Home | History | Annotate | Download | only in Sema
      1 //===--- SemaDeclAttr.cpp - Declaration Attribute Handling ----------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 //  This file implements decl-related attribute processing.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "clang/Sema/SemaInternal.h"
     15 #include "clang/AST/ASTContext.h"
     16 #include "clang/AST/CXXInheritance.h"
     17 #include "clang/AST/DeclCXX.h"
     18 #include "clang/AST/DeclObjC.h"
     19 #include "clang/AST/DeclTemplate.h"
     20 #include "clang/AST/Expr.h"
     21 #include "clang/AST/ExprCXX.h"
     22 #include "clang/AST/Mangle.h"
     23 #include "clang/Basic/CharInfo.h"
     24 #include "clang/Basic/SourceManager.h"
     25 #include "clang/Basic/TargetInfo.h"
     26 #include "clang/Lex/Preprocessor.h"
     27 #include "clang/Sema/DeclSpec.h"
     28 #include "clang/Sema/DelayedDiagnostic.h"
     29 #include "clang/Sema/Lookup.h"
     30 #include "clang/Sema/Scope.h"
     31 #include "llvm/ADT/StringExtras.h"
     32 #include "llvm/Support/MathExtras.h"
     33 using namespace clang;
     34 using namespace sema;
     35 
     36 namespace AttributeLangSupport {
     37   enum LANG {
     38     C,
     39     Cpp,
     40     ObjC
     41   };
     42 }
     43 
     44 //===----------------------------------------------------------------------===//
     45 //  Helper functions
     46 //===----------------------------------------------------------------------===//
     47 
     48 /// isFunctionOrMethod - Return true if the given decl has function
     49 /// type (function or function-typed variable) or an Objective-C
     50 /// method.
     51 static bool isFunctionOrMethod(const Decl *D) {
     52   return (D->getFunctionType() != nullptr) || isa<ObjCMethodDecl>(D);
     53 }
     54 /// \brief Return true if the given decl has function type (function or
     55 /// function-typed variable) or an Objective-C method or a block.
     56 static bool isFunctionOrMethodOrBlock(const Decl *D) {
     57   return isFunctionOrMethod(D) || isa<BlockDecl>(D);
     58 }
     59 
     60 /// Return true if the given decl has a declarator that should have
     61 /// been processed by Sema::GetTypeForDeclarator.
     62 static bool hasDeclarator(const Decl *D) {
     63   // In some sense, TypedefDecl really *ought* to be a DeclaratorDecl.
     64   return isa<DeclaratorDecl>(D) || isa<BlockDecl>(D) || isa<TypedefNameDecl>(D) ||
     65          isa<ObjCPropertyDecl>(D);
     66 }
     67 
     68 /// hasFunctionProto - Return true if the given decl has a argument
     69 /// information. This decl should have already passed
     70 /// isFunctionOrMethod or isFunctionOrMethodOrBlock.
     71 static bool hasFunctionProto(const Decl *D) {
     72   if (const FunctionType *FnTy = D->getFunctionType())
     73     return isa<FunctionProtoType>(FnTy);
     74   return isa<ObjCMethodDecl>(D) || isa<BlockDecl>(D);
     75 }
     76 
     77 /// getFunctionOrMethodNumParams - Return number of function or method
     78 /// parameters. It is an error to call this on a K&R function (use
     79 /// hasFunctionProto first).
     80 static unsigned getFunctionOrMethodNumParams(const Decl *D) {
     81   if (const FunctionType *FnTy = D->getFunctionType())
     82     return cast<FunctionProtoType>(FnTy)->getNumParams();
     83   if (const BlockDecl *BD = dyn_cast<BlockDecl>(D))
     84     return BD->getNumParams();
     85   return cast<ObjCMethodDecl>(D)->param_size();
     86 }
     87 
     88 static QualType getFunctionOrMethodParamType(const Decl *D, unsigned Idx) {
     89   if (const FunctionType *FnTy = D->getFunctionType())
     90     return cast<FunctionProtoType>(FnTy)->getParamType(Idx);
     91   if (const BlockDecl *BD = dyn_cast<BlockDecl>(D))
     92     return BD->getParamDecl(Idx)->getType();
     93 
     94   return cast<ObjCMethodDecl>(D)->parameters()[Idx]->getType();
     95 }
     96 
     97 static SourceRange getFunctionOrMethodParamRange(const Decl *D, unsigned Idx) {
     98   if (const auto *FD = dyn_cast<FunctionDecl>(D))
     99     return FD->getParamDecl(Idx)->getSourceRange();
    100   if (const auto *MD = dyn_cast<ObjCMethodDecl>(D))
    101     return MD->parameters()[Idx]->getSourceRange();
    102   if (const auto *BD = dyn_cast<BlockDecl>(D))
    103     return BD->getParamDecl(Idx)->getSourceRange();
    104   return SourceRange();
    105 }
    106 
    107 static QualType getFunctionOrMethodResultType(const Decl *D) {
    108   if (const FunctionType *FnTy = D->getFunctionType())
    109     return cast<FunctionType>(FnTy)->getReturnType();
    110   return cast<ObjCMethodDecl>(D)->getReturnType();
    111 }
    112 
    113 static SourceRange getFunctionOrMethodResultSourceRange(const Decl *D) {
    114   if (const auto *FD = dyn_cast<FunctionDecl>(D))
    115     return FD->getReturnTypeSourceRange();
    116   if (const auto *MD = dyn_cast<ObjCMethodDecl>(D))
    117     return MD->getReturnTypeSourceRange();
    118   return SourceRange();
    119 }
    120 
    121 static bool isFunctionOrMethodVariadic(const Decl *D) {
    122   if (const FunctionType *FnTy = D->getFunctionType()) {
    123     const FunctionProtoType *proto = cast<FunctionProtoType>(FnTy);
    124     return proto->isVariadic();
    125   }
    126   if (const BlockDecl *BD = dyn_cast<BlockDecl>(D))
    127     return BD->isVariadic();
    128 
    129   return cast<ObjCMethodDecl>(D)->isVariadic();
    130 }
    131 
    132 static bool isInstanceMethod(const Decl *D) {
    133   if (const CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(D))
    134     return MethodDecl->isInstance();
    135   return false;
    136 }
    137 
    138 static inline bool isNSStringType(QualType T, ASTContext &Ctx) {
    139   const ObjCObjectPointerType *PT = T->getAs<ObjCObjectPointerType>();
    140   if (!PT)
    141     return false;
    142 
    143   ObjCInterfaceDecl *Cls = PT->getObjectType()->getInterface();
    144   if (!Cls)
    145     return false;
    146 
    147   IdentifierInfo* ClsName = Cls->getIdentifier();
    148 
    149   // FIXME: Should we walk the chain of classes?
    150   return ClsName == &Ctx.Idents.get("NSString") ||
    151          ClsName == &Ctx.Idents.get("NSMutableString");
    152 }
    153 
    154 static inline bool isCFStringType(QualType T, ASTContext &Ctx) {
    155   const PointerType *PT = T->getAs<PointerType>();
    156   if (!PT)
    157     return false;
    158 
    159   const RecordType *RT = PT->getPointeeType()->getAs<RecordType>();
    160   if (!RT)
    161     return false;
    162 
    163   const RecordDecl *RD = RT->getDecl();
    164   if (RD->getTagKind() != TTK_Struct)
    165     return false;
    166 
    167   return RD->getIdentifier() == &Ctx.Idents.get("__CFString");
    168 }
    169 
    170 static unsigned getNumAttributeArgs(const AttributeList &Attr) {
    171   // FIXME: Include the type in the argument list.
    172   return Attr.getNumArgs() + Attr.hasParsedType();
    173 }
    174 
    175 template <typename Compare>
    176 static bool checkAttributeNumArgsImpl(Sema &S, const AttributeList &Attr,
    177                                       unsigned Num, unsigned Diag,
    178                                       Compare Comp) {
    179   if (Comp(getNumAttributeArgs(Attr), Num)) {
    180     S.Diag(Attr.getLoc(), Diag) << Attr.getName() << Num;
    181     return false;
    182   }
    183 
    184   return true;
    185 }
    186 
    187 /// \brief Check if the attribute has exactly as many args as Num. May
    188 /// output an error.
    189 static bool checkAttributeNumArgs(Sema &S, const AttributeList &Attr,
    190                                   unsigned Num) {
    191   return checkAttributeNumArgsImpl(S, Attr, Num,
    192                                    diag::err_attribute_wrong_number_arguments,
    193                                    std::not_equal_to<unsigned>());
    194 }
    195 
    196 /// \brief Check if the attribute has at least as many args as Num. May
    197 /// output an error.
    198 static bool checkAttributeAtLeastNumArgs(Sema &S, const AttributeList &Attr,
    199                                          unsigned Num) {
    200   return checkAttributeNumArgsImpl(S, Attr, Num,
    201                                    diag::err_attribute_too_few_arguments,
    202                                    std::less<unsigned>());
    203 }
    204 
    205 /// \brief Check if the attribute has at most as many args as Num. May
    206 /// output an error.
    207 static bool checkAttributeAtMostNumArgs(Sema &S, const AttributeList &Attr,
    208                                          unsigned Num) {
    209   return checkAttributeNumArgsImpl(S, Attr, Num,
    210                                    diag::err_attribute_too_many_arguments,
    211                                    std::greater<unsigned>());
    212 }
    213 
    214 /// \brief If Expr is a valid integer constant, get the value of the integer
    215 /// expression and return success or failure. May output an error.
    216 static bool checkUInt32Argument(Sema &S, const AttributeList &Attr,
    217                                 const Expr *Expr, uint32_t &Val,
    218                                 unsigned Idx = UINT_MAX) {
    219   llvm::APSInt I(32);
    220   if (Expr->isTypeDependent() || Expr->isValueDependent() ||
    221       !Expr->isIntegerConstantExpr(I, S.Context)) {
    222     if (Idx != UINT_MAX)
    223       S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_type)
    224         << Attr.getName() << Idx << AANT_ArgumentIntegerConstant
    225         << Expr->getSourceRange();
    226     else
    227       S.Diag(Attr.getLoc(), diag::err_attribute_argument_type)
    228         << Attr.getName() << AANT_ArgumentIntegerConstant
    229         << Expr->getSourceRange();
    230     return false;
    231   }
    232 
    233   if (!I.isIntN(32)) {
    234     S.Diag(Expr->getExprLoc(), diag::err_ice_too_large)
    235         << I.toString(10, false) << 32 << /* Unsigned */ 1;
    236     return false;
    237   }
    238 
    239   Val = (uint32_t)I.getZExtValue();
    240   return true;
    241 }
    242 
    243 /// \brief Diagnose mutually exclusive attributes when present on a given
    244 /// declaration. Returns true if diagnosed.
    245 template <typename AttrTy>
    246 static bool checkAttrMutualExclusion(Sema &S, Decl *D,
    247                                      const AttributeList &Attr) {
    248   if (AttrTy *A = D->getAttr<AttrTy>()) {
    249     S.Diag(Attr.getLoc(), diag::err_attributes_are_not_compatible)
    250       << Attr.getName() << A;
    251     return true;
    252   }
    253   return false;
    254 }
    255 
    256 /// \brief Check if IdxExpr is a valid parameter index for a function or
    257 /// instance method D.  May output an error.
    258 ///
    259 /// \returns true if IdxExpr is a valid index.
    260 static bool checkFunctionOrMethodParameterIndex(Sema &S, const Decl *D,
    261                                                 const AttributeList &Attr,
    262                                                 unsigned AttrArgNum,
    263                                                 const Expr *IdxExpr,
    264                                                 uint64_t &Idx) {
    265   assert(isFunctionOrMethodOrBlock(D));
    266 
    267   // In C++ the implicit 'this' function parameter also counts.
    268   // Parameters are counted from one.
    269   bool HP = hasFunctionProto(D);
    270   bool HasImplicitThisParam = isInstanceMethod(D);
    271   bool IV = HP && isFunctionOrMethodVariadic(D);
    272   unsigned NumParams =
    273       (HP ? getFunctionOrMethodNumParams(D) : 0) + HasImplicitThisParam;
    274 
    275   llvm::APSInt IdxInt;
    276   if (IdxExpr->isTypeDependent() || IdxExpr->isValueDependent() ||
    277       !IdxExpr->isIntegerConstantExpr(IdxInt, S.Context)) {
    278     S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_type)
    279       << Attr.getName() << AttrArgNum << AANT_ArgumentIntegerConstant
    280       << IdxExpr->getSourceRange();
    281     return false;
    282   }
    283 
    284   Idx = IdxInt.getLimitedValue();
    285   if (Idx < 1 || (!IV && Idx > NumParams)) {
    286     S.Diag(Attr.getLoc(), diag::err_attribute_argument_out_of_bounds)
    287       << Attr.getName() << AttrArgNum << IdxExpr->getSourceRange();
    288     return false;
    289   }
    290   Idx--; // Convert to zero-based.
    291   if (HasImplicitThisParam) {
    292     if (Idx == 0) {
    293       S.Diag(Attr.getLoc(),
    294              diag::err_attribute_invalid_implicit_this_argument)
    295         << Attr.getName() << IdxExpr->getSourceRange();
    296       return false;
    297     }
    298     --Idx;
    299   }
    300 
    301   return true;
    302 }
    303 
    304 /// \brief Check if the argument \p ArgNum of \p Attr is a ASCII string literal.
    305 /// If not emit an error and return false. If the argument is an identifier it
    306 /// will emit an error with a fixit hint and treat it as if it was a string
    307 /// literal.
    308 bool Sema::checkStringLiteralArgumentAttr(const AttributeList &Attr,
    309                                           unsigned ArgNum, StringRef &Str,
    310                                           SourceLocation *ArgLocation) {
    311   // Look for identifiers. If we have one emit a hint to fix it to a literal.
    312   if (Attr.isArgIdent(ArgNum)) {
    313     IdentifierLoc *Loc = Attr.getArgAsIdent(ArgNum);
    314     Diag(Loc->Loc, diag::err_attribute_argument_type)
    315         << Attr.getName() << AANT_ArgumentString
    316         << FixItHint::CreateInsertion(Loc->Loc, "\"")
    317         << FixItHint::CreateInsertion(PP.getLocForEndOfToken(Loc->Loc), "\"");
    318     Str = Loc->Ident->getName();
    319     if (ArgLocation)
    320       *ArgLocation = Loc->Loc;
    321     return true;
    322   }
    323 
    324   // Now check for an actual string literal.
    325   Expr *ArgExpr = Attr.getArgAsExpr(ArgNum);
    326   StringLiteral *Literal = dyn_cast<StringLiteral>(ArgExpr->IgnoreParenCasts());
    327   if (ArgLocation)
    328     *ArgLocation = ArgExpr->getLocStart();
    329 
    330   if (!Literal || !Literal->isAscii()) {
    331     Diag(ArgExpr->getLocStart(), diag::err_attribute_argument_type)
    332         << Attr.getName() << AANT_ArgumentString;
    333     return false;
    334   }
    335 
    336   Str = Literal->getString();
    337   return true;
    338 }
    339 
    340 /// \brief Applies the given attribute to the Decl without performing any
    341 /// additional semantic checking.
    342 template <typename AttrType>
    343 static void handleSimpleAttribute(Sema &S, Decl *D,
    344                                   const AttributeList &Attr) {
    345   D->addAttr(::new (S.Context) AttrType(Attr.getRange(), S.Context,
    346                                         Attr.getAttributeSpellingListIndex()));
    347 }
    348 
    349 /// \brief Check if the passed-in expression is of type int or bool.
    350 static bool isIntOrBool(Expr *Exp) {
    351   QualType QT = Exp->getType();
    352   return QT->isBooleanType() || QT->isIntegerType();
    353 }
    354 
    355 
    356 // Check to see if the type is a smart pointer of some kind.  We assume
    357 // it's a smart pointer if it defines both operator-> and operator*.
    358 static bool threadSafetyCheckIsSmartPointer(Sema &S, const RecordType* RT) {
    359   DeclContextLookupResult Res1 = RT->getDecl()->lookup(
    360       S.Context.DeclarationNames.getCXXOperatorName(OO_Star));
    361   if (Res1.empty())
    362     return false;
    363 
    364   DeclContextLookupResult Res2 = RT->getDecl()->lookup(
    365       S.Context.DeclarationNames.getCXXOperatorName(OO_Arrow));
    366   if (Res2.empty())
    367     return false;
    368 
    369   return true;
    370 }
    371 
    372 /// \brief Check if passed in Decl is a pointer type.
    373 /// Note that this function may produce an error message.
    374 /// \return true if the Decl is a pointer type; false otherwise
    375 static bool threadSafetyCheckIsPointer(Sema &S, const Decl *D,
    376                                        const AttributeList &Attr) {
    377   const ValueDecl *vd = cast<ValueDecl>(D);
    378   QualType QT = vd->getType();
    379   if (QT->isAnyPointerType())
    380     return true;
    381 
    382   if (const RecordType *RT = QT->getAs<RecordType>()) {
    383     // If it's an incomplete type, it could be a smart pointer; skip it.
    384     // (We don't want to force template instantiation if we can avoid it,
    385     // since that would alter the order in which templates are instantiated.)
    386     if (RT->isIncompleteType())
    387       return true;
    388 
    389     if (threadSafetyCheckIsSmartPointer(S, RT))
    390       return true;
    391   }
    392 
    393   S.Diag(Attr.getLoc(), diag::warn_thread_attribute_decl_not_pointer)
    394     << Attr.getName() << QT;
    395   return false;
    396 }
    397 
    398 /// \brief Checks that the passed in QualType either is of RecordType or points
    399 /// to RecordType. Returns the relevant RecordType, null if it does not exit.
    400 static const RecordType *getRecordType(QualType QT) {
    401   if (const RecordType *RT = QT->getAs<RecordType>())
    402     return RT;
    403 
    404   // Now check if we point to record type.
    405   if (const PointerType *PT = QT->getAs<PointerType>())
    406     return PT->getPointeeType()->getAs<RecordType>();
    407 
    408   return nullptr;
    409 }
    410 
    411 static bool checkRecordTypeForCapability(Sema &S, QualType Ty) {
    412   const RecordType *RT = getRecordType(Ty);
    413 
    414   if (!RT)
    415     return false;
    416 
    417   // Don't check for the capability if the class hasn't been defined yet.
    418   if (RT->isIncompleteType())
    419     return true;
    420 
    421   // Allow smart pointers to be used as capability objects.
    422   // FIXME -- Check the type that the smart pointer points to.
    423   if (threadSafetyCheckIsSmartPointer(S, RT))
    424     return true;
    425 
    426   // Check if the record itself has a capability.
    427   RecordDecl *RD = RT->getDecl();
    428   if (RD->hasAttr<CapabilityAttr>())
    429     return true;
    430 
    431   // Else check if any base classes have a capability.
    432   if (CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) {
    433     CXXBasePaths BPaths(false, false);
    434     if (CRD->lookupInBases([](const CXXBaseSpecifier *BS, CXXBasePath &P,
    435       void *) {
    436       return BS->getType()->getAs<RecordType>()
    437         ->getDecl()->hasAttr<CapabilityAttr>();
    438     }, nullptr, BPaths))
    439       return true;
    440   }
    441   return false;
    442 }
    443 
    444 static bool checkTypedefTypeForCapability(QualType Ty) {
    445   const auto *TD = Ty->getAs<TypedefType>();
    446   if (!TD)
    447     return false;
    448 
    449   TypedefNameDecl *TN = TD->getDecl();
    450   if (!TN)
    451     return false;
    452 
    453   return TN->hasAttr<CapabilityAttr>();
    454 }
    455 
    456 static bool typeHasCapability(Sema &S, QualType Ty) {
    457   if (checkTypedefTypeForCapability(Ty))
    458     return true;
    459 
    460   if (checkRecordTypeForCapability(S, Ty))
    461     return true;
    462 
    463   return false;
    464 }
    465 
    466 static bool isCapabilityExpr(Sema &S, const Expr *Ex) {
    467   // Capability expressions are simple expressions involving the boolean logic
    468   // operators &&, || or !, a simple DeclRefExpr, CastExpr or a ParenExpr. Once
    469   // a DeclRefExpr is found, its type should be checked to determine whether it
    470   // is a capability or not.
    471 
    472   if (const auto *E = dyn_cast<DeclRefExpr>(Ex))
    473     return typeHasCapability(S, E->getType());
    474   else if (const auto *E = dyn_cast<CastExpr>(Ex))
    475     return isCapabilityExpr(S, E->getSubExpr());
    476   else if (const auto *E = dyn_cast<ParenExpr>(Ex))
    477     return isCapabilityExpr(S, E->getSubExpr());
    478   else if (const auto *E = dyn_cast<UnaryOperator>(Ex)) {
    479     if (E->getOpcode() == UO_LNot)
    480       return isCapabilityExpr(S, E->getSubExpr());
    481     return false;
    482   } else if (const auto *E = dyn_cast<BinaryOperator>(Ex)) {
    483     if (E->getOpcode() == BO_LAnd || E->getOpcode() == BO_LOr)
    484       return isCapabilityExpr(S, E->getLHS()) &&
    485              isCapabilityExpr(S, E->getRHS());
    486     return false;
    487   }
    488 
    489   return false;
    490 }
    491 
    492 /// \brief Checks that all attribute arguments, starting from Sidx, resolve to
    493 /// a capability object.
    494 /// \param Sidx The attribute argument index to start checking with.
    495 /// \param ParamIdxOk Whether an argument can be indexing into a function
    496 /// parameter list.
    497 static void checkAttrArgsAreCapabilityObjs(Sema &S, Decl *D,
    498                                            const AttributeList &Attr,
    499                                            SmallVectorImpl<Expr *> &Args,
    500                                            int Sidx = 0,
    501                                            bool ParamIdxOk = false) {
    502   for (unsigned Idx = Sidx; Idx < Attr.getNumArgs(); ++Idx) {
    503     Expr *ArgExp = Attr.getArgAsExpr(Idx);
    504 
    505     if (ArgExp->isTypeDependent()) {
    506       // FIXME -- need to check this again on template instantiation
    507       Args.push_back(ArgExp);
    508       continue;
    509     }
    510 
    511     if (StringLiteral *StrLit = dyn_cast<StringLiteral>(ArgExp)) {
    512       if (StrLit->getLength() == 0 ||
    513           (StrLit->isAscii() && StrLit->getString() == StringRef("*"))) {
    514         // Pass empty strings to the analyzer without warnings.
    515         // Treat "*" as the universal lock.
    516         Args.push_back(ArgExp);
    517         continue;
    518       }
    519 
    520       // We allow constant strings to be used as a placeholder for expressions
    521       // that are not valid C++ syntax, but warn that they are ignored.
    522       S.Diag(Attr.getLoc(), diag::warn_thread_attribute_ignored) <<
    523         Attr.getName();
    524       Args.push_back(ArgExp);
    525       continue;
    526     }
    527 
    528     QualType ArgTy = ArgExp->getType();
    529 
    530     // A pointer to member expression of the form  &MyClass::mu is treated
    531     // specially -- we need to look at the type of the member.
    532     if (UnaryOperator *UOp = dyn_cast<UnaryOperator>(ArgExp))
    533       if (UOp->getOpcode() == UO_AddrOf)
    534         if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(UOp->getSubExpr()))
    535           if (DRE->getDecl()->isCXXInstanceMember())
    536             ArgTy = DRE->getDecl()->getType();
    537 
    538     // First see if we can just cast to record type, or pointer to record type.
    539     const RecordType *RT = getRecordType(ArgTy);
    540 
    541     // Now check if we index into a record type function param.
    542     if(!RT && ParamIdxOk) {
    543       FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
    544       IntegerLiteral *IL = dyn_cast<IntegerLiteral>(ArgExp);
    545       if(FD && IL) {
    546         unsigned int NumParams = FD->getNumParams();
    547         llvm::APInt ArgValue = IL->getValue();
    548         uint64_t ParamIdxFromOne = ArgValue.getZExtValue();
    549         uint64_t ParamIdxFromZero = ParamIdxFromOne - 1;
    550         if(!ArgValue.isStrictlyPositive() || ParamIdxFromOne > NumParams) {
    551           S.Diag(Attr.getLoc(), diag::err_attribute_argument_out_of_range)
    552             << Attr.getName() << Idx + 1 << NumParams;
    553           continue;
    554         }
    555         ArgTy = FD->getParamDecl(ParamIdxFromZero)->getType();
    556       }
    557     }
    558 
    559     // If the type does not have a capability, see if the components of the
    560     // expression have capabilities. This allows for writing C code where the
    561     // capability may be on the type, and the expression is a capability
    562     // boolean logic expression. Eg) requires_capability(A || B && !C)
    563     if (!typeHasCapability(S, ArgTy) && !isCapabilityExpr(S, ArgExp))
    564       S.Diag(Attr.getLoc(), diag::warn_thread_attribute_argument_not_lockable)
    565           << Attr.getName() << ArgTy;
    566 
    567     Args.push_back(ArgExp);
    568   }
    569 }
    570 
    571 //===----------------------------------------------------------------------===//
    572 // Attribute Implementations
    573 //===----------------------------------------------------------------------===//
    574 
    575 static void handlePtGuardedVarAttr(Sema &S, Decl *D,
    576                                    const AttributeList &Attr) {
    577   if (!threadSafetyCheckIsPointer(S, D, Attr))
    578     return;
    579 
    580   D->addAttr(::new (S.Context)
    581              PtGuardedVarAttr(Attr.getRange(), S.Context,
    582                               Attr.getAttributeSpellingListIndex()));
    583 }
    584 
    585 static bool checkGuardedByAttrCommon(Sema &S, Decl *D,
    586                                      const AttributeList &Attr,
    587                                      Expr* &Arg) {
    588   SmallVector<Expr*, 1> Args;
    589   // check that all arguments are lockable objects
    590   checkAttrArgsAreCapabilityObjs(S, D, Attr, Args);
    591   unsigned Size = Args.size();
    592   if (Size != 1)
    593     return false;
    594 
    595   Arg = Args[0];
    596 
    597   return true;
    598 }
    599 
    600 static void handleGuardedByAttr(Sema &S, Decl *D, const AttributeList &Attr) {
    601   Expr *Arg = nullptr;
    602   if (!checkGuardedByAttrCommon(S, D, Attr, Arg))
    603     return;
    604 
    605   D->addAttr(::new (S.Context) GuardedByAttr(Attr.getRange(), S.Context, Arg,
    606                                         Attr.getAttributeSpellingListIndex()));
    607 }
    608 
    609 static void handlePtGuardedByAttr(Sema &S, Decl *D,
    610                                   const AttributeList &Attr) {
    611   Expr *Arg = nullptr;
    612   if (!checkGuardedByAttrCommon(S, D, Attr, Arg))
    613     return;
    614 
    615   if (!threadSafetyCheckIsPointer(S, D, Attr))
    616     return;
    617 
    618   D->addAttr(::new (S.Context) PtGuardedByAttr(Attr.getRange(),
    619                                                S.Context, Arg,
    620                                         Attr.getAttributeSpellingListIndex()));
    621 }
    622 
    623 static bool checkAcquireOrderAttrCommon(Sema &S, Decl *D,
    624                                         const AttributeList &Attr,
    625                                         SmallVectorImpl<Expr *> &Args) {
    626   if (!checkAttributeAtLeastNumArgs(S, Attr, 1))
    627     return false;
    628 
    629   // Check that this attribute only applies to lockable types.
    630   QualType QT = cast<ValueDecl>(D)->getType();
    631   if (!QT->isDependentType()) {
    632     const RecordType *RT = getRecordType(QT);
    633     if (!RT || !RT->getDecl()->hasAttr<CapabilityAttr>()) {
    634       S.Diag(Attr.getLoc(), diag::warn_thread_attribute_decl_not_lockable)
    635         << Attr.getName();
    636       return false;
    637     }
    638   }
    639 
    640   // Check that all arguments are lockable objects.
    641   checkAttrArgsAreCapabilityObjs(S, D, Attr, Args);
    642   if (Args.empty())
    643     return false;
    644 
    645   return true;
    646 }
    647 
    648 static void handleAcquiredAfterAttr(Sema &S, Decl *D,
    649                                     const AttributeList &Attr) {
    650   SmallVector<Expr*, 1> Args;
    651   if (!checkAcquireOrderAttrCommon(S, D, Attr, Args))
    652     return;
    653 
    654   Expr **StartArg = &Args[0];
    655   D->addAttr(::new (S.Context)
    656              AcquiredAfterAttr(Attr.getRange(), S.Context,
    657                                StartArg, Args.size(),
    658                                Attr.getAttributeSpellingListIndex()));
    659 }
    660 
    661 static void handleAcquiredBeforeAttr(Sema &S, Decl *D,
    662                                      const AttributeList &Attr) {
    663   SmallVector<Expr*, 1> Args;
    664   if (!checkAcquireOrderAttrCommon(S, D, Attr, Args))
    665     return;
    666 
    667   Expr **StartArg = &Args[0];
    668   D->addAttr(::new (S.Context)
    669              AcquiredBeforeAttr(Attr.getRange(), S.Context,
    670                                 StartArg, Args.size(),
    671                                 Attr.getAttributeSpellingListIndex()));
    672 }
    673 
    674 static bool checkLockFunAttrCommon(Sema &S, Decl *D,
    675                                    const AttributeList &Attr,
    676                                    SmallVectorImpl<Expr *> &Args) {
    677   // zero or more arguments ok
    678   // check that all arguments are lockable objects
    679   checkAttrArgsAreCapabilityObjs(S, D, Attr, Args, 0, /*ParamIdxOk=*/true);
    680 
    681   return true;
    682 }
    683 
    684 static void handleAssertSharedLockAttr(Sema &S, Decl *D,
    685                                        const AttributeList &Attr) {
    686   SmallVector<Expr*, 1> Args;
    687   if (!checkLockFunAttrCommon(S, D, Attr, Args))
    688     return;
    689 
    690   unsigned Size = Args.size();
    691   Expr **StartArg = Size == 0 ? nullptr : &Args[0];
    692   D->addAttr(::new (S.Context)
    693              AssertSharedLockAttr(Attr.getRange(), S.Context, StartArg, Size,
    694                                   Attr.getAttributeSpellingListIndex()));
    695 }
    696 
    697 static void handleAssertExclusiveLockAttr(Sema &S, Decl *D,
    698                                           const AttributeList &Attr) {
    699   SmallVector<Expr*, 1> Args;
    700   if (!checkLockFunAttrCommon(S, D, Attr, Args))
    701     return;
    702 
    703   unsigned Size = Args.size();
    704   Expr **StartArg = Size == 0 ? nullptr : &Args[0];
    705   D->addAttr(::new (S.Context)
    706              AssertExclusiveLockAttr(Attr.getRange(), S.Context,
    707                                      StartArg, Size,
    708                                      Attr.getAttributeSpellingListIndex()));
    709 }
    710 
    711 
    712 static bool checkTryLockFunAttrCommon(Sema &S, Decl *D,
    713                                       const AttributeList &Attr,
    714                                       SmallVectorImpl<Expr *> &Args) {
    715   if (!checkAttributeAtLeastNumArgs(S, Attr, 1))
    716     return false;
    717 
    718   if (!isIntOrBool(Attr.getArgAsExpr(0))) {
    719     S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_type)
    720       << Attr.getName() << 1 << AANT_ArgumentIntOrBool;
    721     return false;
    722   }
    723 
    724   // check that all arguments are lockable objects
    725   checkAttrArgsAreCapabilityObjs(S, D, Attr, Args, 1);
    726 
    727   return true;
    728 }
    729 
    730 static void handleSharedTrylockFunctionAttr(Sema &S, Decl *D,
    731                                             const AttributeList &Attr) {
    732   SmallVector<Expr*, 2> Args;
    733   if (!checkTryLockFunAttrCommon(S, D, Attr, Args))
    734     return;
    735 
    736   D->addAttr(::new (S.Context)
    737              SharedTrylockFunctionAttr(Attr.getRange(), S.Context,
    738                                        Attr.getArgAsExpr(0),
    739                                        Args.data(), Args.size(),
    740                                        Attr.getAttributeSpellingListIndex()));
    741 }
    742 
    743 static void handleExclusiveTrylockFunctionAttr(Sema &S, Decl *D,
    744                                                const AttributeList &Attr) {
    745   SmallVector<Expr*, 2> Args;
    746   if (!checkTryLockFunAttrCommon(S, D, Attr, Args))
    747     return;
    748 
    749   D->addAttr(::new (S.Context) ExclusiveTrylockFunctionAttr(
    750       Attr.getRange(), S.Context, Attr.getArgAsExpr(0), Args.data(),
    751       Args.size(), Attr.getAttributeSpellingListIndex()));
    752 }
    753 
    754 static void handleLockReturnedAttr(Sema &S, Decl *D,
    755                                    const AttributeList &Attr) {
    756   // check that the argument is lockable object
    757   SmallVector<Expr*, 1> Args;
    758   checkAttrArgsAreCapabilityObjs(S, D, Attr, Args);
    759   unsigned Size = Args.size();
    760   if (Size == 0)
    761     return;
    762 
    763   D->addAttr(::new (S.Context)
    764              LockReturnedAttr(Attr.getRange(), S.Context, Args[0],
    765                               Attr.getAttributeSpellingListIndex()));
    766 }
    767 
    768 static void handleLocksExcludedAttr(Sema &S, Decl *D,
    769                                     const AttributeList &Attr) {
    770   if (!checkAttributeAtLeastNumArgs(S, Attr, 1))
    771     return;
    772 
    773   // check that all arguments are lockable objects
    774   SmallVector<Expr*, 1> Args;
    775   checkAttrArgsAreCapabilityObjs(S, D, Attr, Args);
    776   unsigned Size = Args.size();
    777   if (Size == 0)
    778     return;
    779   Expr **StartArg = &Args[0];
    780 
    781   D->addAttr(::new (S.Context)
    782              LocksExcludedAttr(Attr.getRange(), S.Context, StartArg, Size,
    783                                Attr.getAttributeSpellingListIndex()));
    784 }
    785 
    786 static void handleEnableIfAttr(Sema &S, Decl *D, const AttributeList &Attr) {
    787   Expr *Cond = Attr.getArgAsExpr(0);
    788   if (!Cond->isTypeDependent()) {
    789     ExprResult Converted = S.PerformContextuallyConvertToBool(Cond);
    790     if (Converted.isInvalid())
    791       return;
    792     Cond = Converted.get();
    793   }
    794 
    795   StringRef Msg;
    796   if (!S.checkStringLiteralArgumentAttr(Attr, 1, Msg))
    797     return;
    798 
    799   SmallVector<PartialDiagnosticAt, 8> Diags;
    800   if (!Cond->isValueDependent() &&
    801       !Expr::isPotentialConstantExprUnevaluated(Cond, cast<FunctionDecl>(D),
    802                                                 Diags)) {
    803     S.Diag(Attr.getLoc(), diag::err_enable_if_never_constant_expr);
    804     for (int I = 0, N = Diags.size(); I != N; ++I)
    805       S.Diag(Diags[I].first, Diags[I].second);
    806     return;
    807   }
    808 
    809   D->addAttr(::new (S.Context)
    810              EnableIfAttr(Attr.getRange(), S.Context, Cond, Msg,
    811                           Attr.getAttributeSpellingListIndex()));
    812 }
    813 
    814 static void handleConsumableAttr(Sema &S, Decl *D, const AttributeList &Attr) {
    815   ConsumableAttr::ConsumedState DefaultState;
    816 
    817   if (Attr.isArgIdent(0)) {
    818     IdentifierLoc *IL = Attr.getArgAsIdent(0);
    819     if (!ConsumableAttr::ConvertStrToConsumedState(IL->Ident->getName(),
    820                                                    DefaultState)) {
    821       S.Diag(IL->Loc, diag::warn_attribute_type_not_supported)
    822         << Attr.getName() << IL->Ident;
    823       return;
    824     }
    825   } else {
    826     S.Diag(Attr.getLoc(), diag::err_attribute_argument_type)
    827         << Attr.getName() << AANT_ArgumentIdentifier;
    828     return;
    829   }
    830 
    831   D->addAttr(::new (S.Context)
    832              ConsumableAttr(Attr.getRange(), S.Context, DefaultState,
    833                             Attr.getAttributeSpellingListIndex()));
    834 }
    835 
    836 
    837 static bool checkForConsumableClass(Sema &S, const CXXMethodDecl *MD,
    838                                         const AttributeList &Attr) {
    839   ASTContext &CurrContext = S.getASTContext();
    840   QualType ThisType = MD->getThisType(CurrContext)->getPointeeType();
    841 
    842   if (const CXXRecordDecl *RD = ThisType->getAsCXXRecordDecl()) {
    843     if (!RD->hasAttr<ConsumableAttr>()) {
    844       S.Diag(Attr.getLoc(), diag::warn_attr_on_unconsumable_class) <<
    845         RD->getNameAsString();
    846 
    847       return false;
    848     }
    849   }
    850 
    851   return true;
    852 }
    853 
    854 
    855 static void handleCallableWhenAttr(Sema &S, Decl *D,
    856                                    const AttributeList &Attr) {
    857   if (!checkAttributeAtLeastNumArgs(S, Attr, 1))
    858     return;
    859 
    860   if (!checkForConsumableClass(S, cast<CXXMethodDecl>(D), Attr))
    861     return;
    862 
    863   SmallVector<CallableWhenAttr::ConsumedState, 3> States;
    864   for (unsigned ArgIndex = 0; ArgIndex < Attr.getNumArgs(); ++ArgIndex) {
    865     CallableWhenAttr::ConsumedState CallableState;
    866 
    867     StringRef StateString;
    868     SourceLocation Loc;
    869     if (Attr.isArgIdent(ArgIndex)) {
    870       IdentifierLoc *Ident = Attr.getArgAsIdent(ArgIndex);
    871       StateString = Ident->Ident->getName();
    872       Loc = Ident->Loc;
    873     } else {
    874       if (!S.checkStringLiteralArgumentAttr(Attr, ArgIndex, StateString, &Loc))
    875         return;
    876     }
    877 
    878     if (!CallableWhenAttr::ConvertStrToConsumedState(StateString,
    879                                                      CallableState)) {
    880       S.Diag(Loc, diag::warn_attribute_type_not_supported)
    881         << Attr.getName() << StateString;
    882       return;
    883     }
    884 
    885     States.push_back(CallableState);
    886   }
    887 
    888   D->addAttr(::new (S.Context)
    889              CallableWhenAttr(Attr.getRange(), S.Context, States.data(),
    890                States.size(), Attr.getAttributeSpellingListIndex()));
    891 }
    892 
    893 
    894 static void handleParamTypestateAttr(Sema &S, Decl *D,
    895                                     const AttributeList &Attr) {
    896   ParamTypestateAttr::ConsumedState ParamState;
    897 
    898   if (Attr.isArgIdent(0)) {
    899     IdentifierLoc *Ident = Attr.getArgAsIdent(0);
    900     StringRef StateString = Ident->Ident->getName();
    901 
    902     if (!ParamTypestateAttr::ConvertStrToConsumedState(StateString,
    903                                                        ParamState)) {
    904       S.Diag(Ident->Loc, diag::warn_attribute_type_not_supported)
    905         << Attr.getName() << StateString;
    906       return;
    907     }
    908   } else {
    909     S.Diag(Attr.getLoc(), diag::err_attribute_argument_type) <<
    910       Attr.getName() << AANT_ArgumentIdentifier;
    911     return;
    912   }
    913 
    914   // FIXME: This check is currently being done in the analysis.  It can be
    915   //        enabled here only after the parser propagates attributes at
    916   //        template specialization definition, not declaration.
    917   //QualType ReturnType = cast<ParmVarDecl>(D)->getType();
    918   //const CXXRecordDecl *RD = ReturnType->getAsCXXRecordDecl();
    919   //
    920   //if (!RD || !RD->hasAttr<ConsumableAttr>()) {
    921   //    S.Diag(Attr.getLoc(), diag::warn_return_state_for_unconsumable_type) <<
    922   //      ReturnType.getAsString();
    923   //    return;
    924   //}
    925 
    926   D->addAttr(::new (S.Context)
    927              ParamTypestateAttr(Attr.getRange(), S.Context, ParamState,
    928                                 Attr.getAttributeSpellingListIndex()));
    929 }
    930 
    931 
    932 static void handleReturnTypestateAttr(Sema &S, Decl *D,
    933                                       const AttributeList &Attr) {
    934   ReturnTypestateAttr::ConsumedState ReturnState;
    935 
    936   if (Attr.isArgIdent(0)) {
    937     IdentifierLoc *IL = Attr.getArgAsIdent(0);
    938     if (!ReturnTypestateAttr::ConvertStrToConsumedState(IL->Ident->getName(),
    939                                                         ReturnState)) {
    940       S.Diag(IL->Loc, diag::warn_attribute_type_not_supported)
    941         << Attr.getName() << IL->Ident;
    942       return;
    943     }
    944   } else {
    945     S.Diag(Attr.getLoc(), diag::err_attribute_argument_type) <<
    946       Attr.getName() << AANT_ArgumentIdentifier;
    947     return;
    948   }
    949 
    950   // FIXME: This check is currently being done in the analysis.  It can be
    951   //        enabled here only after the parser propagates attributes at
    952   //        template specialization definition, not declaration.
    953   //QualType ReturnType;
    954   //
    955   //if (const ParmVarDecl *Param = dyn_cast<ParmVarDecl>(D)) {
    956   //  ReturnType = Param->getType();
    957   //
    958   //} else if (const CXXConstructorDecl *Constructor =
    959   //             dyn_cast<CXXConstructorDecl>(D)) {
    960   //  ReturnType = Constructor->getThisType(S.getASTContext())->getPointeeType();
    961   //
    962   //} else {
    963   //
    964   //  ReturnType = cast<FunctionDecl>(D)->getCallResultType();
    965   //}
    966   //
    967   //const CXXRecordDecl *RD = ReturnType->getAsCXXRecordDecl();
    968   //
    969   //if (!RD || !RD->hasAttr<ConsumableAttr>()) {
    970   //    S.Diag(Attr.getLoc(), diag::warn_return_state_for_unconsumable_type) <<
    971   //      ReturnType.getAsString();
    972   //    return;
    973   //}
    974 
    975   D->addAttr(::new (S.Context)
    976              ReturnTypestateAttr(Attr.getRange(), S.Context, ReturnState,
    977                                  Attr.getAttributeSpellingListIndex()));
    978 }
    979 
    980 
    981 static void handleSetTypestateAttr(Sema &S, Decl *D, const AttributeList &Attr) {
    982   if (!checkForConsumableClass(S, cast<CXXMethodDecl>(D), Attr))
    983     return;
    984 
    985   SetTypestateAttr::ConsumedState NewState;
    986   if (Attr.isArgIdent(0)) {
    987     IdentifierLoc *Ident = Attr.getArgAsIdent(0);
    988     StringRef Param = Ident->Ident->getName();
    989     if (!SetTypestateAttr::ConvertStrToConsumedState(Param, NewState)) {
    990       S.Diag(Ident->Loc, diag::warn_attribute_type_not_supported)
    991         << Attr.getName() << Param;
    992       return;
    993     }
    994   } else {
    995     S.Diag(Attr.getLoc(), diag::err_attribute_argument_type) <<
    996       Attr.getName() << AANT_ArgumentIdentifier;
    997     return;
    998   }
    999 
   1000   D->addAttr(::new (S.Context)
   1001              SetTypestateAttr(Attr.getRange(), S.Context, NewState,
   1002                               Attr.getAttributeSpellingListIndex()));
   1003 }
   1004 
   1005 static void handleTestTypestateAttr(Sema &S, Decl *D,
   1006                                     const AttributeList &Attr) {
   1007   if (!checkForConsumableClass(S, cast<CXXMethodDecl>(D), Attr))
   1008     return;
   1009 
   1010   TestTypestateAttr::ConsumedState TestState;
   1011   if (Attr.isArgIdent(0)) {
   1012     IdentifierLoc *Ident = Attr.getArgAsIdent(0);
   1013     StringRef Param = Ident->Ident->getName();
   1014     if (!TestTypestateAttr::ConvertStrToConsumedState(Param, TestState)) {
   1015       S.Diag(Ident->Loc, diag::warn_attribute_type_not_supported)
   1016         << Attr.getName() << Param;
   1017       return;
   1018     }
   1019   } else {
   1020     S.Diag(Attr.getLoc(), diag::err_attribute_argument_type) <<
   1021       Attr.getName() << AANT_ArgumentIdentifier;
   1022     return;
   1023   }
   1024 
   1025   D->addAttr(::new (S.Context)
   1026              TestTypestateAttr(Attr.getRange(), S.Context, TestState,
   1027                                 Attr.getAttributeSpellingListIndex()));
   1028 }
   1029 
   1030 static void handleExtVectorTypeAttr(Sema &S, Scope *scope, Decl *D,
   1031                                     const AttributeList &Attr) {
   1032   // Remember this typedef decl, we will need it later for diagnostics.
   1033   S.ExtVectorDecls.push_back(cast<TypedefNameDecl>(D));
   1034 }
   1035 
   1036 static void handlePackedAttr(Sema &S, Decl *D, const AttributeList &Attr) {
   1037   if (TagDecl *TD = dyn_cast<TagDecl>(D))
   1038     TD->addAttr(::new (S.Context) PackedAttr(Attr.getRange(), S.Context,
   1039                                         Attr.getAttributeSpellingListIndex()));
   1040   else if (FieldDecl *FD = dyn_cast<FieldDecl>(D)) {
   1041     // If the alignment is less than or equal to 8 bits, the packed attribute
   1042     // has no effect.
   1043     if (!FD->getType()->isDependentType() &&
   1044         !FD->getType()->isIncompleteType() &&
   1045         S.Context.getTypeAlign(FD->getType()) <= 8)
   1046       S.Diag(Attr.getLoc(), diag::warn_attribute_ignored_for_field_of_type)
   1047         << Attr.getName() << FD->getType();
   1048     else
   1049       FD->addAttr(::new (S.Context)
   1050                   PackedAttr(Attr.getRange(), S.Context,
   1051                              Attr.getAttributeSpellingListIndex()));
   1052   } else
   1053     S.Diag(Attr.getLoc(), diag::warn_attribute_ignored) << Attr.getName();
   1054 }
   1055 
   1056 static bool checkIBOutletCommon(Sema &S, Decl *D, const AttributeList &Attr) {
   1057   // The IBOutlet/IBOutletCollection attributes only apply to instance
   1058   // variables or properties of Objective-C classes.  The outlet must also
   1059   // have an object reference type.
   1060   if (const ObjCIvarDecl *VD = dyn_cast<ObjCIvarDecl>(D)) {
   1061     if (!VD->getType()->getAs<ObjCObjectPointerType>()) {
   1062       S.Diag(Attr.getLoc(), diag::warn_iboutlet_object_type)
   1063         << Attr.getName() << VD->getType() << 0;
   1064       return false;
   1065     }
   1066   }
   1067   else if (const ObjCPropertyDecl *PD = dyn_cast<ObjCPropertyDecl>(D)) {
   1068     if (!PD->getType()->getAs<ObjCObjectPointerType>()) {
   1069       S.Diag(Attr.getLoc(), diag::warn_iboutlet_object_type)
   1070         << Attr.getName() << PD->getType() << 1;
   1071       return false;
   1072     }
   1073   }
   1074   else {
   1075     S.Diag(Attr.getLoc(), diag::warn_attribute_iboutlet) << Attr.getName();
   1076     return false;
   1077   }
   1078 
   1079   return true;
   1080 }
   1081 
   1082 static void handleIBOutlet(Sema &S, Decl *D, const AttributeList &Attr) {
   1083   if (!checkIBOutletCommon(S, D, Attr))
   1084     return;
   1085 
   1086   D->addAttr(::new (S.Context)
   1087              IBOutletAttr(Attr.getRange(), S.Context,
   1088                           Attr.getAttributeSpellingListIndex()));
   1089 }
   1090 
   1091 static void handleIBOutletCollection(Sema &S, Decl *D,
   1092                                      const AttributeList &Attr) {
   1093 
   1094   // The iboutletcollection attribute can have zero or one arguments.
   1095   if (Attr.getNumArgs() > 1) {
   1096     S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments)
   1097       << Attr.getName() << 1;
   1098     return;
   1099   }
   1100 
   1101   if (!checkIBOutletCommon(S, D, Attr))
   1102     return;
   1103 
   1104   ParsedType PT;
   1105 
   1106   if (Attr.hasParsedType())
   1107     PT = Attr.getTypeArg();
   1108   else {
   1109     PT = S.getTypeName(S.Context.Idents.get("NSObject"), Attr.getLoc(),
   1110                        S.getScopeForContext(D->getDeclContext()->getParent()));
   1111     if (!PT) {
   1112       S.Diag(Attr.getLoc(), diag::err_iboutletcollection_type) << "NSObject";
   1113       return;
   1114     }
   1115   }
   1116 
   1117   TypeSourceInfo *QTLoc = nullptr;
   1118   QualType QT = S.GetTypeFromParser(PT, &QTLoc);
   1119   if (!QTLoc)
   1120     QTLoc = S.Context.getTrivialTypeSourceInfo(QT, Attr.getLoc());
   1121 
   1122   // Diagnose use of non-object type in iboutletcollection attribute.
   1123   // FIXME. Gnu attribute extension ignores use of builtin types in
   1124   // attributes. So, __attribute__((iboutletcollection(char))) will be
   1125   // treated as __attribute__((iboutletcollection())).
   1126   if (!QT->isObjCIdType() && !QT->isObjCObjectType()) {
   1127     S.Diag(Attr.getLoc(),
   1128            QT->isBuiltinType() ? diag::err_iboutletcollection_builtintype
   1129                                : diag::err_iboutletcollection_type) << QT;
   1130     return;
   1131   }
   1132 
   1133   D->addAttr(::new (S.Context)
   1134              IBOutletCollectionAttr(Attr.getRange(), S.Context, QTLoc,
   1135                                     Attr.getAttributeSpellingListIndex()));
   1136 }
   1137 
   1138 bool Sema::isValidPointerAttrType(QualType T, bool RefOkay) {
   1139   if (RefOkay) {
   1140     if (T->isReferenceType())
   1141       return true;
   1142   } else {
   1143     T = T.getNonReferenceType();
   1144   }
   1145 
   1146   // The nonnull attribute, and other similar attributes, can be applied to a
   1147   // transparent union that contains a pointer type.
   1148   if (const RecordType *UT = T->getAsUnionType()) {
   1149     if (UT && UT->getDecl()->hasAttr<TransparentUnionAttr>()) {
   1150       RecordDecl *UD = UT->getDecl();
   1151       for (const auto *I : UD->fields()) {
   1152         QualType QT = I->getType();
   1153         if (QT->isAnyPointerType() || QT->isBlockPointerType())
   1154           return true;
   1155       }
   1156     }
   1157   }
   1158 
   1159   return T->isAnyPointerType() || T->isBlockPointerType();
   1160 }
   1161 
   1162 static bool attrNonNullArgCheck(Sema &S, QualType T, const AttributeList &Attr,
   1163                                 SourceRange AttrParmRange,
   1164                                 SourceRange TypeRange,
   1165                                 bool isReturnValue = false) {
   1166   if (!S.isValidPointerAttrType(T)) {
   1167     S.Diag(Attr.getLoc(), isReturnValue
   1168                               ? diag::warn_attribute_return_pointers_only
   1169                               : diag::warn_attribute_pointers_only)
   1170         << Attr.getName() << AttrParmRange << TypeRange;
   1171     return false;
   1172   }
   1173   return true;
   1174 }
   1175 
   1176 static void handleNonNullAttr(Sema &S, Decl *D, const AttributeList &Attr) {
   1177   SmallVector<unsigned, 8> NonNullArgs;
   1178   for (unsigned I = 0; I < Attr.getNumArgs(); ++I) {
   1179     Expr *Ex = Attr.getArgAsExpr(I);
   1180     uint64_t Idx;
   1181     if (!checkFunctionOrMethodParameterIndex(S, D, Attr, I + 1, Ex, Idx))
   1182       return;
   1183 
   1184     // Is the function argument a pointer type?
   1185     if (Idx < getFunctionOrMethodNumParams(D) &&
   1186         !attrNonNullArgCheck(S, getFunctionOrMethodParamType(D, Idx), Attr,
   1187                              Ex->getSourceRange(),
   1188                              getFunctionOrMethodParamRange(D, Idx)))
   1189       continue;
   1190 
   1191     NonNullArgs.push_back(Idx);
   1192   }
   1193 
   1194   // If no arguments were specified to __attribute__((nonnull)) then all pointer
   1195   // arguments have a nonnull attribute; warn if there aren't any. Skip this
   1196   // check if the attribute came from a macro expansion or a template
   1197   // instantiation.
   1198   if (NonNullArgs.empty() && Attr.getLoc().isFileID() &&
   1199       S.ActiveTemplateInstantiations.empty()) {
   1200     bool AnyPointers = isFunctionOrMethodVariadic(D);
   1201     for (unsigned I = 0, E = getFunctionOrMethodNumParams(D);
   1202          I != E && !AnyPointers; ++I) {
   1203       QualType T = getFunctionOrMethodParamType(D, I);
   1204       if (T->isDependentType() || S.isValidPointerAttrType(T))
   1205         AnyPointers = true;
   1206     }
   1207 
   1208     if (!AnyPointers)
   1209       S.Diag(Attr.getLoc(), diag::warn_attribute_nonnull_no_pointers);
   1210   }
   1211 
   1212   unsigned *Start = NonNullArgs.data();
   1213   unsigned Size = NonNullArgs.size();
   1214   llvm::array_pod_sort(Start, Start + Size);
   1215   D->addAttr(::new (S.Context)
   1216              NonNullAttr(Attr.getRange(), S.Context, Start, Size,
   1217                          Attr.getAttributeSpellingListIndex()));
   1218 }
   1219 
   1220 static void handleNonNullAttrParameter(Sema &S, ParmVarDecl *D,
   1221                                        const AttributeList &Attr) {
   1222   if (Attr.getNumArgs() > 0) {
   1223     if (D->getFunctionType()) {
   1224       handleNonNullAttr(S, D, Attr);
   1225     } else {
   1226       S.Diag(Attr.getLoc(), diag::warn_attribute_nonnull_parm_no_args)
   1227         << D->getSourceRange();
   1228     }
   1229     return;
   1230   }
   1231 
   1232   // Is the argument a pointer type?
   1233   if (!attrNonNullArgCheck(S, D->getType(), Attr, SourceRange(),
   1234                            D->getSourceRange()))
   1235     return;
   1236 
   1237   D->addAttr(::new (S.Context)
   1238              NonNullAttr(Attr.getRange(), S.Context, nullptr, 0,
   1239                          Attr.getAttributeSpellingListIndex()));
   1240 }
   1241 
   1242 static void handleReturnsNonNullAttr(Sema &S, Decl *D,
   1243                                      const AttributeList &Attr) {
   1244   QualType ResultType = getFunctionOrMethodResultType(D);
   1245   SourceRange SR = getFunctionOrMethodResultSourceRange(D);
   1246   if (!attrNonNullArgCheck(S, ResultType, Attr, SourceRange(), SR,
   1247                            /* isReturnValue */ true))
   1248     return;
   1249 
   1250   D->addAttr(::new (S.Context)
   1251             ReturnsNonNullAttr(Attr.getRange(), S.Context,
   1252                                Attr.getAttributeSpellingListIndex()));
   1253 }
   1254 
   1255 static void handleAssumeAlignedAttr(Sema &S, Decl *D,
   1256                                     const AttributeList &Attr) {
   1257   Expr *E = Attr.getArgAsExpr(0),
   1258        *OE = Attr.getNumArgs() > 1 ? Attr.getArgAsExpr(1) : nullptr;
   1259   S.AddAssumeAlignedAttr(Attr.getRange(), D, E, OE,
   1260                          Attr.getAttributeSpellingListIndex());
   1261 }
   1262 
   1263 void Sema::AddAssumeAlignedAttr(SourceRange AttrRange, Decl *D, Expr *E,
   1264                                 Expr *OE, unsigned SpellingListIndex) {
   1265   QualType ResultType = getFunctionOrMethodResultType(D);
   1266   SourceRange SR = getFunctionOrMethodResultSourceRange(D);
   1267 
   1268   AssumeAlignedAttr TmpAttr(AttrRange, Context, E, OE, SpellingListIndex);
   1269   SourceLocation AttrLoc = AttrRange.getBegin();
   1270 
   1271   if (!isValidPointerAttrType(ResultType, /* RefOkay */ true)) {
   1272     Diag(AttrLoc, diag::warn_attribute_return_pointers_refs_only)
   1273       << &TmpAttr << AttrRange << SR;
   1274     return;
   1275   }
   1276 
   1277   if (!E->isValueDependent()) {
   1278     llvm::APSInt I(64);
   1279     if (!E->isIntegerConstantExpr(I, Context)) {
   1280       if (OE)
   1281         Diag(AttrLoc, diag::err_attribute_argument_n_type)
   1282           << &TmpAttr << 1 << AANT_ArgumentIntegerConstant
   1283           << E->getSourceRange();
   1284       else
   1285         Diag(AttrLoc, diag::err_attribute_argument_type)
   1286           << &TmpAttr << AANT_ArgumentIntegerConstant
   1287           << E->getSourceRange();
   1288       return;
   1289     }
   1290 
   1291     if (!I.isPowerOf2()) {
   1292       Diag(AttrLoc, diag::err_alignment_not_power_of_two)
   1293         << E->getSourceRange();
   1294       return;
   1295     }
   1296   }
   1297 
   1298   if (OE) {
   1299     if (!OE->isValueDependent()) {
   1300       llvm::APSInt I(64);
   1301       if (!OE->isIntegerConstantExpr(I, Context)) {
   1302         Diag(AttrLoc, diag::err_attribute_argument_n_type)
   1303           << &TmpAttr << 2 << AANT_ArgumentIntegerConstant
   1304           << OE->getSourceRange();
   1305         return;
   1306       }
   1307     }
   1308   }
   1309 
   1310   D->addAttr(::new (Context)
   1311             AssumeAlignedAttr(AttrRange, Context, E, OE, SpellingListIndex));
   1312 }
   1313 
   1314 static void handleOwnershipAttr(Sema &S, Decl *D, const AttributeList &AL) {
   1315   // This attribute must be applied to a function declaration. The first
   1316   // argument to the attribute must be an identifier, the name of the resource,
   1317   // for example: malloc. The following arguments must be argument indexes, the
   1318   // arguments must be of integer type for Returns, otherwise of pointer type.
   1319   // The difference between Holds and Takes is that a pointer may still be used
   1320   // after being held. free() should be __attribute((ownership_takes)), whereas
   1321   // a list append function may well be __attribute((ownership_holds)).
   1322 
   1323   if (!AL.isArgIdent(0)) {
   1324     S.Diag(AL.getLoc(), diag::err_attribute_argument_n_type)
   1325       << AL.getName() << 1 << AANT_ArgumentIdentifier;
   1326     return;
   1327   }
   1328 
   1329   // Figure out our Kind.
   1330   OwnershipAttr::OwnershipKind K =
   1331       OwnershipAttr(AL.getLoc(), S.Context, nullptr, nullptr, 0,
   1332                     AL.getAttributeSpellingListIndex()).getOwnKind();
   1333 
   1334   // Check arguments.
   1335   switch (K) {
   1336   case OwnershipAttr::Takes:
   1337   case OwnershipAttr::Holds:
   1338     if (AL.getNumArgs() < 2) {
   1339       S.Diag(AL.getLoc(), diag::err_attribute_too_few_arguments)
   1340         << AL.getName() << 2;
   1341       return;
   1342     }
   1343     break;
   1344   case OwnershipAttr::Returns:
   1345     if (AL.getNumArgs() > 2) {
   1346       S.Diag(AL.getLoc(), diag::err_attribute_too_many_arguments)
   1347         << AL.getName() << 1;
   1348       return;
   1349     }
   1350     break;
   1351   }
   1352 
   1353   IdentifierInfo *Module = AL.getArgAsIdent(0)->Ident;
   1354 
   1355   // Normalize the argument, __foo__ becomes foo.
   1356   StringRef ModuleName = Module->getName();
   1357   if (ModuleName.startswith("__") && ModuleName.endswith("__") &&
   1358       ModuleName.size() > 4) {
   1359     ModuleName = ModuleName.drop_front(2).drop_back(2);
   1360     Module = &S.PP.getIdentifierTable().get(ModuleName);
   1361   }
   1362 
   1363   SmallVector<unsigned, 8> OwnershipArgs;
   1364   for (unsigned i = 1; i < AL.getNumArgs(); ++i) {
   1365     Expr *Ex = AL.getArgAsExpr(i);
   1366     uint64_t Idx;
   1367     if (!checkFunctionOrMethodParameterIndex(S, D, AL, i, Ex, Idx))
   1368       return;
   1369 
   1370     // Is the function argument a pointer type?
   1371     QualType T = getFunctionOrMethodParamType(D, Idx);
   1372     int Err = -1;  // No error
   1373     switch (K) {
   1374       case OwnershipAttr::Takes:
   1375       case OwnershipAttr::Holds:
   1376         if (!T->isAnyPointerType() && !T->isBlockPointerType())
   1377           Err = 0;
   1378         break;
   1379       case OwnershipAttr::Returns:
   1380         if (!T->isIntegerType())
   1381           Err = 1;
   1382         break;
   1383     }
   1384     if (-1 != Err) {
   1385       S.Diag(AL.getLoc(), diag::err_ownership_type) << AL.getName() << Err
   1386         << Ex->getSourceRange();
   1387       return;
   1388     }
   1389 
   1390     // Check we don't have a conflict with another ownership attribute.
   1391     for (const auto *I : D->specific_attrs<OwnershipAttr>()) {
   1392       // Cannot have two ownership attributes of different kinds for the same
   1393       // index.
   1394       if (I->getOwnKind() != K && I->args_end() !=
   1395           std::find(I->args_begin(), I->args_end(), Idx)) {
   1396         S.Diag(AL.getLoc(), diag::err_attributes_are_not_compatible)
   1397           << AL.getName() << I;
   1398         return;
   1399       } else if (K == OwnershipAttr::Returns &&
   1400                  I->getOwnKind() == OwnershipAttr::Returns) {
   1401         // A returns attribute conflicts with any other returns attribute using
   1402         // a different index. Note, diagnostic reporting is 1-based, but stored
   1403         // argument indexes are 0-based.
   1404         if (std::find(I->args_begin(), I->args_end(), Idx) == I->args_end()) {
   1405           S.Diag(I->getLocation(), diag::err_ownership_returns_index_mismatch)
   1406               << *(I->args_begin()) + 1;
   1407           if (I->args_size())
   1408             S.Diag(AL.getLoc(), diag::note_ownership_returns_index_mismatch)
   1409                 << (unsigned)Idx + 1 << Ex->getSourceRange();
   1410           return;
   1411         }
   1412       }
   1413     }
   1414     OwnershipArgs.push_back(Idx);
   1415   }
   1416 
   1417   unsigned* start = OwnershipArgs.data();
   1418   unsigned size = OwnershipArgs.size();
   1419   llvm::array_pod_sort(start, start + size);
   1420 
   1421   D->addAttr(::new (S.Context)
   1422              OwnershipAttr(AL.getLoc(), S.Context, Module, start, size,
   1423                            AL.getAttributeSpellingListIndex()));
   1424 }
   1425 
   1426 static void handleWeakRefAttr(Sema &S, Decl *D, const AttributeList &Attr) {
   1427   // Check the attribute arguments.
   1428   if (Attr.getNumArgs() > 1) {
   1429     S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments)
   1430       << Attr.getName() << 1;
   1431     return;
   1432   }
   1433 
   1434   NamedDecl *nd = cast<NamedDecl>(D);
   1435 
   1436   // gcc rejects
   1437   // class c {
   1438   //   static int a __attribute__((weakref ("v2")));
   1439   //   static int b() __attribute__((weakref ("f3")));
   1440   // };
   1441   // and ignores the attributes of
   1442   // void f(void) {
   1443   //   static int a __attribute__((weakref ("v2")));
   1444   // }
   1445   // we reject them
   1446   const DeclContext *Ctx = D->getDeclContext()->getRedeclContext();
   1447   if (!Ctx->isFileContext()) {
   1448     S.Diag(Attr.getLoc(), diag::err_attribute_weakref_not_global_context)
   1449       << nd;
   1450     return;
   1451   }
   1452 
   1453   // The GCC manual says
   1454   //
   1455   // At present, a declaration to which `weakref' is attached can only
   1456   // be `static'.
   1457   //
   1458   // It also says
   1459   //
   1460   // Without a TARGET,
   1461   // given as an argument to `weakref' or to `alias', `weakref' is
   1462   // equivalent to `weak'.
   1463   //
   1464   // gcc 4.4.1 will accept
   1465   // int a7 __attribute__((weakref));
   1466   // as
   1467   // int a7 __attribute__((weak));
   1468   // This looks like a bug in gcc. We reject that for now. We should revisit
   1469   // it if this behaviour is actually used.
   1470 
   1471   // GCC rejects
   1472   // static ((alias ("y"), weakref)).
   1473   // Should we? How to check that weakref is before or after alias?
   1474 
   1475   // FIXME: it would be good for us to keep the WeakRefAttr as-written instead
   1476   // of transforming it into an AliasAttr.  The WeakRefAttr never uses the
   1477   // StringRef parameter it was given anyway.
   1478   StringRef Str;
   1479   if (Attr.getNumArgs() && S.checkStringLiteralArgumentAttr(Attr, 0, Str))
   1480     // GCC will accept anything as the argument of weakref. Should we
   1481     // check for an existing decl?
   1482     D->addAttr(::new (S.Context) AliasAttr(Attr.getRange(), S.Context, Str,
   1483                                         Attr.getAttributeSpellingListIndex()));
   1484 
   1485   D->addAttr(::new (S.Context)
   1486              WeakRefAttr(Attr.getRange(), S.Context,
   1487                          Attr.getAttributeSpellingListIndex()));
   1488 }
   1489 
   1490 static void handleAliasAttr(Sema &S, Decl *D, const AttributeList &Attr) {
   1491   StringRef Str;
   1492   if (!S.checkStringLiteralArgumentAttr(Attr, 0, Str))
   1493     return;
   1494 
   1495   if (S.Context.getTargetInfo().getTriple().isOSDarwin()) {
   1496     S.Diag(Attr.getLoc(), diag::err_alias_not_supported_on_darwin);
   1497     return;
   1498   }
   1499 
   1500   // Aliases should be on declarations, not definitions.
   1501   if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
   1502     if (FD->isThisDeclarationADefinition()) {
   1503       S.Diag(Attr.getLoc(), diag::err_alias_is_definition) << FD;
   1504       return;
   1505     }
   1506   } else {
   1507     const auto *VD = cast<VarDecl>(D);
   1508     if (VD->isThisDeclarationADefinition() && VD->isExternallyVisible()) {
   1509       S.Diag(Attr.getLoc(), diag::err_alias_is_definition) << VD;
   1510       return;
   1511     }
   1512   }
   1513 
   1514   // FIXME: check if target symbol exists in current file
   1515 
   1516   D->addAttr(::new (S.Context) AliasAttr(Attr.getRange(), S.Context, Str,
   1517                                          Attr.getAttributeSpellingListIndex()));
   1518 }
   1519 
   1520 static void handleColdAttr(Sema &S, Decl *D, const AttributeList &Attr) {
   1521   if (checkAttrMutualExclusion<HotAttr>(S, D, Attr))
   1522     return;
   1523 
   1524   D->addAttr(::new (S.Context) ColdAttr(Attr.getRange(), S.Context,
   1525                                         Attr.getAttributeSpellingListIndex()));
   1526 }
   1527 
   1528 static void handleHotAttr(Sema &S, Decl *D, const AttributeList &Attr) {
   1529   if (checkAttrMutualExclusion<ColdAttr>(S, D, Attr))
   1530     return;
   1531 
   1532   D->addAttr(::new (S.Context) HotAttr(Attr.getRange(), S.Context,
   1533                                        Attr.getAttributeSpellingListIndex()));
   1534 }
   1535 
   1536 static void handleTLSModelAttr(Sema &S, Decl *D,
   1537                                const AttributeList &Attr) {
   1538   StringRef Model;
   1539   SourceLocation LiteralLoc;
   1540   // Check that it is a string.
   1541   if (!S.checkStringLiteralArgumentAttr(Attr, 0, Model, &LiteralLoc))
   1542     return;
   1543 
   1544   // Check that the value.
   1545   if (Model != "global-dynamic" && Model != "local-dynamic"
   1546       && Model != "initial-exec" && Model != "local-exec") {
   1547     S.Diag(LiteralLoc, diag::err_attr_tlsmodel_arg);
   1548     return;
   1549   }
   1550 
   1551   D->addAttr(::new (S.Context)
   1552              TLSModelAttr(Attr.getRange(), S.Context, Model,
   1553                           Attr.getAttributeSpellingListIndex()));
   1554 }
   1555 
   1556 static void handleKernelAttr(Sema &S, Decl *D, const AttributeList &Attr) {
   1557   if (S.LangOpts.Renderscript) {
   1558     D->addAttr(::new (S.Context)
   1559                KernelAttr(Attr.getRange(), S.Context,
   1560                           Attr.getAttributeSpellingListIndex()));
   1561   } else {
   1562     S.Diag(Attr.getLoc(), diag::warn_attribute_ignored) << "kernel";
   1563   }
   1564 }
   1565 
   1566 static void handleRestrictAttr(Sema &S, Decl *D, const AttributeList &Attr) {
   1567   QualType ResultType = getFunctionOrMethodResultType(D);
   1568   if (ResultType->isAnyPointerType() || ResultType->isBlockPointerType()) {
   1569     D->addAttr(::new (S.Context) RestrictAttr(
   1570         Attr.getRange(), S.Context, Attr.getAttributeSpellingListIndex()));
   1571     return;
   1572   }
   1573 
   1574   S.Diag(Attr.getLoc(), diag::warn_attribute_return_pointers_only)
   1575       << Attr.getName() << getFunctionOrMethodResultSourceRange(D);
   1576 }
   1577 
   1578 static void handleCommonAttr(Sema &S, Decl *D, const AttributeList &Attr) {
   1579   if (S.LangOpts.CPlusPlus) {
   1580     S.Diag(Attr.getLoc(), diag::err_attribute_not_supported_in_lang)
   1581       << Attr.getName() << AttributeLangSupport::Cpp;
   1582     return;
   1583   }
   1584 
   1585   D->addAttr(::new (S.Context) CommonAttr(Attr.getRange(), S.Context,
   1586                                         Attr.getAttributeSpellingListIndex()));
   1587 }
   1588 
   1589 static void handleNoReturnAttr(Sema &S, Decl *D, const AttributeList &attr) {
   1590   if (hasDeclarator(D)) return;
   1591 
   1592   if (S.CheckNoReturnAttr(attr)) return;
   1593 
   1594   if (!isa<ObjCMethodDecl>(D)) {
   1595     S.Diag(attr.getLoc(), diag::warn_attribute_wrong_decl_type)
   1596       << attr.getName() << ExpectedFunctionOrMethod;
   1597     return;
   1598   }
   1599 
   1600   D->addAttr(::new (S.Context)
   1601              NoReturnAttr(attr.getRange(), S.Context,
   1602                           attr.getAttributeSpellingListIndex()));
   1603 }
   1604 
   1605 bool Sema::CheckNoReturnAttr(const AttributeList &attr) {
   1606   if (!checkAttributeNumArgs(*this, attr, 0)) {
   1607     attr.setInvalid();
   1608     return true;
   1609   }
   1610 
   1611   return false;
   1612 }
   1613 
   1614 static void handleAnalyzerNoReturnAttr(Sema &S, Decl *D,
   1615                                        const AttributeList &Attr) {
   1616 
   1617   // The checking path for 'noreturn' and 'analyzer_noreturn' are different
   1618   // because 'analyzer_noreturn' does not impact the type.
   1619   if (!isFunctionOrMethodOrBlock(D)) {
   1620     ValueDecl *VD = dyn_cast<ValueDecl>(D);
   1621     if (!VD || (!VD->getType()->isBlockPointerType() &&
   1622                 !VD->getType()->isFunctionPointerType())) {
   1623       S.Diag(Attr.getLoc(),
   1624              Attr.isCXX11Attribute() ? diag::err_attribute_wrong_decl_type
   1625              : diag::warn_attribute_wrong_decl_type)
   1626         << Attr.getName() << ExpectedFunctionMethodOrBlock;
   1627       return;
   1628     }
   1629   }
   1630 
   1631   D->addAttr(::new (S.Context)
   1632              AnalyzerNoReturnAttr(Attr.getRange(), S.Context,
   1633                                   Attr.getAttributeSpellingListIndex()));
   1634 }
   1635 
   1636 // PS3 PPU-specific.
   1637 static void handleVecReturnAttr(Sema &S, Decl *D, const AttributeList &Attr) {
   1638 /*
   1639   Returning a Vector Class in Registers
   1640 
   1641   According to the PPU ABI specifications, a class with a single member of
   1642   vector type is returned in memory when used as the return value of a function.
   1643   This results in inefficient code when implementing vector classes. To return
   1644   the value in a single vector register, add the vecreturn attribute to the
   1645   class definition. This attribute is also applicable to struct types.
   1646 
   1647   Example:
   1648 
   1649   struct Vector
   1650   {
   1651     __vector float xyzw;
   1652   } __attribute__((vecreturn));
   1653 
   1654   Vector Add(Vector lhs, Vector rhs)
   1655   {
   1656     Vector result;
   1657     result.xyzw = vec_add(lhs.xyzw, rhs.xyzw);
   1658     return result; // This will be returned in a register
   1659   }
   1660 */
   1661   if (VecReturnAttr *A = D->getAttr<VecReturnAttr>()) {
   1662     S.Diag(Attr.getLoc(), diag::err_repeat_attribute) << A;
   1663     return;
   1664   }
   1665 
   1666   RecordDecl *record = cast<RecordDecl>(D);
   1667   int count = 0;
   1668 
   1669   if (!isa<CXXRecordDecl>(record)) {
   1670     S.Diag(Attr.getLoc(), diag::err_attribute_vecreturn_only_vector_member);
   1671     return;
   1672   }
   1673 
   1674   if (!cast<CXXRecordDecl>(record)->isPOD()) {
   1675     S.Diag(Attr.getLoc(), diag::err_attribute_vecreturn_only_pod_record);
   1676     return;
   1677   }
   1678 
   1679   for (const auto *I : record->fields()) {
   1680     if ((count == 1) || !I->getType()->isVectorType()) {
   1681       S.Diag(Attr.getLoc(), diag::err_attribute_vecreturn_only_vector_member);
   1682       return;
   1683     }
   1684     count++;
   1685   }
   1686 
   1687   D->addAttr(::new (S.Context)
   1688              VecReturnAttr(Attr.getRange(), S.Context,
   1689                            Attr.getAttributeSpellingListIndex()));
   1690 }
   1691 
   1692 static void handleDependencyAttr(Sema &S, Scope *Scope, Decl *D,
   1693                                  const AttributeList &Attr) {
   1694   if (isa<ParmVarDecl>(D)) {
   1695     // [[carries_dependency]] can only be applied to a parameter if it is a
   1696     // parameter of a function declaration or lambda.
   1697     if (!(Scope->getFlags() & clang::Scope::FunctionDeclarationScope)) {
   1698       S.Diag(Attr.getLoc(),
   1699              diag::err_carries_dependency_param_not_function_decl);
   1700       return;
   1701     }
   1702   }
   1703 
   1704   D->addAttr(::new (S.Context) CarriesDependencyAttr(
   1705                                    Attr.getRange(), S.Context,
   1706                                    Attr.getAttributeSpellingListIndex()));
   1707 }
   1708 
   1709 static void handleUsedAttr(Sema &S, Decl *D, const AttributeList &Attr) {
   1710   if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
   1711     if (VD->hasLocalStorage()) {
   1712       S.Diag(Attr.getLoc(), diag::warn_attribute_ignored) << Attr.getName();
   1713       return;
   1714     }
   1715   } else if (!isFunctionOrMethod(D)) {
   1716     S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
   1717       << Attr.getName() << ExpectedVariableOrFunction;
   1718     return;
   1719   }
   1720 
   1721   D->addAttr(::new (S.Context)
   1722              UsedAttr(Attr.getRange(), S.Context,
   1723                       Attr.getAttributeSpellingListIndex()));
   1724 }
   1725 
   1726 static void handleConstructorAttr(Sema &S, Decl *D, const AttributeList &Attr) {
   1727   uint32_t priority = ConstructorAttr::DefaultPriority;
   1728   if (Attr.getNumArgs() &&
   1729       !checkUInt32Argument(S, Attr, Attr.getArgAsExpr(0), priority))
   1730     return;
   1731 
   1732   D->addAttr(::new (S.Context)
   1733              ConstructorAttr(Attr.getRange(), S.Context, priority,
   1734                              Attr.getAttributeSpellingListIndex()));
   1735 }
   1736 
   1737 static void handleDestructorAttr(Sema &S, Decl *D, const AttributeList &Attr) {
   1738   uint32_t priority = DestructorAttr::DefaultPriority;
   1739   if (Attr.getNumArgs() &&
   1740       !checkUInt32Argument(S, Attr, Attr.getArgAsExpr(0), priority))
   1741     return;
   1742 
   1743   D->addAttr(::new (S.Context)
   1744              DestructorAttr(Attr.getRange(), S.Context, priority,
   1745                             Attr.getAttributeSpellingListIndex()));
   1746 }
   1747 
   1748 template <typename AttrTy>
   1749 static void handleAttrWithMessage(Sema &S, Decl *D,
   1750                                   const AttributeList &Attr) {
   1751   // Handle the case where the attribute has a text message.
   1752   StringRef Str;
   1753   if (Attr.getNumArgs() == 1 && !S.checkStringLiteralArgumentAttr(Attr, 0, Str))
   1754     return;
   1755 
   1756   D->addAttr(::new (S.Context) AttrTy(Attr.getRange(), S.Context, Str,
   1757                                       Attr.getAttributeSpellingListIndex()));
   1758 }
   1759 
   1760 static void handleObjCSuppresProtocolAttr(Sema &S, Decl *D,
   1761                                           const AttributeList &Attr) {
   1762   if (!cast<ObjCProtocolDecl>(D)->isThisDeclarationADefinition()) {
   1763     S.Diag(Attr.getLoc(), diag::err_objc_attr_protocol_requires_definition)
   1764       << Attr.getName() << Attr.getRange();
   1765     return;
   1766   }
   1767 
   1768   D->addAttr(::new (S.Context)
   1769           ObjCExplicitProtocolImplAttr(Attr.getRange(), S.Context,
   1770                                        Attr.getAttributeSpellingListIndex()));
   1771 }
   1772 
   1773 static bool checkAvailabilityAttr(Sema &S, SourceRange Range,
   1774                                   IdentifierInfo *Platform,
   1775                                   VersionTuple Introduced,
   1776                                   VersionTuple Deprecated,
   1777                                   VersionTuple Obsoleted) {
   1778   StringRef PlatformName
   1779     = AvailabilityAttr::getPrettyPlatformName(Platform->getName());
   1780   if (PlatformName.empty())
   1781     PlatformName = Platform->getName();
   1782 
   1783   // Ensure that Introduced <= Deprecated <= Obsoleted (although not all
   1784   // of these steps are needed).
   1785   if (!Introduced.empty() && !Deprecated.empty() &&
   1786       !(Introduced <= Deprecated)) {
   1787     S.Diag(Range.getBegin(), diag::warn_availability_version_ordering)
   1788       << 1 << PlatformName << Deprecated.getAsString()
   1789       << 0 << Introduced.getAsString();
   1790     return true;
   1791   }
   1792 
   1793   if (!Introduced.empty() && !Obsoleted.empty() &&
   1794       !(Introduced <= Obsoleted)) {
   1795     S.Diag(Range.getBegin(), diag::warn_availability_version_ordering)
   1796       << 2 << PlatformName << Obsoleted.getAsString()
   1797       << 0 << Introduced.getAsString();
   1798     return true;
   1799   }
   1800 
   1801   if (!Deprecated.empty() && !Obsoleted.empty() &&
   1802       !(Deprecated <= Obsoleted)) {
   1803     S.Diag(Range.getBegin(), diag::warn_availability_version_ordering)
   1804       << 2 << PlatformName << Obsoleted.getAsString()
   1805       << 1 << Deprecated.getAsString();
   1806     return true;
   1807   }
   1808 
   1809   return false;
   1810 }
   1811 
   1812 /// \brief Check whether the two versions match.
   1813 ///
   1814 /// If either version tuple is empty, then they are assumed to match. If
   1815 /// \p BeforeIsOkay is true, then \p X can be less than or equal to \p Y.
   1816 static bool versionsMatch(const VersionTuple &X, const VersionTuple &Y,
   1817                           bool BeforeIsOkay) {
   1818   if (X.empty() || Y.empty())
   1819     return true;
   1820 
   1821   if (X == Y)
   1822     return true;
   1823 
   1824   if (BeforeIsOkay && X < Y)
   1825     return true;
   1826 
   1827   return false;
   1828 }
   1829 
   1830 AvailabilityAttr *Sema::mergeAvailabilityAttr(NamedDecl *D, SourceRange Range,
   1831                                               IdentifierInfo *Platform,
   1832                                               VersionTuple Introduced,
   1833                                               VersionTuple Deprecated,
   1834                                               VersionTuple Obsoleted,
   1835                                               bool IsUnavailable,
   1836                                               StringRef Message,
   1837                                               bool Override,
   1838                                               unsigned AttrSpellingListIndex) {
   1839   VersionTuple MergedIntroduced = Introduced;
   1840   VersionTuple MergedDeprecated = Deprecated;
   1841   VersionTuple MergedObsoleted = Obsoleted;
   1842   bool FoundAny = false;
   1843 
   1844   if (D->hasAttrs()) {
   1845     AttrVec &Attrs = D->getAttrs();
   1846     for (unsigned i = 0, e = Attrs.size(); i != e;) {
   1847       const AvailabilityAttr *OldAA = dyn_cast<AvailabilityAttr>(Attrs[i]);
   1848       if (!OldAA) {
   1849         ++i;
   1850         continue;
   1851       }
   1852 
   1853       IdentifierInfo *OldPlatform = OldAA->getPlatform();
   1854       if (OldPlatform != Platform) {
   1855         ++i;
   1856         continue;
   1857       }
   1858 
   1859       FoundAny = true;
   1860       VersionTuple OldIntroduced = OldAA->getIntroduced();
   1861       VersionTuple OldDeprecated = OldAA->getDeprecated();
   1862       VersionTuple OldObsoleted = OldAA->getObsoleted();
   1863       bool OldIsUnavailable = OldAA->getUnavailable();
   1864 
   1865       if (!versionsMatch(OldIntroduced, Introduced, Override) ||
   1866           !versionsMatch(Deprecated, OldDeprecated, Override) ||
   1867           !versionsMatch(Obsoleted, OldObsoleted, Override) ||
   1868           !(OldIsUnavailable == IsUnavailable ||
   1869             (Override && !OldIsUnavailable && IsUnavailable))) {
   1870         if (Override) {
   1871           int Which = -1;
   1872           VersionTuple FirstVersion;
   1873           VersionTuple SecondVersion;
   1874           if (!versionsMatch(OldIntroduced, Introduced, Override)) {
   1875             Which = 0;
   1876             FirstVersion = OldIntroduced;
   1877             SecondVersion = Introduced;
   1878           } else if (!versionsMatch(Deprecated, OldDeprecated, Override)) {
   1879             Which = 1;
   1880             FirstVersion = Deprecated;
   1881             SecondVersion = OldDeprecated;
   1882           } else if (!versionsMatch(Obsoleted, OldObsoleted, Override)) {
   1883             Which = 2;
   1884             FirstVersion = Obsoleted;
   1885             SecondVersion = OldObsoleted;
   1886           }
   1887 
   1888           if (Which == -1) {
   1889             Diag(OldAA->getLocation(),
   1890                  diag::warn_mismatched_availability_override_unavail)
   1891               << AvailabilityAttr::getPrettyPlatformName(Platform->getName());
   1892           } else {
   1893             Diag(OldAA->getLocation(),
   1894                  diag::warn_mismatched_availability_override)
   1895               << Which
   1896               << AvailabilityAttr::getPrettyPlatformName(Platform->getName())
   1897               << FirstVersion.getAsString() << SecondVersion.getAsString();
   1898           }
   1899           Diag(Range.getBegin(), diag::note_overridden_method);
   1900         } else {
   1901           Diag(OldAA->getLocation(), diag::warn_mismatched_availability);
   1902           Diag(Range.getBegin(), diag::note_previous_attribute);
   1903         }
   1904 
   1905         Attrs.erase(Attrs.begin() + i);
   1906         --e;
   1907         continue;
   1908       }
   1909 
   1910       VersionTuple MergedIntroduced2 = MergedIntroduced;
   1911       VersionTuple MergedDeprecated2 = MergedDeprecated;
   1912       VersionTuple MergedObsoleted2 = MergedObsoleted;
   1913 
   1914       if (MergedIntroduced2.empty())
   1915         MergedIntroduced2 = OldIntroduced;
   1916       if (MergedDeprecated2.empty())
   1917         MergedDeprecated2 = OldDeprecated;
   1918       if (MergedObsoleted2.empty())
   1919         MergedObsoleted2 = OldObsoleted;
   1920 
   1921       if (checkAvailabilityAttr(*this, OldAA->getRange(), Platform,
   1922                                 MergedIntroduced2, MergedDeprecated2,
   1923                                 MergedObsoleted2)) {
   1924         Attrs.erase(Attrs.begin() + i);
   1925         --e;
   1926         continue;
   1927       }
   1928 
   1929       MergedIntroduced = MergedIntroduced2;
   1930       MergedDeprecated = MergedDeprecated2;
   1931       MergedObsoleted = MergedObsoleted2;
   1932       ++i;
   1933     }
   1934   }
   1935 
   1936   if (FoundAny &&
   1937       MergedIntroduced == Introduced &&
   1938       MergedDeprecated == Deprecated &&
   1939       MergedObsoleted == Obsoleted)
   1940     return nullptr;
   1941 
   1942   // Only create a new attribute if !Override, but we want to do
   1943   // the checking.
   1944   if (!checkAvailabilityAttr(*this, Range, Platform, MergedIntroduced,
   1945                              MergedDeprecated, MergedObsoleted) &&
   1946       !Override) {
   1947     return ::new (Context) AvailabilityAttr(Range, Context, Platform,
   1948                                             Introduced, Deprecated,
   1949                                             Obsoleted, IsUnavailable, Message,
   1950                                             AttrSpellingListIndex);
   1951   }
   1952   return nullptr;
   1953 }
   1954 
   1955 static void handleAvailabilityAttr(Sema &S, Decl *D,
   1956                                    const AttributeList &Attr) {
   1957   if (!checkAttributeNumArgs(S, Attr, 1))
   1958     return;
   1959   IdentifierLoc *Platform = Attr.getArgAsIdent(0);
   1960   unsigned Index = Attr.getAttributeSpellingListIndex();
   1961 
   1962   IdentifierInfo *II = Platform->Ident;
   1963   if (AvailabilityAttr::getPrettyPlatformName(II->getName()).empty())
   1964     S.Diag(Platform->Loc, diag::warn_availability_unknown_platform)
   1965       << Platform->Ident;
   1966 
   1967   NamedDecl *ND = dyn_cast<NamedDecl>(D);
   1968   if (!ND) {
   1969     S.Diag(Attr.getLoc(), diag::warn_attribute_ignored) << Attr.getName();
   1970     return;
   1971   }
   1972 
   1973   AvailabilityChange Introduced = Attr.getAvailabilityIntroduced();
   1974   AvailabilityChange Deprecated = Attr.getAvailabilityDeprecated();
   1975   AvailabilityChange Obsoleted = Attr.getAvailabilityObsoleted();
   1976   bool IsUnavailable = Attr.getUnavailableLoc().isValid();
   1977   StringRef Str;
   1978   if (const StringLiteral *SE =
   1979           dyn_cast_or_null<StringLiteral>(Attr.getMessageExpr()))
   1980     Str = SE->getString();
   1981 
   1982   AvailabilityAttr *NewAttr = S.mergeAvailabilityAttr(ND, Attr.getRange(), II,
   1983                                                       Introduced.Version,
   1984                                                       Deprecated.Version,
   1985                                                       Obsoleted.Version,
   1986                                                       IsUnavailable, Str,
   1987                                                       /*Override=*/false,
   1988                                                       Index);
   1989   if (NewAttr)
   1990     D->addAttr(NewAttr);
   1991 }
   1992 
   1993 template <class T>
   1994 static T *mergeVisibilityAttr(Sema &S, Decl *D, SourceRange range,
   1995                               typename T::VisibilityType value,
   1996                               unsigned attrSpellingListIndex) {
   1997   T *existingAttr = D->getAttr<T>();
   1998   if (existingAttr) {
   1999     typename T::VisibilityType existingValue = existingAttr->getVisibility();
   2000     if (existingValue == value)
   2001       return nullptr;
   2002     S.Diag(existingAttr->getLocation(), diag::err_mismatched_visibility);
   2003     S.Diag(range.getBegin(), diag::note_previous_attribute);
   2004     D->dropAttr<T>();
   2005   }
   2006   return ::new (S.Context) T(range, S.Context, value, attrSpellingListIndex);
   2007 }
   2008 
   2009 VisibilityAttr *Sema::mergeVisibilityAttr(Decl *D, SourceRange Range,
   2010                                           VisibilityAttr::VisibilityType Vis,
   2011                                           unsigned AttrSpellingListIndex) {
   2012   return ::mergeVisibilityAttr<VisibilityAttr>(*this, D, Range, Vis,
   2013                                                AttrSpellingListIndex);
   2014 }
   2015 
   2016 TypeVisibilityAttr *Sema::mergeTypeVisibilityAttr(Decl *D, SourceRange Range,
   2017                                       TypeVisibilityAttr::VisibilityType Vis,
   2018                                       unsigned AttrSpellingListIndex) {
   2019   return ::mergeVisibilityAttr<TypeVisibilityAttr>(*this, D, Range, Vis,
   2020                                                    AttrSpellingListIndex);
   2021 }
   2022 
   2023 static void handleVisibilityAttr(Sema &S, Decl *D, const AttributeList &Attr,
   2024                                  bool isTypeVisibility) {
   2025   // Visibility attributes don't mean anything on a typedef.
   2026   if (isa<TypedefNameDecl>(D)) {
   2027     S.Diag(Attr.getRange().getBegin(), diag::warn_attribute_ignored)
   2028       << Attr.getName();
   2029     return;
   2030   }
   2031 
   2032   // 'type_visibility' can only go on a type or namespace.
   2033   if (isTypeVisibility &&
   2034       !(isa<TagDecl>(D) ||
   2035         isa<ObjCInterfaceDecl>(D) ||
   2036         isa<NamespaceDecl>(D))) {
   2037     S.Diag(Attr.getRange().getBegin(), diag::err_attribute_wrong_decl_type)
   2038       << Attr.getName() << ExpectedTypeOrNamespace;
   2039     return;
   2040   }
   2041 
   2042   // Check that the argument is a string literal.
   2043   StringRef TypeStr;
   2044   SourceLocation LiteralLoc;
   2045   if (!S.checkStringLiteralArgumentAttr(Attr, 0, TypeStr, &LiteralLoc))
   2046     return;
   2047 
   2048   VisibilityAttr::VisibilityType type;
   2049   if (!VisibilityAttr::ConvertStrToVisibilityType(TypeStr, type)) {
   2050     S.Diag(LiteralLoc, diag::warn_attribute_type_not_supported)
   2051       << Attr.getName() << TypeStr;
   2052     return;
   2053   }
   2054 
   2055   // Complain about attempts to use protected visibility on targets
   2056   // (like Darwin) that don't support it.
   2057   if (type == VisibilityAttr::Protected &&
   2058       !S.Context.getTargetInfo().hasProtectedVisibility()) {
   2059     S.Diag(Attr.getLoc(), diag::warn_attribute_protected_visibility);
   2060     type = VisibilityAttr::Default;
   2061   }
   2062 
   2063   unsigned Index = Attr.getAttributeSpellingListIndex();
   2064   clang::Attr *newAttr;
   2065   if (isTypeVisibility) {
   2066     newAttr = S.mergeTypeVisibilityAttr(D, Attr.getRange(),
   2067                                     (TypeVisibilityAttr::VisibilityType) type,
   2068                                         Index);
   2069   } else {
   2070     newAttr = S.mergeVisibilityAttr(D, Attr.getRange(), type, Index);
   2071   }
   2072   if (newAttr)
   2073     D->addAttr(newAttr);
   2074 }
   2075 
   2076 static void handleObjCMethodFamilyAttr(Sema &S, Decl *decl,
   2077                                        const AttributeList &Attr) {
   2078   ObjCMethodDecl *method = cast<ObjCMethodDecl>(decl);
   2079   if (!Attr.isArgIdent(0)) {
   2080     S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_type)
   2081       << Attr.getName() << 1 << AANT_ArgumentIdentifier;
   2082     return;
   2083   }
   2084 
   2085   IdentifierLoc *IL = Attr.getArgAsIdent(0);
   2086   ObjCMethodFamilyAttr::FamilyKind F;
   2087   if (!ObjCMethodFamilyAttr::ConvertStrToFamilyKind(IL->Ident->getName(), F)) {
   2088     S.Diag(IL->Loc, diag::warn_attribute_type_not_supported) << Attr.getName()
   2089       << IL->Ident;
   2090     return;
   2091   }
   2092 
   2093   if (F == ObjCMethodFamilyAttr::OMF_init &&
   2094       !method->getReturnType()->isObjCObjectPointerType()) {
   2095     S.Diag(method->getLocation(), diag::err_init_method_bad_return_type)
   2096         << method->getReturnType();
   2097     // Ignore the attribute.
   2098     return;
   2099   }
   2100 
   2101   method->addAttr(new (S.Context) ObjCMethodFamilyAttr(Attr.getRange(),
   2102                                                        S.Context, F,
   2103                                         Attr.getAttributeSpellingListIndex()));
   2104 }
   2105 
   2106 static void handleObjCNSObject(Sema &S, Decl *D, const AttributeList &Attr) {
   2107   if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(D)) {
   2108     QualType T = TD->getUnderlyingType();
   2109     if (!T->isCARCBridgableType()) {
   2110       S.Diag(TD->getLocation(), diag::err_nsobject_attribute);
   2111       return;
   2112     }
   2113   }
   2114   else if (ObjCPropertyDecl *PD = dyn_cast<ObjCPropertyDecl>(D)) {
   2115     QualType T = PD->getType();
   2116     if (!T->isCARCBridgableType()) {
   2117       S.Diag(PD->getLocation(), diag::err_nsobject_attribute);
   2118       return;
   2119     }
   2120   }
   2121   else {
   2122     // It is okay to include this attribute on properties, e.g.:
   2123     //
   2124     //  @property (retain, nonatomic) struct Bork *Q __attribute__((NSObject));
   2125     //
   2126     // In this case it follows tradition and suppresses an error in the above
   2127     // case.
   2128     S.Diag(D->getLocation(), diag::warn_nsobject_attribute);
   2129   }
   2130   D->addAttr(::new (S.Context)
   2131              ObjCNSObjectAttr(Attr.getRange(), S.Context,
   2132                               Attr.getAttributeSpellingListIndex()));
   2133 }
   2134 
   2135 static void handleObjCIndependentClass(Sema &S, Decl *D, const AttributeList &Attr) {
   2136   if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(D)) {
   2137     QualType T = TD->getUnderlyingType();
   2138     if (!T->isObjCObjectPointerType()) {
   2139       S.Diag(TD->getLocation(), diag::warn_ptr_independentclass_attribute);
   2140       return;
   2141     }
   2142   } else {
   2143     S.Diag(D->getLocation(), diag::warn_independentclass_attribute);
   2144     return;
   2145   }
   2146   D->addAttr(::new (S.Context)
   2147              ObjCIndependentClassAttr(Attr.getRange(), S.Context,
   2148                               Attr.getAttributeSpellingListIndex()));
   2149 }
   2150 
   2151 static void handleBlocksAttr(Sema &S, Decl *D, const AttributeList &Attr) {
   2152   if (!Attr.isArgIdent(0)) {
   2153     S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_type)
   2154       << Attr.getName() << 1 << AANT_ArgumentIdentifier;
   2155     return;
   2156   }
   2157 
   2158   IdentifierInfo *II = Attr.getArgAsIdent(0)->Ident;
   2159   BlocksAttr::BlockType type;
   2160   if (!BlocksAttr::ConvertStrToBlockType(II->getName(), type)) {
   2161     S.Diag(Attr.getLoc(), diag::warn_attribute_type_not_supported)
   2162       << Attr.getName() << II;
   2163     return;
   2164   }
   2165 
   2166   D->addAttr(::new (S.Context)
   2167              BlocksAttr(Attr.getRange(), S.Context, type,
   2168                         Attr.getAttributeSpellingListIndex()));
   2169 }
   2170 
   2171 static void handleSentinelAttr(Sema &S, Decl *D, const AttributeList &Attr) {
   2172   unsigned sentinel = (unsigned)SentinelAttr::DefaultSentinel;
   2173   if (Attr.getNumArgs() > 0) {
   2174     Expr *E = Attr.getArgAsExpr(0);
   2175     llvm::APSInt Idx(32);
   2176     if (E->isTypeDependent() || E->isValueDependent() ||
   2177         !E->isIntegerConstantExpr(Idx, S.Context)) {
   2178       S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_type)
   2179         << Attr.getName() << 1 << AANT_ArgumentIntegerConstant
   2180         << E->getSourceRange();
   2181       return;
   2182     }
   2183 
   2184     if (Idx.isSigned() && Idx.isNegative()) {
   2185       S.Diag(Attr.getLoc(), diag::err_attribute_sentinel_less_than_zero)
   2186         << E->getSourceRange();
   2187       return;
   2188     }
   2189 
   2190     sentinel = Idx.getZExtValue();
   2191   }
   2192 
   2193   unsigned nullPos = (unsigned)SentinelAttr::DefaultNullPos;
   2194   if (Attr.getNumArgs() > 1) {
   2195     Expr *E = Attr.getArgAsExpr(1);
   2196     llvm::APSInt Idx(32);
   2197     if (E->isTypeDependent() || E->isValueDependent() ||
   2198         !E->isIntegerConstantExpr(Idx, S.Context)) {
   2199       S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_type)
   2200         << Attr.getName() << 2 << AANT_ArgumentIntegerConstant
   2201         << E->getSourceRange();
   2202       return;
   2203     }
   2204     nullPos = Idx.getZExtValue();
   2205 
   2206     if ((Idx.isSigned() && Idx.isNegative()) || nullPos > 1) {
   2207       // FIXME: This error message could be improved, it would be nice
   2208       // to say what the bounds actually are.
   2209       S.Diag(Attr.getLoc(), diag::err_attribute_sentinel_not_zero_or_one)
   2210         << E->getSourceRange();
   2211       return;
   2212     }
   2213   }
   2214 
   2215   if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
   2216     const FunctionType *FT = FD->getType()->castAs<FunctionType>();
   2217     if (isa<FunctionNoProtoType>(FT)) {
   2218       S.Diag(Attr.getLoc(), diag::warn_attribute_sentinel_named_arguments);
   2219       return;
   2220     }
   2221 
   2222     if (!cast<FunctionProtoType>(FT)->isVariadic()) {
   2223       S.Diag(Attr.getLoc(), diag::warn_attribute_sentinel_not_variadic) << 0;
   2224       return;
   2225     }
   2226   } else if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) {
   2227     if (!MD->isVariadic()) {
   2228       S.Diag(Attr.getLoc(), diag::warn_attribute_sentinel_not_variadic) << 0;
   2229       return;
   2230     }
   2231   } else if (BlockDecl *BD = dyn_cast<BlockDecl>(D)) {
   2232     if (!BD->isVariadic()) {
   2233       S.Diag(Attr.getLoc(), diag::warn_attribute_sentinel_not_variadic) << 1;
   2234       return;
   2235     }
   2236   } else if (const VarDecl *V = dyn_cast<VarDecl>(D)) {
   2237     QualType Ty = V->getType();
   2238     if (Ty->isBlockPointerType() || Ty->isFunctionPointerType()) {
   2239       const FunctionType *FT = Ty->isFunctionPointerType()
   2240        ? D->getFunctionType()
   2241        : Ty->getAs<BlockPointerType>()->getPointeeType()->getAs<FunctionType>();
   2242       if (!cast<FunctionProtoType>(FT)->isVariadic()) {
   2243         int m = Ty->isFunctionPointerType() ? 0 : 1;
   2244         S.Diag(Attr.getLoc(), diag::warn_attribute_sentinel_not_variadic) << m;
   2245         return;
   2246       }
   2247     } else {
   2248       S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
   2249         << Attr.getName() << ExpectedFunctionMethodOrBlock;
   2250       return;
   2251     }
   2252   } else {
   2253     S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
   2254       << Attr.getName() << ExpectedFunctionMethodOrBlock;
   2255     return;
   2256   }
   2257   D->addAttr(::new (S.Context)
   2258              SentinelAttr(Attr.getRange(), S.Context, sentinel, nullPos,
   2259                           Attr.getAttributeSpellingListIndex()));
   2260 }
   2261 
   2262 static void handleWarnUnusedResult(Sema &S, Decl *D, const AttributeList &Attr) {
   2263   if (D->getFunctionType() &&
   2264       D->getFunctionType()->getReturnType()->isVoidType()) {
   2265     S.Diag(Attr.getLoc(), diag::warn_attribute_void_function_method)
   2266       << Attr.getName() << 0;
   2267     return;
   2268   }
   2269   if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D))
   2270     if (MD->getReturnType()->isVoidType()) {
   2271       S.Diag(Attr.getLoc(), diag::warn_attribute_void_function_method)
   2272       << Attr.getName() << 1;
   2273       return;
   2274     }
   2275 
   2276   D->addAttr(::new (S.Context)
   2277              WarnUnusedResultAttr(Attr.getRange(), S.Context,
   2278                                   Attr.getAttributeSpellingListIndex()));
   2279 }
   2280 
   2281 static void handleWeakImportAttr(Sema &S, Decl *D, const AttributeList &Attr) {
   2282   // weak_import only applies to variable & function declarations.
   2283   bool isDef = false;
   2284   if (!D->canBeWeakImported(isDef)) {
   2285     if (isDef)
   2286       S.Diag(Attr.getLoc(), diag::warn_attribute_invalid_on_definition)
   2287         << "weak_import";
   2288     else if (isa<ObjCPropertyDecl>(D) || isa<ObjCMethodDecl>(D) ||
   2289              (S.Context.getTargetInfo().getTriple().isOSDarwin() &&
   2290               (isa<ObjCInterfaceDecl>(D) || isa<EnumDecl>(D)))) {
   2291       // Nothing to warn about here.
   2292     } else
   2293       S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
   2294         << Attr.getName() << ExpectedVariableOrFunction;
   2295 
   2296     return;
   2297   }
   2298 
   2299   D->addAttr(::new (S.Context)
   2300              WeakImportAttr(Attr.getRange(), S.Context,
   2301                             Attr.getAttributeSpellingListIndex()));
   2302 }
   2303 
   2304 // Handles reqd_work_group_size and work_group_size_hint.
   2305 template <typename WorkGroupAttr>
   2306 static void handleWorkGroupSize(Sema &S, Decl *D,
   2307                                 const AttributeList &Attr) {
   2308   uint32_t WGSize[3];
   2309   for (unsigned i = 0; i < 3; ++i) {
   2310     const Expr *E = Attr.getArgAsExpr(i);
   2311     if (!checkUInt32Argument(S, Attr, E, WGSize[i], i))
   2312       return;
   2313     if (WGSize[i] == 0) {
   2314       S.Diag(Attr.getLoc(), diag::err_attribute_argument_is_zero)
   2315         << Attr.getName() << E->getSourceRange();
   2316       return;
   2317     }
   2318   }
   2319 
   2320   WorkGroupAttr *Existing = D->getAttr<WorkGroupAttr>();
   2321   if (Existing && !(Existing->getXDim() == WGSize[0] &&
   2322                     Existing->getYDim() == WGSize[1] &&
   2323                     Existing->getZDim() == WGSize[2]))
   2324     S.Diag(Attr.getLoc(), diag::warn_duplicate_attribute) << Attr.getName();
   2325 
   2326   D->addAttr(::new (S.Context) WorkGroupAttr(Attr.getRange(), S.Context,
   2327                                              WGSize[0], WGSize[1], WGSize[2],
   2328                                        Attr.getAttributeSpellingListIndex()));
   2329 }
   2330 
   2331 static void handleVecTypeHint(Sema &S, Decl *D, const AttributeList &Attr) {
   2332   if (!Attr.hasParsedType()) {
   2333     S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments)
   2334       << Attr.getName() << 1;
   2335     return;
   2336   }
   2337 
   2338   TypeSourceInfo *ParmTSI = nullptr;
   2339   QualType ParmType = S.GetTypeFromParser(Attr.getTypeArg(), &ParmTSI);
   2340   assert(ParmTSI && "no type source info for attribute argument");
   2341 
   2342   if (!ParmType->isExtVectorType() && !ParmType->isFloatingType() &&
   2343       (ParmType->isBooleanType() ||
   2344        !ParmType->isIntegralType(S.getASTContext()))) {
   2345     S.Diag(Attr.getLoc(), diag::err_attribute_argument_vec_type_hint)
   2346         << ParmType;
   2347     return;
   2348   }
   2349 
   2350   if (VecTypeHintAttr *A = D->getAttr<VecTypeHintAttr>()) {
   2351     if (!S.Context.hasSameType(A->getTypeHint(), ParmType)) {
   2352       S.Diag(Attr.getLoc(), diag::warn_duplicate_attribute) << Attr.getName();
   2353       return;
   2354     }
   2355   }
   2356 
   2357   D->addAttr(::new (S.Context) VecTypeHintAttr(Attr.getLoc(), S.Context,
   2358                                                ParmTSI,
   2359                                         Attr.getAttributeSpellingListIndex()));
   2360 }
   2361 
   2362 SectionAttr *Sema::mergeSectionAttr(Decl *D, SourceRange Range,
   2363                                     StringRef Name,
   2364                                     unsigned AttrSpellingListIndex) {
   2365   if (SectionAttr *ExistingAttr = D->getAttr<SectionAttr>()) {
   2366     if (ExistingAttr->getName() == Name)
   2367       return nullptr;
   2368     Diag(ExistingAttr->getLocation(), diag::warn_mismatched_section);
   2369     Diag(Range.getBegin(), diag::note_previous_attribute);
   2370     return nullptr;
   2371   }
   2372   return ::new (Context) SectionAttr(Range, Context, Name,
   2373                                      AttrSpellingListIndex);
   2374 }
   2375 
   2376 bool Sema::checkSectionName(SourceLocation LiteralLoc, StringRef SecName) {
   2377   std::string Error = Context.getTargetInfo().isValidSectionSpecifier(SecName);
   2378   if (!Error.empty()) {
   2379     Diag(LiteralLoc, diag::err_attribute_section_invalid_for_target) << Error;
   2380     return false;
   2381   }
   2382   return true;
   2383 }
   2384 
   2385 static void handleSectionAttr(Sema &S, Decl *D, const AttributeList &Attr) {
   2386   // Make sure that there is a string literal as the sections's single
   2387   // argument.
   2388   StringRef Str;
   2389   SourceLocation LiteralLoc;
   2390   if (!S.checkStringLiteralArgumentAttr(Attr, 0, Str, &LiteralLoc))
   2391     return;
   2392 
   2393   if (!S.checkSectionName(LiteralLoc, Str))
   2394     return;
   2395 
   2396   // If the target wants to validate the section specifier, make it happen.
   2397   std::string Error = S.Context.getTargetInfo().isValidSectionSpecifier(Str);
   2398   if (!Error.empty()) {
   2399     S.Diag(LiteralLoc, diag::err_attribute_section_invalid_for_target)
   2400     << Error;
   2401     return;
   2402   }
   2403 
   2404   unsigned Index = Attr.getAttributeSpellingListIndex();
   2405   SectionAttr *NewAttr = S.mergeSectionAttr(D, Attr.getRange(), Str, Index);
   2406   if (NewAttr)
   2407     D->addAttr(NewAttr);
   2408 }
   2409 
   2410 
   2411 static void handleCleanupAttr(Sema &S, Decl *D, const AttributeList &Attr) {
   2412   VarDecl *VD = cast<VarDecl>(D);
   2413   if (!VD->hasLocalStorage()) {
   2414     S.Diag(Attr.getLoc(), diag::warn_attribute_ignored) << Attr.getName();
   2415     return;
   2416   }
   2417 
   2418   Expr *E = Attr.getArgAsExpr(0);
   2419   SourceLocation Loc = E->getExprLoc();
   2420   FunctionDecl *FD = nullptr;
   2421   DeclarationNameInfo NI;
   2422 
   2423   // gcc only allows for simple identifiers. Since we support more than gcc, we
   2424   // will warn the user.
   2425   if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
   2426     if (DRE->hasQualifier())
   2427       S.Diag(Loc, diag::warn_cleanup_ext);
   2428     FD = dyn_cast<FunctionDecl>(DRE->getDecl());
   2429     NI = DRE->getNameInfo();
   2430     if (!FD) {
   2431       S.Diag(Loc, diag::err_attribute_cleanup_arg_not_function) << 1
   2432         << NI.getName();
   2433       return;
   2434     }
   2435   } else if (UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(E)) {
   2436     if (ULE->hasExplicitTemplateArgs())
   2437       S.Diag(Loc, diag::warn_cleanup_ext);
   2438     FD = S.ResolveSingleFunctionTemplateSpecialization(ULE, true);
   2439     NI = ULE->getNameInfo();
   2440     if (!FD) {
   2441       S.Diag(Loc, diag::err_attribute_cleanup_arg_not_function) << 2
   2442         << NI.getName();
   2443       if (ULE->getType() == S.Context.OverloadTy)
   2444         S.NoteAllOverloadCandidates(ULE);
   2445       return;
   2446     }
   2447   } else {
   2448     S.Diag(Loc, diag::err_attribute_cleanup_arg_not_function) << 0;
   2449     return;
   2450   }
   2451 
   2452   if (FD->getNumParams() != 1) {
   2453     S.Diag(Loc, diag::err_attribute_cleanup_func_must_take_one_arg)
   2454       << NI.getName();
   2455     return;
   2456   }
   2457 
   2458   // We're currently more strict than GCC about what function types we accept.
   2459   // If this ever proves to be a problem it should be easy to fix.
   2460   QualType Ty = S.Context.getPointerType(VD->getType());
   2461   QualType ParamTy = FD->getParamDecl(0)->getType();
   2462   if (S.CheckAssignmentConstraints(FD->getParamDecl(0)->getLocation(),
   2463                                    ParamTy, Ty) != Sema::Compatible) {
   2464     S.Diag(Loc, diag::err_attribute_cleanup_func_arg_incompatible_type)
   2465       << NI.getName() << ParamTy << Ty;
   2466     return;
   2467   }
   2468 
   2469   D->addAttr(::new (S.Context)
   2470              CleanupAttr(Attr.getRange(), S.Context, FD,
   2471                          Attr.getAttributeSpellingListIndex()));
   2472 }
   2473 
   2474 /// Handle __attribute__((format_arg((idx)))) attribute based on
   2475 /// http://gcc.gnu.org/onlinedocs/gcc/Function-Attributes.html
   2476 static void handleFormatArgAttr(Sema &S, Decl *D, const AttributeList &Attr) {
   2477   Expr *IdxExpr = Attr.getArgAsExpr(0);
   2478   uint64_t Idx;
   2479   if (!checkFunctionOrMethodParameterIndex(S, D, Attr, 1, IdxExpr, Idx))
   2480     return;
   2481 
   2482   // make sure the format string is really a string
   2483   QualType Ty = getFunctionOrMethodParamType(D, Idx);
   2484 
   2485   bool not_nsstring_type = !isNSStringType(Ty, S.Context);
   2486   if (not_nsstring_type &&
   2487       !isCFStringType(Ty, S.Context) &&
   2488       (!Ty->isPointerType() ||
   2489        !Ty->getAs<PointerType>()->getPointeeType()->isCharType())) {
   2490     S.Diag(Attr.getLoc(), diag::err_format_attribute_not)
   2491         << (not_nsstring_type ? "a string type" : "an NSString")
   2492         << IdxExpr->getSourceRange() << getFunctionOrMethodParamRange(D, 0);
   2493     return;
   2494   }
   2495   Ty = getFunctionOrMethodResultType(D);
   2496   if (!isNSStringType(Ty, S.Context) &&
   2497       !isCFStringType(Ty, S.Context) &&
   2498       (!Ty->isPointerType() ||
   2499        !Ty->getAs<PointerType>()->getPointeeType()->isCharType())) {
   2500     S.Diag(Attr.getLoc(), diag::err_format_attribute_result_not)
   2501         << (not_nsstring_type ? "string type" : "NSString")
   2502         << IdxExpr->getSourceRange() << getFunctionOrMethodParamRange(D, 0);
   2503     return;
   2504   }
   2505 
   2506   // We cannot use the Idx returned from checkFunctionOrMethodParameterIndex
   2507   // because that has corrected for the implicit this parameter, and is zero-
   2508   // based.  The attribute expects what the user wrote explicitly.
   2509   llvm::APSInt Val;
   2510   IdxExpr->EvaluateAsInt(Val, S.Context);
   2511 
   2512   D->addAttr(::new (S.Context)
   2513              FormatArgAttr(Attr.getRange(), S.Context, Val.getZExtValue(),
   2514                            Attr.getAttributeSpellingListIndex()));
   2515 }
   2516 
   2517 enum FormatAttrKind {
   2518   CFStringFormat,
   2519   NSStringFormat,
   2520   StrftimeFormat,
   2521   SupportedFormat,
   2522   IgnoredFormat,
   2523   InvalidFormat
   2524 };
   2525 
   2526 /// getFormatAttrKind - Map from format attribute names to supported format
   2527 /// types.
   2528 static FormatAttrKind getFormatAttrKind(StringRef Format) {
   2529   return llvm::StringSwitch<FormatAttrKind>(Format)
   2530     // Check for formats that get handled specially.
   2531     .Case("NSString", NSStringFormat)
   2532     .Case("CFString", CFStringFormat)
   2533     .Case("strftime", StrftimeFormat)
   2534 
   2535     // Otherwise, check for supported formats.
   2536     .Cases("scanf", "printf", "printf0", "strfmon", SupportedFormat)
   2537     .Cases("cmn_err", "vcmn_err", "zcmn_err", SupportedFormat)
   2538     .Case("kprintf", SupportedFormat) // OpenBSD.
   2539     .Case("freebsd_kprintf", SupportedFormat) // FreeBSD.
   2540     .Case("os_trace", SupportedFormat)
   2541 
   2542     .Cases("gcc_diag", "gcc_cdiag", "gcc_cxxdiag", "gcc_tdiag", IgnoredFormat)
   2543     .Default(InvalidFormat);
   2544 }
   2545 
   2546 /// Handle __attribute__((init_priority(priority))) attributes based on
   2547 /// http://gcc.gnu.org/onlinedocs/gcc/C_002b_002b-Attributes.html
   2548 static void handleInitPriorityAttr(Sema &S, Decl *D,
   2549                                    const AttributeList &Attr) {
   2550   if (!S.getLangOpts().CPlusPlus) {
   2551     S.Diag(Attr.getLoc(), diag::warn_attribute_ignored) << Attr.getName();
   2552     return;
   2553   }
   2554 
   2555   if (S.getCurFunctionOrMethodDecl()) {
   2556     S.Diag(Attr.getLoc(), diag::err_init_priority_object_attr);
   2557     Attr.setInvalid();
   2558     return;
   2559   }
   2560   QualType T = cast<VarDecl>(D)->getType();
   2561   if (S.Context.getAsArrayType(T))
   2562     T = S.Context.getBaseElementType(T);
   2563   if (!T->getAs<RecordType>()) {
   2564     S.Diag(Attr.getLoc(), diag::err_init_priority_object_attr);
   2565     Attr.setInvalid();
   2566     return;
   2567   }
   2568 
   2569   Expr *E = Attr.getArgAsExpr(0);
   2570   uint32_t prioritynum;
   2571   if (!checkUInt32Argument(S, Attr, E, prioritynum)) {
   2572     Attr.setInvalid();
   2573     return;
   2574   }
   2575 
   2576   if (prioritynum < 101 || prioritynum > 65535) {
   2577     S.Diag(Attr.getLoc(), diag::err_attribute_argument_outof_range)
   2578       << E->getSourceRange();
   2579     Attr.setInvalid();
   2580     return;
   2581   }
   2582   D->addAttr(::new (S.Context)
   2583              InitPriorityAttr(Attr.getRange(), S.Context, prioritynum,
   2584                               Attr.getAttributeSpellingListIndex()));
   2585 }
   2586 
   2587 FormatAttr *Sema::mergeFormatAttr(Decl *D, SourceRange Range,
   2588                                   IdentifierInfo *Format, int FormatIdx,
   2589                                   int FirstArg,
   2590                                   unsigned AttrSpellingListIndex) {
   2591   // Check whether we already have an equivalent format attribute.
   2592   for (auto *F : D->specific_attrs<FormatAttr>()) {
   2593     if (F->getType() == Format &&
   2594         F->getFormatIdx() == FormatIdx &&
   2595         F->getFirstArg() == FirstArg) {
   2596       // If we don't have a valid location for this attribute, adopt the
   2597       // location.
   2598       if (F->getLocation().isInvalid())
   2599         F->setRange(Range);
   2600       return nullptr;
   2601     }
   2602   }
   2603 
   2604   return ::new (Context) FormatAttr(Range, Context, Format, FormatIdx,
   2605                                     FirstArg, AttrSpellingListIndex);
   2606 }
   2607 
   2608 /// Handle __attribute__((format(type,idx,firstarg))) attributes based on
   2609 /// http://gcc.gnu.org/onlinedocs/gcc/Function-Attributes.html
   2610 static void handleFormatAttr(Sema &S, Decl *D, const AttributeList &Attr) {
   2611   if (!Attr.isArgIdent(0)) {
   2612     S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_type)
   2613       << Attr.getName() << 1 << AANT_ArgumentIdentifier;
   2614     return;
   2615   }
   2616 
   2617   // In C++ the implicit 'this' function parameter also counts, and they are
   2618   // counted from one.
   2619   bool HasImplicitThisParam = isInstanceMethod(D);
   2620   unsigned NumArgs = getFunctionOrMethodNumParams(D) + HasImplicitThisParam;
   2621 
   2622   IdentifierInfo *II = Attr.getArgAsIdent(0)->Ident;
   2623   StringRef Format = II->getName();
   2624 
   2625   // Normalize the argument, __foo__ becomes foo.
   2626   if (Format.startswith("__") && Format.endswith("__")) {
   2627     Format = Format.substr(2, Format.size() - 4);
   2628     // If we've modified the string name, we need a new identifier for it.
   2629     II = &S.Context.Idents.get(Format);
   2630   }
   2631 
   2632   // Check for supported formats.
   2633   FormatAttrKind Kind = getFormatAttrKind(Format);
   2634 
   2635   if (Kind == IgnoredFormat)
   2636     return;
   2637 
   2638   if (Kind == InvalidFormat) {
   2639     S.Diag(Attr.getLoc(), diag::warn_attribute_type_not_supported)
   2640       << Attr.getName() << II->getName();
   2641     return;
   2642   }
   2643 
   2644   // checks for the 2nd argument
   2645   Expr *IdxExpr = Attr.getArgAsExpr(1);
   2646   uint32_t Idx;
   2647   if (!checkUInt32Argument(S, Attr, IdxExpr, Idx, 2))
   2648     return;
   2649 
   2650   if (Idx < 1 || Idx > NumArgs) {
   2651     S.Diag(Attr.getLoc(), diag::err_attribute_argument_out_of_bounds)
   2652       << Attr.getName() << 2 << IdxExpr->getSourceRange();
   2653     return;
   2654   }
   2655 
   2656   // FIXME: Do we need to bounds check?
   2657   unsigned ArgIdx = Idx - 1;
   2658 
   2659   if (HasImplicitThisParam) {
   2660     if (ArgIdx == 0) {
   2661       S.Diag(Attr.getLoc(),
   2662              diag::err_format_attribute_implicit_this_format_string)
   2663         << IdxExpr->getSourceRange();
   2664       return;
   2665     }
   2666     ArgIdx--;
   2667   }
   2668 
   2669   // make sure the format string is really a string
   2670   QualType Ty = getFunctionOrMethodParamType(D, ArgIdx);
   2671 
   2672   if (Kind == CFStringFormat) {
   2673     if (!isCFStringType(Ty, S.Context)) {
   2674       S.Diag(Attr.getLoc(), diag::err_format_attribute_not)
   2675         << "a CFString" << IdxExpr->getSourceRange()
   2676         << getFunctionOrMethodParamRange(D, ArgIdx);
   2677       return;
   2678     }
   2679   } else if (Kind == NSStringFormat) {
   2680     // FIXME: do we need to check if the type is NSString*?  What are the
   2681     // semantics?
   2682     if (!isNSStringType(Ty, S.Context)) {
   2683       S.Diag(Attr.getLoc(), diag::err_format_attribute_not)
   2684         << "an NSString" << IdxExpr->getSourceRange()
   2685         << getFunctionOrMethodParamRange(D, ArgIdx);
   2686       return;
   2687     }
   2688   } else if (!Ty->isPointerType() ||
   2689              !Ty->getAs<PointerType>()->getPointeeType()->isCharType()) {
   2690     S.Diag(Attr.getLoc(), diag::err_format_attribute_not)
   2691       << "a string type" << IdxExpr->getSourceRange()
   2692       << getFunctionOrMethodParamRange(D, ArgIdx);
   2693     return;
   2694   }
   2695 
   2696   // check the 3rd argument
   2697   Expr *FirstArgExpr = Attr.getArgAsExpr(2);
   2698   uint32_t FirstArg;
   2699   if (!checkUInt32Argument(S, Attr, FirstArgExpr, FirstArg, 3))
   2700     return;
   2701 
   2702   // check if the function is variadic if the 3rd argument non-zero
   2703   if (FirstArg != 0) {
   2704     if (isFunctionOrMethodVariadic(D)) {
   2705       ++NumArgs; // +1 for ...
   2706     } else {
   2707       S.Diag(D->getLocation(), diag::err_format_attribute_requires_variadic);
   2708       return;
   2709     }
   2710   }
   2711 
   2712   // strftime requires FirstArg to be 0 because it doesn't read from any
   2713   // variable the input is just the current time + the format string.
   2714   if (Kind == StrftimeFormat) {
   2715     if (FirstArg != 0) {
   2716       S.Diag(Attr.getLoc(), diag::err_format_strftime_third_parameter)
   2717         << FirstArgExpr->getSourceRange();
   2718       return;
   2719     }
   2720   // if 0 it disables parameter checking (to use with e.g. va_list)
   2721   } else if (FirstArg != 0 && FirstArg != NumArgs) {
   2722     S.Diag(Attr.getLoc(), diag::err_attribute_argument_out_of_bounds)
   2723       << Attr.getName() << 3 << FirstArgExpr->getSourceRange();
   2724     return;
   2725   }
   2726 
   2727   FormatAttr *NewAttr = S.mergeFormatAttr(D, Attr.getRange(), II,
   2728                                           Idx, FirstArg,
   2729                                           Attr.getAttributeSpellingListIndex());
   2730   if (NewAttr)
   2731     D->addAttr(NewAttr);
   2732 }
   2733 
   2734 static void handleTransparentUnionAttr(Sema &S, Decl *D,
   2735                                        const AttributeList &Attr) {
   2736   // Try to find the underlying union declaration.
   2737   RecordDecl *RD = nullptr;
   2738   TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(D);
   2739   if (TD && TD->getUnderlyingType()->isUnionType())
   2740     RD = TD->getUnderlyingType()->getAsUnionType()->getDecl();
   2741   else
   2742     RD = dyn_cast<RecordDecl>(D);
   2743 
   2744   if (!RD || !RD->isUnion()) {
   2745     S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
   2746       << Attr.getName() << ExpectedUnion;
   2747     return;
   2748   }
   2749 
   2750   if (!RD->isCompleteDefinition()) {
   2751     S.Diag(Attr.getLoc(),
   2752         diag::warn_transparent_union_attribute_not_definition);
   2753     return;
   2754   }
   2755 
   2756   RecordDecl::field_iterator Field = RD->field_begin(),
   2757                           FieldEnd = RD->field_end();
   2758   if (Field == FieldEnd) {
   2759     S.Diag(Attr.getLoc(), diag::warn_transparent_union_attribute_zero_fields);
   2760     return;
   2761   }
   2762 
   2763   FieldDecl *FirstField = *Field;
   2764   QualType FirstType = FirstField->getType();
   2765   if (FirstType->hasFloatingRepresentation() || FirstType->isVectorType()) {
   2766     S.Diag(FirstField->getLocation(),
   2767            diag::warn_transparent_union_attribute_floating)
   2768       << FirstType->isVectorType() << FirstType;
   2769     return;
   2770   }
   2771 
   2772   uint64_t FirstSize = S.Context.getTypeSize(FirstType);
   2773   uint64_t FirstAlign = S.Context.getTypeAlign(FirstType);
   2774   for (; Field != FieldEnd; ++Field) {
   2775     QualType FieldType = Field->getType();
   2776     // FIXME: this isn't fully correct; we also need to test whether the
   2777     // members of the union would all have the same calling convention as the
   2778     // first member of the union. Checking just the size and alignment isn't
   2779     // sufficient (consider structs passed on the stack instead of in registers
   2780     // as an example).
   2781     if (S.Context.getTypeSize(FieldType) != FirstSize ||
   2782         S.Context.getTypeAlign(FieldType) > FirstAlign) {
   2783       // Warn if we drop the attribute.
   2784       bool isSize = S.Context.getTypeSize(FieldType) != FirstSize;
   2785       unsigned FieldBits = isSize? S.Context.getTypeSize(FieldType)
   2786                                  : S.Context.getTypeAlign(FieldType);
   2787       S.Diag(Field->getLocation(),
   2788           diag::warn_transparent_union_attribute_field_size_align)
   2789         << isSize << Field->getDeclName() << FieldBits;
   2790       unsigned FirstBits = isSize? FirstSize : FirstAlign;
   2791       S.Diag(FirstField->getLocation(),
   2792              diag::note_transparent_union_first_field_size_align)
   2793         << isSize << FirstBits;
   2794       return;
   2795     }
   2796   }
   2797 
   2798   RD->addAttr(::new (S.Context)
   2799               TransparentUnionAttr(Attr.getRange(), S.Context,
   2800                                    Attr.getAttributeSpellingListIndex()));
   2801 }
   2802 
   2803 static void handleAnnotateAttr(Sema &S, Decl *D, const AttributeList &Attr) {
   2804   // Make sure that there is a string literal as the annotation's single
   2805   // argument.
   2806   StringRef Str;
   2807   if (!S.checkStringLiteralArgumentAttr(Attr, 0, Str))
   2808     return;
   2809 
   2810   // Don't duplicate annotations that are already set.
   2811   for (const auto *I : D->specific_attrs<AnnotateAttr>()) {
   2812     if (I->getAnnotation() == Str)
   2813       return;
   2814   }
   2815 
   2816   D->addAttr(::new (S.Context)
   2817              AnnotateAttr(Attr.getRange(), S.Context, Str,
   2818                           Attr.getAttributeSpellingListIndex()));
   2819 }
   2820 
   2821 static void handleAlignValueAttr(Sema &S, Decl *D,
   2822                                  const AttributeList &Attr) {
   2823   S.AddAlignValueAttr(Attr.getRange(), D, Attr.getArgAsExpr(0),
   2824                       Attr.getAttributeSpellingListIndex());
   2825 }
   2826 
   2827 void Sema::AddAlignValueAttr(SourceRange AttrRange, Decl *D, Expr *E,
   2828                              unsigned SpellingListIndex) {
   2829   AlignValueAttr TmpAttr(AttrRange, Context, E, SpellingListIndex);
   2830   SourceLocation AttrLoc = AttrRange.getBegin();
   2831 
   2832   QualType T;
   2833   if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(D))
   2834     T = TD->getUnderlyingType();
   2835   else if (ValueDecl *VD = dyn_cast<ValueDecl>(D))
   2836     T = VD->getType();
   2837   else
   2838     llvm_unreachable("Unknown decl type for align_value");
   2839 
   2840   if (!T->isDependentType() && !T->isAnyPointerType() &&
   2841       !T->isReferenceType() && !T->isMemberPointerType()) {
   2842     Diag(AttrLoc, diag::warn_attribute_pointer_or_reference_only)
   2843       << &TmpAttr /*TmpAttr.getName()*/ << T << D->getSourceRange();
   2844     return;
   2845   }
   2846 
   2847   if (!E->isValueDependent()) {
   2848     llvm::APSInt Alignment(32);
   2849     ExprResult ICE
   2850       = VerifyIntegerConstantExpression(E, &Alignment,
   2851           diag::err_align_value_attribute_argument_not_int,
   2852             /*AllowFold*/ false);
   2853     if (ICE.isInvalid())
   2854       return;
   2855 
   2856     if (!Alignment.isPowerOf2()) {
   2857       Diag(AttrLoc, diag::err_alignment_not_power_of_two)
   2858         << E->getSourceRange();
   2859       return;
   2860     }
   2861 
   2862     D->addAttr(::new (Context)
   2863                AlignValueAttr(AttrRange, Context, ICE.get(),
   2864                SpellingListIndex));
   2865     return;
   2866   }
   2867 
   2868   // Save dependent expressions in the AST to be instantiated.
   2869   D->addAttr(::new (Context) AlignValueAttr(TmpAttr));
   2870   return;
   2871 }
   2872 
   2873 static void handleAlignedAttr(Sema &S, Decl *D, const AttributeList &Attr) {
   2874   // check the attribute arguments.
   2875   if (Attr.getNumArgs() > 1) {
   2876     S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments)
   2877       << Attr.getName() << 1;
   2878     return;
   2879   }
   2880 
   2881   if (Attr.getNumArgs() == 0) {
   2882     D->addAttr(::new (S.Context) AlignedAttr(Attr.getRange(), S.Context,
   2883                true, nullptr, Attr.getAttributeSpellingListIndex()));
   2884     return;
   2885   }
   2886 
   2887   Expr *E = Attr.getArgAsExpr(0);
   2888   if (Attr.isPackExpansion() && !E->containsUnexpandedParameterPack()) {
   2889     S.Diag(Attr.getEllipsisLoc(),
   2890            diag::err_pack_expansion_without_parameter_packs);
   2891     return;
   2892   }
   2893 
   2894   if (!Attr.isPackExpansion() && S.DiagnoseUnexpandedParameterPack(E))
   2895     return;
   2896 
   2897   if (E->isValueDependent()) {
   2898     if (const auto *TND = dyn_cast<TypedefNameDecl>(D)) {
   2899       if (!TND->getUnderlyingType()->isDependentType()) {
   2900         S.Diag(Attr.getLoc(), diag::err_alignment_dependent_typedef_name)
   2901             << E->getSourceRange();
   2902         return;
   2903       }
   2904     }
   2905   }
   2906 
   2907   S.AddAlignedAttr(Attr.getRange(), D, E, Attr.getAttributeSpellingListIndex(),
   2908                    Attr.isPackExpansion());
   2909 }
   2910 
   2911 void Sema::AddAlignedAttr(SourceRange AttrRange, Decl *D, Expr *E,
   2912                           unsigned SpellingListIndex, bool IsPackExpansion) {
   2913   AlignedAttr TmpAttr(AttrRange, Context, true, E, SpellingListIndex);
   2914   SourceLocation AttrLoc = AttrRange.getBegin();
   2915 
   2916   // C++11 alignas(...) and C11 _Alignas(...) have additional requirements.
   2917   if (TmpAttr.isAlignas()) {
   2918     // C++11 [dcl.align]p1:
   2919     //   An alignment-specifier may be applied to a variable or to a class
   2920     //   data member, but it shall not be applied to a bit-field, a function
   2921     //   parameter, the formal parameter of a catch clause, or a variable
   2922     //   declared with the register storage class specifier. An
   2923     //   alignment-specifier may also be applied to the declaration of a class
   2924     //   or enumeration type.
   2925     // C11 6.7.5/2:
   2926     //   An alignment attribute shall not be specified in a declaration of
   2927     //   a typedef, or a bit-field, or a function, or a parameter, or an
   2928     //   object declared with the register storage-class specifier.
   2929     int DiagKind = -1;
   2930     if (isa<ParmVarDecl>(D)) {
   2931       DiagKind = 0;
   2932     } else if (VarDecl *VD = dyn_cast<VarDecl>(D)) {
   2933       if (VD->getStorageClass() == SC_Register)
   2934         DiagKind = 1;
   2935       if (VD->isExceptionVariable())
   2936         DiagKind = 2;
   2937     } else if (FieldDecl *FD = dyn_cast<FieldDecl>(D)) {
   2938       if (FD->isBitField())
   2939         DiagKind = 3;
   2940     } else if (!isa<TagDecl>(D)) {
   2941       Diag(AttrLoc, diag::err_attribute_wrong_decl_type) << &TmpAttr
   2942         << (TmpAttr.isC11() ? ExpectedVariableOrField
   2943                             : ExpectedVariableFieldOrTag);
   2944       return;
   2945     }
   2946     if (DiagKind != -1) {
   2947       Diag(AttrLoc, diag::err_alignas_attribute_wrong_decl_type)
   2948         << &TmpAttr << DiagKind;
   2949       return;
   2950     }
   2951   }
   2952 
   2953   if (E->isTypeDependent() || E->isValueDependent()) {
   2954     // Save dependent expressions in the AST to be instantiated.
   2955     AlignedAttr *AA = ::new (Context) AlignedAttr(TmpAttr);
   2956     AA->setPackExpansion(IsPackExpansion);
   2957     D->addAttr(AA);
   2958     return;
   2959   }
   2960 
   2961   // FIXME: Cache the number on the Attr object?
   2962   llvm::APSInt Alignment(32);
   2963   ExprResult ICE
   2964     = VerifyIntegerConstantExpression(E, &Alignment,
   2965         diag::err_aligned_attribute_argument_not_int,
   2966         /*AllowFold*/ false);
   2967   if (ICE.isInvalid())
   2968     return;
   2969 
   2970   // C++11 [dcl.align]p2:
   2971   //   -- if the constant expression evaluates to zero, the alignment
   2972   //      specifier shall have no effect
   2973   // C11 6.7.5p6:
   2974   //   An alignment specification of zero has no effect.
   2975   if (!(TmpAttr.isAlignas() && !Alignment) &&
   2976       !llvm::isPowerOf2_64(Alignment.getZExtValue())) {
   2977     Diag(AttrLoc, diag::err_alignment_not_power_of_two)
   2978       << E->getSourceRange();
   2979     return;
   2980   }
   2981 
   2982   // Alignment calculations can wrap around if it's greater than 2**28.
   2983   unsigned MaxValidAlignment = TmpAttr.isDeclspec() ? 8192 : 268435456;
   2984   if (Alignment.getZExtValue() > MaxValidAlignment) {
   2985     Diag(AttrLoc, diag::err_attribute_aligned_too_great) << MaxValidAlignment
   2986                                                          << E->getSourceRange();
   2987     return;
   2988   }
   2989 
   2990   AlignedAttr *AA = ::new (Context) AlignedAttr(AttrRange, Context, true,
   2991                                                 ICE.get(), SpellingListIndex);
   2992   AA->setPackExpansion(IsPackExpansion);
   2993   D->addAttr(AA);
   2994 }
   2995 
   2996 void Sema::AddAlignedAttr(SourceRange AttrRange, Decl *D, TypeSourceInfo *TS,
   2997                           unsigned SpellingListIndex, bool IsPackExpansion) {
   2998   // FIXME: Cache the number on the Attr object if non-dependent?
   2999   // FIXME: Perform checking of type validity
   3000   AlignedAttr *AA = ::new (Context) AlignedAttr(AttrRange, Context, false, TS,
   3001                                                 SpellingListIndex);
   3002   AA->setPackExpansion(IsPackExpansion);
   3003   D->addAttr(AA);
   3004 }
   3005 
   3006 void Sema::CheckAlignasUnderalignment(Decl *D) {
   3007   assert(D->hasAttrs() && "no attributes on decl");
   3008 
   3009   QualType UnderlyingTy, DiagTy;
   3010   if (ValueDecl *VD = dyn_cast<ValueDecl>(D)) {
   3011     UnderlyingTy = DiagTy = VD->getType();
   3012   } else {
   3013     UnderlyingTy = DiagTy = Context.getTagDeclType(cast<TagDecl>(D));
   3014     if (EnumDecl *ED = dyn_cast<EnumDecl>(D))
   3015       UnderlyingTy = ED->getIntegerType();
   3016   }
   3017   if (DiagTy->isDependentType() || DiagTy->isIncompleteType())
   3018     return;
   3019 
   3020   // C++11 [dcl.align]p5, C11 6.7.5/4:
   3021   //   The combined effect of all alignment attributes in a declaration shall
   3022   //   not specify an alignment that is less strict than the alignment that
   3023   //   would otherwise be required for the entity being declared.
   3024   AlignedAttr *AlignasAttr = nullptr;
   3025   unsigned Align = 0;
   3026   for (auto *I : D->specific_attrs<AlignedAttr>()) {
   3027     if (I->isAlignmentDependent())
   3028       return;
   3029     if (I->isAlignas())
   3030       AlignasAttr = I;
   3031     Align = std::max(Align, I->getAlignment(Context));
   3032   }
   3033 
   3034   if (AlignasAttr && Align) {
   3035     CharUnits RequestedAlign = Context.toCharUnitsFromBits(Align);
   3036     CharUnits NaturalAlign = Context.getTypeAlignInChars(UnderlyingTy);
   3037     if (NaturalAlign > RequestedAlign)
   3038       Diag(AlignasAttr->getLocation(), diag::err_alignas_underaligned)
   3039         << DiagTy << (unsigned)NaturalAlign.getQuantity();
   3040   }
   3041 }
   3042 
   3043 bool Sema::checkMSInheritanceAttrOnDefinition(
   3044     CXXRecordDecl *RD, SourceRange Range, bool BestCase,
   3045     MSInheritanceAttr::Spelling SemanticSpelling) {
   3046   assert(RD->hasDefinition() && "RD has no definition!");
   3047 
   3048   // We may not have seen base specifiers or any virtual methods yet.  We will
   3049   // have to wait until the record is defined to catch any mismatches.
   3050   if (!RD->getDefinition()->isCompleteDefinition())
   3051     return false;
   3052 
   3053   // The unspecified model never matches what a definition could need.
   3054   if (SemanticSpelling == MSInheritanceAttr::Keyword_unspecified_inheritance)
   3055     return false;
   3056 
   3057   if (BestCase) {
   3058     if (RD->calculateInheritanceModel() == SemanticSpelling)
   3059       return false;
   3060   } else {
   3061     if (RD->calculateInheritanceModel() <= SemanticSpelling)
   3062       return false;
   3063   }
   3064 
   3065   Diag(Range.getBegin(), diag::err_mismatched_ms_inheritance)
   3066       << 0 /*definition*/;
   3067   Diag(RD->getDefinition()->getLocation(), diag::note_defined_here)
   3068       << RD->getNameAsString();
   3069   return true;
   3070 }
   3071 
   3072 /// handleModeAttr - This attribute modifies the width of a decl with primitive
   3073 /// type.
   3074 ///
   3075 /// Despite what would be logical, the mode attribute is a decl attribute, not a
   3076 /// type attribute: 'int ** __attribute((mode(HI))) *G;' tries to make 'G' be
   3077 /// HImode, not an intermediate pointer.
   3078 static void handleModeAttr(Sema &S, Decl *D, const AttributeList &Attr) {
   3079   // This attribute isn't documented, but glibc uses it.  It changes
   3080   // the width of an int or unsigned int to the specified size.
   3081   if (!Attr.isArgIdent(0)) {
   3082     S.Diag(Attr.getLoc(), diag::err_attribute_argument_type) << Attr.getName()
   3083       << AANT_ArgumentIdentifier;
   3084     return;
   3085   }
   3086 
   3087   IdentifierInfo *Name = Attr.getArgAsIdent(0)->Ident;
   3088   StringRef Str = Name->getName();
   3089 
   3090   // Normalize the attribute name, __foo__ becomes foo.
   3091   if (Str.startswith("__") && Str.endswith("__"))
   3092     Str = Str.substr(2, Str.size() - 4);
   3093 
   3094   unsigned DestWidth = 0;
   3095   bool IntegerMode = true;
   3096   bool ComplexMode = false;
   3097   switch (Str.size()) {
   3098   case 2:
   3099     switch (Str[0]) {
   3100     case 'Q': DestWidth = 8; break;
   3101     case 'H': DestWidth = 16; break;
   3102     case 'S': DestWidth = 32; break;
   3103     case 'D': DestWidth = 64; break;
   3104     case 'X': DestWidth = 96; break;
   3105     case 'T': DestWidth = 128; break;
   3106     }
   3107     if (Str[1] == 'F') {
   3108       IntegerMode = false;
   3109     } else if (Str[1] == 'C') {
   3110       IntegerMode = false;
   3111       ComplexMode = true;
   3112     } else if (Str[1] != 'I') {
   3113       DestWidth = 0;
   3114     }
   3115     break;
   3116   case 4:
   3117     // FIXME: glibc uses 'word' to define register_t; this is narrower than a
   3118     // pointer on PIC16 and other embedded platforms.
   3119     if (Str == "word")
   3120       DestWidth = S.Context.getTargetInfo().getPointerWidth(0);
   3121     else if (Str == "byte")
   3122       DestWidth = S.Context.getTargetInfo().getCharWidth();
   3123     break;
   3124   case 7:
   3125     if (Str == "pointer")
   3126       DestWidth = S.Context.getTargetInfo().getPointerWidth(0);
   3127     break;
   3128   case 11:
   3129     if (Str == "unwind_word")
   3130       DestWidth = S.Context.getTargetInfo().getUnwindWordWidth();
   3131     break;
   3132   }
   3133 
   3134   QualType OldTy;
   3135   if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(D))
   3136     OldTy = TD->getUnderlyingType();
   3137   else if (ValueDecl *VD = dyn_cast<ValueDecl>(D))
   3138     OldTy = VD->getType();
   3139   else {
   3140     S.Diag(D->getLocation(), diag::err_attr_wrong_decl)
   3141       << Attr.getName() << Attr.getRange();
   3142     return;
   3143   }
   3144 
   3145   if (!OldTy->getAs<BuiltinType>() && !OldTy->isComplexType())
   3146     S.Diag(Attr.getLoc(), diag::err_mode_not_primitive);
   3147   else if (IntegerMode) {
   3148     if (!OldTy->isIntegralOrEnumerationType())
   3149       S.Diag(Attr.getLoc(), diag::err_mode_wrong_type);
   3150   } else if (ComplexMode) {
   3151     if (!OldTy->isComplexType())
   3152       S.Diag(Attr.getLoc(), diag::err_mode_wrong_type);
   3153   } else {
   3154     if (!OldTy->isFloatingType())
   3155       S.Diag(Attr.getLoc(), diag::err_mode_wrong_type);
   3156   }
   3157 
   3158   // FIXME: Sync this with InitializePredefinedMacros; we need to match int8_t
   3159   // and friends, at least with glibc.
   3160   // FIXME: Make sure floating-point mappings are accurate
   3161   // FIXME: Support XF and TF types
   3162   if (!DestWidth) {
   3163     S.Diag(Attr.getLoc(), diag::err_machine_mode) << 0 /*Unknown*/ << Name;
   3164     return;
   3165   }
   3166 
   3167   QualType NewTy;
   3168 
   3169   if (IntegerMode)
   3170     NewTy = S.Context.getIntTypeForBitwidth(DestWidth,
   3171                                             OldTy->isSignedIntegerType());
   3172   else
   3173     NewTy = S.Context.getRealTypeForBitwidth(DestWidth);
   3174 
   3175   if (NewTy.isNull()) {
   3176     S.Diag(Attr.getLoc(), diag::err_machine_mode) << 1 /*Unsupported*/ << Name;
   3177     return;
   3178   }
   3179 
   3180   if (ComplexMode) {
   3181     NewTy = S.Context.getComplexType(NewTy);
   3182   }
   3183 
   3184   // Install the new type.
   3185   if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(D))
   3186     TD->setModedTypeSourceInfo(TD->getTypeSourceInfo(), NewTy);
   3187   else
   3188     cast<ValueDecl>(D)->setType(NewTy);
   3189 
   3190   D->addAttr(::new (S.Context)
   3191              ModeAttr(Attr.getRange(), S.Context, Name,
   3192                       Attr.getAttributeSpellingListIndex()));
   3193 }
   3194 
   3195 static void handleNoDebugAttr(Sema &S, Decl *D, const AttributeList &Attr) {
   3196   if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
   3197     if (!VD->hasGlobalStorage())
   3198       S.Diag(Attr.getLoc(),
   3199              diag::warn_attribute_requires_functions_or_static_globals)
   3200         << Attr.getName();
   3201   } else if (!isFunctionOrMethod(D)) {
   3202     S.Diag(Attr.getLoc(),
   3203            diag::warn_attribute_requires_functions_or_static_globals)
   3204       << Attr.getName();
   3205     return;
   3206   }
   3207 
   3208   D->addAttr(::new (S.Context)
   3209              NoDebugAttr(Attr.getRange(), S.Context,
   3210                          Attr.getAttributeSpellingListIndex()));
   3211 }
   3212 
   3213 AlwaysInlineAttr *Sema::mergeAlwaysInlineAttr(Decl *D, SourceRange Range,
   3214                                               IdentifierInfo *Ident,
   3215                                               unsigned AttrSpellingListIndex) {
   3216   if (OptimizeNoneAttr *Optnone = D->getAttr<OptimizeNoneAttr>()) {
   3217     Diag(Range.getBegin(), diag::warn_attribute_ignored) << Ident;
   3218     Diag(Optnone->getLocation(), diag::note_conflicting_attribute);
   3219     return nullptr;
   3220   }
   3221 
   3222   if (D->hasAttr<AlwaysInlineAttr>())
   3223     return nullptr;
   3224 
   3225   return ::new (Context) AlwaysInlineAttr(Range, Context,
   3226                                           AttrSpellingListIndex);
   3227 }
   3228 
   3229 MinSizeAttr *Sema::mergeMinSizeAttr(Decl *D, SourceRange Range,
   3230                                     unsigned AttrSpellingListIndex) {
   3231   if (OptimizeNoneAttr *Optnone = D->getAttr<OptimizeNoneAttr>()) {
   3232     Diag(Range.getBegin(), diag::warn_attribute_ignored) << "'minsize'";
   3233     Diag(Optnone->getLocation(), diag::note_conflicting_attribute);
   3234     return nullptr;
   3235   }
   3236 
   3237   if (D->hasAttr<MinSizeAttr>())
   3238     return nullptr;
   3239 
   3240   return ::new (Context) MinSizeAttr(Range, Context, AttrSpellingListIndex);
   3241 }
   3242 
   3243 OptimizeNoneAttr *Sema::mergeOptimizeNoneAttr(Decl *D, SourceRange Range,
   3244                                               unsigned AttrSpellingListIndex) {
   3245   if (AlwaysInlineAttr *Inline = D->getAttr<AlwaysInlineAttr>()) {
   3246     Diag(Inline->getLocation(), diag::warn_attribute_ignored) << Inline;
   3247     Diag(Range.getBegin(), diag::note_conflicting_attribute);
   3248     D->dropAttr<AlwaysInlineAttr>();
   3249   }
   3250   if (MinSizeAttr *MinSize = D->getAttr<MinSizeAttr>()) {
   3251     Diag(MinSize->getLocation(), diag::warn_attribute_ignored) << MinSize;
   3252     Diag(Range.getBegin(), diag::note_conflicting_attribute);
   3253     D->dropAttr<MinSizeAttr>();
   3254   }
   3255 
   3256   if (D->hasAttr<OptimizeNoneAttr>())
   3257     return nullptr;
   3258 
   3259   return ::new (Context) OptimizeNoneAttr(Range, Context,
   3260                                           AttrSpellingListIndex);
   3261 }
   3262 
   3263 static void handleAlwaysInlineAttr(Sema &S, Decl *D,
   3264                                    const AttributeList &Attr) {
   3265   if (AlwaysInlineAttr *Inline = S.mergeAlwaysInlineAttr(
   3266           D, Attr.getRange(), Attr.getName(),
   3267           Attr.getAttributeSpellingListIndex()))
   3268     D->addAttr(Inline);
   3269 }
   3270 
   3271 static void handleMinSizeAttr(Sema &S, Decl *D, const AttributeList &Attr) {
   3272   if (MinSizeAttr *MinSize = S.mergeMinSizeAttr(
   3273           D, Attr.getRange(), Attr.getAttributeSpellingListIndex()))
   3274     D->addAttr(MinSize);
   3275 }
   3276 
   3277 static void handleOptimizeNoneAttr(Sema &S, Decl *D,
   3278                                    const AttributeList &Attr) {
   3279   if (OptimizeNoneAttr *Optnone = S.mergeOptimizeNoneAttr(
   3280           D, Attr.getRange(), Attr.getAttributeSpellingListIndex()))
   3281     D->addAttr(Optnone);
   3282 }
   3283 
   3284 static void handleGlobalAttr(Sema &S, Decl *D, const AttributeList &Attr) {
   3285   FunctionDecl *FD = cast<FunctionDecl>(D);
   3286   if (!FD->getReturnType()->isVoidType()) {
   3287     SourceRange RTRange = FD->getReturnTypeSourceRange();
   3288     S.Diag(FD->getTypeSpecStartLoc(), diag::err_kern_type_not_void_return)
   3289         << FD->getType()
   3290         << (RTRange.isValid() ? FixItHint::CreateReplacement(RTRange, "void")
   3291                               : FixItHint());
   3292     return;
   3293   }
   3294 
   3295   D->addAttr(::new (S.Context)
   3296               CUDAGlobalAttr(Attr.getRange(), S.Context,
   3297                              Attr.getAttributeSpellingListIndex()));
   3298 }
   3299 
   3300 static void handleGNUInlineAttr(Sema &S, Decl *D, const AttributeList &Attr) {
   3301   FunctionDecl *Fn = cast<FunctionDecl>(D);
   3302   if (!Fn->isInlineSpecified()) {
   3303     S.Diag(Attr.getLoc(), diag::warn_gnu_inline_attribute_requires_inline);
   3304     return;
   3305   }
   3306 
   3307   D->addAttr(::new (S.Context)
   3308              GNUInlineAttr(Attr.getRange(), S.Context,
   3309                            Attr.getAttributeSpellingListIndex()));
   3310 }
   3311 
   3312 static void handleCallConvAttr(Sema &S, Decl *D, const AttributeList &Attr) {
   3313   if (hasDeclarator(D)) return;
   3314 
   3315   const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
   3316   // Diagnostic is emitted elsewhere: here we store the (valid) Attr
   3317   // in the Decl node for syntactic reasoning, e.g., pretty-printing.
   3318   CallingConv CC;
   3319   if (S.CheckCallingConvAttr(Attr, CC, FD))
   3320     return;
   3321 
   3322   if (!isa<ObjCMethodDecl>(D)) {
   3323     S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
   3324       << Attr.getName() << ExpectedFunctionOrMethod;
   3325     return;
   3326   }
   3327 
   3328   switch (Attr.getKind()) {
   3329   case AttributeList::AT_FastCall:
   3330     D->addAttr(::new (S.Context)
   3331                FastCallAttr(Attr.getRange(), S.Context,
   3332                             Attr.getAttributeSpellingListIndex()));
   3333     return;
   3334   case AttributeList::AT_StdCall:
   3335     D->addAttr(::new (S.Context)
   3336                StdCallAttr(Attr.getRange(), S.Context,
   3337                            Attr.getAttributeSpellingListIndex()));
   3338     return;
   3339   case AttributeList::AT_ThisCall:
   3340     D->addAttr(::new (S.Context)
   3341                ThisCallAttr(Attr.getRange(), S.Context,
   3342                             Attr.getAttributeSpellingListIndex()));
   3343     return;
   3344   case AttributeList::AT_CDecl:
   3345     D->addAttr(::new (S.Context)
   3346                CDeclAttr(Attr.getRange(), S.Context,
   3347                          Attr.getAttributeSpellingListIndex()));
   3348     return;
   3349   case AttributeList::AT_Pascal:
   3350     D->addAttr(::new (S.Context)
   3351                PascalAttr(Attr.getRange(), S.Context,
   3352                           Attr.getAttributeSpellingListIndex()));
   3353     return;
   3354   case AttributeList::AT_VectorCall:
   3355     D->addAttr(::new (S.Context)
   3356                VectorCallAttr(Attr.getRange(), S.Context,
   3357                               Attr.getAttributeSpellingListIndex()));
   3358     return;
   3359   case AttributeList::AT_MSABI:
   3360     D->addAttr(::new (S.Context)
   3361                MSABIAttr(Attr.getRange(), S.Context,
   3362                          Attr.getAttributeSpellingListIndex()));
   3363     return;
   3364   case AttributeList::AT_SysVABI:
   3365     D->addAttr(::new (S.Context)
   3366                SysVABIAttr(Attr.getRange(), S.Context,
   3367                            Attr.getAttributeSpellingListIndex()));
   3368     return;
   3369   case AttributeList::AT_Pcs: {
   3370     PcsAttr::PCSType PCS;
   3371     switch (CC) {
   3372     case CC_AAPCS:
   3373       PCS = PcsAttr::AAPCS;
   3374       break;
   3375     case CC_AAPCS_VFP:
   3376       PCS = PcsAttr::AAPCS_VFP;
   3377       break;
   3378     default:
   3379       llvm_unreachable("unexpected calling convention in pcs attribute");
   3380     }
   3381 
   3382     D->addAttr(::new (S.Context)
   3383                PcsAttr(Attr.getRange(), S.Context, PCS,
   3384                        Attr.getAttributeSpellingListIndex()));
   3385     return;
   3386   }
   3387   case AttributeList::AT_IntelOclBicc:
   3388     D->addAttr(::new (S.Context)
   3389                IntelOclBiccAttr(Attr.getRange(), S.Context,
   3390                                 Attr.getAttributeSpellingListIndex()));
   3391     return;
   3392 
   3393   default:
   3394     llvm_unreachable("unexpected attribute kind");
   3395   }
   3396 }
   3397 
   3398 bool Sema::CheckCallingConvAttr(const AttributeList &attr, CallingConv &CC,
   3399                                 const FunctionDecl *FD) {
   3400   if (attr.isInvalid())
   3401     return true;
   3402 
   3403   unsigned ReqArgs = attr.getKind() == AttributeList::AT_Pcs ? 1 : 0;
   3404   if (!checkAttributeNumArgs(*this, attr, ReqArgs)) {
   3405     attr.setInvalid();
   3406     return true;
   3407   }
   3408 
   3409   // TODO: diagnose uses of these conventions on the wrong target.
   3410   switch (attr.getKind()) {
   3411   case AttributeList::AT_CDecl: CC = CC_C; break;
   3412   case AttributeList::AT_FastCall: CC = CC_X86FastCall; break;
   3413   case AttributeList::AT_StdCall: CC = CC_X86StdCall; break;
   3414   case AttributeList::AT_ThisCall: CC = CC_X86ThisCall; break;
   3415   case AttributeList::AT_Pascal: CC = CC_X86Pascal; break;
   3416   case AttributeList::AT_VectorCall: CC = CC_X86VectorCall; break;
   3417   case AttributeList::AT_MSABI:
   3418     CC = Context.getTargetInfo().getTriple().isOSWindows() ? CC_C :
   3419                                                              CC_X86_64Win64;
   3420     break;
   3421   case AttributeList::AT_SysVABI:
   3422     CC = Context.getTargetInfo().getTriple().isOSWindows() ? CC_X86_64SysV :
   3423                                                              CC_C;
   3424     break;
   3425   case AttributeList::AT_Pcs: {
   3426     StringRef StrRef;
   3427     if (!checkStringLiteralArgumentAttr(attr, 0, StrRef)) {
   3428       attr.setInvalid();
   3429       return true;
   3430     }
   3431     if (StrRef == "aapcs") {
   3432       CC = CC_AAPCS;
   3433       break;
   3434     } else if (StrRef == "aapcs-vfp") {
   3435       CC = CC_AAPCS_VFP;
   3436       break;
   3437     }
   3438 
   3439     attr.setInvalid();
   3440     Diag(attr.getLoc(), diag::err_invalid_pcs);
   3441     return true;
   3442   }
   3443   case AttributeList::AT_IntelOclBicc: CC = CC_IntelOclBicc; break;
   3444   default: llvm_unreachable("unexpected attribute kind");
   3445   }
   3446 
   3447   const TargetInfo &TI = Context.getTargetInfo();
   3448   TargetInfo::CallingConvCheckResult A = TI.checkCallingConvention(CC);
   3449   if (A != TargetInfo::CCCR_OK) {
   3450     if (A == TargetInfo::CCCR_Warning)
   3451       Diag(attr.getLoc(), diag::warn_cconv_ignored) << attr.getName();
   3452 
   3453     // This convention is not valid for the target. Use the default function or
   3454     // method calling convention.
   3455     TargetInfo::CallingConvMethodType MT = TargetInfo::CCMT_Unknown;
   3456     if (FD)
   3457       MT = FD->isCXXInstanceMember() ? TargetInfo::CCMT_Member :
   3458                                     TargetInfo::CCMT_NonMember;
   3459     CC = TI.getDefaultCallingConv(MT);
   3460   }
   3461 
   3462   return false;
   3463 }
   3464 
   3465 /// Checks a regparm attribute, returning true if it is ill-formed and
   3466 /// otherwise setting numParams to the appropriate value.
   3467 bool Sema::CheckRegparmAttr(const AttributeList &Attr, unsigned &numParams) {
   3468   if (Attr.isInvalid())
   3469     return true;
   3470 
   3471   if (!checkAttributeNumArgs(*this, Attr, 1)) {
   3472     Attr.setInvalid();
   3473     return true;
   3474   }
   3475 
   3476   uint32_t NP;
   3477   Expr *NumParamsExpr = Attr.getArgAsExpr(0);
   3478   if (!checkUInt32Argument(*this, Attr, NumParamsExpr, NP)) {
   3479     Attr.setInvalid();
   3480     return true;
   3481   }
   3482 
   3483   if (Context.getTargetInfo().getRegParmMax() == 0) {
   3484     Diag(Attr.getLoc(), diag::err_attribute_regparm_wrong_platform)
   3485       << NumParamsExpr->getSourceRange();
   3486     Attr.setInvalid();
   3487     return true;
   3488   }
   3489 
   3490   numParams = NP;
   3491   if (numParams > Context.getTargetInfo().getRegParmMax()) {
   3492     Diag(Attr.getLoc(), diag::err_attribute_regparm_invalid_number)
   3493       << Context.getTargetInfo().getRegParmMax() << NumParamsExpr->getSourceRange();
   3494     Attr.setInvalid();
   3495     return true;
   3496   }
   3497 
   3498   return false;
   3499 }
   3500 
   3501 static void handleLaunchBoundsAttr(Sema &S, Decl *D,
   3502                                    const AttributeList &Attr) {
   3503   uint32_t MaxThreads, MinBlocks = 0;
   3504   if (!checkUInt32Argument(S, Attr, Attr.getArgAsExpr(0), MaxThreads, 1))
   3505     return;
   3506   if (Attr.getNumArgs() > 1 && !checkUInt32Argument(S, Attr,
   3507                                                     Attr.getArgAsExpr(1),
   3508                                                     MinBlocks, 2))
   3509     return;
   3510 
   3511   D->addAttr(::new (S.Context)
   3512               CUDALaunchBoundsAttr(Attr.getRange(), S.Context,
   3513                                   MaxThreads, MinBlocks,
   3514                                   Attr.getAttributeSpellingListIndex()));
   3515 }
   3516 
   3517 static void handleArgumentWithTypeTagAttr(Sema &S, Decl *D,
   3518                                           const AttributeList &Attr) {
   3519   if (!Attr.isArgIdent(0)) {
   3520     S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_type)
   3521       << Attr.getName() << /* arg num = */ 1 << AANT_ArgumentIdentifier;
   3522     return;
   3523   }
   3524 
   3525   if (!checkAttributeNumArgs(S, Attr, 3))
   3526     return;
   3527 
   3528   IdentifierInfo *ArgumentKind = Attr.getArgAsIdent(0)->Ident;
   3529 
   3530   if (!isFunctionOrMethod(D) || !hasFunctionProto(D)) {
   3531     S.Diag(Attr.getLoc(), diag::err_attribute_wrong_decl_type)
   3532       << Attr.getName() << ExpectedFunctionOrMethod;
   3533     return;
   3534   }
   3535 
   3536   uint64_t ArgumentIdx;
   3537   if (!checkFunctionOrMethodParameterIndex(S, D, Attr, 2, Attr.getArgAsExpr(1),
   3538                                            ArgumentIdx))
   3539     return;
   3540 
   3541   uint64_t TypeTagIdx;
   3542   if (!checkFunctionOrMethodParameterIndex(S, D, Attr, 3, Attr.getArgAsExpr(2),
   3543                                            TypeTagIdx))
   3544     return;
   3545 
   3546   bool IsPointer = (Attr.getName()->getName() == "pointer_with_type_tag");
   3547   if (IsPointer) {
   3548     // Ensure that buffer has a pointer type.
   3549     QualType BufferTy = getFunctionOrMethodParamType(D, ArgumentIdx);
   3550     if (!BufferTy->isPointerType()) {
   3551       S.Diag(Attr.getLoc(), diag::err_attribute_pointers_only)
   3552         << Attr.getName();
   3553     }
   3554   }
   3555 
   3556   D->addAttr(::new (S.Context)
   3557              ArgumentWithTypeTagAttr(Attr.getRange(), S.Context, ArgumentKind,
   3558                                      ArgumentIdx, TypeTagIdx, IsPointer,
   3559                                      Attr.getAttributeSpellingListIndex()));
   3560 }
   3561 
   3562 static void handleTypeTagForDatatypeAttr(Sema &S, Decl *D,
   3563                                          const AttributeList &Attr) {
   3564   if (!Attr.isArgIdent(0)) {
   3565     S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_type)
   3566       << Attr.getName() << 1 << AANT_ArgumentIdentifier;
   3567     return;
   3568   }
   3569 
   3570   if (!checkAttributeNumArgs(S, Attr, 1))
   3571     return;
   3572 
   3573   if (!isa<VarDecl>(D)) {
   3574     S.Diag(Attr.getLoc(), diag::err_attribute_wrong_decl_type)
   3575       << Attr.getName() << ExpectedVariable;
   3576     return;
   3577   }
   3578 
   3579   IdentifierInfo *PointerKind = Attr.getArgAsIdent(0)->Ident;
   3580   TypeSourceInfo *MatchingCTypeLoc = nullptr;
   3581   S.GetTypeFromParser(Attr.getMatchingCType(), &MatchingCTypeLoc);
   3582   assert(MatchingCTypeLoc && "no type source info for attribute argument");
   3583 
   3584   D->addAttr(::new (S.Context)
   3585              TypeTagForDatatypeAttr(Attr.getRange(), S.Context, PointerKind,
   3586                                     MatchingCTypeLoc,
   3587                                     Attr.getLayoutCompatible(),
   3588                                     Attr.getMustBeNull(),
   3589                                     Attr.getAttributeSpellingListIndex()));
   3590 }
   3591 
   3592 //===----------------------------------------------------------------------===//
   3593 // Checker-specific attribute handlers.
   3594 //===----------------------------------------------------------------------===//
   3595 
   3596 static bool isValidSubjectOfNSReturnsRetainedAttribute(QualType type) {
   3597   return type->isDependentType() ||
   3598          type->isObjCRetainableType();
   3599 }
   3600 
   3601 static bool isValidSubjectOfNSAttribute(Sema &S, QualType type) {
   3602   return type->isDependentType() ||
   3603          type->isObjCObjectPointerType() ||
   3604          S.Context.isObjCNSObjectType(type);
   3605 }
   3606 static bool isValidSubjectOfCFAttribute(Sema &S, QualType type) {
   3607   return type->isDependentType() ||
   3608          type->isPointerType() ||
   3609          isValidSubjectOfNSAttribute(S, type);
   3610 }
   3611 
   3612 static void handleNSConsumedAttr(Sema &S, Decl *D, const AttributeList &Attr) {
   3613   ParmVarDecl *param = cast<ParmVarDecl>(D);
   3614   bool typeOK, cf;
   3615 
   3616   if (Attr.getKind() == AttributeList::AT_NSConsumed) {
   3617     typeOK = isValidSubjectOfNSAttribute(S, param->getType());
   3618     cf = false;
   3619   } else {
   3620     typeOK = isValidSubjectOfCFAttribute(S, param->getType());
   3621     cf = true;
   3622   }
   3623 
   3624   if (!typeOK) {
   3625     S.Diag(D->getLocStart(), diag::warn_ns_attribute_wrong_parameter_type)
   3626       << Attr.getRange() << Attr.getName() << cf;
   3627     return;
   3628   }
   3629 
   3630   if (cf)
   3631     param->addAttr(::new (S.Context)
   3632                    CFConsumedAttr(Attr.getRange(), S.Context,
   3633                                   Attr.getAttributeSpellingListIndex()));
   3634   else
   3635     param->addAttr(::new (S.Context)
   3636                    NSConsumedAttr(Attr.getRange(), S.Context,
   3637                                   Attr.getAttributeSpellingListIndex()));
   3638 }
   3639 
   3640 static void handleNSReturnsRetainedAttr(Sema &S, Decl *D,
   3641                                         const AttributeList &Attr) {
   3642 
   3643   QualType returnType;
   3644 
   3645   if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D))
   3646     returnType = MD->getReturnType();
   3647   else if (S.getLangOpts().ObjCAutoRefCount && hasDeclarator(D) &&
   3648            (Attr.getKind() == AttributeList::AT_NSReturnsRetained))
   3649     return; // ignore: was handled as a type attribute
   3650   else if (ObjCPropertyDecl *PD = dyn_cast<ObjCPropertyDecl>(D))
   3651     returnType = PD->getType();
   3652   else if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D))
   3653     returnType = FD->getReturnType();
   3654   else {
   3655     S.Diag(D->getLocStart(), diag::warn_attribute_wrong_decl_type)
   3656         << Attr.getRange() << Attr.getName()
   3657         << ExpectedFunctionOrMethod;
   3658     return;
   3659   }
   3660 
   3661   bool typeOK;
   3662   bool cf;
   3663   switch (Attr.getKind()) {
   3664   default: llvm_unreachable("invalid ownership attribute");
   3665   case AttributeList::AT_NSReturnsRetained:
   3666     typeOK = isValidSubjectOfNSReturnsRetainedAttribute(returnType);
   3667     cf = false;
   3668     break;
   3669 
   3670   case AttributeList::AT_NSReturnsAutoreleased:
   3671   case AttributeList::AT_NSReturnsNotRetained:
   3672     typeOK = isValidSubjectOfNSAttribute(S, returnType);
   3673     cf = false;
   3674     break;
   3675 
   3676   case AttributeList::AT_CFReturnsRetained:
   3677   case AttributeList::AT_CFReturnsNotRetained:
   3678     typeOK = isValidSubjectOfCFAttribute(S, returnType);
   3679     cf = true;
   3680     break;
   3681   }
   3682 
   3683   if (!typeOK) {
   3684     S.Diag(D->getLocStart(), diag::warn_ns_attribute_wrong_return_type)
   3685       << Attr.getRange() << Attr.getName() << isa<ObjCMethodDecl>(D) << cf;
   3686     return;
   3687   }
   3688 
   3689   switch (Attr.getKind()) {
   3690     default:
   3691       llvm_unreachable("invalid ownership attribute");
   3692     case AttributeList::AT_NSReturnsAutoreleased:
   3693       D->addAttr(::new (S.Context) NSReturnsAutoreleasedAttr(
   3694           Attr.getRange(), S.Context, Attr.getAttributeSpellingListIndex()));
   3695       return;
   3696     case AttributeList::AT_CFReturnsNotRetained:
   3697       D->addAttr(::new (S.Context) CFReturnsNotRetainedAttr(
   3698           Attr.getRange(), S.Context, Attr.getAttributeSpellingListIndex()));
   3699       return;
   3700     case AttributeList::AT_NSReturnsNotRetained:
   3701       D->addAttr(::new (S.Context) NSReturnsNotRetainedAttr(
   3702           Attr.getRange(), S.Context, Attr.getAttributeSpellingListIndex()));
   3703       return;
   3704     case AttributeList::AT_CFReturnsRetained:
   3705       D->addAttr(::new (S.Context) CFReturnsRetainedAttr(
   3706           Attr.getRange(), S.Context, Attr.getAttributeSpellingListIndex()));
   3707       return;
   3708     case AttributeList::AT_NSReturnsRetained:
   3709       D->addAttr(::new (S.Context) NSReturnsRetainedAttr(
   3710           Attr.getRange(), S.Context, Attr.getAttributeSpellingListIndex()));
   3711       return;
   3712   };
   3713 }
   3714 
   3715 static void handleObjCReturnsInnerPointerAttr(Sema &S, Decl *D,
   3716                                               const AttributeList &attr) {
   3717   const int EP_ObjCMethod = 1;
   3718   const int EP_ObjCProperty = 2;
   3719 
   3720   SourceLocation loc = attr.getLoc();
   3721   QualType resultType;
   3722   if (isa<ObjCMethodDecl>(D))
   3723     resultType = cast<ObjCMethodDecl>(D)->getReturnType();
   3724   else
   3725     resultType = cast<ObjCPropertyDecl>(D)->getType();
   3726 
   3727   if (!resultType->isReferenceType() &&
   3728       (!resultType->isPointerType() || resultType->isObjCRetainableType())) {
   3729     S.Diag(D->getLocStart(), diag::warn_ns_attribute_wrong_return_type)
   3730       << SourceRange(loc)
   3731     << attr.getName()
   3732     << (isa<ObjCMethodDecl>(D) ? EP_ObjCMethod : EP_ObjCProperty)
   3733     << /*non-retainable pointer*/ 2;
   3734 
   3735     // Drop the attribute.
   3736     return;
   3737   }
   3738 
   3739   D->addAttr(::new (S.Context) ObjCReturnsInnerPointerAttr(
   3740       attr.getRange(), S.Context, attr.getAttributeSpellingListIndex()));
   3741 }
   3742 
   3743 static void handleObjCRequiresSuperAttr(Sema &S, Decl *D,
   3744                                         const AttributeList &attr) {
   3745   ObjCMethodDecl *method = cast<ObjCMethodDecl>(D);
   3746 
   3747   DeclContext *DC = method->getDeclContext();
   3748   if (const ObjCProtocolDecl *PDecl = dyn_cast_or_null<ObjCProtocolDecl>(DC)) {
   3749     S.Diag(D->getLocStart(), diag::warn_objc_requires_super_protocol)
   3750     << attr.getName() << 0;
   3751     S.Diag(PDecl->getLocation(), diag::note_protocol_decl);
   3752     return;
   3753   }
   3754   if (method->getMethodFamily() == OMF_dealloc) {
   3755     S.Diag(D->getLocStart(), diag::warn_objc_requires_super_protocol)
   3756     << attr.getName() << 1;
   3757     return;
   3758   }
   3759 
   3760   method->addAttr(::new (S.Context)
   3761                   ObjCRequiresSuperAttr(attr.getRange(), S.Context,
   3762                                         attr.getAttributeSpellingListIndex()));
   3763 }
   3764 
   3765 static void handleCFAuditedTransferAttr(Sema &S, Decl *D,
   3766                                         const AttributeList &Attr) {
   3767   if (checkAttrMutualExclusion<CFUnknownTransferAttr>(S, D, Attr))
   3768     return;
   3769 
   3770   D->addAttr(::new (S.Context)
   3771              CFAuditedTransferAttr(Attr.getRange(), S.Context,
   3772                                    Attr.getAttributeSpellingListIndex()));
   3773 }
   3774 
   3775 static void handleCFUnknownTransferAttr(Sema &S, Decl *D,
   3776                                         const AttributeList &Attr) {
   3777   if (checkAttrMutualExclusion<CFAuditedTransferAttr>(S, D, Attr))
   3778     return;
   3779 
   3780   D->addAttr(::new (S.Context)
   3781              CFUnknownTransferAttr(Attr.getRange(), S.Context,
   3782              Attr.getAttributeSpellingListIndex()));
   3783 }
   3784 
   3785 static void handleObjCBridgeAttr(Sema &S, Scope *Sc, Decl *D,
   3786                                 const AttributeList &Attr) {
   3787   IdentifierLoc * Parm = Attr.isArgIdent(0) ? Attr.getArgAsIdent(0) : nullptr;
   3788 
   3789   if (!Parm) {
   3790     S.Diag(D->getLocStart(), diag::err_objc_attr_not_id) << Attr.getName() << 0;
   3791     return;
   3792   }
   3793 
   3794   // Typedefs only allow objc_bridge(id) and have some additional checking.
   3795   if (auto TD = dyn_cast<TypedefNameDecl>(D)) {
   3796     if (!Parm->Ident->isStr("id")) {
   3797       S.Diag(Attr.getLoc(), diag::err_objc_attr_typedef_not_id)
   3798         << Attr.getName();
   3799       return;
   3800     }
   3801 
   3802     // Only allow 'cv void *'.
   3803     QualType T = TD->getUnderlyingType();
   3804     if (!T->isVoidPointerType()) {
   3805       S.Diag(Attr.getLoc(), diag::err_objc_attr_typedef_not_void_pointer);
   3806       return;
   3807     }
   3808   }
   3809 
   3810   D->addAttr(::new (S.Context)
   3811              ObjCBridgeAttr(Attr.getRange(), S.Context, Parm->Ident,
   3812                            Attr.getAttributeSpellingListIndex()));
   3813 }
   3814 
   3815 static void handleObjCBridgeMutableAttr(Sema &S, Scope *Sc, Decl *D,
   3816                                         const AttributeList &Attr) {
   3817   IdentifierLoc * Parm = Attr.isArgIdent(0) ? Attr.getArgAsIdent(0) : nullptr;
   3818 
   3819   if (!Parm) {
   3820     S.Diag(D->getLocStart(), diag::err_objc_attr_not_id) << Attr.getName() << 0;
   3821     return;
   3822   }
   3823 
   3824   D->addAttr(::new (S.Context)
   3825              ObjCBridgeMutableAttr(Attr.getRange(), S.Context, Parm->Ident,
   3826                             Attr.getAttributeSpellingListIndex()));
   3827 }
   3828 
   3829 static void handleObjCBridgeRelatedAttr(Sema &S, Scope *Sc, Decl *D,
   3830                                  const AttributeList &Attr) {
   3831   IdentifierInfo *RelatedClass =
   3832     Attr.isArgIdent(0) ? Attr.getArgAsIdent(0)->Ident : nullptr;
   3833   if (!RelatedClass) {
   3834     S.Diag(D->getLocStart(), diag::err_objc_attr_not_id) << Attr.getName() << 0;
   3835     return;
   3836   }
   3837   IdentifierInfo *ClassMethod =
   3838     Attr.getArgAsIdent(1) ? Attr.getArgAsIdent(1)->Ident : nullptr;
   3839   IdentifierInfo *InstanceMethod =
   3840     Attr.getArgAsIdent(2) ? Attr.getArgAsIdent(2)->Ident : nullptr;
   3841   D->addAttr(::new (S.Context)
   3842              ObjCBridgeRelatedAttr(Attr.getRange(), S.Context, RelatedClass,
   3843                                    ClassMethod, InstanceMethod,
   3844                                    Attr.getAttributeSpellingListIndex()));
   3845 }
   3846 
   3847 static void handleObjCDesignatedInitializer(Sema &S, Decl *D,
   3848                                             const AttributeList &Attr) {
   3849   ObjCInterfaceDecl *IFace;
   3850   if (ObjCCategoryDecl *CatDecl =
   3851           dyn_cast<ObjCCategoryDecl>(D->getDeclContext()))
   3852     IFace = CatDecl->getClassInterface();
   3853   else
   3854     IFace = cast<ObjCInterfaceDecl>(D->getDeclContext());
   3855 
   3856   if (!IFace)
   3857     return;
   3858 
   3859   IFace->setHasDesignatedInitializers();
   3860   D->addAttr(::new (S.Context)
   3861                   ObjCDesignatedInitializerAttr(Attr.getRange(), S.Context,
   3862                                          Attr.getAttributeSpellingListIndex()));
   3863 }
   3864 
   3865 static void handleObjCRuntimeName(Sema &S, Decl *D,
   3866                                   const AttributeList &Attr) {
   3867   StringRef MetaDataName;
   3868   if (!S.checkStringLiteralArgumentAttr(Attr, 0, MetaDataName))
   3869     return;
   3870   D->addAttr(::new (S.Context)
   3871              ObjCRuntimeNameAttr(Attr.getRange(), S.Context,
   3872                                  MetaDataName,
   3873                                  Attr.getAttributeSpellingListIndex()));
   3874 }
   3875 
   3876 static void handleObjCOwnershipAttr(Sema &S, Decl *D,
   3877                                     const AttributeList &Attr) {
   3878   if (hasDeclarator(D)) return;
   3879 
   3880   S.Diag(D->getLocStart(), diag::err_attribute_wrong_decl_type)
   3881     << Attr.getRange() << Attr.getName() << ExpectedVariable;
   3882 }
   3883 
   3884 static void handleObjCPreciseLifetimeAttr(Sema &S, Decl *D,
   3885                                           const AttributeList &Attr) {
   3886   ValueDecl *vd = cast<ValueDecl>(D);
   3887   QualType type = vd->getType();
   3888 
   3889   if (!type->isDependentType() &&
   3890       !type->isObjCLifetimeType()) {
   3891     S.Diag(Attr.getLoc(), diag::err_objc_precise_lifetime_bad_type)
   3892       << type;
   3893     return;
   3894   }
   3895 
   3896   Qualifiers::ObjCLifetime lifetime = type.getObjCLifetime();
   3897 
   3898   // If we have no lifetime yet, check the lifetime we're presumably
   3899   // going to infer.
   3900   if (lifetime == Qualifiers::OCL_None && !type->isDependentType())
   3901     lifetime = type->getObjCARCImplicitLifetime();
   3902 
   3903   switch (lifetime) {
   3904   case Qualifiers::OCL_None:
   3905     assert(type->isDependentType() &&
   3906            "didn't infer lifetime for non-dependent type?");
   3907     break;
   3908 
   3909   case Qualifiers::OCL_Weak:   // meaningful
   3910   case Qualifiers::OCL_Strong: // meaningful
   3911     break;
   3912 
   3913   case Qualifiers::OCL_ExplicitNone:
   3914   case Qualifiers::OCL_Autoreleasing:
   3915     S.Diag(Attr.getLoc(), diag::warn_objc_precise_lifetime_meaningless)
   3916       << (lifetime == Qualifiers::OCL_Autoreleasing);
   3917     break;
   3918   }
   3919 
   3920   D->addAttr(::new (S.Context)
   3921              ObjCPreciseLifetimeAttr(Attr.getRange(), S.Context,
   3922                                      Attr.getAttributeSpellingListIndex()));
   3923 }
   3924 
   3925 //===----------------------------------------------------------------------===//
   3926 // Microsoft specific attribute handlers.
   3927 //===----------------------------------------------------------------------===//
   3928 
   3929 static void handleUuidAttr(Sema &S, Decl *D, const AttributeList &Attr) {
   3930   if (!S.LangOpts.CPlusPlus) {
   3931     S.Diag(Attr.getLoc(), diag::err_attribute_not_supported_in_lang)
   3932       << Attr.getName() << AttributeLangSupport::C;
   3933     return;
   3934   }
   3935 
   3936   if (!isa<CXXRecordDecl>(D)) {
   3937     S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
   3938       << Attr.getName() << ExpectedClass;
   3939     return;
   3940   }
   3941 
   3942   StringRef StrRef;
   3943   SourceLocation LiteralLoc;
   3944   if (!S.checkStringLiteralArgumentAttr(Attr, 0, StrRef, &LiteralLoc))
   3945     return;
   3946 
   3947   // GUID format is "XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX" or
   3948   // "{XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX}", normalize to the former.
   3949   if (StrRef.size() == 38 && StrRef.front() == '{' && StrRef.back() == '}')
   3950     StrRef = StrRef.drop_front().drop_back();
   3951 
   3952   // Validate GUID length.
   3953   if (StrRef.size() != 36) {
   3954     S.Diag(LiteralLoc, diag::err_attribute_uuid_malformed_guid);
   3955     return;
   3956   }
   3957 
   3958   for (unsigned i = 0; i < 36; ++i) {
   3959     if (i == 8 || i == 13 || i == 18 || i == 23) {
   3960       if (StrRef[i] != '-') {
   3961         S.Diag(LiteralLoc, diag::err_attribute_uuid_malformed_guid);
   3962         return;
   3963       }
   3964     } else if (!isHexDigit(StrRef[i])) {
   3965       S.Diag(LiteralLoc, diag::err_attribute_uuid_malformed_guid);
   3966       return;
   3967     }
   3968   }
   3969 
   3970   D->addAttr(::new (S.Context) UuidAttr(Attr.getRange(), S.Context, StrRef,
   3971                                         Attr.getAttributeSpellingListIndex()));
   3972 }
   3973 
   3974 static void handleMSInheritanceAttr(Sema &S, Decl *D, const AttributeList &Attr) {
   3975   if (!S.LangOpts.CPlusPlus) {
   3976     S.Diag(Attr.getLoc(), diag::err_attribute_not_supported_in_lang)
   3977       << Attr.getName() << AttributeLangSupport::C;
   3978     return;
   3979   }
   3980   MSInheritanceAttr *IA = S.mergeMSInheritanceAttr(
   3981       D, Attr.getRange(), /*BestCase=*/true,
   3982       Attr.getAttributeSpellingListIndex(),
   3983       (MSInheritanceAttr::Spelling)Attr.getSemanticSpelling());
   3984   if (IA)
   3985     D->addAttr(IA);
   3986 }
   3987 
   3988 static void handleDeclspecThreadAttr(Sema &S, Decl *D,
   3989                                      const AttributeList &Attr) {
   3990   VarDecl *VD = cast<VarDecl>(D);
   3991   if (!S.Context.getTargetInfo().isTLSSupported()) {
   3992     S.Diag(Attr.getLoc(), diag::err_thread_unsupported);
   3993     return;
   3994   }
   3995   if (VD->getTSCSpec() != TSCS_unspecified) {
   3996     S.Diag(Attr.getLoc(), diag::err_declspec_thread_on_thread_variable);
   3997     return;
   3998   }
   3999   if (VD->hasLocalStorage()) {
   4000     S.Diag(Attr.getLoc(), diag::err_thread_non_global) << "__declspec(thread)";
   4001     return;
   4002   }
   4003   VD->addAttr(::new (S.Context) ThreadAttr(
   4004       Attr.getRange(), S.Context, Attr.getAttributeSpellingListIndex()));
   4005 }
   4006 
   4007 static void handleARMInterruptAttr(Sema &S, Decl *D,
   4008                                    const AttributeList &Attr) {
   4009   // Check the attribute arguments.
   4010   if (Attr.getNumArgs() > 1) {
   4011     S.Diag(Attr.getLoc(), diag::err_attribute_too_many_arguments)
   4012       << Attr.getName() << 1;
   4013     return;
   4014   }
   4015 
   4016   StringRef Str;
   4017   SourceLocation ArgLoc;
   4018 
   4019   if (Attr.getNumArgs() == 0)
   4020     Str = "";
   4021   else if (!S.checkStringLiteralArgumentAttr(Attr, 0, Str, &ArgLoc))
   4022     return;
   4023 
   4024   ARMInterruptAttr::InterruptType Kind;
   4025   if (!ARMInterruptAttr::ConvertStrToInterruptType(Str, Kind)) {
   4026     S.Diag(Attr.getLoc(), diag::warn_attribute_type_not_supported)
   4027       << Attr.getName() << Str << ArgLoc;
   4028     return;
   4029   }
   4030 
   4031   unsigned Index = Attr.getAttributeSpellingListIndex();
   4032   D->addAttr(::new (S.Context)
   4033              ARMInterruptAttr(Attr.getLoc(), S.Context, Kind, Index));
   4034 }
   4035 
   4036 static void handleMSP430InterruptAttr(Sema &S, Decl *D,
   4037                                       const AttributeList &Attr) {
   4038   if (!checkAttributeNumArgs(S, Attr, 1))
   4039     return;
   4040 
   4041   if (!Attr.isArgExpr(0)) {
   4042     S.Diag(Attr.getLoc(), diag::err_attribute_argument_type) << Attr.getName()
   4043       << AANT_ArgumentIntegerConstant;
   4044     return;
   4045   }
   4046 
   4047   // FIXME: Check for decl - it should be void ()(void).
   4048 
   4049   Expr *NumParamsExpr = static_cast<Expr *>(Attr.getArgAsExpr(0));
   4050   llvm::APSInt NumParams(32);
   4051   if (!NumParamsExpr->isIntegerConstantExpr(NumParams, S.Context)) {
   4052     S.Diag(Attr.getLoc(), diag::err_attribute_argument_type)
   4053       << Attr.getName() << AANT_ArgumentIntegerConstant
   4054       << NumParamsExpr->getSourceRange();
   4055     return;
   4056   }
   4057 
   4058   unsigned Num = NumParams.getLimitedValue(255);
   4059   if ((Num & 1) || Num > 30) {
   4060     S.Diag(Attr.getLoc(), diag::err_attribute_argument_out_of_bounds)
   4061       << Attr.getName() << (int)NumParams.getSExtValue()
   4062       << NumParamsExpr->getSourceRange();
   4063     return;
   4064   }
   4065 
   4066   D->addAttr(::new (S.Context)
   4067               MSP430InterruptAttr(Attr.getLoc(), S.Context, Num,
   4068                                   Attr.getAttributeSpellingListIndex()));
   4069   D->addAttr(UsedAttr::CreateImplicit(S.Context));
   4070 }
   4071 
   4072 static void handleInterruptAttr(Sema &S, Decl *D, const AttributeList &Attr) {
   4073   // Dispatch the interrupt attribute based on the current target.
   4074   if (S.Context.getTargetInfo().getTriple().getArch() == llvm::Triple::msp430)
   4075     handleMSP430InterruptAttr(S, D, Attr);
   4076   else
   4077     handleARMInterruptAttr(S, D, Attr);
   4078 }
   4079 
   4080 static void handleAMDGPUNumVGPRAttr(Sema &S, Decl *D,
   4081                                     const AttributeList &Attr) {
   4082   uint32_t NumRegs;
   4083   Expr *NumRegsExpr = static_cast<Expr *>(Attr.getArgAsExpr(0));
   4084   if (!checkUInt32Argument(S, Attr, NumRegsExpr, NumRegs))
   4085     return;
   4086 
   4087   D->addAttr(::new (S.Context)
   4088              AMDGPUNumVGPRAttr(Attr.getLoc(), S.Context,
   4089                                NumRegs,
   4090                                Attr.getAttributeSpellingListIndex()));
   4091 }
   4092 
   4093 static void handleAMDGPUNumSGPRAttr(Sema &S, Decl *D,
   4094                                     const AttributeList &Attr) {
   4095   uint32_t NumRegs;
   4096   Expr *NumRegsExpr = static_cast<Expr *>(Attr.getArgAsExpr(0));
   4097   if (!checkUInt32Argument(S, Attr, NumRegsExpr, NumRegs))
   4098     return;
   4099 
   4100   D->addAttr(::new (S.Context)
   4101              AMDGPUNumSGPRAttr(Attr.getLoc(), S.Context,
   4102                                NumRegs,
   4103                                Attr.getAttributeSpellingListIndex()));
   4104 }
   4105 
   4106 static void handleX86ForceAlignArgPointerAttr(Sema &S, Decl *D,
   4107                                               const AttributeList& Attr) {
   4108   // If we try to apply it to a function pointer, don't warn, but don't
   4109   // do anything, either. It doesn't matter anyway, because there's nothing
   4110   // special about calling a force_align_arg_pointer function.
   4111   ValueDecl *VD = dyn_cast<ValueDecl>(D);
   4112   if (VD && VD->getType()->isFunctionPointerType())
   4113     return;
   4114   // Also don't warn on function pointer typedefs.
   4115   TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(D);
   4116   if (TD && (TD->getUnderlyingType()->isFunctionPointerType() ||
   4117     TD->getUnderlyingType()->isFunctionType()))
   4118     return;
   4119   // Attribute can only be applied to function types.
   4120   if (!isa<FunctionDecl>(D)) {
   4121     S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
   4122       << Attr.getName() << /* function */0;
   4123     return;
   4124   }
   4125 
   4126   D->addAttr(::new (S.Context)
   4127               X86ForceAlignArgPointerAttr(Attr.getRange(), S.Context,
   4128                                         Attr.getAttributeSpellingListIndex()));
   4129 }
   4130 
   4131 DLLImportAttr *Sema::mergeDLLImportAttr(Decl *D, SourceRange Range,
   4132                                         unsigned AttrSpellingListIndex) {
   4133   if (D->hasAttr<DLLExportAttr>()) {
   4134     Diag(Range.getBegin(), diag::warn_attribute_ignored) << "'dllimport'";
   4135     return nullptr;
   4136   }
   4137 
   4138   if (D->hasAttr<DLLImportAttr>())
   4139     return nullptr;
   4140 
   4141   return ::new (Context) DLLImportAttr(Range, Context, AttrSpellingListIndex);
   4142 }
   4143 
   4144 DLLExportAttr *Sema::mergeDLLExportAttr(Decl *D, SourceRange Range,
   4145                                         unsigned AttrSpellingListIndex) {
   4146   if (DLLImportAttr *Import = D->getAttr<DLLImportAttr>()) {
   4147     Diag(Import->getLocation(), diag::warn_attribute_ignored) << Import;
   4148     D->dropAttr<DLLImportAttr>();
   4149   }
   4150 
   4151   if (D->hasAttr<DLLExportAttr>())
   4152     return nullptr;
   4153 
   4154   return ::new (Context) DLLExportAttr(Range, Context, AttrSpellingListIndex);
   4155 }
   4156 
   4157 static void handleDLLAttr(Sema &S, Decl *D, const AttributeList &A) {
   4158   if (isa<ClassTemplatePartialSpecializationDecl>(D) &&
   4159       S.Context.getTargetInfo().getCXXABI().isMicrosoft()) {
   4160     S.Diag(A.getRange().getBegin(), diag::warn_attribute_ignored)
   4161         << A.getName();
   4162     return;
   4163   }
   4164 
   4165   if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
   4166     if (FD->isInlined() && A.getKind() == AttributeList::AT_DLLImport &&
   4167         !S.Context.getTargetInfo().getCXXABI().isMicrosoft()) {
   4168       // MinGW doesn't allow dllimport on inline functions.
   4169       S.Diag(A.getRange().getBegin(), diag::warn_attribute_ignored_on_inline)
   4170           << A.getName();
   4171       return;
   4172     }
   4173   }
   4174 
   4175   unsigned Index = A.getAttributeSpellingListIndex();
   4176   Attr *NewAttr = A.getKind() == AttributeList::AT_DLLExport
   4177                       ? (Attr *)S.mergeDLLExportAttr(D, A.getRange(), Index)
   4178                       : (Attr *)S.mergeDLLImportAttr(D, A.getRange(), Index);
   4179   if (NewAttr)
   4180     D->addAttr(NewAttr);
   4181 }
   4182 
   4183 MSInheritanceAttr *
   4184 Sema::mergeMSInheritanceAttr(Decl *D, SourceRange Range, bool BestCase,
   4185                              unsigned AttrSpellingListIndex,
   4186                              MSInheritanceAttr::Spelling SemanticSpelling) {
   4187   if (MSInheritanceAttr *IA = D->getAttr<MSInheritanceAttr>()) {
   4188     if (IA->getSemanticSpelling() == SemanticSpelling)
   4189       return nullptr;
   4190     Diag(IA->getLocation(), diag::err_mismatched_ms_inheritance)
   4191         << 1 /*previous declaration*/;
   4192     Diag(Range.getBegin(), diag::note_previous_ms_inheritance);
   4193     D->dropAttr<MSInheritanceAttr>();
   4194   }
   4195 
   4196   CXXRecordDecl *RD = cast<CXXRecordDecl>(D);
   4197   if (RD->hasDefinition()) {
   4198     if (checkMSInheritanceAttrOnDefinition(RD, Range, BestCase,
   4199                                            SemanticSpelling)) {
   4200       return nullptr;
   4201     }
   4202   } else {
   4203     if (isa<ClassTemplatePartialSpecializationDecl>(RD)) {
   4204       Diag(Range.getBegin(), diag::warn_ignored_ms_inheritance)
   4205           << 1 /*partial specialization*/;
   4206       return nullptr;
   4207     }
   4208     if (RD->getDescribedClassTemplate()) {
   4209       Diag(Range.getBegin(), diag::warn_ignored_ms_inheritance)
   4210           << 0 /*primary template*/;
   4211       return nullptr;
   4212     }
   4213   }
   4214 
   4215   return ::new (Context)
   4216       MSInheritanceAttr(Range, Context, BestCase, AttrSpellingListIndex);
   4217 }
   4218 
   4219 static void handleCapabilityAttr(Sema &S, Decl *D, const AttributeList &Attr) {
   4220   // The capability attributes take a single string parameter for the name of
   4221   // the capability they represent. The lockable attribute does not take any
   4222   // parameters. However, semantically, both attributes represent the same
   4223   // concept, and so they use the same semantic attribute. Eventually, the
   4224   // lockable attribute will be removed.
   4225   //
   4226   // For backward compatibility, any capability which has no specified string
   4227   // literal will be considered a "mutex."
   4228   StringRef N("mutex");
   4229   SourceLocation LiteralLoc;
   4230   if (Attr.getKind() == AttributeList::AT_Capability &&
   4231       !S.checkStringLiteralArgumentAttr(Attr, 0, N, &LiteralLoc))
   4232     return;
   4233 
   4234   // Currently, there are only two names allowed for a capability: role and
   4235   // mutex (case insensitive). Diagnose other capability names.
   4236   if (!N.equals_lower("mutex") && !N.equals_lower("role"))
   4237     S.Diag(LiteralLoc, diag::warn_invalid_capability_name) << N;
   4238 
   4239   D->addAttr(::new (S.Context) CapabilityAttr(Attr.getRange(), S.Context, N,
   4240                                         Attr.getAttributeSpellingListIndex()));
   4241 }
   4242 
   4243 static void handleAssertCapabilityAttr(Sema &S, Decl *D,
   4244                                        const AttributeList &Attr) {
   4245   D->addAttr(::new (S.Context) AssertCapabilityAttr(Attr.getRange(), S.Context,
   4246                                                     Attr.getArgAsExpr(0),
   4247                                         Attr.getAttributeSpellingListIndex()));
   4248 }
   4249 
   4250 static void handleAcquireCapabilityAttr(Sema &S, Decl *D,
   4251                                         const AttributeList &Attr) {
   4252   SmallVector<Expr*, 1> Args;
   4253   if (!checkLockFunAttrCommon(S, D, Attr, Args))
   4254     return;
   4255 
   4256   D->addAttr(::new (S.Context) AcquireCapabilityAttr(Attr.getRange(),
   4257                                                      S.Context,
   4258                                                      Args.data(), Args.size(),
   4259                                         Attr.getAttributeSpellingListIndex()));
   4260 }
   4261 
   4262 static void handleTryAcquireCapabilityAttr(Sema &S, Decl *D,
   4263                                            const AttributeList &Attr) {
   4264   SmallVector<Expr*, 2> Args;
   4265   if (!checkTryLockFunAttrCommon(S, D, Attr, Args))
   4266     return;
   4267 
   4268   D->addAttr(::new (S.Context) TryAcquireCapabilityAttr(Attr.getRange(),
   4269                                                         S.Context,
   4270                                                         Attr.getArgAsExpr(0),
   4271                                                         Args.data(),
   4272                                                         Args.size(),
   4273                                         Attr.getAttributeSpellingListIndex()));
   4274 }
   4275 
   4276 static void handleReleaseCapabilityAttr(Sema &S, Decl *D,
   4277                                         const AttributeList &Attr) {
   4278   // Check that all arguments are lockable objects.
   4279   SmallVector<Expr *, 1> Args;
   4280   checkAttrArgsAreCapabilityObjs(S, D, Attr, Args, 0, true);
   4281 
   4282   D->addAttr(::new (S.Context) ReleaseCapabilityAttr(
   4283       Attr.getRange(), S.Context, Args.data(), Args.size(),
   4284       Attr.getAttributeSpellingListIndex()));
   4285 }
   4286 
   4287 static void handleRequiresCapabilityAttr(Sema &S, Decl *D,
   4288                                          const AttributeList &Attr) {
   4289   if (!checkAttributeAtLeastNumArgs(S, Attr, 1))
   4290     return;
   4291 
   4292   // check that all arguments are lockable objects
   4293   SmallVector<Expr*, 1> Args;
   4294   checkAttrArgsAreCapabilityObjs(S, D, Attr, Args);
   4295   if (Args.empty())
   4296     return;
   4297 
   4298   RequiresCapabilityAttr *RCA = ::new (S.Context)
   4299     RequiresCapabilityAttr(Attr.getRange(), S.Context, Args.data(),
   4300                            Args.size(), Attr.getAttributeSpellingListIndex());
   4301 
   4302   D->addAttr(RCA);
   4303 }
   4304 
   4305 static void handleDeprecatedAttr(Sema &S, Decl *D, const AttributeList &Attr) {
   4306   if (auto *NSD = dyn_cast<NamespaceDecl>(D)) {
   4307     if (NSD->isAnonymousNamespace()) {
   4308       S.Diag(Attr.getLoc(), diag::warn_deprecated_anonymous_namespace);
   4309       // Do not want to attach the attribute to the namespace because that will
   4310       // cause confusing diagnostic reports for uses of declarations within the
   4311       // namespace.
   4312       return;
   4313     }
   4314   }
   4315 
   4316   if (!S.getLangOpts().CPlusPlus14)
   4317     if (Attr.isCXX11Attribute() &&
   4318         !(Attr.hasScope() && Attr.getScopeName()->isStr("gnu")))
   4319       S.Diag(Attr.getLoc(), diag::ext_deprecated_attr_is_a_cxx14_extension);
   4320 
   4321   handleAttrWithMessage<DeprecatedAttr>(S, D, Attr);
   4322 }
   4323 
   4324 /// Handles semantic checking for features that are common to all attributes,
   4325 /// such as checking whether a parameter was properly specified, or the correct
   4326 /// number of arguments were passed, etc.
   4327 static bool handleCommonAttributeFeatures(Sema &S, Scope *scope, Decl *D,
   4328                                           const AttributeList &Attr) {
   4329   // Several attributes carry different semantics than the parsing requires, so
   4330   // those are opted out of the common handling.
   4331   //
   4332   // We also bail on unknown and ignored attributes because those are handled
   4333   // as part of the target-specific handling logic.
   4334   if (Attr.hasCustomParsing() ||
   4335       Attr.getKind() == AttributeList::UnknownAttribute)
   4336     return false;
   4337 
   4338   // Check whether the attribute requires specific language extensions to be
   4339   // enabled.
   4340   if (!Attr.diagnoseLangOpts(S))
   4341     return true;
   4342 
   4343   if (Attr.getMinArgs() == Attr.getMaxArgs()) {
   4344     // If there are no optional arguments, then checking for the argument count
   4345     // is trivial.
   4346     if (!checkAttributeNumArgs(S, Attr, Attr.getMinArgs()))
   4347       return true;
   4348   } else {
   4349     // There are optional arguments, so checking is slightly more involved.
   4350     if (Attr.getMinArgs() &&
   4351         !checkAttributeAtLeastNumArgs(S, Attr, Attr.getMinArgs()))
   4352       return true;
   4353     else if (!Attr.hasVariadicArg() && Attr.getMaxArgs() &&
   4354              !checkAttributeAtMostNumArgs(S, Attr, Attr.getMaxArgs()))
   4355       return true;
   4356   }
   4357 
   4358   // Check whether the attribute appertains to the given subject.
   4359   if (!Attr.diagnoseAppertainsTo(S, D))
   4360     return true;
   4361 
   4362   return false;
   4363 }
   4364 
   4365 //===----------------------------------------------------------------------===//
   4366 // Top Level Sema Entry Points
   4367 //===----------------------------------------------------------------------===//
   4368 
   4369 /// ProcessDeclAttribute - Apply the specific attribute to the specified decl if
   4370 /// the attribute applies to decls.  If the attribute is a type attribute, just
   4371 /// silently ignore it if a GNU attribute.
   4372 static void ProcessDeclAttribute(Sema &S, Scope *scope, Decl *D,
   4373                                  const AttributeList &Attr,
   4374                                  bool IncludeCXX11Attributes) {
   4375   if (Attr.isInvalid() || Attr.getKind() == AttributeList::IgnoredAttribute)
   4376     return;
   4377 
   4378   // Ignore C++11 attributes on declarator chunks: they appertain to the type
   4379   // instead.
   4380   if (Attr.isCXX11Attribute() && !IncludeCXX11Attributes)
   4381     return;
   4382 
   4383   // Unknown attributes are automatically warned on. Target-specific attributes
   4384   // which do not apply to the current target architecture are treated as
   4385   // though they were unknown attributes.
   4386   if (Attr.getKind() == AttributeList::UnknownAttribute ||
   4387       !Attr.existsInTarget(S.Context.getTargetInfo().getTriple())) {
   4388     S.Diag(Attr.getLoc(), Attr.isDeclspecAttribute()
   4389                               ? diag::warn_unhandled_ms_attribute_ignored
   4390                               : diag::warn_unknown_attribute_ignored)
   4391         << Attr.getName();
   4392     return;
   4393   }
   4394 
   4395   if (handleCommonAttributeFeatures(S, scope, D, Attr))
   4396     return;
   4397 
   4398   switch (Attr.getKind()) {
   4399   default:
   4400     // Type attributes are handled elsewhere; silently move on.
   4401     assert(Attr.isTypeAttr() && "Non-type attribute not handled");
   4402     break;
   4403   case AttributeList::AT_Interrupt:
   4404     handleInterruptAttr(S, D, Attr);
   4405     break;
   4406   case AttributeList::AT_X86ForceAlignArgPointer:
   4407     handleX86ForceAlignArgPointerAttr(S, D, Attr);
   4408     break;
   4409   case AttributeList::AT_DLLExport:
   4410   case AttributeList::AT_DLLImport:
   4411     handleDLLAttr(S, D, Attr);
   4412     break;
   4413   case AttributeList::AT_Mips16:
   4414     handleSimpleAttribute<Mips16Attr>(S, D, Attr);
   4415     break;
   4416   case AttributeList::AT_NoMips16:
   4417     handleSimpleAttribute<NoMips16Attr>(S, D, Attr);
   4418     break;
   4419   case AttributeList::AT_AMDGPUNumVGPR:
   4420     handleAMDGPUNumVGPRAttr(S, D, Attr);
   4421     break;
   4422   case AttributeList::AT_AMDGPUNumSGPR:
   4423     handleAMDGPUNumSGPRAttr(S, D, Attr);
   4424     break;
   4425   case AttributeList::AT_IBAction:
   4426     handleSimpleAttribute<IBActionAttr>(S, D, Attr);
   4427     break;
   4428   case AttributeList::AT_IBOutlet:
   4429     handleIBOutlet(S, D, Attr);
   4430     break;
   4431   case AttributeList::AT_IBOutletCollection:
   4432     handleIBOutletCollection(S, D, Attr);
   4433     break;
   4434   case AttributeList::AT_Alias:
   4435     handleAliasAttr(S, D, Attr);
   4436     break;
   4437   case AttributeList::AT_Aligned:
   4438     handleAlignedAttr(S, D, Attr);
   4439     break;
   4440   case AttributeList::AT_AlignValue:
   4441     handleAlignValueAttr(S, D, Attr);
   4442     break;
   4443   case AttributeList::AT_AlwaysInline:
   4444     handleAlwaysInlineAttr(S, D, Attr);
   4445     break;
   4446   case AttributeList::AT_AnalyzerNoReturn:
   4447     handleAnalyzerNoReturnAttr(S, D, Attr);
   4448     break;
   4449   case AttributeList::AT_TLSModel:
   4450     handleTLSModelAttr(S, D, Attr);
   4451     break;
   4452   case AttributeList::AT_Annotate:
   4453     handleAnnotateAttr(S, D, Attr);
   4454     break;
   4455   case AttributeList::AT_Availability:
   4456     handleAvailabilityAttr(S, D, Attr);
   4457     break;
   4458   case AttributeList::AT_CarriesDependency:
   4459     handleDependencyAttr(S, scope, D, Attr);
   4460     break;
   4461   case AttributeList::AT_Common:
   4462     handleCommonAttr(S, D, Attr);
   4463     break;
   4464   case AttributeList::AT_CUDAConstant:
   4465     handleSimpleAttribute<CUDAConstantAttr>(S, D, Attr);
   4466     break;
   4467   case AttributeList::AT_Constructor:
   4468     handleConstructorAttr(S, D, Attr);
   4469     break;
   4470   case AttributeList::AT_CXX11NoReturn:
   4471     handleSimpleAttribute<CXX11NoReturnAttr>(S, D, Attr);
   4472     break;
   4473   case AttributeList::AT_Deprecated:
   4474     handleDeprecatedAttr(S, D, Attr);
   4475     break;
   4476   case AttributeList::AT_Destructor:
   4477     handleDestructorAttr(S, D, Attr);
   4478     break;
   4479   case AttributeList::AT_EnableIf:
   4480     handleEnableIfAttr(S, D, Attr);
   4481     break;
   4482   case AttributeList::AT_ExtVectorType:
   4483     handleExtVectorTypeAttr(S, scope, D, Attr);
   4484     break;
   4485   case AttributeList::AT_MinSize:
   4486     handleMinSizeAttr(S, D, Attr);
   4487     break;
   4488   case AttributeList::AT_OptimizeNone:
   4489     handleOptimizeNoneAttr(S, D, Attr);
   4490     break;
   4491   case AttributeList::AT_FlagEnum:
   4492     handleSimpleAttribute<FlagEnumAttr>(S, D, Attr);
   4493     break;
   4494   case AttributeList::AT_Flatten:
   4495     handleSimpleAttribute<FlattenAttr>(S, D, Attr);
   4496     break;
   4497   case AttributeList::AT_Format:
   4498     handleFormatAttr(S, D, Attr);
   4499     break;
   4500   case AttributeList::AT_FormatArg:
   4501     handleFormatArgAttr(S, D, Attr);
   4502     break;
   4503   case AttributeList::AT_CUDAGlobal:
   4504     handleGlobalAttr(S, D, Attr);
   4505     break;
   4506   case AttributeList::AT_CUDADevice:
   4507     handleSimpleAttribute<CUDADeviceAttr>(S, D, Attr);
   4508     break;
   4509   case AttributeList::AT_CUDAHost:
   4510     handleSimpleAttribute<CUDAHostAttr>(S, D, Attr);
   4511     break;
   4512   case AttributeList::AT_GNUInline:
   4513     handleGNUInlineAttr(S, D, Attr);
   4514     break;
   4515   case AttributeList::AT_CUDALaunchBounds:
   4516     handleLaunchBoundsAttr(S, D, Attr);
   4517     break;
   4518   case AttributeList::AT_Kernel:
   4519     handleKernelAttr(S, D, Attr);
   4520     break;
   4521   case AttributeList::AT_Restrict:
   4522     handleRestrictAttr(S, D, Attr);
   4523     break;
   4524   case AttributeList::AT_MayAlias:
   4525     handleSimpleAttribute<MayAliasAttr>(S, D, Attr);
   4526     break;
   4527   case AttributeList::AT_Mode:
   4528     handleModeAttr(S, D, Attr);
   4529     break;
   4530   case AttributeList::AT_NoCommon:
   4531     handleSimpleAttribute<NoCommonAttr>(S, D, Attr);
   4532     break;
   4533   case AttributeList::AT_NoSplitStack:
   4534     handleSimpleAttribute<NoSplitStackAttr>(S, D, Attr);
   4535     break;
   4536   case AttributeList::AT_NonNull:
   4537     if (ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(D))
   4538       handleNonNullAttrParameter(S, PVD, Attr);
   4539     else
   4540       handleNonNullAttr(S, D, Attr);
   4541     break;
   4542   case AttributeList::AT_ReturnsNonNull:
   4543     handleReturnsNonNullAttr(S, D, Attr);
   4544     break;
   4545   case AttributeList::AT_AssumeAligned:
   4546     handleAssumeAlignedAttr(S, D, Attr);
   4547     break;
   4548   case AttributeList::AT_Overloadable:
   4549     handleSimpleAttribute<OverloadableAttr>(S, D, Attr);
   4550     break;
   4551   case AttributeList::AT_Ownership:
   4552     handleOwnershipAttr(S, D, Attr);
   4553     break;
   4554   case AttributeList::AT_Cold:
   4555     handleColdAttr(S, D, Attr);
   4556     break;
   4557   case AttributeList::AT_Hot:
   4558     handleHotAttr(S, D, Attr);
   4559     break;
   4560   case AttributeList::AT_Naked:
   4561     handleSimpleAttribute<NakedAttr>(S, D, Attr);
   4562     break;
   4563   case AttributeList::AT_NoReturn:
   4564     handleNoReturnAttr(S, D, Attr);
   4565     break;
   4566   case AttributeList::AT_NoThrow:
   4567     handleSimpleAttribute<NoThrowAttr>(S, D, Attr);
   4568     break;
   4569   case AttributeList::AT_CUDAShared:
   4570     handleSimpleAttribute<CUDASharedAttr>(S, D, Attr);
   4571     break;
   4572   case AttributeList::AT_VecReturn:
   4573     handleVecReturnAttr(S, D, Attr);
   4574     break;
   4575 
   4576   case AttributeList::AT_ObjCOwnership:
   4577     handleObjCOwnershipAttr(S, D, Attr);
   4578     break;
   4579   case AttributeList::AT_ObjCPreciseLifetime:
   4580     handleObjCPreciseLifetimeAttr(S, D, Attr);
   4581     break;
   4582 
   4583   case AttributeList::AT_ObjCReturnsInnerPointer:
   4584     handleObjCReturnsInnerPointerAttr(S, D, Attr);
   4585     break;
   4586 
   4587   case AttributeList::AT_ObjCRequiresSuper:
   4588     handleObjCRequiresSuperAttr(S, D, Attr);
   4589     break;
   4590 
   4591   case AttributeList::AT_ObjCBridge:
   4592     handleObjCBridgeAttr(S, scope, D, Attr);
   4593     break;
   4594 
   4595   case AttributeList::AT_ObjCBridgeMutable:
   4596     handleObjCBridgeMutableAttr(S, scope, D, Attr);
   4597     break;
   4598 
   4599   case AttributeList::AT_ObjCBridgeRelated:
   4600     handleObjCBridgeRelatedAttr(S, scope, D, Attr);
   4601     break;
   4602 
   4603   case AttributeList::AT_ObjCDesignatedInitializer:
   4604     handleObjCDesignatedInitializer(S, D, Attr);
   4605     break;
   4606 
   4607   case AttributeList::AT_ObjCRuntimeName:
   4608     handleObjCRuntimeName(S, D, Attr);
   4609     break;
   4610 
   4611   case AttributeList::AT_CFAuditedTransfer:
   4612     handleCFAuditedTransferAttr(S, D, Attr);
   4613     break;
   4614   case AttributeList::AT_CFUnknownTransfer:
   4615     handleCFUnknownTransferAttr(S, D, Attr);
   4616     break;
   4617 
   4618   case AttributeList::AT_CFConsumed:
   4619   case AttributeList::AT_NSConsumed:
   4620     handleNSConsumedAttr(S, D, Attr);
   4621     break;
   4622   case AttributeList::AT_NSConsumesSelf:
   4623     handleSimpleAttribute<NSConsumesSelfAttr>(S, D, Attr);
   4624     break;
   4625 
   4626   case AttributeList::AT_NSReturnsAutoreleased:
   4627   case AttributeList::AT_NSReturnsNotRetained:
   4628   case AttributeList::AT_CFReturnsNotRetained:
   4629   case AttributeList::AT_NSReturnsRetained:
   4630   case AttributeList::AT_CFReturnsRetained:
   4631     handleNSReturnsRetainedAttr(S, D, Attr);
   4632     break;
   4633   case AttributeList::AT_WorkGroupSizeHint:
   4634     handleWorkGroupSize<WorkGroupSizeHintAttr>(S, D, Attr);
   4635     break;
   4636   case AttributeList::AT_ReqdWorkGroupSize:
   4637     handleWorkGroupSize<ReqdWorkGroupSizeAttr>(S, D, Attr);
   4638     break;
   4639   case AttributeList::AT_VecTypeHint:
   4640     handleVecTypeHint(S, D, Attr);
   4641     break;
   4642 
   4643   case AttributeList::AT_InitPriority:
   4644     handleInitPriorityAttr(S, D, Attr);
   4645     break;
   4646 
   4647   case AttributeList::AT_Packed:
   4648     handlePackedAttr(S, D, Attr);
   4649     break;
   4650   case AttributeList::AT_Section:
   4651     handleSectionAttr(S, D, Attr);
   4652     break;
   4653   case AttributeList::AT_Unavailable:
   4654     handleAttrWithMessage<UnavailableAttr>(S, D, Attr);
   4655     break;
   4656   case AttributeList::AT_ArcWeakrefUnavailable:
   4657     handleSimpleAttribute<ArcWeakrefUnavailableAttr>(S, D, Attr);
   4658     break;
   4659   case AttributeList::AT_ObjCRootClass:
   4660     handleSimpleAttribute<ObjCRootClassAttr>(S, D, Attr);
   4661     break;
   4662   case AttributeList::AT_ObjCExplicitProtocolImpl:
   4663     handleObjCSuppresProtocolAttr(S, D, Attr);
   4664     break;
   4665   case AttributeList::AT_ObjCRequiresPropertyDefs:
   4666     handleSimpleAttribute<ObjCRequiresPropertyDefsAttr>(S, D, Attr);
   4667     break;
   4668   case AttributeList::AT_Unused:
   4669     handleSimpleAttribute<UnusedAttr>(S, D, Attr);
   4670     break;
   4671   case AttributeList::AT_ReturnsTwice:
   4672     handleSimpleAttribute<ReturnsTwiceAttr>(S, D, Attr);
   4673     break;
   4674   case AttributeList::AT_Used:
   4675     handleUsedAttr(S, D, Attr);
   4676     break;
   4677   case AttributeList::AT_Visibility:
   4678     handleVisibilityAttr(S, D, Attr, false);
   4679     break;
   4680   case AttributeList::AT_TypeVisibility:
   4681     handleVisibilityAttr(S, D, Attr, true);
   4682     break;
   4683   case AttributeList::AT_WarnUnused:
   4684     handleSimpleAttribute<WarnUnusedAttr>(S, D, Attr);
   4685     break;
   4686   case AttributeList::AT_WarnUnusedResult:
   4687     handleWarnUnusedResult(S, D, Attr);
   4688     break;
   4689   case AttributeList::AT_Weak:
   4690     handleSimpleAttribute<WeakAttr>(S, D, Attr);
   4691     break;
   4692   case AttributeList::AT_WeakRef:
   4693     handleWeakRefAttr(S, D, Attr);
   4694     break;
   4695   case AttributeList::AT_WeakImport:
   4696     handleWeakImportAttr(S, D, Attr);
   4697     break;
   4698   case AttributeList::AT_TransparentUnion:
   4699     handleTransparentUnionAttr(S, D, Attr);
   4700     break;
   4701   case AttributeList::AT_ObjCException:
   4702     handleSimpleAttribute<ObjCExceptionAttr>(S, D, Attr);
   4703     break;
   4704   case AttributeList::AT_ObjCMethodFamily:
   4705     handleObjCMethodFamilyAttr(S, D, Attr);
   4706     break;
   4707   case AttributeList::AT_ObjCNSObject:
   4708     handleObjCNSObject(S, D, Attr);
   4709     break;
   4710   case AttributeList::AT_ObjCIndependentClass:
   4711     handleObjCIndependentClass(S, D, Attr);
   4712     break;
   4713   case AttributeList::AT_Blocks:
   4714     handleBlocksAttr(S, D, Attr);
   4715     break;
   4716   case AttributeList::AT_Sentinel:
   4717     handleSentinelAttr(S, D, Attr);
   4718     break;
   4719   case AttributeList::AT_Const:
   4720     handleSimpleAttribute<ConstAttr>(S, D, Attr);
   4721     break;
   4722   case AttributeList::AT_Pure:
   4723     handleSimpleAttribute<PureAttr>(S, D, Attr);
   4724     break;
   4725   case AttributeList::AT_Cleanup:
   4726     handleCleanupAttr(S, D, Attr);
   4727     break;
   4728   case AttributeList::AT_NoDebug:
   4729     handleNoDebugAttr(S, D, Attr);
   4730     break;
   4731   case AttributeList::AT_NoDuplicate:
   4732     handleSimpleAttribute<NoDuplicateAttr>(S, D, Attr);
   4733     break;
   4734   case AttributeList::AT_NoInline:
   4735     handleSimpleAttribute<NoInlineAttr>(S, D, Attr);
   4736     break;
   4737   case AttributeList::AT_NoInstrumentFunction: // Interacts with -pg.
   4738     handleSimpleAttribute<NoInstrumentFunctionAttr>(S, D, Attr);
   4739     break;
   4740   case AttributeList::AT_StdCall:
   4741   case AttributeList::AT_CDecl:
   4742   case AttributeList::AT_FastCall:
   4743   case AttributeList::AT_ThisCall:
   4744   case AttributeList::AT_Pascal:
   4745   case AttributeList::AT_VectorCall:
   4746   case AttributeList::AT_MSABI:
   4747   case AttributeList::AT_SysVABI:
   4748   case AttributeList::AT_Pcs:
   4749   case AttributeList::AT_IntelOclBicc:
   4750     handleCallConvAttr(S, D, Attr);
   4751     break;
   4752   case AttributeList::AT_OpenCLKernel:
   4753     handleSimpleAttribute<OpenCLKernelAttr>(S, D, Attr);
   4754     break;
   4755   case AttributeList::AT_OpenCLImageAccess:
   4756     handleSimpleAttribute<OpenCLImageAccessAttr>(S, D, Attr);
   4757     break;
   4758 
   4759   // Microsoft attributes:
   4760   case AttributeList::AT_MSNoVTable:
   4761     handleSimpleAttribute<MSNoVTableAttr>(S, D, Attr);
   4762     break;
   4763   case AttributeList::AT_MSStruct:
   4764     handleSimpleAttribute<MSStructAttr>(S, D, Attr);
   4765     break;
   4766   case AttributeList::AT_Uuid:
   4767     handleUuidAttr(S, D, Attr);
   4768     break;
   4769   case AttributeList::AT_MSInheritance:
   4770     handleMSInheritanceAttr(S, D, Attr);
   4771     break;
   4772   case AttributeList::AT_SelectAny:
   4773     handleSimpleAttribute<SelectAnyAttr>(S, D, Attr);
   4774     break;
   4775   case AttributeList::AT_Thread:
   4776     handleDeclspecThreadAttr(S, D, Attr);
   4777     break;
   4778 
   4779   // Thread safety attributes:
   4780   case AttributeList::AT_AssertExclusiveLock:
   4781     handleAssertExclusiveLockAttr(S, D, Attr);
   4782     break;
   4783   case AttributeList::AT_AssertSharedLock:
   4784     handleAssertSharedLockAttr(S, D, Attr);
   4785     break;
   4786   case AttributeList::AT_GuardedVar:
   4787     handleSimpleAttribute<GuardedVarAttr>(S, D, Attr);
   4788     break;
   4789   case AttributeList::AT_PtGuardedVar:
   4790     handlePtGuardedVarAttr(S, D, Attr);
   4791     break;
   4792   case AttributeList::AT_ScopedLockable:
   4793     handleSimpleAttribute<ScopedLockableAttr>(S, D, Attr);
   4794     break;
   4795   case AttributeList::AT_NoSanitizeAddress:
   4796     handleSimpleAttribute<NoSanitizeAddressAttr>(S, D, Attr);
   4797     break;
   4798   case AttributeList::AT_NoThreadSafetyAnalysis:
   4799     handleSimpleAttribute<NoThreadSafetyAnalysisAttr>(S, D, Attr);
   4800     break;
   4801   case AttributeList::AT_NoSanitizeThread:
   4802     handleSimpleAttribute<NoSanitizeThreadAttr>(S, D, Attr);
   4803     break;
   4804   case AttributeList::AT_NoSanitizeMemory:
   4805     handleSimpleAttribute<NoSanitizeMemoryAttr>(S, D, Attr);
   4806     break;
   4807   case AttributeList::AT_GuardedBy:
   4808     handleGuardedByAttr(S, D, Attr);
   4809     break;
   4810   case AttributeList::AT_PtGuardedBy:
   4811     handlePtGuardedByAttr(S, D, Attr);
   4812     break;
   4813   case AttributeList::AT_ExclusiveTrylockFunction:
   4814     handleExclusiveTrylockFunctionAttr(S, D, Attr);
   4815     break;
   4816   case AttributeList::AT_LockReturned:
   4817     handleLockReturnedAttr(S, D, Attr);
   4818     break;
   4819   case AttributeList::AT_LocksExcluded:
   4820     handleLocksExcludedAttr(S, D, Attr);
   4821     break;
   4822   case AttributeList::AT_SharedTrylockFunction:
   4823     handleSharedTrylockFunctionAttr(S, D, Attr);
   4824     break;
   4825   case AttributeList::AT_AcquiredBefore:
   4826     handleAcquiredBeforeAttr(S, D, Attr);
   4827     break;
   4828   case AttributeList::AT_AcquiredAfter:
   4829     handleAcquiredAfterAttr(S, D, Attr);
   4830     break;
   4831 
   4832   // Capability analysis attributes.
   4833   case AttributeList::AT_Capability:
   4834   case AttributeList::AT_Lockable:
   4835     handleCapabilityAttr(S, D, Attr);
   4836     break;
   4837   case AttributeList::AT_RequiresCapability:
   4838     handleRequiresCapabilityAttr(S, D, Attr);
   4839     break;
   4840 
   4841   case AttributeList::AT_AssertCapability:
   4842     handleAssertCapabilityAttr(S, D, Attr);
   4843     break;
   4844   case AttributeList::AT_AcquireCapability:
   4845     handleAcquireCapabilityAttr(S, D, Attr);
   4846     break;
   4847   case AttributeList::AT_ReleaseCapability:
   4848     handleReleaseCapabilityAttr(S, D, Attr);
   4849     break;
   4850   case AttributeList::AT_TryAcquireCapability:
   4851     handleTryAcquireCapabilityAttr(S, D, Attr);
   4852     break;
   4853 
   4854   // Consumed analysis attributes.
   4855   case AttributeList::AT_Consumable:
   4856     handleConsumableAttr(S, D, Attr);
   4857     break;
   4858   case AttributeList::AT_ConsumableAutoCast:
   4859     handleSimpleAttribute<ConsumableAutoCastAttr>(S, D, Attr);
   4860     break;
   4861   case AttributeList::AT_ConsumableSetOnRead:
   4862     handleSimpleAttribute<ConsumableSetOnReadAttr>(S, D, Attr);
   4863     break;
   4864   case AttributeList::AT_CallableWhen:
   4865     handleCallableWhenAttr(S, D, Attr);
   4866     break;
   4867   case AttributeList::AT_ParamTypestate:
   4868     handleParamTypestateAttr(S, D, Attr);
   4869     break;
   4870   case AttributeList::AT_ReturnTypestate:
   4871     handleReturnTypestateAttr(S, D, Attr);
   4872     break;
   4873   case AttributeList::AT_SetTypestate:
   4874     handleSetTypestateAttr(S, D, Attr);
   4875     break;
   4876   case AttributeList::AT_TestTypestate:
   4877     handleTestTypestateAttr(S, D, Attr);
   4878     break;
   4879 
   4880   // Type safety attributes.
   4881   case AttributeList::AT_ArgumentWithTypeTag:
   4882     handleArgumentWithTypeTagAttr(S, D, Attr);
   4883     break;
   4884   case AttributeList::AT_TypeTagForDatatype:
   4885     handleTypeTagForDatatypeAttr(S, D, Attr);
   4886     break;
   4887   }
   4888 }
   4889 
   4890 /// ProcessDeclAttributeList - Apply all the decl attributes in the specified
   4891 /// attribute list to the specified decl, ignoring any type attributes.
   4892 void Sema::ProcessDeclAttributeList(Scope *S, Decl *D,
   4893                                     const AttributeList *AttrList,
   4894                                     bool IncludeCXX11Attributes) {
   4895   for (const AttributeList* l = AttrList; l; l = l->getNext())
   4896     ProcessDeclAttribute(*this, S, D, *l, IncludeCXX11Attributes);
   4897 
   4898   // FIXME: We should be able to handle these cases in TableGen.
   4899   // GCC accepts
   4900   // static int a9 __attribute__((weakref));
   4901   // but that looks really pointless. We reject it.
   4902   if (D->hasAttr<WeakRefAttr>() && !D->hasAttr<AliasAttr>()) {
   4903     Diag(AttrList->getLoc(), diag::err_attribute_weakref_without_alias)
   4904       << cast<NamedDecl>(D);
   4905     D->dropAttr<WeakRefAttr>();
   4906     return;
   4907   }
   4908 
   4909   // FIXME: We should be able to handle this in TableGen as well. It would be
   4910   // good to have a way to specify "these attributes must appear as a group",
   4911   // for these. Additionally, it would be good to have a way to specify "these
   4912   // attribute must never appear as a group" for attributes like cold and hot.
   4913   if (!D->hasAttr<OpenCLKernelAttr>()) {
   4914     // These attributes cannot be applied to a non-kernel function.
   4915     if (Attr *A = D->getAttr<ReqdWorkGroupSizeAttr>()) {
   4916       // FIXME: This emits a different error message than
   4917       // diag::err_attribute_wrong_decl_type + ExpectedKernelFunction.
   4918       Diag(D->getLocation(), diag::err_opencl_kernel_attr) << A;
   4919       D->setInvalidDecl();
   4920     } else if (Attr *A = D->getAttr<WorkGroupSizeHintAttr>()) {
   4921       Diag(D->getLocation(), diag::err_opencl_kernel_attr) << A;
   4922       D->setInvalidDecl();
   4923     } else if (Attr *A = D->getAttr<VecTypeHintAttr>()) {
   4924       Diag(D->getLocation(), diag::err_opencl_kernel_attr) << A;
   4925       D->setInvalidDecl();
   4926     } else if (Attr *A = D->getAttr<AMDGPUNumVGPRAttr>()) {
   4927       Diag(D->getLocation(), diag::err_attribute_wrong_decl_type)
   4928         << A << ExpectedKernelFunction;
   4929       D->setInvalidDecl();
   4930     } else if (Attr *A = D->getAttr<AMDGPUNumSGPRAttr>()) {
   4931       Diag(D->getLocation(), diag::err_attribute_wrong_decl_type)
   4932         << A << ExpectedKernelFunction;
   4933       D->setInvalidDecl();
   4934     }
   4935   }
   4936 }
   4937 
   4938 // Annotation attributes are the only attributes allowed after an access
   4939 // specifier.
   4940 bool Sema::ProcessAccessDeclAttributeList(AccessSpecDecl *ASDecl,
   4941                                           const AttributeList *AttrList) {
   4942   for (const AttributeList* l = AttrList; l; l = l->getNext()) {
   4943     if (l->getKind() == AttributeList::AT_Annotate) {
   4944       ProcessDeclAttribute(*this, nullptr, ASDecl, *l, l->isCXX11Attribute());
   4945     } else {
   4946       Diag(l->getLoc(), diag::err_only_annotate_after_access_spec);
   4947       return true;
   4948     }
   4949   }
   4950 
   4951   return false;
   4952 }
   4953 
   4954 /// checkUnusedDeclAttributes - Check a list of attributes to see if it
   4955 /// contains any decl attributes that we should warn about.
   4956 static void checkUnusedDeclAttributes(Sema &S, const AttributeList *A) {
   4957   for ( ; A; A = A->getNext()) {
   4958     // Only warn if the attribute is an unignored, non-type attribute.
   4959     if (A->isUsedAsTypeAttr() || A->isInvalid()) continue;
   4960     if (A->getKind() == AttributeList::IgnoredAttribute) continue;
   4961 
   4962     if (A->getKind() == AttributeList::UnknownAttribute) {
   4963       S.Diag(A->getLoc(), diag::warn_unknown_attribute_ignored)
   4964         << A->getName() << A->getRange();
   4965     } else {
   4966       S.Diag(A->getLoc(), diag::warn_attribute_not_on_decl)
   4967         << A->getName() << A->getRange();
   4968     }
   4969   }
   4970 }
   4971 
   4972 /// checkUnusedDeclAttributes - Given a declarator which is not being
   4973 /// used to build a declaration, complain about any decl attributes
   4974 /// which might be lying around on it.
   4975 void Sema::checkUnusedDeclAttributes(Declarator &D) {
   4976   ::checkUnusedDeclAttributes(*this, D.getDeclSpec().getAttributes().getList());
   4977   ::checkUnusedDeclAttributes(*this, D.getAttributes());
   4978   for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i)
   4979     ::checkUnusedDeclAttributes(*this, D.getTypeObject(i).getAttrs());
   4980 }
   4981 
   4982 /// DeclClonePragmaWeak - clone existing decl (maybe definition),
   4983 /// \#pragma weak needs a non-definition decl and source may not have one.
   4984 NamedDecl * Sema::DeclClonePragmaWeak(NamedDecl *ND, IdentifierInfo *II,
   4985                                       SourceLocation Loc) {
   4986   assert(isa<FunctionDecl>(ND) || isa<VarDecl>(ND));
   4987   NamedDecl *NewD = nullptr;
   4988   if (FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)) {
   4989     FunctionDecl *NewFD;
   4990     // FIXME: Missing call to CheckFunctionDeclaration().
   4991     // FIXME: Mangling?
   4992     // FIXME: Is the qualifier info correct?
   4993     // FIXME: Is the DeclContext correct?
   4994     NewFD = FunctionDecl::Create(FD->getASTContext(), FD->getDeclContext(),
   4995                                  Loc, Loc, DeclarationName(II),
   4996                                  FD->getType(), FD->getTypeSourceInfo(),
   4997                                  SC_None, false/*isInlineSpecified*/,
   4998                                  FD->hasPrototype(),
   4999                                  false/*isConstexprSpecified*/);
   5000     NewD = NewFD;
   5001 
   5002     if (FD->getQualifier())
   5003       NewFD->setQualifierInfo(FD->getQualifierLoc());
   5004 
   5005     // Fake up parameter variables; they are declared as if this were
   5006     // a typedef.
   5007     QualType FDTy = FD->getType();
   5008     if (const FunctionProtoType *FT = FDTy->getAs<FunctionProtoType>()) {
   5009       SmallVector<ParmVarDecl*, 16> Params;
   5010       for (const auto &AI : FT->param_types()) {
   5011         ParmVarDecl *Param = BuildParmVarDeclForTypedef(NewFD, Loc, AI);
   5012         Param->setScopeInfo(0, Params.size());
   5013         Params.push_back(Param);
   5014       }
   5015       NewFD->setParams(Params);
   5016     }
   5017   } else if (VarDecl *VD = dyn_cast<VarDecl>(ND)) {
   5018     NewD = VarDecl::Create(VD->getASTContext(), VD->getDeclContext(),
   5019                            VD->getInnerLocStart(), VD->getLocation(), II,
   5020                            VD->getType(), VD->getTypeSourceInfo(),
   5021                            VD->getStorageClass());
   5022     if (VD->getQualifier()) {
   5023       VarDecl *NewVD = cast<VarDecl>(NewD);
   5024       NewVD->setQualifierInfo(VD->getQualifierLoc());
   5025     }
   5026   }
   5027   return NewD;
   5028 }
   5029 
   5030 /// DeclApplyPragmaWeak - A declaration (maybe definition) needs \#pragma weak
   5031 /// applied to it, possibly with an alias.
   5032 void Sema::DeclApplyPragmaWeak(Scope *S, NamedDecl *ND, WeakInfo &W) {
   5033   if (W.getUsed()) return; // only do this once
   5034   W.setUsed(true);
   5035   if (W.getAlias()) { // clone decl, impersonate __attribute(weak,alias(...))
   5036     IdentifierInfo *NDId = ND->getIdentifier();
   5037     NamedDecl *NewD = DeclClonePragmaWeak(ND, W.getAlias(), W.getLocation());
   5038     NewD->addAttr(AliasAttr::CreateImplicit(Context, NDId->getName(),
   5039                                             W.getLocation()));
   5040     NewD->addAttr(WeakAttr::CreateImplicit(Context, W.getLocation()));
   5041     WeakTopLevelDecl.push_back(NewD);
   5042     // FIXME: "hideous" code from Sema::LazilyCreateBuiltin
   5043     // to insert Decl at TU scope, sorry.
   5044     DeclContext *SavedContext = CurContext;
   5045     CurContext = Context.getTranslationUnitDecl();
   5046     NewD->setDeclContext(CurContext);
   5047     NewD->setLexicalDeclContext(CurContext);
   5048     PushOnScopeChains(NewD, S);
   5049     CurContext = SavedContext;
   5050   } else { // just add weak to existing
   5051     ND->addAttr(WeakAttr::CreateImplicit(Context, W.getLocation()));
   5052   }
   5053 }
   5054 
   5055 void Sema::ProcessPragmaWeak(Scope *S, Decl *D) {
   5056   // It's valid to "forward-declare" #pragma weak, in which case we
   5057   // have to do this.
   5058   LoadExternalWeakUndeclaredIdentifiers();
   5059   if (!WeakUndeclaredIdentifiers.empty()) {
   5060     NamedDecl *ND = nullptr;
   5061     if (VarDecl *VD = dyn_cast<VarDecl>(D))
   5062       if (VD->isExternC())
   5063         ND = VD;
   5064     if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D))
   5065       if (FD->isExternC())
   5066         ND = FD;
   5067     if (ND) {
   5068       if (IdentifierInfo *Id = ND->getIdentifier()) {
   5069         auto I = WeakUndeclaredIdentifiers.find(Id);
   5070         if (I != WeakUndeclaredIdentifiers.end()) {
   5071           WeakInfo W = I->second;
   5072           DeclApplyPragmaWeak(S, ND, W);
   5073           WeakUndeclaredIdentifiers[Id] = W;
   5074         }
   5075       }
   5076     }
   5077   }
   5078 }
   5079 
   5080 /// ProcessDeclAttributes - Given a declarator (PD) with attributes indicated in
   5081 /// it, apply them to D.  This is a bit tricky because PD can have attributes
   5082 /// specified in many different places, and we need to find and apply them all.
   5083 void Sema::ProcessDeclAttributes(Scope *S, Decl *D, const Declarator &PD) {
   5084   // Apply decl attributes from the DeclSpec if present.
   5085   if (const AttributeList *Attrs = PD.getDeclSpec().getAttributes().getList())
   5086     ProcessDeclAttributeList(S, D, Attrs);
   5087 
   5088   // Walk the declarator structure, applying decl attributes that were in a type
   5089   // position to the decl itself.  This handles cases like:
   5090   //   int *__attr__(x)** D;
   5091   // when X is a decl attribute.
   5092   for (unsigned i = 0, e = PD.getNumTypeObjects(); i != e; ++i)
   5093     if (const AttributeList *Attrs = PD.getTypeObject(i).getAttrs())
   5094       ProcessDeclAttributeList(S, D, Attrs, /*IncludeCXX11Attributes=*/false);
   5095 
   5096   // Finally, apply any attributes on the decl itself.
   5097   if (const AttributeList *Attrs = PD.getAttributes())
   5098     ProcessDeclAttributeList(S, D, Attrs);
   5099 }
   5100 
   5101 /// Is the given declaration allowed to use a forbidden type?
   5102 static bool isForbiddenTypeAllowed(Sema &S, Decl *decl) {
   5103   // Private ivars are always okay.  Unfortunately, people don't
   5104   // always properly make their ivars private, even in system headers.
   5105   // Plus we need to make fields okay, too.
   5106   // Function declarations in sys headers will be marked unavailable.
   5107   if (!isa<FieldDecl>(decl) && !isa<ObjCPropertyDecl>(decl) &&
   5108       !isa<FunctionDecl>(decl))
   5109     return false;
   5110 
   5111   // Require it to be declared in a system header.
   5112   return S.Context.getSourceManager().isInSystemHeader(decl->getLocation());
   5113 }
   5114 
   5115 /// Handle a delayed forbidden-type diagnostic.
   5116 static void handleDelayedForbiddenType(Sema &S, DelayedDiagnostic &diag,
   5117                                        Decl *decl) {
   5118   if (decl && isForbiddenTypeAllowed(S, decl)) {
   5119     decl->addAttr(UnavailableAttr::CreateImplicit(S.Context,
   5120                         "this system declaration uses an unsupported type",
   5121                         diag.Loc));
   5122     return;
   5123   }
   5124   if (S.getLangOpts().ObjCAutoRefCount)
   5125     if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(decl)) {
   5126       // FIXME: we may want to suppress diagnostics for all
   5127       // kind of forbidden type messages on unavailable functions.
   5128       if (FD->hasAttr<UnavailableAttr>() &&
   5129           diag.getForbiddenTypeDiagnostic() ==
   5130           diag::err_arc_array_param_no_ownership) {
   5131         diag.Triggered = true;
   5132         return;
   5133       }
   5134     }
   5135 
   5136   S.Diag(diag.Loc, diag.getForbiddenTypeDiagnostic())
   5137     << diag.getForbiddenTypeOperand() << diag.getForbiddenTypeArgument();
   5138   diag.Triggered = true;
   5139 }
   5140 
   5141 
   5142 static bool isDeclDeprecated(Decl *D) {
   5143   do {
   5144     if (D->isDeprecated())
   5145       return true;
   5146     // A category implicitly has the availability of the interface.
   5147     if (const ObjCCategoryDecl *CatD = dyn_cast<ObjCCategoryDecl>(D))
   5148       if (const ObjCInterfaceDecl *Interface = CatD->getClassInterface())
   5149         return Interface->isDeprecated();
   5150   } while ((D = cast_or_null<Decl>(D->getDeclContext())));
   5151   return false;
   5152 }
   5153 
   5154 static bool isDeclUnavailable(Decl *D) {
   5155   do {
   5156     if (D->isUnavailable())
   5157       return true;
   5158     // A category implicitly has the availability of the interface.
   5159     if (const ObjCCategoryDecl *CatD = dyn_cast<ObjCCategoryDecl>(D))
   5160       if (const ObjCInterfaceDecl *Interface = CatD->getClassInterface())
   5161         return Interface->isUnavailable();
   5162   } while ((D = cast_or_null<Decl>(D->getDeclContext())));
   5163   return false;
   5164 }
   5165 
   5166 static void DoEmitAvailabilityWarning(Sema &S, Sema::AvailabilityDiagnostic K,
   5167                                       Decl *Ctx, const NamedDecl *D,
   5168                                       StringRef Message, SourceLocation Loc,
   5169                                       const ObjCInterfaceDecl *UnknownObjCClass,
   5170                                       const ObjCPropertyDecl *ObjCProperty,
   5171                                       bool ObjCPropertyAccess) {
   5172   // Diagnostics for deprecated or unavailable.
   5173   unsigned diag, diag_message, diag_fwdclass_message;
   5174 
   5175   // Matches 'diag::note_property_attribute' options.
   5176   unsigned property_note_select;
   5177 
   5178   // Matches diag::note_availability_specified_here.
   5179   unsigned available_here_select_kind;
   5180 
   5181   // Don't warn if our current context is deprecated or unavailable.
   5182   switch (K) {
   5183   case Sema::AD_Deprecation:
   5184     if (isDeclDeprecated(Ctx))
   5185       return;
   5186     diag = !ObjCPropertyAccess ? diag::warn_deprecated
   5187                                : diag::warn_property_method_deprecated;
   5188     diag_message = diag::warn_deprecated_message;
   5189     diag_fwdclass_message = diag::warn_deprecated_fwdclass_message;
   5190     property_note_select = /* deprecated */ 0;
   5191     available_here_select_kind = /* deprecated */ 2;
   5192     break;
   5193 
   5194   case Sema::AD_Unavailable:
   5195     if (isDeclUnavailable(Ctx))
   5196       return;
   5197     diag = !ObjCPropertyAccess ? diag::err_unavailable
   5198                                : diag::err_property_method_unavailable;
   5199     diag_message = diag::err_unavailable_message;
   5200     diag_fwdclass_message = diag::warn_unavailable_fwdclass_message;
   5201     property_note_select = /* unavailable */ 1;
   5202     available_here_select_kind = /* unavailable */ 0;
   5203     break;
   5204 
   5205   case Sema::AD_Partial:
   5206     diag = diag::warn_partial_availability;
   5207     diag_message = diag::warn_partial_message;
   5208     diag_fwdclass_message = diag::warn_partial_fwdclass_message;
   5209     property_note_select = /* partial */ 2;
   5210     available_here_select_kind = /* partial */ 3;
   5211     break;
   5212   }
   5213 
   5214   if (!Message.empty()) {
   5215     S.Diag(Loc, diag_message) << D << Message;
   5216     if (ObjCProperty)
   5217       S.Diag(ObjCProperty->getLocation(), diag::note_property_attribute)
   5218           << ObjCProperty->getDeclName() << property_note_select;
   5219   } else if (!UnknownObjCClass) {
   5220     S.Diag(Loc, diag) << D;
   5221     if (ObjCProperty)
   5222       S.Diag(ObjCProperty->getLocation(), diag::note_property_attribute)
   5223           << ObjCProperty->getDeclName() << property_note_select;
   5224   } else {
   5225     S.Diag(Loc, diag_fwdclass_message) << D;
   5226     S.Diag(UnknownObjCClass->getLocation(), diag::note_forward_class);
   5227   }
   5228 
   5229   S.Diag(D->getLocation(), diag::note_availability_specified_here)
   5230       << D << available_here_select_kind;
   5231   if (K == Sema::AD_Partial)
   5232     S.Diag(Loc, diag::note_partial_availability_silence) << D;
   5233 }
   5234 
   5235 static void handleDelayedAvailabilityCheck(Sema &S, DelayedDiagnostic &DD,
   5236                                            Decl *Ctx) {
   5237   assert(DD.Kind == DelayedDiagnostic::Deprecation ||
   5238          DD.Kind == DelayedDiagnostic::Unavailable);
   5239   Sema::AvailabilityDiagnostic AD = DD.Kind == DelayedDiagnostic::Deprecation
   5240                                         ? Sema::AD_Deprecation
   5241                                         : Sema::AD_Unavailable;
   5242   DD.Triggered = true;
   5243   DoEmitAvailabilityWarning(
   5244       S, AD, Ctx, DD.getDeprecationDecl(), DD.getDeprecationMessage(), DD.Loc,
   5245       DD.getUnknownObjCClass(), DD.getObjCProperty(), false);
   5246 }
   5247 
   5248 void Sema::PopParsingDeclaration(ParsingDeclState state, Decl *decl) {
   5249   assert(DelayedDiagnostics.getCurrentPool());
   5250   DelayedDiagnosticPool &poppedPool = *DelayedDiagnostics.getCurrentPool();
   5251   DelayedDiagnostics.popWithoutEmitting(state);
   5252 
   5253   // When delaying diagnostics to run in the context of a parsed
   5254   // declaration, we only want to actually emit anything if parsing
   5255   // succeeds.
   5256   if (!decl) return;
   5257 
   5258   // We emit all the active diagnostics in this pool or any of its
   5259   // parents.  In general, we'll get one pool for the decl spec
   5260   // and a child pool for each declarator; in a decl group like:
   5261   //   deprecated_typedef foo, *bar, baz();
   5262   // only the declarator pops will be passed decls.  This is correct;
   5263   // we really do need to consider delayed diagnostics from the decl spec
   5264   // for each of the different declarations.
   5265   const DelayedDiagnosticPool *pool = &poppedPool;
   5266   do {
   5267     for (DelayedDiagnosticPool::pool_iterator
   5268            i = pool->pool_begin(), e = pool->pool_end(); i != e; ++i) {
   5269       // This const_cast is a bit lame.  Really, Triggered should be mutable.
   5270       DelayedDiagnostic &diag = const_cast<DelayedDiagnostic&>(*i);
   5271       if (diag.Triggered)
   5272         continue;
   5273 
   5274       switch (diag.Kind) {
   5275       case DelayedDiagnostic::Deprecation:
   5276       case DelayedDiagnostic::Unavailable:
   5277         // Don't bother giving deprecation/unavailable diagnostics if
   5278         // the decl is invalid.
   5279         if (!decl->isInvalidDecl())
   5280           handleDelayedAvailabilityCheck(*this, diag, decl);
   5281         break;
   5282 
   5283       case DelayedDiagnostic::Access:
   5284         HandleDelayedAccessCheck(diag, decl);
   5285         break;
   5286 
   5287       case DelayedDiagnostic::ForbiddenType:
   5288         handleDelayedForbiddenType(*this, diag, decl);
   5289         break;
   5290       }
   5291     }
   5292   } while ((pool = pool->getParent()));
   5293 }
   5294 
   5295 /// Given a set of delayed diagnostics, re-emit them as if they had
   5296 /// been delayed in the current context instead of in the given pool.
   5297 /// Essentially, this just moves them to the current pool.
   5298 void Sema::redelayDiagnostics(DelayedDiagnosticPool &pool) {
   5299   DelayedDiagnosticPool *curPool = DelayedDiagnostics.getCurrentPool();
   5300   assert(curPool && "re-emitting in undelayed context not supported");
   5301   curPool->steal(pool);
   5302 }
   5303 
   5304 void Sema::EmitAvailabilityWarning(AvailabilityDiagnostic AD,
   5305                                    NamedDecl *D, StringRef Message,
   5306                                    SourceLocation Loc,
   5307                                    const ObjCInterfaceDecl *UnknownObjCClass,
   5308                                    const ObjCPropertyDecl  *ObjCProperty,
   5309                                    bool ObjCPropertyAccess) {
   5310   // Delay if we're currently parsing a declaration.
   5311   if (DelayedDiagnostics.shouldDelayDiagnostics() && AD != AD_Partial) {
   5312     DelayedDiagnostics.add(DelayedDiagnostic::makeAvailability(
   5313         AD, Loc, D, UnknownObjCClass, ObjCProperty, Message,
   5314         ObjCPropertyAccess));
   5315     return;
   5316   }
   5317 
   5318   Decl *Ctx = cast<Decl>(getCurLexicalContext());
   5319   DoEmitAvailabilityWarning(*this, AD, Ctx, D, Message, Loc, UnknownObjCClass,
   5320                             ObjCProperty, ObjCPropertyAccess);
   5321 }
   5322