Home | History | Annotate | Download | only in src
      1 // Copyright (c) 1994-2006 Sun Microsystems Inc.
      2 // All Rights Reserved.
      3 //
      4 // Redistribution and use in source and binary forms, with or without
      5 // modification, are permitted provided that the following conditions are
      6 // met:
      7 //
      8 // - Redistributions of source code must retain the above copyright notice,
      9 // this list of conditions and the following disclaimer.
     10 //
     11 // - Redistribution in binary form must reproduce the above copyright
     12 // notice, this list of conditions and the following disclaimer in the
     13 // documentation and/or other materials provided with the distribution.
     14 //
     15 // - Neither the name of Sun Microsystems or the names of contributors may
     16 // be used to endorse or promote products derived from this software without
     17 // specific prior written permission.
     18 //
     19 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
     20 // IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
     21 // THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22 // PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
     23 // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
     24 // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
     25 // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
     26 // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
     27 // LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
     28 // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
     29 // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     30 
     31 // The original source code covered by the above license above has been
     32 // modified significantly by Google Inc.
     33 // Copyright 2012 the V8 project authors. All rights reserved.
     34 
     35 #ifndef V8_ASSEMBLER_H_
     36 #define V8_ASSEMBLER_H_
     37 
     38 #include "src/v8.h"
     39 
     40 #include "src/allocation.h"
     41 #include "src/builtins.h"
     42 #include "src/gdb-jit.h"
     43 #include "src/isolate.h"
     44 #include "src/runtime.h"
     45 #include "src/token.h"
     46 
     47 namespace v8 {
     48 
     49 class ApiFunction;
     50 
     51 namespace internal {
     52 
     53 class StatsCounter;
     54 // -----------------------------------------------------------------------------
     55 // Platform independent assembler base class.
     56 
     57 class AssemblerBase: public Malloced {
     58  public:
     59   AssemblerBase(Isolate* isolate, void* buffer, int buffer_size);
     60   virtual ~AssemblerBase();
     61 
     62   Isolate* isolate() const { return isolate_; }
     63   int jit_cookie() const { return jit_cookie_; }
     64 
     65   bool emit_debug_code() const { return emit_debug_code_; }
     66   void set_emit_debug_code(bool value) { emit_debug_code_ = value; }
     67 
     68   bool serializer_enabled() const { return serializer_enabled_; }
     69   void enable_serializer() { serializer_enabled_ = true; }
     70 
     71   bool predictable_code_size() const { return predictable_code_size_; }
     72   void set_predictable_code_size(bool value) { predictable_code_size_ = value; }
     73 
     74   uint64_t enabled_cpu_features() const { return enabled_cpu_features_; }
     75   void set_enabled_cpu_features(uint64_t features) {
     76     enabled_cpu_features_ = features;
     77   }
     78   bool IsEnabled(CpuFeature f) {
     79     return (enabled_cpu_features_ & (static_cast<uint64_t>(1) << f)) != 0;
     80   }
     81 
     82   // Overwrite a host NaN with a quiet target NaN.  Used by mksnapshot for
     83   // cross-snapshotting.
     84   static void QuietNaN(HeapObject* nan) { }
     85 
     86   int pc_offset() const { return static_cast<int>(pc_ - buffer_); }
     87 
     88   // This function is called when code generation is aborted, so that
     89   // the assembler could clean up internal data structures.
     90   virtual void AbortedCodeGeneration() { }
     91 
     92   static const int kMinimalBufferSize = 4*KB;
     93 
     94  protected:
     95   // The buffer into which code and relocation info are generated. It could
     96   // either be owned by the assembler or be provided externally.
     97   byte* buffer_;
     98   int buffer_size_;
     99   bool own_buffer_;
    100 
    101   // The program counter, which points into the buffer above and moves forward.
    102   byte* pc_;
    103 
    104  private:
    105   Isolate* isolate_;
    106   int jit_cookie_;
    107   uint64_t enabled_cpu_features_;
    108   bool emit_debug_code_;
    109   bool predictable_code_size_;
    110   bool serializer_enabled_;
    111 };
    112 
    113 
    114 // Avoids emitting debug code during the lifetime of this scope object.
    115 class DontEmitDebugCodeScope BASE_EMBEDDED {
    116  public:
    117   explicit DontEmitDebugCodeScope(AssemblerBase* assembler)
    118       : assembler_(assembler), old_value_(assembler->emit_debug_code()) {
    119     assembler_->set_emit_debug_code(false);
    120   }
    121   ~DontEmitDebugCodeScope() {
    122     assembler_->set_emit_debug_code(old_value_);
    123   }
    124  private:
    125   AssemblerBase* assembler_;
    126   bool old_value_;
    127 };
    128 
    129 
    130 // Avoids using instructions that vary in size in unpredictable ways between the
    131 // snapshot and the running VM.
    132 class PredictableCodeSizeScope {
    133  public:
    134   PredictableCodeSizeScope(AssemblerBase* assembler, int expected_size);
    135   ~PredictableCodeSizeScope();
    136 
    137  private:
    138   AssemblerBase* assembler_;
    139   int expected_size_;
    140   int start_offset_;
    141   bool old_value_;
    142 };
    143 
    144 
    145 // Enable a specified feature within a scope.
    146 class CpuFeatureScope BASE_EMBEDDED {
    147  public:
    148 #ifdef DEBUG
    149   CpuFeatureScope(AssemblerBase* assembler, CpuFeature f);
    150   ~CpuFeatureScope();
    151 
    152  private:
    153   AssemblerBase* assembler_;
    154   uint64_t old_enabled_;
    155 #else
    156   CpuFeatureScope(AssemblerBase* assembler, CpuFeature f) {}
    157 #endif
    158 };
    159 
    160 
    161 // CpuFeatures keeps track of which features are supported by the target CPU.
    162 // Supported features must be enabled by a CpuFeatureScope before use.
    163 // Example:
    164 //   if (assembler->IsSupported(SSE3)) {
    165 //     CpuFeatureScope fscope(assembler, SSE3);
    166 //     // Generate code containing SSE3 instructions.
    167 //   } else {
    168 //     // Generate alternative code.
    169 //   }
    170 class CpuFeatures : public AllStatic {
    171  public:
    172   static void Probe(bool cross_compile) {
    173     STATIC_ASSERT(NUMBER_OF_CPU_FEATURES <= kBitsPerInt);
    174     if (initialized_) return;
    175     initialized_ = true;
    176     ProbeImpl(cross_compile);
    177   }
    178 
    179   static unsigned SupportedFeatures() {
    180     Probe(false);
    181     return supported_;
    182   }
    183 
    184   static bool IsSupported(CpuFeature f) {
    185     return (supported_ & (1u << f)) != 0;
    186   }
    187 
    188   static inline bool SupportsCrankshaft();
    189 
    190   static inline unsigned cache_line_size() {
    191     DCHECK(cache_line_size_ != 0);
    192     return cache_line_size_;
    193   }
    194 
    195   static void PrintTarget();
    196   static void PrintFeatures();
    197 
    198   // Flush instruction cache.
    199   static void FlushICache(void* start, size_t size);
    200 
    201  private:
    202   // Platform-dependent implementation.
    203   static void ProbeImpl(bool cross_compile);
    204 
    205   static unsigned supported_;
    206   static unsigned cache_line_size_;
    207   static bool initialized_;
    208   friend class ExternalReference;
    209   DISALLOW_COPY_AND_ASSIGN(CpuFeatures);
    210 };
    211 
    212 
    213 // -----------------------------------------------------------------------------
    214 // Labels represent pc locations; they are typically jump or call targets.
    215 // After declaration, a label can be freely used to denote known or (yet)
    216 // unknown pc location. Assembler::bind() is used to bind a label to the
    217 // current pc. A label can be bound only once.
    218 
    219 class Label BASE_EMBEDDED {
    220  public:
    221   enum Distance {
    222     kNear, kFar
    223   };
    224 
    225   INLINE(Label()) {
    226     Unuse();
    227     UnuseNear();
    228   }
    229 
    230   INLINE(~Label()) {
    231     DCHECK(!is_linked());
    232     DCHECK(!is_near_linked());
    233   }
    234 
    235   INLINE(void Unuse()) { pos_ = 0; }
    236   INLINE(void UnuseNear()) { near_link_pos_ = 0; }
    237 
    238   INLINE(bool is_bound() const) { return pos_ <  0; }
    239   INLINE(bool is_unused() const) { return pos_ == 0 && near_link_pos_ == 0; }
    240   INLINE(bool is_linked() const) { return pos_ >  0; }
    241   INLINE(bool is_near_linked() const) { return near_link_pos_ > 0; }
    242 
    243   // Returns the position of bound or linked labels. Cannot be used
    244   // for unused labels.
    245   int pos() const;
    246   int near_link_pos() const { return near_link_pos_ - 1; }
    247 
    248  private:
    249   // pos_ encodes both the binding state (via its sign)
    250   // and the binding position (via its value) of a label.
    251   //
    252   // pos_ <  0  bound label, pos() returns the jump target position
    253   // pos_ == 0  unused label
    254   // pos_ >  0  linked label, pos() returns the last reference position
    255   int pos_;
    256 
    257   // Behaves like |pos_| in the "> 0" case, but for near jumps to this label.
    258   int near_link_pos_;
    259 
    260   void bind_to(int pos)  {
    261     pos_ = -pos - 1;
    262     DCHECK(is_bound());
    263   }
    264   void link_to(int pos, Distance distance = kFar) {
    265     if (distance == kNear) {
    266       near_link_pos_ = pos + 1;
    267       DCHECK(is_near_linked());
    268     } else {
    269       pos_ = pos + 1;
    270       DCHECK(is_linked());
    271     }
    272   }
    273 
    274   friend class Assembler;
    275   friend class Displacement;
    276   friend class RegExpMacroAssemblerIrregexp;
    277 
    278 #if V8_TARGET_ARCH_ARM64
    279   // On ARM64, the Assembler keeps track of pointers to Labels to resolve
    280   // branches to distant targets. Copying labels would confuse the Assembler.
    281   DISALLOW_COPY_AND_ASSIGN(Label);  // NOLINT
    282 #endif
    283 };
    284 
    285 
    286 enum SaveFPRegsMode { kDontSaveFPRegs, kSaveFPRegs };
    287 
    288 // Specifies whether to perform icache flush operations on RelocInfo updates.
    289 // If FLUSH_ICACHE_IF_NEEDED, the icache will always be flushed if an
    290 // instruction was modified. If SKIP_ICACHE_FLUSH the flush will always be
    291 // skipped (only use this if you will flush the icache manually before it is
    292 // executed).
    293 enum ICacheFlushMode { FLUSH_ICACHE_IF_NEEDED, SKIP_ICACHE_FLUSH };
    294 
    295 // -----------------------------------------------------------------------------
    296 // Relocation information
    297 
    298 
    299 // Relocation information consists of the address (pc) of the datum
    300 // to which the relocation information applies, the relocation mode
    301 // (rmode), and an optional data field. The relocation mode may be
    302 // "descriptive" and not indicate a need for relocation, but simply
    303 // describe a property of the datum. Such rmodes are useful for GC
    304 // and nice disassembly output.
    305 
    306 class RelocInfo {
    307  public:
    308   // The constant kNoPosition is used with the collecting of source positions
    309   // in the relocation information. Two types of source positions are collected
    310   // "position" (RelocMode position) and "statement position" (RelocMode
    311   // statement_position). The "position" is collected at places in the source
    312   // code which are of interest when making stack traces to pin-point the source
    313   // location of a stack frame as close as possible. The "statement position" is
    314   // collected at the beginning at each statement, and is used to indicate
    315   // possible break locations. kNoPosition is used to indicate an
    316   // invalid/uninitialized position value.
    317   static const int kNoPosition = -1;
    318 
    319   // This string is used to add padding comments to the reloc info in cases
    320   // where we are not sure to have enough space for patching in during
    321   // lazy deoptimization. This is the case if we have indirect calls for which
    322   // we do not normally record relocation info.
    323   static const char* const kFillerCommentString;
    324 
    325   // The minimum size of a comment is equal to three bytes for the extra tagged
    326   // pc + the tag for the data, and kPointerSize for the actual pointer to the
    327   // comment.
    328   static const int kMinRelocCommentSize = 3 + kPointerSize;
    329 
    330   // The maximum size for a call instruction including pc-jump.
    331   static const int kMaxCallSize = 6;
    332 
    333   // The maximum pc delta that will use the short encoding.
    334   static const int kMaxSmallPCDelta;
    335 
    336   enum Mode {
    337     // Please note the order is important (see IsCodeTarget, IsGCRelocMode).
    338     CODE_TARGET,  // Code target which is not any of the above.
    339     CODE_TARGET_WITH_ID,
    340     CONSTRUCT_CALL,  // code target that is a call to a JavaScript constructor.
    341     DEBUG_BREAK,  // Code target for the debugger statement.
    342     EMBEDDED_OBJECT,
    343     CELL,
    344 
    345     // Everything after runtime_entry (inclusive) is not GC'ed.
    346     RUNTIME_ENTRY,
    347     JS_RETURN,  // Marks start of the ExitJSFrame code.
    348     COMMENT,
    349     POSITION,  // See comment for kNoPosition above.
    350     STATEMENT_POSITION,  // See comment for kNoPosition above.
    351     DEBUG_BREAK_SLOT,  // Additional code inserted for debug break slot.
    352     EXTERNAL_REFERENCE,  // The address of an external C++ function.
    353     INTERNAL_REFERENCE,  // An address inside the same function.
    354 
    355     // Marks constant and veneer pools. Only used on ARM and ARM64.
    356     // They use a custom noncompact encoding.
    357     CONST_POOL,
    358     VENEER_POOL,
    359 
    360     // add more as needed
    361     // Pseudo-types
    362     NUMBER_OF_MODES,  // There are at most 15 modes with noncompact encoding.
    363     NONE32,  // never recorded 32-bit value
    364     NONE64,  // never recorded 64-bit value
    365     CODE_AGE_SEQUENCE,  // Not stored in RelocInfo array, used explictly by
    366                         // code aging.
    367     FIRST_REAL_RELOC_MODE = CODE_TARGET,
    368     LAST_REAL_RELOC_MODE = VENEER_POOL,
    369     FIRST_PSEUDO_RELOC_MODE = CODE_AGE_SEQUENCE,
    370     LAST_PSEUDO_RELOC_MODE = CODE_AGE_SEQUENCE,
    371     LAST_CODE_ENUM = DEBUG_BREAK,
    372     LAST_GCED_ENUM = CELL,
    373     // Modes <= LAST_COMPACT_ENUM are guaranteed to have compact encoding.
    374     LAST_COMPACT_ENUM = CODE_TARGET_WITH_ID,
    375     LAST_STANDARD_NONCOMPACT_ENUM = INTERNAL_REFERENCE
    376   };
    377 
    378   RelocInfo() {}
    379 
    380   RelocInfo(byte* pc, Mode rmode, intptr_t data, Code* host)
    381       : pc_(pc), rmode_(rmode), data_(data), host_(host) {
    382   }
    383   RelocInfo(byte* pc, double data64)
    384       : pc_(pc), rmode_(NONE64), data64_(data64), host_(NULL) {
    385   }
    386 
    387   static inline bool IsRealRelocMode(Mode mode) {
    388     return mode >= FIRST_REAL_RELOC_MODE &&
    389         mode <= LAST_REAL_RELOC_MODE;
    390   }
    391   static inline bool IsPseudoRelocMode(Mode mode) {
    392     DCHECK(!IsRealRelocMode(mode));
    393     return mode >= FIRST_PSEUDO_RELOC_MODE &&
    394         mode <= LAST_PSEUDO_RELOC_MODE;
    395   }
    396   static inline bool IsConstructCall(Mode mode) {
    397     return mode == CONSTRUCT_CALL;
    398   }
    399   static inline bool IsCodeTarget(Mode mode) {
    400     return mode <= LAST_CODE_ENUM;
    401   }
    402   static inline bool IsEmbeddedObject(Mode mode) {
    403     return mode == EMBEDDED_OBJECT;
    404   }
    405   static inline bool IsRuntimeEntry(Mode mode) {
    406     return mode == RUNTIME_ENTRY;
    407   }
    408   // Is the relocation mode affected by GC?
    409   static inline bool IsGCRelocMode(Mode mode) {
    410     return mode <= LAST_GCED_ENUM;
    411   }
    412   static inline bool IsJSReturn(Mode mode) {
    413     return mode == JS_RETURN;
    414   }
    415   static inline bool IsComment(Mode mode) {
    416     return mode == COMMENT;
    417   }
    418   static inline bool IsConstPool(Mode mode) {
    419     return mode == CONST_POOL;
    420   }
    421   static inline bool IsVeneerPool(Mode mode) {
    422     return mode == VENEER_POOL;
    423   }
    424   static inline bool IsPosition(Mode mode) {
    425     return mode == POSITION || mode == STATEMENT_POSITION;
    426   }
    427   static inline bool IsStatementPosition(Mode mode) {
    428     return mode == STATEMENT_POSITION;
    429   }
    430   static inline bool IsExternalReference(Mode mode) {
    431     return mode == EXTERNAL_REFERENCE;
    432   }
    433   static inline bool IsInternalReference(Mode mode) {
    434     return mode == INTERNAL_REFERENCE;
    435   }
    436   static inline bool IsDebugBreakSlot(Mode mode) {
    437     return mode == DEBUG_BREAK_SLOT;
    438   }
    439   static inline bool IsNone(Mode mode) {
    440     return mode == NONE32 || mode == NONE64;
    441   }
    442   static inline bool IsCodeAgeSequence(Mode mode) {
    443     return mode == CODE_AGE_SEQUENCE;
    444   }
    445   static inline int ModeMask(Mode mode) { return 1 << mode; }
    446 
    447   // Returns true if the first RelocInfo has the same mode and raw data as the
    448   // second one.
    449   static inline bool IsEqual(RelocInfo first, RelocInfo second) {
    450     return first.rmode() == second.rmode() &&
    451            (first.rmode() == RelocInfo::NONE64 ?
    452               first.raw_data64() == second.raw_data64() :
    453               first.data() == second.data());
    454   }
    455 
    456   // Accessors
    457   byte* pc() const { return pc_; }
    458   void set_pc(byte* pc) { pc_ = pc; }
    459   Mode rmode() const {  return rmode_; }
    460   intptr_t data() const { return data_; }
    461   double data64() const { return data64_; }
    462   uint64_t raw_data64() { return bit_cast<uint64_t>(data64_); }
    463   Code* host() const { return host_; }
    464   void set_host(Code* host) { host_ = host; }
    465 
    466   // Apply a relocation by delta bytes
    467   INLINE(void apply(intptr_t delta,
    468                     ICacheFlushMode icache_flush_mode =
    469                         FLUSH_ICACHE_IF_NEEDED));
    470 
    471   // Is the pointer this relocation info refers to coded like a plain pointer
    472   // or is it strange in some way (e.g. relative or patched into a series of
    473   // instructions).
    474   bool IsCodedSpecially();
    475 
    476   // If true, the pointer this relocation info refers to is an entry in the
    477   // constant pool, otherwise the pointer is embedded in the instruction stream.
    478   bool IsInConstantPool();
    479 
    480   // Read/modify the code target in the branch/call instruction
    481   // this relocation applies to;
    482   // can only be called if IsCodeTarget(rmode_) || IsRuntimeEntry(rmode_)
    483   INLINE(Address target_address());
    484   INLINE(void set_target_address(Address target,
    485                                  WriteBarrierMode write_barrier_mode =
    486                                      UPDATE_WRITE_BARRIER,
    487                                  ICacheFlushMode icache_flush_mode =
    488                                      FLUSH_ICACHE_IF_NEEDED));
    489   INLINE(Object* target_object());
    490   INLINE(Handle<Object> target_object_handle(Assembler* origin));
    491   INLINE(void set_target_object(Object* target,
    492                                 WriteBarrierMode write_barrier_mode =
    493                                     UPDATE_WRITE_BARRIER,
    494                                 ICacheFlushMode icache_flush_mode =
    495                                     FLUSH_ICACHE_IF_NEEDED));
    496   INLINE(Address target_runtime_entry(Assembler* origin));
    497   INLINE(void set_target_runtime_entry(Address target,
    498                                        WriteBarrierMode write_barrier_mode =
    499                                            UPDATE_WRITE_BARRIER,
    500                                        ICacheFlushMode icache_flush_mode =
    501                                            FLUSH_ICACHE_IF_NEEDED));
    502   INLINE(Cell* target_cell());
    503   INLINE(Handle<Cell> target_cell_handle());
    504   INLINE(void set_target_cell(Cell* cell,
    505                               WriteBarrierMode write_barrier_mode =
    506                                   UPDATE_WRITE_BARRIER,
    507                               ICacheFlushMode icache_flush_mode =
    508                                   FLUSH_ICACHE_IF_NEEDED));
    509   INLINE(Handle<Object> code_age_stub_handle(Assembler* origin));
    510   INLINE(Code* code_age_stub());
    511   INLINE(void set_code_age_stub(Code* stub,
    512                                 ICacheFlushMode icache_flush_mode =
    513                                     FLUSH_ICACHE_IF_NEEDED));
    514 
    515   // Returns the address of the constant pool entry where the target address
    516   // is held.  This should only be called if IsInConstantPool returns true.
    517   INLINE(Address constant_pool_entry_address());
    518 
    519   // Read the address of the word containing the target_address in an
    520   // instruction stream.  What this means exactly is architecture-independent.
    521   // The only architecture-independent user of this function is the serializer.
    522   // The serializer uses it to find out how many raw bytes of instruction to
    523   // output before the next target.  Architecture-independent code shouldn't
    524   // dereference the pointer it gets back from this.
    525   INLINE(Address target_address_address());
    526 
    527   // This indicates how much space a target takes up when deserializing a code
    528   // stream.  For most architectures this is just the size of a pointer.  For
    529   // an instruction like movw/movt where the target bits are mixed into the
    530   // instruction bits the size of the target will be zero, indicating that the
    531   // serializer should not step forwards in memory after a target is resolved
    532   // and written.  In this case the target_address_address function above
    533   // should return the end of the instructions to be patched, allowing the
    534   // deserializer to deserialize the instructions as raw bytes and put them in
    535   // place, ready to be patched with the target.
    536   INLINE(int target_address_size());
    537 
    538   // Read/modify the reference in the instruction this relocation
    539   // applies to; can only be called if rmode_ is external_reference
    540   INLINE(Address target_reference());
    541 
    542   // Read/modify the address of a call instruction. This is used to relocate
    543   // the break points where straight-line code is patched with a call
    544   // instruction.
    545   INLINE(Address call_address());
    546   INLINE(void set_call_address(Address target));
    547   INLINE(Object* call_object());
    548   INLINE(void set_call_object(Object* target));
    549   INLINE(Object** call_object_address());
    550 
    551   // Wipe out a relocation to a fixed value, used for making snapshots
    552   // reproducible.
    553   INLINE(void WipeOut());
    554 
    555   template<typename StaticVisitor> inline void Visit(Heap* heap);
    556   inline void Visit(Isolate* isolate, ObjectVisitor* v);
    557 
    558   // Patch the code with some other code.
    559   void PatchCode(byte* instructions, int instruction_count);
    560 
    561   // Patch the code with a call.
    562   void PatchCodeWithCall(Address target, int guard_bytes);
    563 
    564   // Check whether this return sequence has been patched
    565   // with a call to the debugger.
    566   INLINE(bool IsPatchedReturnSequence());
    567 
    568   // Check whether this debug break slot has been patched with a call to the
    569   // debugger.
    570   INLINE(bool IsPatchedDebugBreakSlotSequence());
    571 
    572 #ifdef DEBUG
    573   // Check whether the given code contains relocation information that
    574   // either is position-relative or movable by the garbage collector.
    575   static bool RequiresRelocation(const CodeDesc& desc);
    576 #endif
    577 
    578 #ifdef ENABLE_DISASSEMBLER
    579   // Printing
    580   static const char* RelocModeName(Mode rmode);
    581   void Print(Isolate* isolate, OStream& os);  // NOLINT
    582 #endif  // ENABLE_DISASSEMBLER
    583 #ifdef VERIFY_HEAP
    584   void Verify(Isolate* isolate);
    585 #endif
    586 
    587   static const int kCodeTargetMask = (1 << (LAST_CODE_ENUM + 1)) - 1;
    588   static const int kPositionMask = 1 << POSITION | 1 << STATEMENT_POSITION;
    589   static const int kDataMask =
    590       (1 << CODE_TARGET_WITH_ID) | kPositionMask | (1 << COMMENT);
    591   static const int kApplyMask;  // Modes affected by apply. Depends on arch.
    592 
    593  private:
    594   // On ARM, note that pc_ is the address of the constant pool entry
    595   // to be relocated and not the address of the instruction
    596   // referencing the constant pool entry (except when rmode_ ==
    597   // comment).
    598   byte* pc_;
    599   Mode rmode_;
    600   union {
    601     intptr_t data_;
    602     double data64_;
    603   };
    604   Code* host_;
    605   // External-reference pointers are also split across instruction-pairs
    606   // on some platforms, but are accessed via indirect pointers. This location
    607   // provides a place for that pointer to exist naturally. Its address
    608   // is returned by RelocInfo::target_reference_address().
    609   Address reconstructed_adr_ptr_;
    610   friend class RelocIterator;
    611 };
    612 
    613 
    614 // RelocInfoWriter serializes a stream of relocation info. It writes towards
    615 // lower addresses.
    616 class RelocInfoWriter BASE_EMBEDDED {
    617  public:
    618   RelocInfoWriter() : pos_(NULL),
    619                       last_pc_(NULL),
    620                       last_id_(0),
    621                       last_position_(0) {}
    622   RelocInfoWriter(byte* pos, byte* pc) : pos_(pos),
    623                                          last_pc_(pc),
    624                                          last_id_(0),
    625                                          last_position_(0) {}
    626 
    627   byte* pos() const { return pos_; }
    628   byte* last_pc() const { return last_pc_; }
    629 
    630   void Write(const RelocInfo* rinfo);
    631 
    632   // Update the state of the stream after reloc info buffer
    633   // and/or code is moved while the stream is active.
    634   void Reposition(byte* pos, byte* pc) {
    635     pos_ = pos;
    636     last_pc_ = pc;
    637   }
    638 
    639   // Max size (bytes) of a written RelocInfo. Longest encoding is
    640   // ExtraTag, VariableLengthPCJump, ExtraTag, pc_delta, ExtraTag, data_delta.
    641   // On ia32 and arm this is 1 + 4 + 1 + 1 + 1 + 4 = 12.
    642   // On x64 this is 1 + 4 + 1 + 1 + 1 + 8 == 16;
    643   // Here we use the maximum of the two.
    644   static const int kMaxSize = 16;
    645 
    646  private:
    647   inline uint32_t WriteVariableLengthPCJump(uint32_t pc_delta);
    648   inline void WriteTaggedPC(uint32_t pc_delta, int tag);
    649   inline void WriteExtraTaggedPC(uint32_t pc_delta, int extra_tag);
    650   inline void WriteExtraTaggedIntData(int data_delta, int top_tag);
    651   inline void WriteExtraTaggedPoolData(int data, int pool_type);
    652   inline void WriteExtraTaggedData(intptr_t data_delta, int top_tag);
    653   inline void WriteTaggedData(intptr_t data_delta, int tag);
    654   inline void WriteExtraTag(int extra_tag, int top_tag);
    655 
    656   byte* pos_;
    657   byte* last_pc_;
    658   int last_id_;
    659   int last_position_;
    660   DISALLOW_COPY_AND_ASSIGN(RelocInfoWriter);
    661 };
    662 
    663 
    664 // A RelocIterator iterates over relocation information.
    665 // Typical use:
    666 //
    667 //   for (RelocIterator it(code); !it.done(); it.next()) {
    668 //     // do something with it.rinfo() here
    669 //   }
    670 //
    671 // A mask can be specified to skip unwanted modes.
    672 class RelocIterator: public Malloced {
    673  public:
    674   // Create a new iterator positioned at
    675   // the beginning of the reloc info.
    676   // Relocation information with mode k is included in the
    677   // iteration iff bit k of mode_mask is set.
    678   explicit RelocIterator(Code* code, int mode_mask = -1);
    679   explicit RelocIterator(const CodeDesc& desc, int mode_mask = -1);
    680 
    681   // Iteration
    682   bool done() const { return done_; }
    683   void next();
    684 
    685   // Return pointer valid until next next().
    686   RelocInfo* rinfo() {
    687     DCHECK(!done());
    688     return &rinfo_;
    689   }
    690 
    691  private:
    692   // Advance* moves the position before/after reading.
    693   // *Read* reads from current byte(s) into rinfo_.
    694   // *Get* just reads and returns info on current byte.
    695   void Advance(int bytes = 1) { pos_ -= bytes; }
    696   int AdvanceGetTag();
    697   int GetExtraTag();
    698   int GetTopTag();
    699   void ReadTaggedPC();
    700   void AdvanceReadPC();
    701   void AdvanceReadId();
    702   void AdvanceReadPoolData();
    703   void AdvanceReadPosition();
    704   void AdvanceReadData();
    705   void AdvanceReadVariableLengthPCJump();
    706   int GetLocatableTypeTag();
    707   void ReadTaggedId();
    708   void ReadTaggedPosition();
    709 
    710   // If the given mode is wanted, set it in rinfo_ and return true.
    711   // Else return false. Used for efficiently skipping unwanted modes.
    712   bool SetMode(RelocInfo::Mode mode) {
    713     return (mode_mask_ & (1 << mode)) ? (rinfo_.rmode_ = mode, true) : false;
    714   }
    715 
    716   byte* pos_;
    717   byte* end_;
    718   byte* code_age_sequence_;
    719   RelocInfo rinfo_;
    720   bool done_;
    721   int mode_mask_;
    722   int last_id_;
    723   int last_position_;
    724   DISALLOW_COPY_AND_ASSIGN(RelocIterator);
    725 };
    726 
    727 
    728 //------------------------------------------------------------------------------
    729 // External function
    730 
    731 //----------------------------------------------------------------------------
    732 class IC_Utility;
    733 class SCTableReference;
    734 class Debug_Address;
    735 
    736 
    737 // An ExternalReference represents a C++ address used in the generated
    738 // code. All references to C++ functions and variables must be encapsulated in
    739 // an ExternalReference instance. This is done in order to track the origin of
    740 // all external references in the code so that they can be bound to the correct
    741 // addresses when deserializing a heap.
    742 class ExternalReference BASE_EMBEDDED {
    743  public:
    744   // Used in the simulator to support different native api calls.
    745   enum Type {
    746     // Builtin call.
    747     // Object* f(v8::internal::Arguments).
    748     BUILTIN_CALL,  // default
    749 
    750     // Builtin that takes float arguments and returns an int.
    751     // int f(double, double).
    752     BUILTIN_COMPARE_CALL,
    753 
    754     // Builtin call that returns floating point.
    755     // double f(double, double).
    756     BUILTIN_FP_FP_CALL,
    757 
    758     // Builtin call that returns floating point.
    759     // double f(double).
    760     BUILTIN_FP_CALL,
    761 
    762     // Builtin call that returns floating point.
    763     // double f(double, int).
    764     BUILTIN_FP_INT_CALL,
    765 
    766     // Direct call to API function callback.
    767     // void f(v8::FunctionCallbackInfo&)
    768     DIRECT_API_CALL,
    769 
    770     // Call to function callback via InvokeFunctionCallback.
    771     // void f(v8::FunctionCallbackInfo&, v8::FunctionCallback)
    772     PROFILING_API_CALL,
    773 
    774     // Direct call to accessor getter callback.
    775     // void f(Local<Name> property, PropertyCallbackInfo& info)
    776     DIRECT_GETTER_CALL,
    777 
    778     // Call to accessor getter callback via InvokeAccessorGetterCallback.
    779     // void f(Local<Name> property, PropertyCallbackInfo& info,
    780     //     AccessorNameGetterCallback callback)
    781     PROFILING_GETTER_CALL
    782   };
    783 
    784   static void SetUp();
    785   static void InitializeMathExpData();
    786   static void TearDownMathExpData();
    787 
    788   typedef void* ExternalReferenceRedirector(void* original, Type type);
    789 
    790   ExternalReference() : address_(NULL) {}
    791 
    792   ExternalReference(Builtins::CFunctionId id, Isolate* isolate);
    793 
    794   ExternalReference(ApiFunction* ptr, Type type, Isolate* isolate);
    795 
    796   ExternalReference(Builtins::Name name, Isolate* isolate);
    797 
    798   ExternalReference(Runtime::FunctionId id, Isolate* isolate);
    799 
    800   ExternalReference(const Runtime::Function* f, Isolate* isolate);
    801 
    802   ExternalReference(const IC_Utility& ic_utility, Isolate* isolate);
    803 
    804   explicit ExternalReference(StatsCounter* counter);
    805 
    806   ExternalReference(Isolate::AddressId id, Isolate* isolate);
    807 
    808   explicit ExternalReference(const SCTableReference& table_ref);
    809 
    810   // Isolate as an external reference.
    811   static ExternalReference isolate_address(Isolate* isolate);
    812 
    813   // One-of-a-kind references. These references are not part of a general
    814   // pattern. This means that they have to be added to the
    815   // ExternalReferenceTable in serialize.cc manually.
    816 
    817   static ExternalReference incremental_marking_record_write_function(
    818       Isolate* isolate);
    819   static ExternalReference store_buffer_overflow_function(
    820       Isolate* isolate);
    821   static ExternalReference flush_icache_function(Isolate* isolate);
    822   static ExternalReference delete_handle_scope_extensions(Isolate* isolate);
    823 
    824   static ExternalReference get_date_field_function(Isolate* isolate);
    825   static ExternalReference date_cache_stamp(Isolate* isolate);
    826 
    827   static ExternalReference get_make_code_young_function(Isolate* isolate);
    828   static ExternalReference get_mark_code_as_executed_function(Isolate* isolate);
    829 
    830   // Deoptimization support.
    831   static ExternalReference new_deoptimizer_function(Isolate* isolate);
    832   static ExternalReference compute_output_frames_function(Isolate* isolate);
    833 
    834   // Log support.
    835   static ExternalReference log_enter_external_function(Isolate* isolate);
    836   static ExternalReference log_leave_external_function(Isolate* isolate);
    837 
    838   // Static data in the keyed lookup cache.
    839   static ExternalReference keyed_lookup_cache_keys(Isolate* isolate);
    840   static ExternalReference keyed_lookup_cache_field_offsets(Isolate* isolate);
    841 
    842   // Static variable Heap::roots_array_start()
    843   static ExternalReference roots_array_start(Isolate* isolate);
    844 
    845   // Static variable Heap::allocation_sites_list_address()
    846   static ExternalReference allocation_sites_list_address(Isolate* isolate);
    847 
    848   // Static variable StackGuard::address_of_jslimit()
    849   static ExternalReference address_of_stack_limit(Isolate* isolate);
    850 
    851   // Static variable StackGuard::address_of_real_jslimit()
    852   static ExternalReference address_of_real_stack_limit(Isolate* isolate);
    853 
    854   // Static variable RegExpStack::limit_address()
    855   static ExternalReference address_of_regexp_stack_limit(Isolate* isolate);
    856 
    857   // Static variables for RegExp.
    858   static ExternalReference address_of_static_offsets_vector(Isolate* isolate);
    859   static ExternalReference address_of_regexp_stack_memory_address(
    860       Isolate* isolate);
    861   static ExternalReference address_of_regexp_stack_memory_size(
    862       Isolate* isolate);
    863 
    864   // Static variable Heap::NewSpaceStart()
    865   static ExternalReference new_space_start(Isolate* isolate);
    866   static ExternalReference new_space_mask(Isolate* isolate);
    867 
    868   // Write barrier.
    869   static ExternalReference store_buffer_top(Isolate* isolate);
    870 
    871   // Used for fast allocation in generated code.
    872   static ExternalReference new_space_allocation_top_address(Isolate* isolate);
    873   static ExternalReference new_space_allocation_limit_address(Isolate* isolate);
    874   static ExternalReference old_pointer_space_allocation_top_address(
    875       Isolate* isolate);
    876   static ExternalReference old_pointer_space_allocation_limit_address(
    877       Isolate* isolate);
    878   static ExternalReference old_data_space_allocation_top_address(
    879       Isolate* isolate);
    880   static ExternalReference old_data_space_allocation_limit_address(
    881       Isolate* isolate);
    882 
    883   static ExternalReference mod_two_doubles_operation(Isolate* isolate);
    884   static ExternalReference power_double_double_function(Isolate* isolate);
    885   static ExternalReference power_double_int_function(Isolate* isolate);
    886 
    887   static ExternalReference handle_scope_next_address(Isolate* isolate);
    888   static ExternalReference handle_scope_limit_address(Isolate* isolate);
    889   static ExternalReference handle_scope_level_address(Isolate* isolate);
    890 
    891   static ExternalReference scheduled_exception_address(Isolate* isolate);
    892   static ExternalReference address_of_pending_message_obj(Isolate* isolate);
    893   static ExternalReference address_of_has_pending_message(Isolate* isolate);
    894   static ExternalReference address_of_pending_message_script(Isolate* isolate);
    895 
    896   // Static variables containing common double constants.
    897   static ExternalReference address_of_min_int();
    898   static ExternalReference address_of_one_half();
    899   static ExternalReference address_of_minus_one_half();
    900   static ExternalReference address_of_negative_infinity();
    901   static ExternalReference address_of_canonical_non_hole_nan();
    902   static ExternalReference address_of_the_hole_nan();
    903   static ExternalReference address_of_uint32_bias();
    904 
    905   static ExternalReference math_log_double_function(Isolate* isolate);
    906 
    907   static ExternalReference math_exp_constants(int constant_index);
    908   static ExternalReference math_exp_log_table();
    909 
    910   static ExternalReference page_flags(Page* page);
    911 
    912   static ExternalReference ForDeoptEntry(Address entry);
    913 
    914   static ExternalReference cpu_features();
    915 
    916   static ExternalReference debug_is_active_address(Isolate* isolate);
    917   static ExternalReference debug_after_break_target_address(Isolate* isolate);
    918   static ExternalReference debug_restarter_frame_function_pointer_address(
    919       Isolate* isolate);
    920 
    921   static ExternalReference is_profiling_address(Isolate* isolate);
    922   static ExternalReference invoke_function_callback(Isolate* isolate);
    923   static ExternalReference invoke_accessor_getter_callback(Isolate* isolate);
    924 
    925   Address address() const { return reinterpret_cast<Address>(address_); }
    926 
    927   // Function Debug::Break()
    928   static ExternalReference debug_break(Isolate* isolate);
    929 
    930   // Used to check if single stepping is enabled in generated code.
    931   static ExternalReference debug_step_in_fp_address(Isolate* isolate);
    932 
    933 #ifndef V8_INTERPRETED_REGEXP
    934   // C functions called from RegExp generated code.
    935 
    936   // Function NativeRegExpMacroAssembler::CaseInsensitiveCompareUC16()
    937   static ExternalReference re_case_insensitive_compare_uc16(Isolate* isolate);
    938 
    939   // Function RegExpMacroAssembler*::CheckStackGuardState()
    940   static ExternalReference re_check_stack_guard_state(Isolate* isolate);
    941 
    942   // Function NativeRegExpMacroAssembler::GrowStack()
    943   static ExternalReference re_grow_stack(Isolate* isolate);
    944 
    945   // byte NativeRegExpMacroAssembler::word_character_bitmap
    946   static ExternalReference re_word_character_map();
    947 
    948 #endif
    949 
    950   // This lets you register a function that rewrites all external references.
    951   // Used by the ARM simulator to catch calls to external references.
    952   static void set_redirector(Isolate* isolate,
    953                              ExternalReferenceRedirector* redirector) {
    954     // We can't stack them.
    955     DCHECK(isolate->external_reference_redirector() == NULL);
    956     isolate->set_external_reference_redirector(
    957         reinterpret_cast<ExternalReferenceRedirectorPointer*>(redirector));
    958   }
    959 
    960   static ExternalReference stress_deopt_count(Isolate* isolate);
    961 
    962   bool operator==(const ExternalReference& other) const {
    963     return address_ == other.address_;
    964   }
    965 
    966   bool operator!=(const ExternalReference& other) const {
    967     return !(*this == other);
    968   }
    969 
    970  private:
    971   explicit ExternalReference(void* address)
    972       : address_(address) {}
    973 
    974   static void* Redirect(Isolate* isolate,
    975                         Address address_arg,
    976                         Type type = ExternalReference::BUILTIN_CALL) {
    977     ExternalReferenceRedirector* redirector =
    978         reinterpret_cast<ExternalReferenceRedirector*>(
    979             isolate->external_reference_redirector());
    980     void* address = reinterpret_cast<void*>(address_arg);
    981     void* answer = (redirector == NULL) ?
    982                    address :
    983                    (*redirector)(address, type);
    984     return answer;
    985   }
    986 
    987   void* address_;
    988 };
    989 
    990 
    991 // -----------------------------------------------------------------------------
    992 // Position recording support
    993 
    994 struct PositionState {
    995   PositionState() : current_position(RelocInfo::kNoPosition),
    996                     written_position(RelocInfo::kNoPosition),
    997                     current_statement_position(RelocInfo::kNoPosition),
    998                     written_statement_position(RelocInfo::kNoPosition) {}
    999 
   1000   int current_position;
   1001   int written_position;
   1002 
   1003   int current_statement_position;
   1004   int written_statement_position;
   1005 };
   1006 
   1007 
   1008 class PositionsRecorder BASE_EMBEDDED {
   1009  public:
   1010   explicit PositionsRecorder(Assembler* assembler)
   1011       : assembler_(assembler) {
   1012     jit_handler_data_ = NULL;
   1013   }
   1014 
   1015   void AttachJITHandlerData(void* user_data) {
   1016     jit_handler_data_ = user_data;
   1017   }
   1018 
   1019   void* DetachJITHandlerData() {
   1020     void* old_data = jit_handler_data_;
   1021     jit_handler_data_ = NULL;
   1022     return old_data;
   1023   }
   1024   // Set current position to pos.
   1025   void RecordPosition(int pos);
   1026 
   1027   // Set current statement position to pos.
   1028   void RecordStatementPosition(int pos);
   1029 
   1030   // Write recorded positions to relocation information.
   1031   bool WriteRecordedPositions();
   1032 
   1033   int current_position() const { return state_.current_position; }
   1034 
   1035   int current_statement_position() const {
   1036     return state_.current_statement_position;
   1037   }
   1038 
   1039  private:
   1040   Assembler* assembler_;
   1041   PositionState state_;
   1042 
   1043   // Currently jit_handler_data_ is used to store JITHandler-specific data
   1044   // over the lifetime of a PositionsRecorder
   1045   void* jit_handler_data_;
   1046   friend class PreservePositionScope;
   1047 
   1048   DISALLOW_COPY_AND_ASSIGN(PositionsRecorder);
   1049 };
   1050 
   1051 
   1052 class PreservePositionScope BASE_EMBEDDED {
   1053  public:
   1054   explicit PreservePositionScope(PositionsRecorder* positions_recorder)
   1055       : positions_recorder_(positions_recorder),
   1056         saved_state_(positions_recorder->state_) {}
   1057 
   1058   ~PreservePositionScope() {
   1059     positions_recorder_->state_ = saved_state_;
   1060   }
   1061 
   1062  private:
   1063   PositionsRecorder* positions_recorder_;
   1064   const PositionState saved_state_;
   1065 
   1066   DISALLOW_COPY_AND_ASSIGN(PreservePositionScope);
   1067 };
   1068 
   1069 
   1070 // -----------------------------------------------------------------------------
   1071 // Utility functions
   1072 
   1073 inline int NumberOfBitsSet(uint32_t x) {
   1074   unsigned int num_bits_set;
   1075   for (num_bits_set = 0; x; x >>= 1) {
   1076     num_bits_set += x & 1;
   1077   }
   1078   return num_bits_set;
   1079 }
   1080 
   1081 bool EvalComparison(Token::Value op, double op1, double op2);
   1082 
   1083 // Computes pow(x, y) with the special cases in the spec for Math.pow.
   1084 double power_helper(double x, double y);
   1085 double power_double_int(double x, int y);
   1086 double power_double_double(double x, double y);
   1087 
   1088 // Helper class for generating code or data associated with the code
   1089 // right after a call instruction. As an example this can be used to
   1090 // generate safepoint data after calls for crankshaft.
   1091 class CallWrapper {
   1092  public:
   1093   CallWrapper() { }
   1094   virtual ~CallWrapper() { }
   1095   // Called just before emitting a call. Argument is the size of the generated
   1096   // call code.
   1097   virtual void BeforeCall(int call_size) const = 0;
   1098   // Called just after emitting a call, i.e., at the return site for the call.
   1099   virtual void AfterCall() const = 0;
   1100 };
   1101 
   1102 class NullCallWrapper : public CallWrapper {
   1103  public:
   1104   NullCallWrapper() { }
   1105   virtual ~NullCallWrapper() { }
   1106   virtual void BeforeCall(int call_size) const { }
   1107   virtual void AfterCall() const { }
   1108 };
   1109 
   1110 
   1111 } }  // namespace v8::internal
   1112 
   1113 #endif  // V8_ASSEMBLER_H_
   1114