1 // Copyright (c) 1994-2006 Sun Microsystems Inc. 2 // All Rights Reserved. 3 // 4 // Redistribution and use in source and binary forms, with or without 5 // modification, are permitted provided that the following conditions are 6 // met: 7 // 8 // - Redistributions of source code must retain the above copyright notice, 9 // this list of conditions and the following disclaimer. 10 // 11 // - Redistribution in binary form must reproduce the above copyright 12 // notice, this list of conditions and the following disclaimer in the 13 // documentation and/or other materials provided with the distribution. 14 // 15 // - Neither the name of Sun Microsystems or the names of contributors may 16 // be used to endorse or promote products derived from this software without 17 // specific prior written permission. 18 // 19 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS 20 // IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, 21 // THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 22 // PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR 23 // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, 24 // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, 25 // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR 26 // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF 27 // LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING 28 // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS 29 // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 30 31 // The original source code covered by the above license above has been 32 // modified significantly by Google Inc. 33 // Copyright 2012 the V8 project authors. All rights reserved. 34 35 // A lightweight X64 Assembler. 36 37 #ifndef V8_X64_ASSEMBLER_X64_H_ 38 #define V8_X64_ASSEMBLER_X64_H_ 39 40 #include "src/serialize.h" 41 42 namespace v8 { 43 namespace internal { 44 45 // Utility functions 46 47 // CPU Registers. 48 // 49 // 1) We would prefer to use an enum, but enum values are assignment- 50 // compatible with int, which has caused code-generation bugs. 51 // 52 // 2) We would prefer to use a class instead of a struct but we don't like 53 // the register initialization to depend on the particular initialization 54 // order (which appears to be different on OS X, Linux, and Windows for the 55 // installed versions of C++ we tried). Using a struct permits C-style 56 // "initialization". Also, the Register objects cannot be const as this 57 // forces initialization stubs in MSVC, making us dependent on initialization 58 // order. 59 // 60 // 3) By not using an enum, we are possibly preventing the compiler from 61 // doing certain constant folds, which may significantly reduce the 62 // code generated for some assembly instructions (because they boil down 63 // to a few constants). If this is a problem, we could change the code 64 // such that we use an enum in optimized mode, and the struct in debug 65 // mode. This way we get the compile-time error checking in debug mode 66 // and best performance in optimized code. 67 // 68 69 struct Register { 70 // The non-allocatable registers are: 71 // rsp - stack pointer 72 // rbp - frame pointer 73 // r10 - fixed scratch register 74 // r12 - smi constant register 75 // r13 - root register 76 static const int kMaxNumAllocatableRegisters = 11; 77 static int NumAllocatableRegisters() { 78 return kMaxNumAllocatableRegisters; 79 } 80 static const int kNumRegisters = 16; 81 82 static int ToAllocationIndex(Register reg) { 83 return kAllocationIndexByRegisterCode[reg.code()]; 84 } 85 86 static Register FromAllocationIndex(int index) { 87 DCHECK(index >= 0 && index < kMaxNumAllocatableRegisters); 88 Register result = { kRegisterCodeByAllocationIndex[index] }; 89 return result; 90 } 91 92 static const char* AllocationIndexToString(int index) { 93 DCHECK(index >= 0 && index < kMaxNumAllocatableRegisters); 94 const char* const names[] = { 95 "rax", 96 "rbx", 97 "rdx", 98 "rcx", 99 "rsi", 100 "rdi", 101 "r8", 102 "r9", 103 "r11", 104 "r14", 105 "r15" 106 }; 107 return names[index]; 108 } 109 110 static Register from_code(int code) { 111 Register r = { code }; 112 return r; 113 } 114 bool is_valid() const { return 0 <= code_ && code_ < kNumRegisters; } 115 bool is(Register reg) const { return code_ == reg.code_; } 116 // rax, rbx, rcx and rdx are byte registers, the rest are not. 117 bool is_byte_register() const { return code_ <= 3; } 118 int code() const { 119 DCHECK(is_valid()); 120 return code_; 121 } 122 int bit() const { 123 return 1 << code_; 124 } 125 126 // Return the high bit of the register code as a 0 or 1. Used often 127 // when constructing the REX prefix byte. 128 int high_bit() const { 129 return code_ >> 3; 130 } 131 // Return the 3 low bits of the register code. Used when encoding registers 132 // in modR/M, SIB, and opcode bytes. 133 int low_bits() const { 134 return code_ & 0x7; 135 } 136 137 // Unfortunately we can't make this private in a struct when initializing 138 // by assignment. 139 int code_; 140 141 private: 142 static const int kRegisterCodeByAllocationIndex[kMaxNumAllocatableRegisters]; 143 static const int kAllocationIndexByRegisterCode[kNumRegisters]; 144 }; 145 146 const int kRegister_rax_Code = 0; 147 const int kRegister_rcx_Code = 1; 148 const int kRegister_rdx_Code = 2; 149 const int kRegister_rbx_Code = 3; 150 const int kRegister_rsp_Code = 4; 151 const int kRegister_rbp_Code = 5; 152 const int kRegister_rsi_Code = 6; 153 const int kRegister_rdi_Code = 7; 154 const int kRegister_r8_Code = 8; 155 const int kRegister_r9_Code = 9; 156 const int kRegister_r10_Code = 10; 157 const int kRegister_r11_Code = 11; 158 const int kRegister_r12_Code = 12; 159 const int kRegister_r13_Code = 13; 160 const int kRegister_r14_Code = 14; 161 const int kRegister_r15_Code = 15; 162 const int kRegister_no_reg_Code = -1; 163 164 const Register rax = { kRegister_rax_Code }; 165 const Register rcx = { kRegister_rcx_Code }; 166 const Register rdx = { kRegister_rdx_Code }; 167 const Register rbx = { kRegister_rbx_Code }; 168 const Register rsp = { kRegister_rsp_Code }; 169 const Register rbp = { kRegister_rbp_Code }; 170 const Register rsi = { kRegister_rsi_Code }; 171 const Register rdi = { kRegister_rdi_Code }; 172 const Register r8 = { kRegister_r8_Code }; 173 const Register r9 = { kRegister_r9_Code }; 174 const Register r10 = { kRegister_r10_Code }; 175 const Register r11 = { kRegister_r11_Code }; 176 const Register r12 = { kRegister_r12_Code }; 177 const Register r13 = { kRegister_r13_Code }; 178 const Register r14 = { kRegister_r14_Code }; 179 const Register r15 = { kRegister_r15_Code }; 180 const Register no_reg = { kRegister_no_reg_Code }; 181 182 #ifdef _WIN64 183 // Windows calling convention 184 const Register arg_reg_1 = { kRegister_rcx_Code }; 185 const Register arg_reg_2 = { kRegister_rdx_Code }; 186 const Register arg_reg_3 = { kRegister_r8_Code }; 187 const Register arg_reg_4 = { kRegister_r9_Code }; 188 #else 189 // AMD64 calling convention 190 const Register arg_reg_1 = { kRegister_rdi_Code }; 191 const Register arg_reg_2 = { kRegister_rsi_Code }; 192 const Register arg_reg_3 = { kRegister_rdx_Code }; 193 const Register arg_reg_4 = { kRegister_rcx_Code }; 194 #endif // _WIN64 195 196 struct XMMRegister { 197 static const int kMaxNumRegisters = 16; 198 static const int kMaxNumAllocatableRegisters = 15; 199 static int NumAllocatableRegisters() { 200 return kMaxNumAllocatableRegisters; 201 } 202 203 static int ToAllocationIndex(XMMRegister reg) { 204 DCHECK(reg.code() != 0); 205 return reg.code() - 1; 206 } 207 208 static XMMRegister FromAllocationIndex(int index) { 209 DCHECK(0 <= index && index < kMaxNumAllocatableRegisters); 210 XMMRegister result = { index + 1 }; 211 return result; 212 } 213 214 static const char* AllocationIndexToString(int index) { 215 DCHECK(index >= 0 && index < kMaxNumAllocatableRegisters); 216 const char* const names[] = { 217 "xmm1", 218 "xmm2", 219 "xmm3", 220 "xmm4", 221 "xmm5", 222 "xmm6", 223 "xmm7", 224 "xmm8", 225 "xmm9", 226 "xmm10", 227 "xmm11", 228 "xmm12", 229 "xmm13", 230 "xmm14", 231 "xmm15" 232 }; 233 return names[index]; 234 } 235 236 static XMMRegister from_code(int code) { 237 DCHECK(code >= 0); 238 DCHECK(code < kMaxNumRegisters); 239 XMMRegister r = { code }; 240 return r; 241 } 242 bool is_valid() const { return 0 <= code_ && code_ < kMaxNumRegisters; } 243 bool is(XMMRegister reg) const { return code_ == reg.code_; } 244 int code() const { 245 DCHECK(is_valid()); 246 return code_; 247 } 248 249 // Return the high bit of the register code as a 0 or 1. Used often 250 // when constructing the REX prefix byte. 251 int high_bit() const { 252 return code_ >> 3; 253 } 254 // Return the 3 low bits of the register code. Used when encoding registers 255 // in modR/M, SIB, and opcode bytes. 256 int low_bits() const { 257 return code_ & 0x7; 258 } 259 260 int code_; 261 }; 262 263 const XMMRegister xmm0 = { 0 }; 264 const XMMRegister xmm1 = { 1 }; 265 const XMMRegister xmm2 = { 2 }; 266 const XMMRegister xmm3 = { 3 }; 267 const XMMRegister xmm4 = { 4 }; 268 const XMMRegister xmm5 = { 5 }; 269 const XMMRegister xmm6 = { 6 }; 270 const XMMRegister xmm7 = { 7 }; 271 const XMMRegister xmm8 = { 8 }; 272 const XMMRegister xmm9 = { 9 }; 273 const XMMRegister xmm10 = { 10 }; 274 const XMMRegister xmm11 = { 11 }; 275 const XMMRegister xmm12 = { 12 }; 276 const XMMRegister xmm13 = { 13 }; 277 const XMMRegister xmm14 = { 14 }; 278 const XMMRegister xmm15 = { 15 }; 279 280 281 typedef XMMRegister DoubleRegister; 282 283 284 enum Condition { 285 // any value < 0 is considered no_condition 286 no_condition = -1, 287 288 overflow = 0, 289 no_overflow = 1, 290 below = 2, 291 above_equal = 3, 292 equal = 4, 293 not_equal = 5, 294 below_equal = 6, 295 above = 7, 296 negative = 8, 297 positive = 9, 298 parity_even = 10, 299 parity_odd = 11, 300 less = 12, 301 greater_equal = 13, 302 less_equal = 14, 303 greater = 15, 304 305 // Fake conditions that are handled by the 306 // opcodes using them. 307 always = 16, 308 never = 17, 309 // aliases 310 carry = below, 311 not_carry = above_equal, 312 zero = equal, 313 not_zero = not_equal, 314 sign = negative, 315 not_sign = positive, 316 last_condition = greater 317 }; 318 319 320 // Returns the equivalent of !cc. 321 // Negation of the default no_condition (-1) results in a non-default 322 // no_condition value (-2). As long as tests for no_condition check 323 // for condition < 0, this will work as expected. 324 inline Condition NegateCondition(Condition cc) { 325 return static_cast<Condition>(cc ^ 1); 326 } 327 328 329 // Commute a condition such that {a cond b == b cond' a}. 330 inline Condition CommuteCondition(Condition cc) { 331 switch (cc) { 332 case below: 333 return above; 334 case above: 335 return below; 336 case above_equal: 337 return below_equal; 338 case below_equal: 339 return above_equal; 340 case less: 341 return greater; 342 case greater: 343 return less; 344 case greater_equal: 345 return less_equal; 346 case less_equal: 347 return greater_equal; 348 default: 349 return cc; 350 } 351 } 352 353 354 // ----------------------------------------------------------------------------- 355 // Machine instruction Immediates 356 357 class Immediate BASE_EMBEDDED { 358 public: 359 explicit Immediate(int32_t value) : value_(value) {} 360 explicit Immediate(Smi* value) { 361 DCHECK(SmiValuesAre31Bits()); // Only available for 31-bit SMI. 362 value_ = static_cast<int32_t>(reinterpret_cast<intptr_t>(value)); 363 } 364 365 private: 366 int32_t value_; 367 368 friend class Assembler; 369 }; 370 371 372 // ----------------------------------------------------------------------------- 373 // Machine instruction Operands 374 375 enum ScaleFactor { 376 times_1 = 0, 377 times_2 = 1, 378 times_4 = 2, 379 times_8 = 3, 380 times_int_size = times_4, 381 times_pointer_size = (kPointerSize == 8) ? times_8 : times_4 382 }; 383 384 385 class Operand BASE_EMBEDDED { 386 public: 387 // [base + disp/r] 388 Operand(Register base, int32_t disp); 389 390 // [base + index*scale + disp/r] 391 Operand(Register base, 392 Register index, 393 ScaleFactor scale, 394 int32_t disp); 395 396 // [index*scale + disp/r] 397 Operand(Register index, 398 ScaleFactor scale, 399 int32_t disp); 400 401 // Offset from existing memory operand. 402 // Offset is added to existing displacement as 32-bit signed values and 403 // this must not overflow. 404 Operand(const Operand& base, int32_t offset); 405 406 // Checks whether either base or index register is the given register. 407 // Does not check the "reg" part of the Operand. 408 bool AddressUsesRegister(Register reg) const; 409 410 // Queries related to the size of the generated instruction. 411 // Whether the generated instruction will have a REX prefix. 412 bool requires_rex() const { return rex_ != 0; } 413 // Size of the ModR/M, SIB and displacement parts of the generated 414 // instruction. 415 int operand_size() const { return len_; } 416 417 private: 418 byte rex_; 419 byte buf_[6]; 420 // The number of bytes of buf_ in use. 421 byte len_; 422 423 // Set the ModR/M byte without an encoded 'reg' register. The 424 // register is encoded later as part of the emit_operand operation. 425 // set_modrm can be called before or after set_sib and set_disp*. 426 inline void set_modrm(int mod, Register rm); 427 428 // Set the SIB byte if one is needed. Sets the length to 2 rather than 1. 429 inline void set_sib(ScaleFactor scale, Register index, Register base); 430 431 // Adds operand displacement fields (offsets added to the memory address). 432 // Needs to be called after set_sib, not before it. 433 inline void set_disp8(int disp); 434 inline void set_disp32(int disp); 435 436 friend class Assembler; 437 }; 438 439 440 #define ASSEMBLER_INSTRUCTION_LIST(V) \ 441 V(add) \ 442 V(and) \ 443 V(cmp) \ 444 V(dec) \ 445 V(idiv) \ 446 V(div) \ 447 V(imul) \ 448 V(inc) \ 449 V(lea) \ 450 V(mov) \ 451 V(movzxb) \ 452 V(movzxw) \ 453 V(neg) \ 454 V(not) \ 455 V(or) \ 456 V(repmovs) \ 457 V(sbb) \ 458 V(sub) \ 459 V(test) \ 460 V(xchg) \ 461 V(xor) 462 463 464 // Shift instructions on operands/registers with kPointerSize, kInt32Size and 465 // kInt64Size. 466 #define SHIFT_INSTRUCTION_LIST(V) \ 467 V(rol, 0x0) \ 468 V(ror, 0x1) \ 469 V(rcl, 0x2) \ 470 V(rcr, 0x3) \ 471 V(shl, 0x4) \ 472 V(shr, 0x5) \ 473 V(sar, 0x7) \ 474 475 476 class Assembler : public AssemblerBase { 477 private: 478 // We check before assembling an instruction that there is sufficient 479 // space to write an instruction and its relocation information. 480 // The relocation writer's position must be kGap bytes above the end of 481 // the generated instructions. This leaves enough space for the 482 // longest possible x64 instruction, 15 bytes, and the longest possible 483 // relocation information encoding, RelocInfoWriter::kMaxLength == 16. 484 // (There is a 15 byte limit on x64 instruction length that rules out some 485 // otherwise valid instructions.) 486 // This allows for a single, fast space check per instruction. 487 static const int kGap = 32; 488 489 public: 490 // Create an assembler. Instructions and relocation information are emitted 491 // into a buffer, with the instructions starting from the beginning and the 492 // relocation information starting from the end of the buffer. See CodeDesc 493 // for a detailed comment on the layout (globals.h). 494 // 495 // If the provided buffer is NULL, the assembler allocates and grows its own 496 // buffer, and buffer_size determines the initial buffer size. The buffer is 497 // owned by the assembler and deallocated upon destruction of the assembler. 498 // 499 // If the provided buffer is not NULL, the assembler uses the provided buffer 500 // for code generation and assumes its size to be buffer_size. If the buffer 501 // is too small, a fatal error occurs. No deallocation of the buffer is done 502 // upon destruction of the assembler. 503 Assembler(Isolate* isolate, void* buffer, int buffer_size); 504 virtual ~Assembler() { } 505 506 // GetCode emits any pending (non-emitted) code and fills the descriptor 507 // desc. GetCode() is idempotent; it returns the same result if no other 508 // Assembler functions are invoked in between GetCode() calls. 509 void GetCode(CodeDesc* desc); 510 511 // Read/Modify the code target in the relative branch/call instruction at pc. 512 // On the x64 architecture, we use relative jumps with a 32-bit displacement 513 // to jump to other Code objects in the Code space in the heap. 514 // Jumps to C functions are done indirectly through a 64-bit register holding 515 // the absolute address of the target. 516 // These functions convert between absolute Addresses of Code objects and 517 // the relative displacements stored in the code. 518 static inline Address target_address_at(Address pc, 519 ConstantPoolArray* constant_pool); 520 static inline void set_target_address_at(Address pc, 521 ConstantPoolArray* constant_pool, 522 Address target, 523 ICacheFlushMode icache_flush_mode = 524 FLUSH_ICACHE_IF_NEEDED) ; 525 static inline Address target_address_at(Address pc, Code* code) { 526 ConstantPoolArray* constant_pool = code ? code->constant_pool() : NULL; 527 return target_address_at(pc, constant_pool); 528 } 529 static inline void set_target_address_at(Address pc, 530 Code* code, 531 Address target, 532 ICacheFlushMode icache_flush_mode = 533 FLUSH_ICACHE_IF_NEEDED) { 534 ConstantPoolArray* constant_pool = code ? code->constant_pool() : NULL; 535 set_target_address_at(pc, constant_pool, target, icache_flush_mode); 536 } 537 538 // Return the code target address at a call site from the return address 539 // of that call in the instruction stream. 540 static inline Address target_address_from_return_address(Address pc); 541 542 // Return the code target address of the patch debug break slot 543 inline static Address break_address_from_return_address(Address pc); 544 545 // This sets the branch destination (which is in the instruction on x64). 546 // This is for calls and branches within generated code. 547 inline static void deserialization_set_special_target_at( 548 Address instruction_payload, Code* code, Address target) { 549 set_target_address_at(instruction_payload, code, target); 550 } 551 552 static inline RelocInfo::Mode RelocInfoNone() { 553 if (kPointerSize == kInt64Size) { 554 return RelocInfo::NONE64; 555 } else { 556 DCHECK(kPointerSize == kInt32Size); 557 return RelocInfo::NONE32; 558 } 559 } 560 561 inline Handle<Object> code_target_object_handle_at(Address pc); 562 inline Address runtime_entry_at(Address pc); 563 // Number of bytes taken up by the branch target in the code. 564 static const int kSpecialTargetSize = 4; // Use 32-bit displacement. 565 // Distance between the address of the code target in the call instruction 566 // and the return address pushed on the stack. 567 static const int kCallTargetAddressOffset = 4; // Use 32-bit displacement. 568 // The length of call(kScratchRegister). 569 static const int kCallScratchRegisterInstructionLength = 3; 570 // The length of call(Immediate32). 571 static const int kShortCallInstructionLength = 5; 572 // The length of movq(kScratchRegister, address). 573 static const int kMoveAddressIntoScratchRegisterInstructionLength = 574 2 + kPointerSize; 575 // The length of movq(kScratchRegister, address) and call(kScratchRegister). 576 static const int kCallSequenceLength = 577 kMoveAddressIntoScratchRegisterInstructionLength + 578 kCallScratchRegisterInstructionLength; 579 580 // The js return and debug break slot must be able to contain an indirect 581 // call sequence, some x64 JS code is padded with int3 to make it large 582 // enough to hold an instruction when the debugger patches it. 583 static const int kJSReturnSequenceLength = kCallSequenceLength; 584 static const int kDebugBreakSlotLength = kCallSequenceLength; 585 static const int kPatchDebugBreakSlotReturnOffset = kCallTargetAddressOffset; 586 // Distance between the start of the JS return sequence and where the 587 // 32-bit displacement of a short call would be. The short call is from 588 // SetDebugBreakAtIC from debug-x64.cc. 589 static const int kPatchReturnSequenceAddressOffset = 590 kJSReturnSequenceLength - kPatchDebugBreakSlotReturnOffset; 591 // Distance between the start of the JS return sequence and where the 592 // 32-bit displacement of a short call would be. The short call is from 593 // SetDebugBreakAtIC from debug-x64.cc. 594 static const int kPatchDebugBreakSlotAddressOffset = 595 kDebugBreakSlotLength - kPatchDebugBreakSlotReturnOffset; 596 static const int kRealPatchReturnSequenceAddressOffset = 597 kMoveAddressIntoScratchRegisterInstructionLength - kPointerSize; 598 599 // One byte opcode for test eax,0xXXXXXXXX. 600 static const byte kTestEaxByte = 0xA9; 601 // One byte opcode for test al, 0xXX. 602 static const byte kTestAlByte = 0xA8; 603 // One byte opcode for nop. 604 static const byte kNopByte = 0x90; 605 606 // One byte prefix for a short conditional jump. 607 static const byte kJccShortPrefix = 0x70; 608 static const byte kJncShortOpcode = kJccShortPrefix | not_carry; 609 static const byte kJcShortOpcode = kJccShortPrefix | carry; 610 static const byte kJnzShortOpcode = kJccShortPrefix | not_zero; 611 static const byte kJzShortOpcode = kJccShortPrefix | zero; 612 613 614 // --------------------------------------------------------------------------- 615 // Code generation 616 // 617 // Function names correspond one-to-one to x64 instruction mnemonics. 618 // Unless specified otherwise, instructions operate on 64-bit operands. 619 // 620 // If we need versions of an assembly instruction that operate on different 621 // width arguments, we add a single-letter suffix specifying the width. 622 // This is done for the following instructions: mov, cmp, inc, dec, 623 // add, sub, and test. 624 // There are no versions of these instructions without the suffix. 625 // - Instructions on 8-bit (byte) operands/registers have a trailing 'b'. 626 // - Instructions on 16-bit (word) operands/registers have a trailing 'w'. 627 // - Instructions on 32-bit (doubleword) operands/registers use 'l'. 628 // - Instructions on 64-bit (quadword) operands/registers use 'q'. 629 // - Instructions on operands/registers with pointer size use 'p'. 630 631 STATIC_ASSERT(kPointerSize == kInt64Size || kPointerSize == kInt32Size); 632 633 #define DECLARE_INSTRUCTION(instruction) \ 634 template<class P1> \ 635 void instruction##p(P1 p1) { \ 636 emit_##instruction(p1, kPointerSize); \ 637 } \ 638 \ 639 template<class P1> \ 640 void instruction##l(P1 p1) { \ 641 emit_##instruction(p1, kInt32Size); \ 642 } \ 643 \ 644 template<class P1> \ 645 void instruction##q(P1 p1) { \ 646 emit_##instruction(p1, kInt64Size); \ 647 } \ 648 \ 649 template<class P1, class P2> \ 650 void instruction##p(P1 p1, P2 p2) { \ 651 emit_##instruction(p1, p2, kPointerSize); \ 652 } \ 653 \ 654 template<class P1, class P2> \ 655 void instruction##l(P1 p1, P2 p2) { \ 656 emit_##instruction(p1, p2, kInt32Size); \ 657 } \ 658 \ 659 template<class P1, class P2> \ 660 void instruction##q(P1 p1, P2 p2) { \ 661 emit_##instruction(p1, p2, kInt64Size); \ 662 } \ 663 \ 664 template<class P1, class P2, class P3> \ 665 void instruction##p(P1 p1, P2 p2, P3 p3) { \ 666 emit_##instruction(p1, p2, p3, kPointerSize); \ 667 } \ 668 \ 669 template<class P1, class P2, class P3> \ 670 void instruction##l(P1 p1, P2 p2, P3 p3) { \ 671 emit_##instruction(p1, p2, p3, kInt32Size); \ 672 } \ 673 \ 674 template<class P1, class P2, class P3> \ 675 void instruction##q(P1 p1, P2 p2, P3 p3) { \ 676 emit_##instruction(p1, p2, p3, kInt64Size); \ 677 } 678 ASSEMBLER_INSTRUCTION_LIST(DECLARE_INSTRUCTION) 679 #undef DECLARE_INSTRUCTION 680 681 // Insert the smallest number of nop instructions 682 // possible to align the pc offset to a multiple 683 // of m, where m must be a power of 2. 684 void Align(int m); 685 void Nop(int bytes = 1); 686 // Aligns code to something that's optimal for a jump target for the platform. 687 void CodeTargetAlign(); 688 689 // Stack 690 void pushfq(); 691 void popfq(); 692 693 void pushq(Immediate value); 694 // Push a 32 bit integer, and guarantee that it is actually pushed as a 695 // 32 bit value, the normal push will optimize the 8 bit case. 696 void pushq_imm32(int32_t imm32); 697 void pushq(Register src); 698 void pushq(const Operand& src); 699 700 void popq(Register dst); 701 void popq(const Operand& dst); 702 703 void enter(Immediate size); 704 void leave(); 705 706 // Moves 707 void movb(Register dst, const Operand& src); 708 void movb(Register dst, Immediate imm); 709 void movb(const Operand& dst, Register src); 710 void movb(const Operand& dst, Immediate imm); 711 712 // Move the low 16 bits of a 64-bit register value to a 16-bit 713 // memory location. 714 void movw(Register dst, const Operand& src); 715 void movw(const Operand& dst, Register src); 716 void movw(const Operand& dst, Immediate imm); 717 718 // Move the offset of the label location relative to the current 719 // position (after the move) to the destination. 720 void movl(const Operand& dst, Label* src); 721 722 // Loads a pointer into a register with a relocation mode. 723 void movp(Register dst, void* ptr, RelocInfo::Mode rmode); 724 725 // Loads a 64-bit immediate into a register. 726 void movq(Register dst, int64_t value); 727 void movq(Register dst, uint64_t value); 728 729 void movsxbl(Register dst, const Operand& src); 730 void movsxbq(Register dst, const Operand& src); 731 void movsxwl(Register dst, const Operand& src); 732 void movsxwq(Register dst, const Operand& src); 733 void movsxlq(Register dst, Register src); 734 void movsxlq(Register dst, const Operand& src); 735 736 // Repeated moves. 737 738 void repmovsb(); 739 void repmovsw(); 740 void repmovsp() { emit_repmovs(kPointerSize); } 741 void repmovsl() { emit_repmovs(kInt32Size); } 742 void repmovsq() { emit_repmovs(kInt64Size); } 743 744 // Instruction to load from an immediate 64-bit pointer into RAX. 745 void load_rax(void* ptr, RelocInfo::Mode rmode); 746 void load_rax(ExternalReference ext); 747 748 // Conditional moves. 749 void cmovq(Condition cc, Register dst, Register src); 750 void cmovq(Condition cc, Register dst, const Operand& src); 751 void cmovl(Condition cc, Register dst, Register src); 752 void cmovl(Condition cc, Register dst, const Operand& src); 753 754 void cmpb(Register dst, Immediate src) { 755 immediate_arithmetic_op_8(0x7, dst, src); 756 } 757 758 void cmpb_al(Immediate src); 759 760 void cmpb(Register dst, Register src) { 761 arithmetic_op_8(0x3A, dst, src); 762 } 763 764 void cmpb(Register dst, const Operand& src) { 765 arithmetic_op_8(0x3A, dst, src); 766 } 767 768 void cmpb(const Operand& dst, Register src) { 769 arithmetic_op_8(0x38, src, dst); 770 } 771 772 void cmpb(const Operand& dst, Immediate src) { 773 immediate_arithmetic_op_8(0x7, dst, src); 774 } 775 776 void cmpw(const Operand& dst, Immediate src) { 777 immediate_arithmetic_op_16(0x7, dst, src); 778 } 779 780 void cmpw(Register dst, Immediate src) { 781 immediate_arithmetic_op_16(0x7, dst, src); 782 } 783 784 void cmpw(Register dst, const Operand& src) { 785 arithmetic_op_16(0x3B, dst, src); 786 } 787 788 void cmpw(Register dst, Register src) { 789 arithmetic_op_16(0x3B, dst, src); 790 } 791 792 void cmpw(const Operand& dst, Register src) { 793 arithmetic_op_16(0x39, src, dst); 794 } 795 796 void andb(Register dst, Immediate src) { 797 immediate_arithmetic_op_8(0x4, dst, src); 798 } 799 800 void decb(Register dst); 801 void decb(const Operand& dst); 802 803 // Sign-extends rax into rdx:rax. 804 void cqo(); 805 // Sign-extends eax into edx:eax. 806 void cdq(); 807 808 // Multiply rax by src, put the result in rdx:rax. 809 void mul(Register src); 810 811 #define DECLARE_SHIFT_INSTRUCTION(instruction, subcode) \ 812 void instruction##p(Register dst, Immediate imm8) { \ 813 shift(dst, imm8, subcode, kPointerSize); \ 814 } \ 815 \ 816 void instruction##l(Register dst, Immediate imm8) { \ 817 shift(dst, imm8, subcode, kInt32Size); \ 818 } \ 819 \ 820 void instruction##q(Register dst, Immediate imm8) { \ 821 shift(dst, imm8, subcode, kInt64Size); \ 822 } \ 823 \ 824 void instruction##p_cl(Register dst) { \ 825 shift(dst, subcode, kPointerSize); \ 826 } \ 827 \ 828 void instruction##l_cl(Register dst) { \ 829 shift(dst, subcode, kInt32Size); \ 830 } \ 831 \ 832 void instruction##q_cl(Register dst) { \ 833 shift(dst, subcode, kInt64Size); \ 834 } 835 SHIFT_INSTRUCTION_LIST(DECLARE_SHIFT_INSTRUCTION) 836 #undef DECLARE_SHIFT_INSTRUCTION 837 838 // Shifts dst:src left by cl bits, affecting only dst. 839 void shld(Register dst, Register src); 840 841 // Shifts src:dst right by cl bits, affecting only dst. 842 void shrd(Register dst, Register src); 843 844 void store_rax(void* dst, RelocInfo::Mode mode); 845 void store_rax(ExternalReference ref); 846 847 void subb(Register dst, Immediate src) { 848 immediate_arithmetic_op_8(0x5, dst, src); 849 } 850 851 void testb(Register dst, Register src); 852 void testb(Register reg, Immediate mask); 853 void testb(const Operand& op, Immediate mask); 854 void testb(const Operand& op, Register reg); 855 856 // Bit operations. 857 void bt(const Operand& dst, Register src); 858 void bts(const Operand& dst, Register src); 859 void bsrl(Register dst, Register src); 860 861 // Miscellaneous 862 void clc(); 863 void cld(); 864 void cpuid(); 865 void hlt(); 866 void int3(); 867 void nop(); 868 void ret(int imm16); 869 void setcc(Condition cc, Register reg); 870 871 // Label operations & relative jumps (PPUM Appendix D) 872 // 873 // Takes a branch opcode (cc) and a label (L) and generates 874 // either a backward branch or a forward branch and links it 875 // to the label fixup chain. Usage: 876 // 877 // Label L; // unbound label 878 // j(cc, &L); // forward branch to unbound label 879 // bind(&L); // bind label to the current pc 880 // j(cc, &L); // backward branch to bound label 881 // bind(&L); // illegal: a label may be bound only once 882 // 883 // Note: The same Label can be used for forward and backward branches 884 // but it may be bound only once. 885 886 void bind(Label* L); // binds an unbound label L to the current code position 887 888 // Calls 889 // Call near relative 32-bit displacement, relative to next instruction. 890 void call(Label* L); 891 void call(Address entry, RelocInfo::Mode rmode); 892 void call(Handle<Code> target, 893 RelocInfo::Mode rmode = RelocInfo::CODE_TARGET, 894 TypeFeedbackId ast_id = TypeFeedbackId::None()); 895 896 // Calls directly to the given address using a relative offset. 897 // Should only ever be used in Code objects for calls within the 898 // same Code object. Should not be used when generating new code (use labels), 899 // but only when patching existing code. 900 void call(Address target); 901 902 // Call near absolute indirect, address in register 903 void call(Register adr); 904 905 // Jumps 906 // Jump short or near relative. 907 // Use a 32-bit signed displacement. 908 // Unconditional jump to L 909 void jmp(Label* L, Label::Distance distance = Label::kFar); 910 void jmp(Address entry, RelocInfo::Mode rmode); 911 void jmp(Handle<Code> target, RelocInfo::Mode rmode); 912 913 // Jump near absolute indirect (r64) 914 void jmp(Register adr); 915 916 // Conditional jumps 917 void j(Condition cc, 918 Label* L, 919 Label::Distance distance = Label::kFar); 920 void j(Condition cc, Address entry, RelocInfo::Mode rmode); 921 void j(Condition cc, Handle<Code> target, RelocInfo::Mode rmode); 922 923 // Floating-point operations 924 void fld(int i); 925 926 void fld1(); 927 void fldz(); 928 void fldpi(); 929 void fldln2(); 930 931 void fld_s(const Operand& adr); 932 void fld_d(const Operand& adr); 933 934 void fstp_s(const Operand& adr); 935 void fstp_d(const Operand& adr); 936 void fstp(int index); 937 938 void fild_s(const Operand& adr); 939 void fild_d(const Operand& adr); 940 941 void fist_s(const Operand& adr); 942 943 void fistp_s(const Operand& adr); 944 void fistp_d(const Operand& adr); 945 946 void fisttp_s(const Operand& adr); 947 void fisttp_d(const Operand& adr); 948 949 void fabs(); 950 void fchs(); 951 952 void fadd(int i); 953 void fsub(int i); 954 void fmul(int i); 955 void fdiv(int i); 956 957 void fisub_s(const Operand& adr); 958 959 void faddp(int i = 1); 960 void fsubp(int i = 1); 961 void fsubrp(int i = 1); 962 void fmulp(int i = 1); 963 void fdivp(int i = 1); 964 void fprem(); 965 void fprem1(); 966 967 void fxch(int i = 1); 968 void fincstp(); 969 void ffree(int i = 0); 970 971 void ftst(); 972 void fucomp(int i); 973 void fucompp(); 974 void fucomi(int i); 975 void fucomip(); 976 977 void fcompp(); 978 void fnstsw_ax(); 979 void fwait(); 980 void fnclex(); 981 982 void fsin(); 983 void fcos(); 984 void fptan(); 985 void fyl2x(); 986 void f2xm1(); 987 void fscale(); 988 void fninit(); 989 990 void frndint(); 991 992 void sahf(); 993 994 // SSE instructions 995 void movaps(XMMRegister dst, XMMRegister src); 996 void movss(XMMRegister dst, const Operand& src); 997 void movss(const Operand& dst, XMMRegister src); 998 void shufps(XMMRegister dst, XMMRegister src, byte imm8); 999 1000 void cvttss2si(Register dst, const Operand& src); 1001 void cvttss2si(Register dst, XMMRegister src); 1002 void cvtlsi2ss(XMMRegister dst, Register src); 1003 1004 void andps(XMMRegister dst, XMMRegister src); 1005 void andps(XMMRegister dst, const Operand& src); 1006 void orps(XMMRegister dst, XMMRegister src); 1007 void orps(XMMRegister dst, const Operand& src); 1008 void xorps(XMMRegister dst, XMMRegister src); 1009 void xorps(XMMRegister dst, const Operand& src); 1010 1011 void addps(XMMRegister dst, XMMRegister src); 1012 void addps(XMMRegister dst, const Operand& src); 1013 void subps(XMMRegister dst, XMMRegister src); 1014 void subps(XMMRegister dst, const Operand& src); 1015 void mulps(XMMRegister dst, XMMRegister src); 1016 void mulps(XMMRegister dst, const Operand& src); 1017 void divps(XMMRegister dst, XMMRegister src); 1018 void divps(XMMRegister dst, const Operand& src); 1019 1020 void movmskps(Register dst, XMMRegister src); 1021 1022 // SSE2 instructions 1023 void movd(XMMRegister dst, Register src); 1024 void movd(Register dst, XMMRegister src); 1025 void movq(XMMRegister dst, Register src); 1026 void movq(Register dst, XMMRegister src); 1027 void movq(XMMRegister dst, XMMRegister src); 1028 1029 // Don't use this unless it's important to keep the 1030 // top half of the destination register unchanged. 1031 // Used movaps when moving double values and movq for integer 1032 // values in xmm registers. 1033 void movsd(XMMRegister dst, XMMRegister src); 1034 1035 void movsd(const Operand& dst, XMMRegister src); 1036 void movsd(XMMRegister dst, const Operand& src); 1037 1038 void movdqa(const Operand& dst, XMMRegister src); 1039 void movdqa(XMMRegister dst, const Operand& src); 1040 1041 void movdqu(const Operand& dst, XMMRegister src); 1042 void movdqu(XMMRegister dst, const Operand& src); 1043 1044 void movapd(XMMRegister dst, XMMRegister src); 1045 1046 void psllq(XMMRegister reg, byte imm8); 1047 1048 void cvttsd2si(Register dst, const Operand& src); 1049 void cvttsd2si(Register dst, XMMRegister src); 1050 void cvttsd2siq(Register dst, XMMRegister src); 1051 void cvttsd2siq(Register dst, const Operand& src); 1052 1053 void cvtlsi2sd(XMMRegister dst, const Operand& src); 1054 void cvtlsi2sd(XMMRegister dst, Register src); 1055 void cvtqsi2sd(XMMRegister dst, const Operand& src); 1056 void cvtqsi2sd(XMMRegister dst, Register src); 1057 1058 1059 void cvtss2sd(XMMRegister dst, XMMRegister src); 1060 void cvtss2sd(XMMRegister dst, const Operand& src); 1061 void cvtsd2ss(XMMRegister dst, XMMRegister src); 1062 1063 void cvtsd2si(Register dst, XMMRegister src); 1064 void cvtsd2siq(Register dst, XMMRegister src); 1065 1066 void addsd(XMMRegister dst, XMMRegister src); 1067 void addsd(XMMRegister dst, const Operand& src); 1068 void subsd(XMMRegister dst, XMMRegister src); 1069 void mulsd(XMMRegister dst, XMMRegister src); 1070 void mulsd(XMMRegister dst, const Operand& src); 1071 void divsd(XMMRegister dst, XMMRegister src); 1072 1073 void andpd(XMMRegister dst, XMMRegister src); 1074 void orpd(XMMRegister dst, XMMRegister src); 1075 void xorpd(XMMRegister dst, XMMRegister src); 1076 void sqrtsd(XMMRegister dst, XMMRegister src); 1077 void sqrtsd(XMMRegister dst, const Operand& src); 1078 1079 void ucomisd(XMMRegister dst, XMMRegister src); 1080 void ucomisd(XMMRegister dst, const Operand& src); 1081 void cmpltsd(XMMRegister dst, XMMRegister src); 1082 1083 void movmskpd(Register dst, XMMRegister src); 1084 1085 // SSE 4.1 instruction 1086 void extractps(Register dst, XMMRegister src, byte imm8); 1087 1088 enum RoundingMode { 1089 kRoundToNearest = 0x0, 1090 kRoundDown = 0x1, 1091 kRoundUp = 0x2, 1092 kRoundToZero = 0x3 1093 }; 1094 1095 void roundsd(XMMRegister dst, XMMRegister src, RoundingMode mode); 1096 1097 // Debugging 1098 void Print(); 1099 1100 // Check the code size generated from label to here. 1101 int SizeOfCodeGeneratedSince(Label* label) { 1102 return pc_offset() - label->pos(); 1103 } 1104 1105 // Mark address of the ExitJSFrame code. 1106 void RecordJSReturn(); 1107 1108 // Mark address of a debug break slot. 1109 void RecordDebugBreakSlot(); 1110 1111 // Record a comment relocation entry that can be used by a disassembler. 1112 // Use --code-comments to enable. 1113 void RecordComment(const char* msg, bool force = false); 1114 1115 // Allocate a constant pool of the correct size for the generated code. 1116 Handle<ConstantPoolArray> NewConstantPool(Isolate* isolate); 1117 1118 // Generate the constant pool for the generated code. 1119 void PopulateConstantPool(ConstantPoolArray* constant_pool); 1120 1121 // Writes a single word of data in the code stream. 1122 // Used for inline tables, e.g., jump-tables. 1123 void db(uint8_t data); 1124 void dd(uint32_t data); 1125 1126 PositionsRecorder* positions_recorder() { return &positions_recorder_; } 1127 1128 // Check if there is less than kGap bytes available in the buffer. 1129 // If this is the case, we need to grow the buffer before emitting 1130 // an instruction or relocation information. 1131 inline bool buffer_overflow() const { 1132 return pc_ >= reloc_info_writer.pos() - kGap; 1133 } 1134 1135 // Get the number of bytes available in the buffer. 1136 inline int available_space() const { 1137 return static_cast<int>(reloc_info_writer.pos() - pc_); 1138 } 1139 1140 static bool IsNop(Address addr); 1141 1142 // Avoid overflows for displacements etc. 1143 static const int kMaximalBufferSize = 512*MB; 1144 1145 byte byte_at(int pos) { return buffer_[pos]; } 1146 void set_byte_at(int pos, byte value) { buffer_[pos] = value; } 1147 1148 protected: 1149 // Call near indirect 1150 void call(const Operand& operand); 1151 1152 // Jump near absolute indirect (m64) 1153 void jmp(const Operand& src); 1154 1155 private: 1156 byte* addr_at(int pos) { return buffer_ + pos; } 1157 uint32_t long_at(int pos) { 1158 return *reinterpret_cast<uint32_t*>(addr_at(pos)); 1159 } 1160 void long_at_put(int pos, uint32_t x) { 1161 *reinterpret_cast<uint32_t*>(addr_at(pos)) = x; 1162 } 1163 1164 // code emission 1165 void GrowBuffer(); 1166 1167 void emit(byte x) { *pc_++ = x; } 1168 inline void emitl(uint32_t x); 1169 inline void emitp(void* x, RelocInfo::Mode rmode); 1170 inline void emitq(uint64_t x); 1171 inline void emitw(uint16_t x); 1172 inline void emit_code_target(Handle<Code> target, 1173 RelocInfo::Mode rmode, 1174 TypeFeedbackId ast_id = TypeFeedbackId::None()); 1175 inline void emit_runtime_entry(Address entry, RelocInfo::Mode rmode); 1176 void emit(Immediate x) { emitl(x.value_); } 1177 1178 // Emits a REX prefix that encodes a 64-bit operand size and 1179 // the top bit of both register codes. 1180 // High bit of reg goes to REX.R, high bit of rm_reg goes to REX.B. 1181 // REX.W is set. 1182 inline void emit_rex_64(XMMRegister reg, Register rm_reg); 1183 inline void emit_rex_64(Register reg, XMMRegister rm_reg); 1184 inline void emit_rex_64(Register reg, Register rm_reg); 1185 1186 // Emits a REX prefix that encodes a 64-bit operand size and 1187 // the top bit of the destination, index, and base register codes. 1188 // The high bit of reg is used for REX.R, the high bit of op's base 1189 // register is used for REX.B, and the high bit of op's index register 1190 // is used for REX.X. REX.W is set. 1191 inline void emit_rex_64(Register reg, const Operand& op); 1192 inline void emit_rex_64(XMMRegister reg, const Operand& op); 1193 1194 // Emits a REX prefix that encodes a 64-bit operand size and 1195 // the top bit of the register code. 1196 // The high bit of register is used for REX.B. 1197 // REX.W is set and REX.R and REX.X are clear. 1198 inline void emit_rex_64(Register rm_reg); 1199 1200 // Emits a REX prefix that encodes a 64-bit operand size and 1201 // the top bit of the index and base register codes. 1202 // The high bit of op's base register is used for REX.B, and the high 1203 // bit of op's index register is used for REX.X. 1204 // REX.W is set and REX.R clear. 1205 inline void emit_rex_64(const Operand& op); 1206 1207 // Emit a REX prefix that only sets REX.W to choose a 64-bit operand size. 1208 void emit_rex_64() { emit(0x48); } 1209 1210 // High bit of reg goes to REX.R, high bit of rm_reg goes to REX.B. 1211 // REX.W is clear. 1212 inline void emit_rex_32(Register reg, Register rm_reg); 1213 1214 // The high bit of reg is used for REX.R, the high bit of op's base 1215 // register is used for REX.B, and the high bit of op's index register 1216 // is used for REX.X. REX.W is cleared. 1217 inline void emit_rex_32(Register reg, const Operand& op); 1218 1219 // High bit of rm_reg goes to REX.B. 1220 // REX.W, REX.R and REX.X are clear. 1221 inline void emit_rex_32(Register rm_reg); 1222 1223 // High bit of base goes to REX.B and high bit of index to REX.X. 1224 // REX.W and REX.R are clear. 1225 inline void emit_rex_32(const Operand& op); 1226 1227 // High bit of reg goes to REX.R, high bit of rm_reg goes to REX.B. 1228 // REX.W is cleared. If no REX bits are set, no byte is emitted. 1229 inline void emit_optional_rex_32(Register reg, Register rm_reg); 1230 1231 // The high bit of reg is used for REX.R, the high bit of op's base 1232 // register is used for REX.B, and the high bit of op's index register 1233 // is used for REX.X. REX.W is cleared. If no REX bits are set, nothing 1234 // is emitted. 1235 inline void emit_optional_rex_32(Register reg, const Operand& op); 1236 1237 // As for emit_optional_rex_32(Register, Register), except that 1238 // the registers are XMM registers. 1239 inline void emit_optional_rex_32(XMMRegister reg, XMMRegister base); 1240 1241 // As for emit_optional_rex_32(Register, Register), except that 1242 // one of the registers is an XMM registers. 1243 inline void emit_optional_rex_32(XMMRegister reg, Register base); 1244 1245 // As for emit_optional_rex_32(Register, Register), except that 1246 // one of the registers is an XMM registers. 1247 inline void emit_optional_rex_32(Register reg, XMMRegister base); 1248 1249 // As for emit_optional_rex_32(Register, const Operand&), except that 1250 // the register is an XMM register. 1251 inline void emit_optional_rex_32(XMMRegister reg, const Operand& op); 1252 1253 // Optionally do as emit_rex_32(Register) if the register number has 1254 // the high bit set. 1255 inline void emit_optional_rex_32(Register rm_reg); 1256 1257 // Optionally do as emit_rex_32(const Operand&) if the operand register 1258 // numbers have a high bit set. 1259 inline void emit_optional_rex_32(const Operand& op); 1260 1261 void emit_rex(int size) { 1262 if (size == kInt64Size) { 1263 emit_rex_64(); 1264 } else { 1265 DCHECK(size == kInt32Size); 1266 } 1267 } 1268 1269 template<class P1> 1270 void emit_rex(P1 p1, int size) { 1271 if (size == kInt64Size) { 1272 emit_rex_64(p1); 1273 } else { 1274 DCHECK(size == kInt32Size); 1275 emit_optional_rex_32(p1); 1276 } 1277 } 1278 1279 template<class P1, class P2> 1280 void emit_rex(P1 p1, P2 p2, int size) { 1281 if (size == kInt64Size) { 1282 emit_rex_64(p1, p2); 1283 } else { 1284 DCHECK(size == kInt32Size); 1285 emit_optional_rex_32(p1, p2); 1286 } 1287 } 1288 1289 // Emit the ModR/M byte, and optionally the SIB byte and 1290 // 1- or 4-byte offset for a memory operand. Also encodes 1291 // the second operand of the operation, a register or operation 1292 // subcode, into the reg field of the ModR/M byte. 1293 void emit_operand(Register reg, const Operand& adr) { 1294 emit_operand(reg.low_bits(), adr); 1295 } 1296 1297 // Emit the ModR/M byte, and optionally the SIB byte and 1298 // 1- or 4-byte offset for a memory operand. Also used to encode 1299 // a three-bit opcode extension into the ModR/M byte. 1300 void emit_operand(int rm, const Operand& adr); 1301 1302 // Emit a ModR/M byte with registers coded in the reg and rm_reg fields. 1303 void emit_modrm(Register reg, Register rm_reg) { 1304 emit(0xC0 | reg.low_bits() << 3 | rm_reg.low_bits()); 1305 } 1306 1307 // Emit a ModR/M byte with an operation subcode in the reg field and 1308 // a register in the rm_reg field. 1309 void emit_modrm(int code, Register rm_reg) { 1310 DCHECK(is_uint3(code)); 1311 emit(0xC0 | code << 3 | rm_reg.low_bits()); 1312 } 1313 1314 // Emit the code-object-relative offset of the label's position 1315 inline void emit_code_relative_offset(Label* label); 1316 1317 // The first argument is the reg field, the second argument is the r/m field. 1318 void emit_sse_operand(XMMRegister dst, XMMRegister src); 1319 void emit_sse_operand(XMMRegister reg, const Operand& adr); 1320 void emit_sse_operand(Register reg, const Operand& adr); 1321 void emit_sse_operand(XMMRegister dst, Register src); 1322 void emit_sse_operand(Register dst, XMMRegister src); 1323 1324 // Emit machine code for one of the operations ADD, ADC, SUB, SBC, 1325 // AND, OR, XOR, or CMP. The encodings of these operations are all 1326 // similar, differing just in the opcode or in the reg field of the 1327 // ModR/M byte. 1328 void arithmetic_op_8(byte opcode, Register reg, Register rm_reg); 1329 void arithmetic_op_8(byte opcode, Register reg, const Operand& rm_reg); 1330 void arithmetic_op_16(byte opcode, Register reg, Register rm_reg); 1331 void arithmetic_op_16(byte opcode, Register reg, const Operand& rm_reg); 1332 // Operate on operands/registers with pointer size, 32-bit or 64-bit size. 1333 void arithmetic_op(byte opcode, Register reg, Register rm_reg, int size); 1334 void arithmetic_op(byte opcode, 1335 Register reg, 1336 const Operand& rm_reg, 1337 int size); 1338 // Operate on a byte in memory or register. 1339 void immediate_arithmetic_op_8(byte subcode, 1340 Register dst, 1341 Immediate src); 1342 void immediate_arithmetic_op_8(byte subcode, 1343 const Operand& dst, 1344 Immediate src); 1345 // Operate on a word in memory or register. 1346 void immediate_arithmetic_op_16(byte subcode, 1347 Register dst, 1348 Immediate src); 1349 void immediate_arithmetic_op_16(byte subcode, 1350 const Operand& dst, 1351 Immediate src); 1352 // Operate on operands/registers with pointer size, 32-bit or 64-bit size. 1353 void immediate_arithmetic_op(byte subcode, 1354 Register dst, 1355 Immediate src, 1356 int size); 1357 void immediate_arithmetic_op(byte subcode, 1358 const Operand& dst, 1359 Immediate src, 1360 int size); 1361 1362 // Emit machine code for a shift operation. 1363 void shift(Register dst, Immediate shift_amount, int subcode, int size); 1364 // Shift dst by cl % 64 bits. 1365 void shift(Register dst, int subcode, int size); 1366 1367 void emit_farith(int b1, int b2, int i); 1368 1369 // labels 1370 // void print(Label* L); 1371 void bind_to(Label* L, int pos); 1372 1373 // record reloc info for current pc_ 1374 void RecordRelocInfo(RelocInfo::Mode rmode, intptr_t data = 0); 1375 1376 // Arithmetics 1377 void emit_add(Register dst, Register src, int size) { 1378 arithmetic_op(0x03, dst, src, size); 1379 } 1380 1381 void emit_add(Register dst, Immediate src, int size) { 1382 immediate_arithmetic_op(0x0, dst, src, size); 1383 } 1384 1385 void emit_add(Register dst, const Operand& src, int size) { 1386 arithmetic_op(0x03, dst, src, size); 1387 } 1388 1389 void emit_add(const Operand& dst, Register src, int size) { 1390 arithmetic_op(0x1, src, dst, size); 1391 } 1392 1393 void emit_add(const Operand& dst, Immediate src, int size) { 1394 immediate_arithmetic_op(0x0, dst, src, size); 1395 } 1396 1397 void emit_and(Register dst, Register src, int size) { 1398 arithmetic_op(0x23, dst, src, size); 1399 } 1400 1401 void emit_and(Register dst, const Operand& src, int size) { 1402 arithmetic_op(0x23, dst, src, size); 1403 } 1404 1405 void emit_and(const Operand& dst, Register src, int size) { 1406 arithmetic_op(0x21, src, dst, size); 1407 } 1408 1409 void emit_and(Register dst, Immediate src, int size) { 1410 immediate_arithmetic_op(0x4, dst, src, size); 1411 } 1412 1413 void emit_and(const Operand& dst, Immediate src, int size) { 1414 immediate_arithmetic_op(0x4, dst, src, size); 1415 } 1416 1417 void emit_cmp(Register dst, Register src, int size) { 1418 arithmetic_op(0x3B, dst, src, size); 1419 } 1420 1421 void emit_cmp(Register dst, const Operand& src, int size) { 1422 arithmetic_op(0x3B, dst, src, size); 1423 } 1424 1425 void emit_cmp(const Operand& dst, Register src, int size) { 1426 arithmetic_op(0x39, src, dst, size); 1427 } 1428 1429 void emit_cmp(Register dst, Immediate src, int size) { 1430 immediate_arithmetic_op(0x7, dst, src, size); 1431 } 1432 1433 void emit_cmp(const Operand& dst, Immediate src, int size) { 1434 immediate_arithmetic_op(0x7, dst, src, size); 1435 } 1436 1437 void emit_dec(Register dst, int size); 1438 void emit_dec(const Operand& dst, int size); 1439 1440 // Divide rdx:rax by src. Quotient in rax, remainder in rdx when size is 64. 1441 // Divide edx:eax by lower 32 bits of src. Quotient in eax, remainder in edx 1442 // when size is 32. 1443 void emit_idiv(Register src, int size); 1444 void emit_div(Register src, int size); 1445 1446 // Signed multiply instructions. 1447 // rdx:rax = rax * src when size is 64 or edx:eax = eax * src when size is 32. 1448 void emit_imul(Register src, int size); 1449 void emit_imul(Register dst, Register src, int size); 1450 void emit_imul(Register dst, const Operand& src, int size); 1451 void emit_imul(Register dst, Register src, Immediate imm, int size); 1452 1453 void emit_inc(Register dst, int size); 1454 void emit_inc(const Operand& dst, int size); 1455 1456 void emit_lea(Register dst, const Operand& src, int size); 1457 1458 void emit_mov(Register dst, const Operand& src, int size); 1459 void emit_mov(Register dst, Register src, int size); 1460 void emit_mov(const Operand& dst, Register src, int size); 1461 void emit_mov(Register dst, Immediate value, int size); 1462 void emit_mov(const Operand& dst, Immediate value, int size); 1463 1464 void emit_movzxb(Register dst, const Operand& src, int size); 1465 void emit_movzxb(Register dst, Register src, int size); 1466 void emit_movzxw(Register dst, const Operand& src, int size); 1467 void emit_movzxw(Register dst, Register src, int size); 1468 1469 void emit_neg(Register dst, int size); 1470 void emit_neg(const Operand& dst, int size); 1471 1472 void emit_not(Register dst, int size); 1473 void emit_not(const Operand& dst, int size); 1474 1475 void emit_or(Register dst, Register src, int size) { 1476 arithmetic_op(0x0B, dst, src, size); 1477 } 1478 1479 void emit_or(Register dst, const Operand& src, int size) { 1480 arithmetic_op(0x0B, dst, src, size); 1481 } 1482 1483 void emit_or(const Operand& dst, Register src, int size) { 1484 arithmetic_op(0x9, src, dst, size); 1485 } 1486 1487 void emit_or(Register dst, Immediate src, int size) { 1488 immediate_arithmetic_op(0x1, dst, src, size); 1489 } 1490 1491 void emit_or(const Operand& dst, Immediate src, int size) { 1492 immediate_arithmetic_op(0x1, dst, src, size); 1493 } 1494 1495 void emit_repmovs(int size); 1496 1497 void emit_sbb(Register dst, Register src, int size) { 1498 arithmetic_op(0x1b, dst, src, size); 1499 } 1500 1501 void emit_sub(Register dst, Register src, int size) { 1502 arithmetic_op(0x2B, dst, src, size); 1503 } 1504 1505 void emit_sub(Register dst, Immediate src, int size) { 1506 immediate_arithmetic_op(0x5, dst, src, size); 1507 } 1508 1509 void emit_sub(Register dst, const Operand& src, int size) { 1510 arithmetic_op(0x2B, dst, src, size); 1511 } 1512 1513 void emit_sub(const Operand& dst, Register src, int size) { 1514 arithmetic_op(0x29, src, dst, size); 1515 } 1516 1517 void emit_sub(const Operand& dst, Immediate src, int size) { 1518 immediate_arithmetic_op(0x5, dst, src, size); 1519 } 1520 1521 void emit_test(Register dst, Register src, int size); 1522 void emit_test(Register reg, Immediate mask, int size); 1523 void emit_test(const Operand& op, Register reg, int size); 1524 void emit_test(const Operand& op, Immediate mask, int size); 1525 void emit_test(Register reg, const Operand& op, int size) { 1526 return emit_test(op, reg, size); 1527 } 1528 1529 void emit_xchg(Register dst, Register src, int size); 1530 void emit_xchg(Register dst, const Operand& src, int size); 1531 1532 void emit_xor(Register dst, Register src, int size) { 1533 if (size == kInt64Size && dst.code() == src.code()) { 1534 // 32 bit operations zero the top 32 bits of 64 bit registers. Therefore 1535 // there is no need to make this a 64 bit operation. 1536 arithmetic_op(0x33, dst, src, kInt32Size); 1537 } else { 1538 arithmetic_op(0x33, dst, src, size); 1539 } 1540 } 1541 1542 void emit_xor(Register dst, const Operand& src, int size) { 1543 arithmetic_op(0x33, dst, src, size); 1544 } 1545 1546 void emit_xor(Register dst, Immediate src, int size) { 1547 immediate_arithmetic_op(0x6, dst, src, size); 1548 } 1549 1550 void emit_xor(const Operand& dst, Immediate src, int size) { 1551 immediate_arithmetic_op(0x6, dst, src, size); 1552 } 1553 1554 void emit_xor(const Operand& dst, Register src, int size) { 1555 arithmetic_op(0x31, src, dst, size); 1556 } 1557 1558 friend class CodePatcher; 1559 friend class EnsureSpace; 1560 friend class RegExpMacroAssemblerX64; 1561 1562 // code generation 1563 RelocInfoWriter reloc_info_writer; 1564 1565 List< Handle<Code> > code_targets_; 1566 1567 PositionsRecorder positions_recorder_; 1568 friend class PositionsRecorder; 1569 }; 1570 1571 1572 // Helper class that ensures that there is enough space for generating 1573 // instructions and relocation information. The constructor makes 1574 // sure that there is enough space and (in debug mode) the destructor 1575 // checks that we did not generate too much. 1576 class EnsureSpace BASE_EMBEDDED { 1577 public: 1578 explicit EnsureSpace(Assembler* assembler) : assembler_(assembler) { 1579 if (assembler_->buffer_overflow()) assembler_->GrowBuffer(); 1580 #ifdef DEBUG 1581 space_before_ = assembler_->available_space(); 1582 #endif 1583 } 1584 1585 #ifdef DEBUG 1586 ~EnsureSpace() { 1587 int bytes_generated = space_before_ - assembler_->available_space(); 1588 DCHECK(bytes_generated < assembler_->kGap); 1589 } 1590 #endif 1591 1592 private: 1593 Assembler* assembler_; 1594 #ifdef DEBUG 1595 int space_before_; 1596 #endif 1597 }; 1598 1599 } } // namespace v8::internal 1600 1601 #endif // V8_X64_ASSEMBLER_X64_H_ 1602