     case Hexagon::S2_pstorerbf_io:
   1502     case Hexagon::S2_pstorerbt_pi:
   1503     case Hexagon::S2_pstorerbf_pi:
   1504     case Hexagon::S2_pstorerdt_io:
   1505     case Hexagon::S2_pstorerdf_io:
   1506     case Hexagon::S4_pstorerdt_rr:
   1507     case Hexagon::S4_pstorerdf_rr:
   1508     case Hexagon::S2_pstorerdt_pi:
   1509     case Hexagon::S2_pstorerdf_pi:
   1510     case Hexagon::S2_pstorerht_io:
   1511     case Hexagon::S2_pstorerhf_io:
   1512     case Hexagon::S4_storeirht_io:
   1513     case Hexagon::S4_storeirhf_io:
   1514     case Hexagon::S4_pstorerht_rr:
   1515     case Hexagon::S4_pstorerhf_rr:
   1516     case Hexagon::S2_pstorerht_pi:
   1517     case Hexagon::S2_pstorerhf_pi:
   1518     case Hexagon::S2_pstorerit_io:
   1519     case Hexagon::S2_pstorerif_io:
   1520     case Hexagon::S4_storeirit_io:
   1521     case Hexagon::S4_storeirif_io:
   1522     case Hexagon::S4_pstorerit_rr:
   1523     case Hexagon::S4_pstorerif_rr:
   1524     case Hexagon::S2_pstorerit_pi:
   1525     case Hexagon::S2_pstorerif_pi:
   1526 
   1527     // V4 global address store before promoting to dot new.
   1528     case Hexagon::S4_pstorerdt_abs:
   1529     case Hexagon::S4_pstorerdf_abs:
   1530     case Hexagon::S4_pstorerbt_abs:
   1531     case Hexagon::S4_pstorerbf_abs:
   1532     case Hexagon::S4_pstorerht_abs:
   1533     case Hexagon::S4_pstorerhf_abs:
   1534     case Hexagon::S4_pstorerit_abs:
   1535     case Hexagon::S4_pstorerif_abs:
   1536       return true;
   1537 
   1538     // Predicated new value stores (i.e. if (p0) memw(..)=r0.new) are excluded
   1539     // from the "Conditional Store" list. Because a predicated new value store
   1540     // would NOT be promoted to a double dot new store. See diagram below:
   1541     // This function returns yes for those stores that are predicated but not
   1542     // yet promoted to predicate dot new instructions.
   1543     //
   1544     //                          +---------------------+
   1545     //                    /-----| if (p0) memw(..)=r0 |---------\~
   1546     //                   ||     +---------------------+         ||
   1547     //          promote  ||       /\       /\                   ||  promote
   1548     //                   ||      /||\     /||\                  ||
   1549     //                  \||/    demote     ||                  \||/
   1550     //                   \/       ||       ||                   \/
   1551     //       +-------------------------+   ||   +-------------------------+
   1552     //       | if (p0.new) memw(..)=r0 |   ||   | if (p0) memw(..)=r0.new |
   1553     //       +-------------------------+   ||   +-------------------------+
   1554     //                        ||           ||         ||
   1555     //                        ||         demote      \||/
   1556     //                      promote        ||         \/ NOT possible
   1557     //                        ||           ||         /\~
   1558     //                       \||/          ||        /||\~
   1559     //                        \/           ||         ||
   1560     //                      +-----------------------------+
   1561     //                      | if (p0.new) memw(..)=r0.new |
   1562     //                      +-----------------------------+
   1563     //                           Double Dot New Store
   1564     //
   1565   }
   1566 }
   1567 
   1568 
   1569 bool HexagonInstrInfo::isNewValueJump(const MachineInstr *MI) const {
   1570   if (isNewValue(MI) && isBranch(MI))
   1571     return true;
   1572   return false;
   1573 }
   1574 
   1575 bool HexagonInstrInfo::isPostIncrement (const MachineInstr* MI) const {
   1576   return (getAddrMode(MI) == HexagonII::PostInc);
   1577 }
   1578 
   1579 bool HexagonInstrInfo::isNewValue(const MachineInstr* MI) const {
   1580   const uint64_t F = MI->getDesc().TSFlags;
   1581   return ((F >> HexagonII::NewValuePos) & HexagonII::NewValueMask);
   1582 }
   1583 
   1584 // Returns true, if any one of the operands is a dot new
   1585 // insn, whether it is predicated dot new or register dot new.
   1586 bool HexagonInstrInfo::isDotNewInst (const MachineInstr* MI) const {
   1587   return (isNewValueInst(MI) ||
   1588      (isPredicated(MI) && isPredicatedNew(MI)));
   1589 }
   1590 
   1591 // Returns the most basic instruction for the .new predicated instructions and
   1592 // new-value stores.
   1593 // For example, all of the following instructions will be converted back to the
   1594 // same instruction:
   1595 // 1) if (p0.new) memw(R0+#0) = R1.new  --->
   1596 // 2) if (p0) memw(R0+#0)= R1.new      -------> if (p0) memw(R0+#0) = R1
   1597 // 3) if (p0.new) memw(R0+#0) = R1      --->
   1598 //
   1599 
   1600 int HexagonInstrInfo::GetDotOldOp(const int opc) const {
   1601   int NewOp = opc;
   1602   if (isPredicated(NewOp) && isPredicatedNew(NewOp)) { // Get predicate old form
   1603     NewOp = Hexagon::getPredOldOpcode(NewOp);
   1604     assert(NewOp >= 0 &&
   1605            "Couldn't change predicate new instruction to its old form.");
   1606   }
   1607 
   1608   if (isNewValueStore(NewOp)) { // Convert into non-new-value format
   1609     NewOp = Hexagon::getNonNVStore(NewOp);
   1610     assert(NewOp >= 0 && "Couldn't change new-value store to its old form.");
   1611   }
   1612   return NewOp;
   1613 }
   1614 
   1615 // Return the new value instruction for a given store.
   1616 int HexagonInstrInfo::GetDotNewOp(const MachineInstr* MI) const {
   1617   int NVOpcode = Hexagon::getNewValueOpcode(MI->getOpcode());
   1618   if (NVOpcode >= 0) // Valid new-value store instruction.
   1619     return NVOpcode;
   1620 
   1621   switch (MI->getOpcode()) {
   1622   default: llvm_unreachable("Unknown .new type");
   1623   case Hexagon::S4_storerb_ur:
   1624     return Hexagon::S4_storerbnew_ur;
   1625 
   1626   case Hexagon::S4_storerh_ur:
   1627     return Hexagon::S4_storerhnew_ur;
   1628 
   1629   case Hexagon::S4_storeri_ur:
   1630     return Hexagon::S4_storerinew_ur;
   1631 
   1632   case Hexagon::S2_storerb_pci:
   1633     return Hexagon::S2_storerb_pci;
   1634 
   1635   case Hexagon::S2_storeri_pci:
   1636     return Hexagon::S2_storeri_pci;
   1637 
   1638   case Hexagon::S2_storerh_pci:
   1639     return Hexagon::S2_storerh_pci;
   1640 
   1641   case Hexagon::S2_storerd_pci:
   1642     return Hexagon::S2_storerd_pci;
   1643 
   1644   case Hexagon::S2_storerf_pci:
   1645     return Hexagon::S2_storerf_pci;
   1646   }
   1647   return 0;
   1648 }
   1649 
   1650 // Return .new predicate version for an instruction.
   1651 int HexagonInstrInfo::GetDotNewPredOp(MachineInstr *MI,
   1652                                       const MachineBranchProbabilityInfo
   1653                                       *MBPI) const {
   1654 
   1655   int NewOpcode = Hexagon::getPredNewOpcode(MI->getOpcode());
   1656   if (NewOpcode >= 0) // Valid predicate new instruction
   1657     return NewOpcode;
   1658 
   1659   switch (MI->getOpcode()) {
   1660   default: llvm_unreachable("Unknown .new type");
   1661   // Condtional Jumps
   1662   case Hexagon::J2_jumpt:
   1663   case Hexagon::J2_jumpf:
   1664     return getDotNewPredJumpOp(MI, MBPI);
   1665 
   1666   case Hexagon::J2_jumprt:
   1667     return Hexagon::J2_jumptnewpt;
   1668 
   1669   case Hexagon::J2_jumprf:
   1670     return Hexagon::J2_jumprfnewpt;
   1671 
   1672   case Hexagon::JMPrett:
   1673     return Hexagon::J2_jumprtnewpt;
   1674 
   1675   case Hexagon::JMPretf:
   1676     return Hexagon::J2_jumprfnewpt;
   1677 
   1678 
   1679   // Conditional combine
   1680   case Hexagon::C2_ccombinewt:
   1681     return Hexagon::C2_ccombinewnewt;
   1682   case Hexagon::C2_ccombinewf:
   1683     return Hexagon::C2_ccombinewnewf;
   1684   }
   1685 }
   1686 
   1687 
   1688 unsigned HexagonInstrInfo::getAddrMode(const MachineInstr* MI) const {
   1689   const uint64_t F = MI->getDesc().TSFlags;
   1690 
   1691   return((F >> HexagonII::AddrModePos) & HexagonII::AddrModeMask);
   1692 }
   1693 
   1694 /// immediateExtend - Changes the instruction in place to one using an immediate
   1695 /// extender.
   1696 void HexagonInstrInfo::immediateExtend(MachineInstr *MI) const {
   1697   assert((isExtendable(MI)||isConstExtended(MI)) &&
   1698                                "Instruction must be extendable");
   1699   // Find which operand is extendable.
   1700   short ExtOpNum = getCExtOpNum(MI);
   1701   MachineOperand &MO = MI->getOperand(ExtOpNum);
   1702   // This needs to be something we understand.
   1703   assert((MO.isMBB() || MO.isImm()) &&
   1704          "Branch with unknown extendable field type");
   1705   // Mark given operand as extended.
   1706   MO.addTargetFlag(HexagonII::HMOTF_ConstExtended);
   1707 }
   1708 
   1709 DFAPacketizer *HexagonInstrInfo::CreateTargetScheduleState(
   1710     const TargetSubtargetInfo &STI) const {
   1711   const InstrItineraryData *II = STI.getInstrItineraryData();
   1712   return static_cast<const HexagonSubtarget &>(STI).createDFAPacketizer(II);
   1713 }
   1714 
   1715 bool HexagonInstrInfo::isSchedulingBoundary(const MachineInstr *MI,
   1716                                             const MachineBasicBlock *MBB,
   1717                                             const MachineFunction &MF) const {
   1718   // Debug info is never a scheduling boundary. It's necessary to be explicit
   1719   // due to the special treatment of IT instructions below, otherwise a
   1720   // dbg_value followed by an IT will result in the IT instruction being
   1721   // considered a scheduling hazard, which is wrong. It should be the actual
   1722   // instruction preceding the dbg_value instruction(s), just like it is
   1723   // when debug info is not present.
   1724   if (MI->isDebugValue())
   1725     return false;
   1726 
   1727   // Terminators and labels can't be scheduled around.
   1728   if (MI->getDesc().isTerminator() || MI->isPosition() || MI->isInlineAsm())
   1729     return true;
   1730 
   1731   return false;
   1732 }
   1733 
   1734 bool HexagonInstrInfo::isConstExtended(MachineInstr *MI) const {
   1735   const uint64_t F = MI->getDesc().TSFlags;
   1736   unsigned isExtended = (F >> HexagonII::ExtendedPos) & HexagonII::ExtendedMask;
   1737   if (isExtended) // Instruction must be extended.
   1738     return true;
   1739 
   1740   unsigned isExtendable = (F >> HexagonII::ExtendablePos)
   1741                           & HexagonII::ExtendableMask;
   1742   if (!isExtendable)
   1743     return false;
   1744 
   1745   short ExtOpNum = getCExtOpNum(MI);
   1746   const MachineOperand &MO = MI->getOperand(ExtOpNum);
   1747   // Use MO operand flags to determine if MO
   1748   // has the HMOTF_ConstExtended flag set.
   1749   if (MO.getTargetFlags() && HexagonII::HMOTF_ConstExtended)
   1750     return true;
   1751   // If this is a Machine BB address we are talking about, and it is
   1752   // not marked as extended, say so.
   1753   if (MO.isMBB())
   1754     return false;
   1755 
   1756   // We could be using an instruction with an extendable immediate and shoehorn
   1757   // a global address into it. If it is a global address it will be constant
   1758   // extended. We do this for COMBINE.
   1759   // We currently only handle isGlobal() because it is the only kind of
   1760   // object we are going to end up with here for now.
   1761   // In the future we probably should add isSymbol(), etc.
   1762   if (MO.isGlobal() || MO.isSymbol() || MO.isBlockAddress())
   1763     return true;
   1764 
   1765   // If the extendable operand is not 'Immediate' type, the instruction should
   1766   // have 'isExtended' flag set.
   1767   assert(MO.isImm() && "Extendable operand must be Immediate type");
   1768 
   1769   int MinValue = getMinValue(MI);
   1770   int MaxValue = getMaxValue(MI);
   1771   int ImmValue = MO.getImm();
   1772 
   1773   return (ImmValue < MinValue || ImmValue > MaxValue);
   1774 }
   1775 
   1776 // Returns the opcode to use when converting MI, which is a conditional jump,
   1777 // into a conditional instruction which uses the .new value of the predicate.
   1778 // We also use branch probabilities to add a hint to the jump.
   1779 int
   1780 HexagonInstrInfo::getDotNewPredJumpOp(MachineInstr *MI,
   1781                                   const
   1782                                   MachineBranchProbabilityInfo *MBPI) const {
   1783 
   1784   // We assume that block can have at most two successors.
   1785   bool taken = false;
   1786   MachineBasicBlock *Src = MI->getParent();
   1787   MachineOperand *BrTarget = &MI->getOperand(1);
   1788   MachineBasicBlock *Dst = BrTarget->getMBB();
   1789 
   1790   const BranchProbability Prediction = MBPI->getEdgeProbability(Src, Dst);
   1791   if (Prediction >= BranchProbability(1,2))
   1792     taken = true;
   1793 
   1794   switch (MI->getOpcode()) {
   1795   case Hexagon::J2_jumpt:
   1796     return taken ? Hexagon::J2_jumptnewpt : Hexagon::J2_jumptnew;
   1797   case Hexagon::J2_jumpf:
   1798     return taken ? Hexagon::J2_jumpfnewpt : Hexagon::J2_jumpfnew;
   1799 
   1800   default:
   1801     llvm_unreachable("Unexpected jump instruction.");
   1802   }
   1803 }
   1804 // Returns true if a particular operand is extendable for an instruction.
   1805 bool HexagonInstrInfo::isOperandExtended(const MachineInstr *MI,
   1806                                          unsigned short OperandNum) const {
   1807   const uint64_t F = MI->getDesc().TSFlags;
   1808 
   1809   return ((F >> HexagonII::ExtendableOpPos) & HexagonII::ExtendableOpMask)
   1810           == OperandNum;
   1811 }
   1812 
   1813 // Returns Operand Index for the constant extended instruction.
   1814 unsigned short HexagonInstrInfo::getCExtOpNum(const MachineInstr *MI) const {
   1815   const uint64_t F = MI->getDesc().TSFlags;
   1816   return ((F >> HexagonII::ExtendableOpPos) & HexagonII::ExtendableOpMask);
   1817 }
   1818 
   1819 // Returns the min value that doesn't need to be extended.
   1820 int HexagonInstrInfo::getMinValue(const MachineInstr *MI) const {
   1821   const uint64_t F = MI->getDesc().TSFlags;
   1822   unsigned isSigned = (F >> HexagonII::ExtentSignedPos)
   1823                     & HexagonII::ExtentSignedMask;
   1824   unsigned bits =  (F >> HexagonII::ExtentBitsPos)
   1825                     & HexagonII::ExtentBitsMask;
   1826 
   1827   if (isSigned) // if value is signed
   1828     return -1U << (bits - 1);
   1829   else
   1830     return 0;
   1831 }
   1832 
   1833 // Returns the max value that doesn't need to be extended.
   1834 int HexagonInstrInfo::getMaxValue(const MachineInstr *MI) const {
   1835   const uint64_t F = MI->getDesc().TSFlags;
   1836   unsigned isSigned = (F >> HexagonII::ExtentSignedPos)
   1837                     & HexagonII::ExtentSignedMask;
   1838   unsigned bits =  (F >> HexagonII::ExtentBitsPos)
   1839                     & HexagonII::ExtentBitsMask;
   1840 
   1841   if (isSigned) // if value is signed
   1842     return ~(-1U << (bits - 1));
   1843   else
   1844     return ~(-1U << bits);
   1845 }
   1846 
   1847 // Returns true if an instruction can be converted into a non-extended
   1848 // equivalent instruction.
   1849 bool HexagonInstrInfo::NonExtEquivalentExists (const MachineInstr *MI) const {
   1850 
   1851   short NonExtOpcode;
   1852   // Check if the instruction has a register form that uses register in place
   1853   // of the extended operand, if so return that as the non-extended form.
   1854   if (Hexagon::getRegForm(MI->getOpcode()) >= 0)
   1855     return true;
   1856 
   1857   if (MI->getDesc().mayLoad() || MI->getDesc().mayStore()) {
   1858     // Check addressing mode and retrieve non-ext equivalent instruction.
   1859 
   1860     switch (getAddrMode(MI)) {
   1861     case HexagonII::Absolute :
   1862       // Load/store with absolute addressing mode can be converted into
   1863       // base+offset mode.
   1864       NonExtOpcode = Hexagon::getBasedWithImmOffset(MI->getOpcode());
   1865       break;
   1866     case HexagonII::BaseImmOffset :
   1867       // Load/store with base+offset addressing mode can be converted into
   1868       // base+register offset addressing mode. However left shift operand should
   1869       // be set to 0.
   1870       NonExtOpcode = Hexagon::getBaseWithRegOffset(MI->getOpcode());
   1871       break;
   1872     default:
   1873       return false;
   1874     }
   1875     if (NonExtOpcode < 0)
   1876       return false;
   1877     return true;
   1878   }
   1879   return false;
   1880 }
   1881 
   1882 // Returns opcode of the non-extended equivalent instruction.
   1883 short HexagonInstrInfo::getNonExtOpcode (const MachineInstr *MI) const {
   1884 
   1885   // Check if the instruction has a register form that uses register in place
   1886   // of the extended operand, if so return that as the non-extended form.
   1887   short NonExtOpcode = Hexagon::getRegForm(MI->getOpcode());
   1888     if (NonExtOpcode >= 0)
   1889       return NonExtOpcode;
   1890 
   1891   if (MI->getDesc().mayLoad() || MI->getDesc().mayStore()) {
   1892     // Check addressing mode and retrieve non-ext equivalent instruction.
   1893     switch (getAddrMode(MI)) {
   1894     case HexagonII::Absolute :
   1895       return Hexagon::getBasedWithImmOffset(MI->getOpcode());
   1896     case HexagonII::BaseImmOffset :
   1897       return Hexagon::getBaseWithRegOffset(MI->getOpcode());
   1898     default:
   1899       return -1;
   1900     }
   1901   }
   1902   return -1;
   1903 }
   1904 
   1905 bool HexagonInstrInfo::PredOpcodeHasJMP_c(Opcode_t Opcode) const {
   1906   return (Opcode == Hexagon::J2_jumpt) ||
   1907          (Opcode == Hexagon::J2_jumpf) ||
   1908          (Opcode == Hexagon::J2_jumptnewpt) ||
   1909          (Opcode == Hexagon::J2_jumpfnewpt) ||
   1910          (Opcode == Hexagon::J2_jumpt) ||
   1911          (Opcode == Hexagon::J2_jumpf);
   1912 }
   1913 
   1914 bool HexagonInstrInfo::PredOpcodeHasNot(Opcode_t Opcode) const {
   1915   return (Opcode == Hexagon::J2_jumpf) ||
   1916          (Opcode == Hexagon::J2_jumpfnewpt) ||
   1917          (Opcode == Hexagon::J2_jumpfnew);
   1918 }
   1919