Home | History | Annotate | Download | only in intltest
      1 /********************************************************************
      2  * COPYRIGHT:
      3  * Copyright (c) 2005-2014, International Business Machines Corporation and
      4  * others. All Rights Reserved.
      5  ********************************************************************/
      6 /************************************************************************
      7 *   Tests for the UText and UTextIterator text abstraction classses
      8 *
      9 ************************************************************************/
     10 
     11 #include <string.h>
     12 #include <stdio.h>
     13 #include <stdlib.h>
     14 #include "unicode/utypes.h"
     15 #include "unicode/utext.h"
     16 #include "unicode/utf8.h"
     17 #include "unicode/ustring.h"
     18 #include "unicode/uchriter.h"
     19 #include "utxttest.h"
     20 
     21 static UBool  gFailed = FALSE;
     22 static int    gTestNum = 0;
     23 
     24 // Forward decl
     25 UText *openFragmentedUnicodeString(UText *ut, UnicodeString *s, UErrorCode *status);
     26 
     27 #define TEST_ASSERT(x) \
     28 { if ((x)==FALSE) {errln("Test #%d failure in file %s at line %d\n", gTestNum, __FILE__, __LINE__);\
     29                      gFailed = TRUE;\
     30    }}
     31 
     32 
     33 #define TEST_SUCCESS(status) \
     34 { if (U_FAILURE(status)) {errln("Test #%d failure in file %s at line %d. Error = \"%s\"\n", \
     35        gTestNum, __FILE__, __LINE__, u_errorName(status)); \
     36        gFailed = TRUE;\
     37    }}
     38 
     39 UTextTest::UTextTest() {
     40 }
     41 
     42 UTextTest::~UTextTest() {
     43 }
     44 
     45 
     46 void
     47 UTextTest::runIndexedTest(int32_t index, UBool exec,
     48                           const char* &name, char* /*par*/) {
     49     switch (index) {
     50         case 0: name = "TextTest";
     51             if (exec) TextTest();    break;
     52         case 1: name = "ErrorTest";
     53             if (exec) ErrorTest();   break;
     54         case 2: name = "FreezeTest";
     55             if (exec) FreezeTest();  break;
     56         case 3: name = "Ticket5560";
     57             if (exec) Ticket5560();  break;
     58         case 4: name = "Ticket6847";
     59             if (exec) Ticket6847();  break;
     60         case 5: name = "Ticket10562";
     61             if (exec) Ticket10562();  break;
     62         case 6: name = "Ticket10983";
     63             if (exec) Ticket10983();  break;
     64         default: name = "";          break;
     65     }
     66 }
     67 
     68 //
     69 // Quick and dirty random number generator.
     70 //   (don't use library so that results are portable.
     71 static uint32_t m_seed = 1;
     72 static uint32_t m_rand()
     73 {
     74     m_seed = m_seed * 1103515245 + 12345;
     75     return (uint32_t)(m_seed/65536) % 32768;
     76 }
     77 
     78 
     79 //
     80 //   TextTest()
     81 //
     82 //       Top Level function for UText testing.
     83 //       Specifies the strings to be tested, with the acutal testing itself
     84 //       being carried out in another function, TestString().
     85 //
     86 void  UTextTest::TextTest() {
     87     int32_t i, j;
     88 
     89     TestString("abcd\\U00010001xyz");
     90     TestString("");
     91 
     92     // Supplementary chars at start or end
     93     TestString("\\U00010001");
     94     TestString("abc\\U00010001");
     95     TestString("\\U00010001abc");
     96 
     97     // Test simple strings of lengths 1 to 60, looking for glitches at buffer boundaries
     98     UnicodeString s;
     99     for (i=1; i<60; i++) {
    100         s.truncate(0);
    101         for (j=0; j<i; j++) {
    102             if (j+0x30 == 0x5c) {
    103                 // backslash.  Needs to be escaped
    104                 s.append((UChar)0x5c);
    105             }
    106             s.append(UChar(j+0x30));
    107         }
    108         TestString(s);
    109     }
    110 
    111    // Test strings with odd-aligned supplementary chars,
    112    //    looking for glitches at buffer boundaries
    113     for (i=1; i<60; i++) {
    114         s.truncate(0);
    115         s.append((UChar)0x41);
    116         for (j=0; j<i; j++) {
    117             s.append(UChar32(j+0x11000));
    118         }
    119         TestString(s);
    120     }
    121 
    122     // String of chars of randomly varying size in utf-8 representation.
    123     //   Exercise the mapping, and the varying sized buffer.
    124     //
    125     s.truncate(0);
    126     UChar32  c1 = 0;
    127     UChar32  c2 = 0x100;
    128     UChar32  c3 = 0xa000;
    129     UChar32  c4 = 0x11000;
    130     for (i=0; i<1000; i++) {
    131         int len8 = m_rand()%4 + 1;
    132         switch (len8) {
    133             case 1:
    134                 c1 = (c1+1)%0x80;
    135                 // don't put 0 into string (0 terminated strings for some tests)
    136                 // don't put '\', will cause unescape() to fail.
    137                 if (c1==0x5c || c1==0) {
    138                     c1++;
    139                 }
    140                 s.append(c1);
    141                 break;
    142             case 2:
    143                 s.append(c2++);
    144                 break;
    145             case 3:
    146                 s.append(c3++);
    147                 break;
    148             case 4:
    149                 s.append(c4++);
    150                 break;
    151         }
    152     }
    153     TestString(s);
    154 }
    155 
    156 
    157 //
    158 //  TestString()     Run a suite of UText tests on a string.
    159 //                   The test string is unescaped before use.
    160 //
    161 void UTextTest::TestString(const UnicodeString &s) {
    162     int32_t       i;
    163     int32_t       j;
    164     UChar32       c;
    165     int32_t       cpCount = 0;
    166     UErrorCode    status  = U_ZERO_ERROR;
    167     UText        *ut      = NULL;
    168     int32_t       saLen;
    169 
    170     UnicodeString sa = s.unescape();
    171     saLen = sa.length();
    172 
    173     //
    174     // Build up a mapping between code points and UTF-16 code unit indexes.
    175     //
    176     m *cpMap = new m[sa.length() + 1];
    177     j = 0;
    178     for (i=0; i<sa.length(); i=sa.moveIndex32(i, 1)) {
    179         c = sa.char32At(i);
    180         cpMap[j].nativeIdx = i;
    181         cpMap[j].cp = c;
    182         j++;
    183         cpCount++;
    184     }
    185     cpMap[j].nativeIdx = i;   // position following the last char in utf-16 string.
    186 
    187 
    188     // UChar * test, null terminated
    189     status = U_ZERO_ERROR;
    190     UChar *buf = new UChar[saLen+1];
    191     sa.extract(buf, saLen+1, status);
    192     TEST_SUCCESS(status);
    193     ut = utext_openUChars(NULL, buf, -1, &status);
    194     TEST_SUCCESS(status);
    195     TestAccess(sa, ut, cpCount, cpMap);
    196     utext_close(ut);
    197     delete [] buf;
    198 
    199     // UChar * test, with length
    200     status = U_ZERO_ERROR;
    201     buf = new UChar[saLen+1];
    202     sa.extract(buf, saLen+1, status);
    203     TEST_SUCCESS(status);
    204     ut = utext_openUChars(NULL, buf, saLen, &status);
    205     TEST_SUCCESS(status);
    206     TestAccess(sa, ut, cpCount, cpMap);
    207     utext_close(ut);
    208     delete [] buf;
    209 
    210 
    211     // UnicodeString test
    212     status = U_ZERO_ERROR;
    213     ut = utext_openUnicodeString(NULL, &sa, &status);
    214     TEST_SUCCESS(status);
    215     TestAccess(sa, ut, cpCount, cpMap);
    216     TestCMR(sa, ut, cpCount, cpMap, cpMap);
    217     utext_close(ut);
    218 
    219 
    220     // Const UnicodeString test
    221     status = U_ZERO_ERROR;
    222     ut = utext_openConstUnicodeString(NULL, &sa, &status);
    223     TEST_SUCCESS(status);
    224     TestAccess(sa, ut, cpCount, cpMap);
    225     utext_close(ut);
    226 
    227 
    228     // Replaceable test.  (UnicodeString inherits Replaceable)
    229     status = U_ZERO_ERROR;
    230     ut = utext_openReplaceable(NULL, &sa, &status);
    231     TEST_SUCCESS(status);
    232     TestAccess(sa, ut, cpCount, cpMap);
    233     TestCMR(sa, ut, cpCount, cpMap, cpMap);
    234     utext_close(ut);
    235 
    236     // Character Iterator Tests
    237     status = U_ZERO_ERROR;
    238     const UChar *cbuf = sa.getBuffer();
    239     CharacterIterator *ci = new UCharCharacterIterator(cbuf, saLen, status);
    240     TEST_SUCCESS(status);
    241     ut = utext_openCharacterIterator(NULL, ci, &status);
    242     TEST_SUCCESS(status);
    243     TestAccess(sa, ut, cpCount, cpMap);
    244     utext_close(ut);
    245     delete ci;
    246 
    247 
    248     // Fragmented UnicodeString  (Chunk size of one)
    249     //
    250     status = U_ZERO_ERROR;
    251     ut = openFragmentedUnicodeString(NULL, &sa, &status);
    252     TEST_SUCCESS(status);
    253     TestAccess(sa, ut, cpCount, cpMap);
    254     utext_close(ut);
    255 
    256     //
    257     // UTF-8 test
    258     //
    259 
    260     // Convert the test string from UnicodeString to (char *) in utf-8 format
    261     int32_t u8Len = sa.extract(0, sa.length(), NULL, 0, "utf-8");
    262     char *u8String = new char[u8Len + 1];
    263     sa.extract(0, sa.length(), u8String, u8Len+1, "utf-8");
    264 
    265     // Build up the map of code point indices in the utf-8 string
    266     m * u8Map = new m[sa.length() + 1];
    267     i = 0;   // native utf-8 index
    268     for (j=0; j<cpCount ; j++) {  // code point number
    269         u8Map[j].nativeIdx = i;
    270         U8_NEXT(u8String, i, u8Len, c)
    271         u8Map[j].cp = c;
    272     }
    273     u8Map[cpCount].nativeIdx = u8Len;   // position following the last char in utf-8 string.
    274 
    275     // Do the test itself
    276     status = U_ZERO_ERROR;
    277     ut = utext_openUTF8(NULL, u8String, -1, &status);
    278     TEST_SUCCESS(status);
    279     TestAccess(sa, ut, cpCount, u8Map);
    280     utext_close(ut);
    281 
    282 
    283 
    284     delete []cpMap;
    285     delete []u8Map;
    286     delete []u8String;
    287 }
    288 
    289 //  TestCMR   test Copy, Move and Replace operations.
    290 //              us         UnicodeString containing the test text.
    291 //              ut         UText containing the same test text.
    292 //              cpCount    number of code points in the test text.
    293 //              nativeMap  Mapping from code points to native indexes for the UText.
    294 //              u16Map     Mapping from code points to UTF-16 indexes, for use with the UnicodeString.
    295 //
    296 //     This function runs a whole series of opertions on each incoming UText.
    297 //     The UText is deep-cloned prior to each operation, so that the original UText remains unchanged.
    298 //
    299 void UTextTest::TestCMR(const UnicodeString &us, UText *ut, int cpCount, m *nativeMap, m *u16Map) {
    300     TEST_ASSERT(utext_isWritable(ut) == TRUE);
    301 
    302     int  srcLengthType;       // Loop variables for selecting the postion and length
    303     int  srcPosType;          //   of the block to operate on within the source text.
    304     int  destPosType;
    305 
    306     int  srcIndex  = 0;       // Code Point indexes of the block to operate on for
    307     int  srcLength = 0;       //   a specific test.
    308 
    309     int  destIndex = 0;       // Code point index of the destination for a copy/move test.
    310 
    311     int32_t  nativeStart = 0; // Native unit indexes for a test.
    312     int32_t  nativeLimit = 0;
    313     int32_t  nativeDest  = 0;
    314 
    315     int32_t  u16Start    = 0; // UTF-16 indexes for a test.
    316     int32_t  u16Limit    = 0; //   used when performing the same operation in a Unicode String
    317     int32_t  u16Dest     = 0;
    318 
    319     // Iterate over a whole series of source index, length and a target indexes.
    320     // This is done with code point indexes; these will be later translated to native
    321     //   indexes using the cpMap.
    322     for (srcLengthType=1; srcLengthType<=3; srcLengthType++) {
    323         switch (srcLengthType) {
    324             case 1: srcLength = 1; break;
    325             case 2: srcLength = 5; break;
    326             case 3: srcLength = cpCount / 3;
    327         }
    328         for (srcPosType=1; srcPosType<=5; srcPosType++) {
    329             switch (srcPosType) {
    330                 case 1: srcIndex = 0; break;
    331                 case 2: srcIndex = 1; break;
    332                 case 3: srcIndex = cpCount - srcLength; break;
    333                 case 4: srcIndex = cpCount - srcLength - 1; break;
    334                 case 5: srcIndex = cpCount / 2; break;
    335             }
    336             if (srcIndex < 0 || srcIndex + srcLength > cpCount) {
    337                 // filter out bogus test cases -
    338                 //   those with a source range that falls of an edge of the string.
    339                 continue;
    340             }
    341 
    342             //
    343             // Copy and move tests.
    344             //   iterate over a variety of destination positions.
    345             //
    346             for (destPosType=1; destPosType<=4; destPosType++) {
    347                 switch (destPosType) {
    348                     case 1: destIndex = 0; break;
    349                     case 2: destIndex = 1; break;
    350                     case 3: destIndex = srcIndex - 1; break;
    351                     case 4: destIndex = srcIndex + srcLength + 1; break;
    352                     case 5: destIndex = cpCount-1; break;
    353                     case 6: destIndex = cpCount; break;
    354                 }
    355                 if (destIndex<0 || destIndex>cpCount) {
    356                     // filter out bogus test cases.
    357                     continue;
    358                 }
    359 
    360                 nativeStart = nativeMap[srcIndex].nativeIdx;
    361                 nativeLimit = nativeMap[srcIndex+srcLength].nativeIdx;
    362                 nativeDest  = nativeMap[destIndex].nativeIdx;
    363 
    364                 u16Start    = u16Map[srcIndex].nativeIdx;
    365                 u16Limit    = u16Map[srcIndex+srcLength].nativeIdx;
    366                 u16Dest     = u16Map[destIndex].nativeIdx;
    367 
    368                 gFailed = FALSE;
    369                 TestCopyMove(us, ut, FALSE,
    370                     nativeStart, nativeLimit, nativeDest,
    371                     u16Start, u16Limit, u16Dest);
    372 
    373                 TestCopyMove(us, ut, TRUE,
    374                     nativeStart, nativeLimit, nativeDest,
    375                     u16Start, u16Limit, u16Dest);
    376 
    377                 if (gFailed) {
    378                     return;
    379                 }
    380             }
    381 
    382             //
    383             //  Replace tests.
    384             //
    385             UnicodeString fullRepString("This is an arbitrary string that will be used as replacement text");
    386             for (int32_t replStrLen=0; replStrLen<20; replStrLen++) {
    387                 UnicodeString repStr(fullRepString, 0, replStrLen);
    388                 TestReplace(us, ut,
    389                     nativeStart, nativeLimit,
    390                     u16Start, u16Limit,
    391                     repStr);
    392                 if (gFailed) {
    393                     return;
    394                 }
    395             }
    396 
    397         }
    398     }
    399 
    400 }
    401 
    402 //
    403 //   TestCopyMove    run a single test case for utext_copy.
    404 //                   Test cases are created in TestCMR and dispatched here for execution.
    405 //
    406 void UTextTest::TestCopyMove(const UnicodeString &us, UText *ut, UBool move,
    407                     int32_t nativeStart, int32_t nativeLimit, int32_t nativeDest,
    408                     int32_t u16Start, int32_t u16Limit, int32_t u16Dest)
    409 {
    410     UErrorCode      status   = U_ZERO_ERROR;
    411     UText          *targetUT = NULL;
    412     gTestNum++;
    413     gFailed = FALSE;
    414 
    415     //
    416     //  clone the UText.  The test will be run in the cloned copy
    417     //  so that we don't alter the original.
    418     //
    419     targetUT = utext_clone(NULL, ut, TRUE, FALSE, &status);
    420     TEST_SUCCESS(status);
    421     UnicodeString targetUS(us);    // And copy the reference string.
    422 
    423     // do the test operation first in the reference
    424     targetUS.copy(u16Start, u16Limit, u16Dest);
    425     if (move) {
    426         // delete out the source range.
    427         if (u16Limit < u16Dest) {
    428             targetUS.removeBetween(u16Start, u16Limit);
    429         } else {
    430             int32_t amtCopied = u16Limit - u16Start;
    431             targetUS.removeBetween(u16Start+amtCopied, u16Limit+amtCopied);
    432         }
    433     }
    434 
    435     // Do the same operation in the UText under test
    436     utext_copy(targetUT, nativeStart, nativeLimit, nativeDest, move, &status);
    437     if (nativeDest > nativeStart && nativeDest < nativeLimit) {
    438         TEST_ASSERT(status == U_INDEX_OUTOFBOUNDS_ERROR);
    439     } else {
    440         TEST_SUCCESS(status);
    441 
    442         // Compare the results of the two parallel tests
    443         int32_t  usi = 0;    // UnicodeString postion, utf-16 index.
    444         int64_t  uti = 0;    // UText position, native index.
    445         int32_t  cpi;        // char32 position (code point index)
    446         UChar32  usc;        // code point from Unicode String
    447         UChar32  utc;        // code point from UText
    448         utext_setNativeIndex(targetUT, 0);
    449         for (cpi=0; ; cpi++) {
    450             usc = targetUS.char32At(usi);
    451             utc = utext_next32(targetUT);
    452             if (utc < 0) {
    453                 break;
    454             }
    455             TEST_ASSERT(uti == usi);
    456             TEST_ASSERT(utc == usc);
    457             usi = targetUS.moveIndex32(usi, 1);
    458             uti = utext_getNativeIndex(targetUT);
    459             if (gFailed) {
    460                 goto cleanupAndReturn;
    461             }
    462         }
    463         int64_t expectedNativeLength = utext_nativeLength(ut);
    464         if (move == FALSE) {
    465             expectedNativeLength += nativeLimit - nativeStart;
    466         }
    467         uti = utext_getNativeIndex(targetUT);
    468         TEST_ASSERT(uti == expectedNativeLength);
    469     }
    470 
    471 cleanupAndReturn:
    472     utext_close(targetUT);
    473 }
    474 
    475 
    476 //
    477 //  TestReplace   Test a single Replace operation.
    478 //
    479 void UTextTest::TestReplace(
    480             const UnicodeString &us,     // reference UnicodeString in which to do the replace
    481             UText         *ut,                // UnicodeText object under test.
    482             int32_t       nativeStart,        // Range to be replaced, in UText native units.
    483             int32_t       nativeLimit,
    484             int32_t       u16Start,           // Range to be replaced, in UTF-16 units
    485             int32_t       u16Limit,           //    for use in the reference UnicodeString.
    486             const UnicodeString &repStr)      // The replacement string
    487 {
    488     UErrorCode      status   = U_ZERO_ERROR;
    489     UText          *targetUT = NULL;
    490     gTestNum++;
    491     gFailed = FALSE;
    492 
    493     //
    494     //  clone the target UText.  The test will be run in the cloned copy
    495     //  so that we don't alter the original.
    496     //
    497     targetUT = utext_clone(NULL, ut, TRUE, FALSE, &status);
    498     TEST_SUCCESS(status);
    499     UnicodeString targetUS(us);    // And copy the reference string.
    500 
    501     //
    502     // Do the replace operation in the Unicode String, to
    503     //   produce a reference result.
    504     //
    505     targetUS.replace(u16Start, u16Limit-u16Start, repStr);
    506 
    507     //
    508     // Do the replace on the UText under test
    509     //
    510     const UChar *rs = repStr.getBuffer();
    511     int32_t  rsLen = repStr.length();
    512     int32_t actualDelta = utext_replace(targetUT, nativeStart, nativeLimit, rs, rsLen, &status);
    513     int32_t expectedDelta = repStr.length() - (nativeLimit - nativeStart);
    514     TEST_ASSERT(actualDelta == expectedDelta);
    515 
    516     //
    517     // Compare the results
    518     //
    519     int32_t  usi = 0;    // UnicodeString postion, utf-16 index.
    520     int64_t  uti = 0;    // UText position, native index.
    521     int32_t  cpi;        // char32 position (code point index)
    522     UChar32  usc;        // code point from Unicode String
    523     UChar32  utc;        // code point from UText
    524     int64_t  expectedNativeLength = 0;
    525     utext_setNativeIndex(targetUT, 0);
    526     for (cpi=0; ; cpi++) {
    527         usc = targetUS.char32At(usi);
    528         utc = utext_next32(targetUT);
    529         if (utc < 0) {
    530             break;
    531         }
    532         TEST_ASSERT(uti == usi);
    533         TEST_ASSERT(utc == usc);
    534         usi = targetUS.moveIndex32(usi, 1);
    535         uti = utext_getNativeIndex(targetUT);
    536         if (gFailed) {
    537             goto cleanupAndReturn;
    538         }
    539     }
    540     expectedNativeLength = utext_nativeLength(ut) + expectedDelta;
    541     uti = utext_getNativeIndex(targetUT);
    542     TEST_ASSERT(uti == expectedNativeLength);
    543 
    544 cleanupAndReturn:
    545     utext_close(targetUT);
    546 }
    547 
    548 //
    549 //  TestAccess      Test the read only access functions on a UText, including cloning.
    550 //                  The text is accessed in a variety of ways, and compared with
    551 //                  the reference UnicodeString.
    552 //
    553 void UTextTest::TestAccess(const UnicodeString &us, UText *ut, int cpCount, m *cpMap) {
    554     // Run the standard tests on the caller-supplied UText.
    555     TestAccessNoClone(us, ut, cpCount, cpMap);
    556 
    557     // Re-run tests on a shallow clone.
    558     utext_setNativeIndex(ut, 0);
    559     UErrorCode status = U_ZERO_ERROR;
    560     UText *shallowClone = utext_clone(NULL, ut, FALSE /*deep*/, FALSE /*readOnly*/, &status);
    561     TEST_SUCCESS(status);
    562     TestAccessNoClone(us, shallowClone, cpCount, cpMap);
    563 
    564     //
    565     // Rerun again on a deep clone.
    566     // Note that text providers are not required to provide deep cloning,
    567     //   so unsupported errors are ignored.
    568     //
    569     status = U_ZERO_ERROR;
    570     utext_setNativeIndex(shallowClone, 0);
    571     UText *deepClone = utext_clone(NULL, shallowClone, TRUE, FALSE, &status);
    572     utext_close(shallowClone);
    573     if (status != U_UNSUPPORTED_ERROR) {
    574         TEST_SUCCESS(status);
    575         TestAccessNoClone(us, deepClone, cpCount, cpMap);
    576     }
    577     utext_close(deepClone);
    578 }
    579 
    580 
    581 //
    582 //  TestAccessNoClone()    Test the read only access functions on a UText.
    583 //                         The text is accessed in a variety of ways, and compared with
    584 //                         the reference UnicodeString.
    585 //
    586 void UTextTest::TestAccessNoClone(const UnicodeString &us, UText *ut, int cpCount, m *cpMap) {
    587     UErrorCode  status = U_ZERO_ERROR;
    588     gTestNum++;
    589 
    590     //
    591     //  Check the length from the UText
    592     //
    593     int64_t expectedLen = cpMap[cpCount].nativeIdx;
    594     int64_t utlen = utext_nativeLength(ut);
    595     TEST_ASSERT(expectedLen == utlen);
    596 
    597     //
    598     //  Iterate forwards, verify that we get the correct code points
    599     //   at the correct native offsets.
    600     //
    601     int         i = 0;
    602     int64_t     index;
    603     int64_t     expectedIndex = 0;
    604     int64_t     foundIndex = 0;
    605     UChar32     expectedC;
    606     UChar32     foundC;
    607     int64_t     len;
    608 
    609     for (i=0; i<cpCount; i++) {
    610         expectedIndex = cpMap[i].nativeIdx;
    611         foundIndex    = utext_getNativeIndex(ut);
    612         TEST_ASSERT(expectedIndex == foundIndex);
    613         expectedC     = cpMap[i].cp;
    614         foundC        = utext_next32(ut);
    615         TEST_ASSERT(expectedC == foundC);
    616         foundIndex    = utext_getPreviousNativeIndex(ut);
    617         TEST_ASSERT(expectedIndex == foundIndex);
    618         if (gFailed) {
    619             return;
    620         }
    621     }
    622     foundC = utext_next32(ut);
    623     TEST_ASSERT(foundC == U_SENTINEL);
    624 
    625     // Repeat above, using macros
    626     utext_setNativeIndex(ut, 0);
    627     for (i=0; i<cpCount; i++) {
    628         expectedIndex = cpMap[i].nativeIdx;
    629         foundIndex    = UTEXT_GETNATIVEINDEX(ut);
    630         TEST_ASSERT(expectedIndex == foundIndex);
    631         expectedC     = cpMap[i].cp;
    632         foundC        = UTEXT_NEXT32(ut);
    633         TEST_ASSERT(expectedC == foundC);
    634         if (gFailed) {
    635             return;
    636         }
    637     }
    638     foundC = UTEXT_NEXT32(ut);
    639     TEST_ASSERT(foundC == U_SENTINEL);
    640 
    641     //
    642     //  Forward iteration (above) should have left index at the
    643     //   end of the input, which should == length().
    644     //
    645     len = utext_nativeLength(ut);
    646     foundIndex  = utext_getNativeIndex(ut);
    647     TEST_ASSERT(len == foundIndex);
    648 
    649     //
    650     // Iterate backwards over entire test string
    651     //
    652     len = utext_getNativeIndex(ut);
    653     utext_setNativeIndex(ut, len);
    654     for (i=cpCount-1; i>=0; i--) {
    655         expectedC     = cpMap[i].cp;
    656         expectedIndex = cpMap[i].nativeIdx;
    657         int64_t prevIndex = utext_getPreviousNativeIndex(ut);
    658         foundC        = utext_previous32(ut);
    659         foundIndex    = utext_getNativeIndex(ut);
    660         TEST_ASSERT(expectedIndex == foundIndex);
    661         TEST_ASSERT(expectedC == foundC);
    662         TEST_ASSERT(prevIndex == foundIndex);
    663         if (gFailed) {
    664             return;
    665         }
    666     }
    667 
    668     //
    669     //  Backwards iteration, above, should have left our iterator
    670     //   position at zero, and continued backwards iterationshould fail.
    671     //
    672     foundIndex = utext_getNativeIndex(ut);
    673     TEST_ASSERT(foundIndex == 0);
    674     foundIndex = utext_getPreviousNativeIndex(ut);
    675     TEST_ASSERT(foundIndex == 0);
    676 
    677 
    678     foundC = utext_previous32(ut);
    679     TEST_ASSERT(foundC == U_SENTINEL);
    680     foundIndex = utext_getNativeIndex(ut);
    681     TEST_ASSERT(foundIndex == 0);
    682     foundIndex = utext_getPreviousNativeIndex(ut);
    683     TEST_ASSERT(foundIndex == 0);
    684 
    685 
    686     // And again, with the macros
    687     utext_setNativeIndex(ut, len);
    688     for (i=cpCount-1; i>=0; i--) {
    689         expectedC     = cpMap[i].cp;
    690         expectedIndex = cpMap[i].nativeIdx;
    691         foundC        = UTEXT_PREVIOUS32(ut);
    692         foundIndex    = UTEXT_GETNATIVEINDEX(ut);
    693         TEST_ASSERT(expectedIndex == foundIndex);
    694         TEST_ASSERT(expectedC == foundC);
    695         if (gFailed) {
    696             return;
    697         }
    698     }
    699 
    700     //
    701     //  Backwards iteration, above, should have left our iterator
    702     //   position at zero, and continued backwards iterationshould fail.
    703     //
    704     foundIndex = UTEXT_GETNATIVEINDEX(ut);
    705     TEST_ASSERT(foundIndex == 0);
    706 
    707     foundC = UTEXT_PREVIOUS32(ut);
    708     TEST_ASSERT(foundC == U_SENTINEL);
    709     foundIndex = UTEXT_GETNATIVEINDEX(ut);
    710     TEST_ASSERT(foundIndex == 0);
    711     if (gFailed) {
    712         return;
    713     }
    714 
    715     //
    716     //  next32From(), prevous32From(), Iterate in a somewhat random order.
    717     //
    718     int  cpIndex = 0;
    719     for (i=0; i<cpCount; i++) {
    720         cpIndex = (cpIndex + 9973) % cpCount;
    721         index         = cpMap[cpIndex].nativeIdx;
    722         expectedC     = cpMap[cpIndex].cp;
    723         foundC        = utext_next32From(ut, index);
    724         TEST_ASSERT(expectedC == foundC);
    725         if (gFailed) {
    726             return;
    727         }
    728     }
    729 
    730     cpIndex = 0;
    731     for (i=0; i<cpCount; i++) {
    732         cpIndex = (cpIndex + 9973) % cpCount;
    733         index         = cpMap[cpIndex+1].nativeIdx;
    734         expectedC     = cpMap[cpIndex].cp;
    735         foundC        = utext_previous32From(ut, index);
    736         TEST_ASSERT(expectedC == foundC);
    737         if (gFailed) {
    738             return;
    739         }
    740     }
    741 
    742 
    743     //
    744     // moveIndex(int32_t delta);
    745     //
    746 
    747     // Walk through frontwards, incrementing by one
    748     utext_setNativeIndex(ut, 0);
    749     for (i=1; i<=cpCount; i++) {
    750         utext_moveIndex32(ut, 1);
    751         index = utext_getNativeIndex(ut);
    752         expectedIndex = cpMap[i].nativeIdx;
    753         TEST_ASSERT(expectedIndex == index);
    754         index = UTEXT_GETNATIVEINDEX(ut);
    755         TEST_ASSERT(expectedIndex == index);
    756     }
    757 
    758     // Walk through frontwards, incrementing by two
    759     utext_setNativeIndex(ut, 0);
    760     for (i=2; i<cpCount; i+=2) {
    761         utext_moveIndex32(ut, 2);
    762         index = utext_getNativeIndex(ut);
    763         expectedIndex = cpMap[i].nativeIdx;
    764         TEST_ASSERT(expectedIndex == index);
    765         index = UTEXT_GETNATIVEINDEX(ut);
    766         TEST_ASSERT(expectedIndex == index);
    767     }
    768 
    769     // walk through the string backwards, decrementing by one.
    770     i = cpMap[cpCount].nativeIdx;
    771     utext_setNativeIndex(ut, i);
    772     for (i=cpCount; i>=0; i--) {
    773         expectedIndex = cpMap[i].nativeIdx;
    774         index = utext_getNativeIndex(ut);
    775         TEST_ASSERT(expectedIndex == index);
    776         index = UTEXT_GETNATIVEINDEX(ut);
    777         TEST_ASSERT(expectedIndex == index);
    778         utext_moveIndex32(ut, -1);
    779     }
    780 
    781 
    782     // walk through backwards, decrementing by three
    783     i = cpMap[cpCount].nativeIdx;
    784     utext_setNativeIndex(ut, i);
    785     for (i=cpCount; i>=0; i-=3) {
    786         expectedIndex = cpMap[i].nativeIdx;
    787         index = utext_getNativeIndex(ut);
    788         TEST_ASSERT(expectedIndex == index);
    789         index = UTEXT_GETNATIVEINDEX(ut);
    790         TEST_ASSERT(expectedIndex == index);
    791         utext_moveIndex32(ut, -3);
    792     }
    793 
    794 
    795     //
    796     // Extract
    797     //
    798     int bufSize = us.length() + 10;
    799     UChar *buf = new UChar[bufSize];
    800     status = U_ZERO_ERROR;
    801     expectedLen = us.length();
    802     len = utext_extract(ut, 0, utlen, buf, bufSize, &status);
    803     TEST_SUCCESS(status);
    804     TEST_ASSERT(len == expectedLen);
    805     int compareResult = us.compare(buf, -1);
    806     TEST_ASSERT(compareResult == 0);
    807 
    808     status = U_ZERO_ERROR;
    809     len = utext_extract(ut, 0, utlen, NULL, 0, &status);
    810     if (utlen == 0) {
    811         TEST_ASSERT(status == U_STRING_NOT_TERMINATED_WARNING);
    812     } else {
    813         TEST_ASSERT(status == U_BUFFER_OVERFLOW_ERROR);
    814     }
    815     TEST_ASSERT(len == expectedLen);
    816 
    817     status = U_ZERO_ERROR;
    818     u_memset(buf, 0x5555, bufSize);
    819     len = utext_extract(ut, 0, utlen, buf, 1, &status);
    820     if (us.length() == 0) {
    821         TEST_SUCCESS(status);
    822         TEST_ASSERT(buf[0] == 0);
    823     } else {
    824         // Buf len == 1, extracting a single 16 bit value.
    825         // If the data char is supplementary, it doesn't matter whether the buffer remains unchanged,
    826         //   or whether the lead surrogate of the pair is extracted.
    827         //   It's a buffer overflow error in either case.
    828         TEST_ASSERT(buf[0] == us.charAt(0) ||
    829                     (buf[0] == 0x5555 && U_IS_SUPPLEMENTARY(us.char32At(0))));
    830         TEST_ASSERT(buf[1] == 0x5555);
    831         if (us.length() == 1) {
    832             TEST_ASSERT(status == U_STRING_NOT_TERMINATED_WARNING);
    833         } else {
    834             TEST_ASSERT(status == U_BUFFER_OVERFLOW_ERROR);
    835         }
    836     }
    837 
    838     delete []buf;
    839 }
    840 
    841 //
    842 //  ErrorTest()    Check various error and edge cases.
    843 //
    844 void UTextTest::ErrorTest()
    845 {
    846     // Close of an unitialized UText.  Shouldn't blow up.
    847     {
    848         UText  ut;
    849         memset(&ut, 0, sizeof(UText));
    850         utext_close(&ut);
    851         utext_close(NULL);
    852     }
    853 
    854     // Double-close of a UText.  Shouldn't blow up.  UText should still be usable.
    855     {
    856         UErrorCode status = U_ZERO_ERROR;
    857         UText ut = UTEXT_INITIALIZER;
    858         UnicodeString s("Hello, World");
    859         UText *ut2 = utext_openUnicodeString(&ut, &s, &status);
    860         TEST_SUCCESS(status);
    861         TEST_ASSERT(ut2 == &ut);
    862 
    863         UText *ut3 = utext_close(&ut);
    864         TEST_ASSERT(ut3 == &ut);
    865 
    866         UText *ut4 = utext_close(&ut);
    867         TEST_ASSERT(ut4 == &ut);
    868 
    869         utext_openUnicodeString(&ut, &s, &status);
    870         TEST_SUCCESS(status);
    871         utext_close(&ut);
    872     }
    873 
    874     // Re-use of a UText, chaining through each of the types of UText
    875     //   (If it doesn't blow up, and doesn't leak, it's probably working fine)
    876     {
    877         UErrorCode status = U_ZERO_ERROR;
    878         UText ut = UTEXT_INITIALIZER;
    879         UText  *utp;
    880         UnicodeString s1("Hello, World");
    881         UChar s2[] = {(UChar)0x41, (UChar)0x42, (UChar)0};
    882         const char  *s3 = "\x66\x67\x68";
    883 
    884         utp = utext_openUnicodeString(&ut, &s1, &status);
    885         TEST_SUCCESS(status);
    886         TEST_ASSERT(utp == &ut);
    887 
    888         utp = utext_openConstUnicodeString(&ut, &s1, &status);
    889         TEST_SUCCESS(status);
    890         TEST_ASSERT(utp == &ut);
    891 
    892         utp = utext_openUTF8(&ut, s3, -1, &status);
    893         TEST_SUCCESS(status);
    894         TEST_ASSERT(utp == &ut);
    895 
    896         utp = utext_openUChars(&ut, s2, -1, &status);
    897         TEST_SUCCESS(status);
    898         TEST_ASSERT(utp == &ut);
    899 
    900         utp = utext_close(&ut);
    901         TEST_ASSERT(utp == &ut);
    902 
    903         utp = utext_openUnicodeString(&ut, &s1, &status);
    904         TEST_SUCCESS(status);
    905         TEST_ASSERT(utp == &ut);
    906     }
    907 
    908     // Invalid parameters on open
    909     //
    910     {
    911         UErrorCode status = U_ZERO_ERROR;
    912         UText ut = UTEXT_INITIALIZER;
    913 
    914         utext_openUChars(&ut, NULL, 5, &status);
    915         TEST_ASSERT(status == U_ILLEGAL_ARGUMENT_ERROR);
    916 
    917         status = U_ZERO_ERROR;
    918         utext_openUChars(&ut, NULL, -1, &status);
    919         TEST_ASSERT(status == U_ILLEGAL_ARGUMENT_ERROR);
    920 
    921         status = U_ZERO_ERROR;
    922         utext_openUTF8(&ut, NULL, 4, &status);
    923         TEST_ASSERT(status == U_ILLEGAL_ARGUMENT_ERROR);
    924 
    925         status = U_ZERO_ERROR;
    926         utext_openUTF8(&ut, NULL, -1, &status);
    927         TEST_ASSERT(status == U_ILLEGAL_ARGUMENT_ERROR);
    928     }
    929 
    930     //
    931     //  UTF-8 with malformed sequences.
    932     //    These should come through as the Unicode replacement char, \ufffd
    933     //
    934     {
    935         UErrorCode status = U_ZERO_ERROR;
    936         UText *ut = NULL;
    937         const char *badUTF8 = "\x41\x81\x42\xf0\x81\x81\x43";
    938         UChar32  c;
    939 
    940         ut = utext_openUTF8(NULL, badUTF8, -1, &status);
    941         TEST_SUCCESS(status);
    942         c = utext_char32At(ut, 1);
    943         TEST_ASSERT(c == 0xfffd);
    944         c = utext_char32At(ut, 3);
    945         TEST_ASSERT(c == 0xfffd);
    946         c = utext_char32At(ut, 5);
    947         TEST_ASSERT(c == 0xfffd);
    948         c = utext_char32At(ut, 6);
    949         TEST_ASSERT(c == 0x43);
    950 
    951         UChar buf[10];
    952         int n = utext_extract(ut, 0, 9, buf, 10, &status);
    953         TEST_SUCCESS(status);
    954         TEST_ASSERT(n==5);
    955         TEST_ASSERT(buf[1] == 0xfffd);
    956         TEST_ASSERT(buf[3] == 0xfffd);
    957         TEST_ASSERT(buf[2] == 0x42);
    958         utext_close(ut);
    959     }
    960 
    961 
    962     //
    963     //  isLengthExpensive - does it make the exptected transitions after
    964     //                      getting the length of a nul terminated string?
    965     //
    966     {
    967         UErrorCode status = U_ZERO_ERROR;
    968         UnicodeString sa("Hello, this is a string");
    969         UBool  isExpensive;
    970 
    971         UChar sb[100];
    972         memset(sb, 0x20, sizeof(sb));
    973         sb[99] = 0;
    974 
    975         UText *uta = utext_openUnicodeString(NULL, &sa, &status);
    976         TEST_SUCCESS(status);
    977         isExpensive = utext_isLengthExpensive(uta);
    978         TEST_ASSERT(isExpensive == FALSE);
    979         utext_close(uta);
    980 
    981         UText *utb = utext_openUChars(NULL, sb, -1, &status);
    982         TEST_SUCCESS(status);
    983         isExpensive = utext_isLengthExpensive(utb);
    984         TEST_ASSERT(isExpensive == TRUE);
    985         int64_t  len = utext_nativeLength(utb);
    986         TEST_ASSERT(len == 99);
    987         isExpensive = utext_isLengthExpensive(utb);
    988         TEST_ASSERT(isExpensive == FALSE);
    989         utext_close(utb);
    990     }
    991 
    992     //
    993     // Index to positions not on code point boundaries.
    994     //
    995     {
    996         const char *u8str =         "\xc8\x81\xe1\x82\x83\xf1\x84\x85\x86";
    997         int32_t startMap[] =        {   0,  0,  2,  2,  2,  5,  5,  5,  5,  9,  9};
    998         int32_t nextMap[]  =        {   2,  2,  5,  5,  5,  9,  9,  9,  9,  9,  9};
    999         int32_t prevMap[]  =        {   0,  0,  0,  0,  0,  2,  2,  2,  2,  5,  5};
   1000         UChar32  c32Map[] =    {0x201, 0x201, 0x1083, 0x1083, 0x1083, 0x044146, 0x044146, 0x044146, 0x044146, -1, -1};
   1001         UChar32  pr32Map[] =   {    -1,   -1,  0x201,  0x201,  0x201,   0x1083,   0x1083,   0x1083,   0x1083, 0x044146, 0x044146};
   1002 
   1003         // extractLen is the size, in UChars, of what will be extracted between index and index+1.
   1004         //  is zero when both index positions lie within the same code point.
   1005         int32_t  exLen[] =          {   0,  1,   0,  0,  1,  0,  0,  0,  2,  0,  0};
   1006 
   1007 
   1008         UErrorCode status = U_ZERO_ERROR;
   1009         UText *ut = utext_openUTF8(NULL, u8str, -1, &status);
   1010         TEST_SUCCESS(status);
   1011 
   1012         // Check setIndex
   1013         int32_t i;
   1014         int32_t startMapLimit = sizeof(startMap) / sizeof(int32_t);
   1015         for (i=0; i<startMapLimit; i++) {
   1016             utext_setNativeIndex(ut, i);
   1017             int64_t cpIndex = utext_getNativeIndex(ut);
   1018             TEST_ASSERT(cpIndex == startMap[i]);
   1019             cpIndex = UTEXT_GETNATIVEINDEX(ut);
   1020             TEST_ASSERT(cpIndex == startMap[i]);
   1021         }
   1022 
   1023         // Check char32At
   1024         for (i=0; i<startMapLimit; i++) {
   1025             UChar32 c32 = utext_char32At(ut, i);
   1026             TEST_ASSERT(c32 == c32Map[i]);
   1027             int64_t cpIndex = utext_getNativeIndex(ut);
   1028             TEST_ASSERT(cpIndex == startMap[i]);
   1029         }
   1030 
   1031         // Check utext_next32From
   1032         for (i=0; i<startMapLimit; i++) {
   1033             UChar32 c32 = utext_next32From(ut, i);
   1034             TEST_ASSERT(c32 == c32Map[i]);
   1035             int64_t cpIndex = utext_getNativeIndex(ut);
   1036             TEST_ASSERT(cpIndex == nextMap[i]);
   1037         }
   1038 
   1039         // check utext_previous32From
   1040         for (i=0; i<startMapLimit; i++) {
   1041             gTestNum++;
   1042             UChar32 c32 = utext_previous32From(ut, i);
   1043             TEST_ASSERT(c32 == pr32Map[i]);
   1044             int64_t cpIndex = utext_getNativeIndex(ut);
   1045             TEST_ASSERT(cpIndex == prevMap[i]);
   1046         }
   1047 
   1048         // check Extract
   1049         //   Extract from i to i+1, which may be zero or one code points,
   1050         //     depending on whether the indices straddle a cp boundary.
   1051         for (i=0; i<startMapLimit; i++) {
   1052             UChar buf[3];
   1053             status = U_ZERO_ERROR;
   1054             int32_t  extractedLen = utext_extract(ut, i, i+1, buf, 3, &status);
   1055             TEST_SUCCESS(status);
   1056             TEST_ASSERT(extractedLen == exLen[i]);
   1057             if (extractedLen > 0) {
   1058                 UChar32  c32;
   1059                 /* extractedLen-extractedLen == 0 is used to get around a compiler warning. */
   1060                 U16_GET(buf, 0, extractedLen-extractedLen, extractedLen, c32);
   1061                 TEST_ASSERT(c32 == c32Map[i]);
   1062             }
   1063         }
   1064 
   1065         utext_close(ut);
   1066     }
   1067 
   1068 
   1069     {    //  Similar test, with utf16 instead of utf8
   1070          //  TODO:  merge the common parts of these tests.
   1071 
   1072         UnicodeString u16str("\\u1000\\U00011000\\u2000\\U00022000", -1, US_INV);
   1073         int32_t startMap[]  ={ 0,     1,   1,    3,     4,  4,     6,  6};
   1074         int32_t nextMap[]  = { 1,     3,   3,    4,     6,  6,     6,  6};
   1075         int32_t prevMap[]  = { 0,     0,   0,    1,     3,  3,     4,  4};
   1076         UChar32  c32Map[] =  {0x1000, 0x11000, 0x11000, 0x2000,  0x22000, 0x22000, -1, -1};
   1077         UChar32  pr32Map[] = {    -1, 0x1000,  0x1000,  0x11000, 0x2000,  0x2000,   0x22000,   0x22000};
   1078         int32_t  exLen[] =   {   1,  0,   2,  1,  0,  2,  0,  0,};
   1079 
   1080         u16str = u16str.unescape();
   1081         UErrorCode status = U_ZERO_ERROR;
   1082         UText *ut = utext_openUnicodeString(NULL, &u16str, &status);
   1083         TEST_SUCCESS(status);
   1084 
   1085         int32_t startMapLimit = sizeof(startMap) / sizeof(int32_t);
   1086         int i;
   1087         for (i=0; i<startMapLimit; i++) {
   1088             utext_setNativeIndex(ut, i);
   1089             int64_t cpIndex = utext_getNativeIndex(ut);
   1090             TEST_ASSERT(cpIndex == startMap[i]);
   1091         }
   1092 
   1093         // Check char32At
   1094         for (i=0; i<startMapLimit; i++) {
   1095             UChar32 c32 = utext_char32At(ut, i);
   1096             TEST_ASSERT(c32 == c32Map[i]);
   1097             int64_t cpIndex = utext_getNativeIndex(ut);
   1098             TEST_ASSERT(cpIndex == startMap[i]);
   1099         }
   1100 
   1101         // Check utext_next32From
   1102         for (i=0; i<startMapLimit; i++) {
   1103             UChar32 c32 = utext_next32From(ut, i);
   1104             TEST_ASSERT(c32 == c32Map[i]);
   1105             int64_t cpIndex = utext_getNativeIndex(ut);
   1106             TEST_ASSERT(cpIndex == nextMap[i]);
   1107         }
   1108 
   1109         // check utext_previous32From
   1110         for (i=0; i<startMapLimit; i++) {
   1111             UChar32 c32 = utext_previous32From(ut, i);
   1112             TEST_ASSERT(c32 == pr32Map[i]);
   1113             int64_t cpIndex = utext_getNativeIndex(ut);
   1114             TEST_ASSERT(cpIndex == prevMap[i]);
   1115         }
   1116 
   1117         // check Extract
   1118         //   Extract from i to i+1, which may be zero or one code points,
   1119         //     depending on whether the indices straddle a cp boundary.
   1120         for (i=0; i<startMapLimit; i++) {
   1121             UChar buf[3];
   1122             status = U_ZERO_ERROR;
   1123             int32_t  extractedLen = utext_extract(ut, i, i+1, buf, 3, &status);
   1124             TEST_SUCCESS(status);
   1125             TEST_ASSERT(extractedLen == exLen[i]);
   1126             if (extractedLen > 0) {
   1127                 UChar32  c32;
   1128                 /* extractedLen-extractedLen == 0 is used to get around a compiler warning. */
   1129                 U16_GET(buf, 0, extractedLen-extractedLen, extractedLen, c32);
   1130                 TEST_ASSERT(c32 == c32Map[i]);
   1131             }
   1132         }
   1133 
   1134         utext_close(ut);
   1135     }
   1136 
   1137     {    //  Similar test, with UText over Replaceable
   1138          //  TODO:  merge the common parts of these tests.
   1139 
   1140         UnicodeString u16str("\\u1000\\U00011000\\u2000\\U00022000", -1, US_INV);
   1141         int32_t startMap[]  ={ 0,     1,   1,    3,     4,  4,     6,  6};
   1142         int32_t nextMap[]  = { 1,     3,   3,    4,     6,  6,     6,  6};
   1143         int32_t prevMap[]  = { 0,     0,   0,    1,     3,  3,     4,  4};
   1144         UChar32  c32Map[] =  {0x1000, 0x11000, 0x11000, 0x2000,  0x22000, 0x22000, -1, -1};
   1145         UChar32  pr32Map[] = {    -1, 0x1000,  0x1000,  0x11000, 0x2000,  0x2000,   0x22000,   0x22000};
   1146         int32_t  exLen[] =   {   1,  0,   2,  1,  0,  2,  0,  0,};
   1147 
   1148         u16str = u16str.unescape();
   1149         UErrorCode status = U_ZERO_ERROR;
   1150         UText *ut = utext_openReplaceable(NULL, &u16str, &status);
   1151         TEST_SUCCESS(status);
   1152 
   1153         int32_t startMapLimit = sizeof(startMap) / sizeof(int32_t);
   1154         int i;
   1155         for (i=0; i<startMapLimit; i++) {
   1156             utext_setNativeIndex(ut, i);
   1157             int64_t cpIndex = utext_getNativeIndex(ut);
   1158             TEST_ASSERT(cpIndex == startMap[i]);
   1159         }
   1160 
   1161         // Check char32At
   1162         for (i=0; i<startMapLimit; i++) {
   1163             UChar32 c32 = utext_char32At(ut, i);
   1164             TEST_ASSERT(c32 == c32Map[i]);
   1165             int64_t cpIndex = utext_getNativeIndex(ut);
   1166             TEST_ASSERT(cpIndex == startMap[i]);
   1167         }
   1168 
   1169         // Check utext_next32From
   1170         for (i=0; i<startMapLimit; i++) {
   1171             UChar32 c32 = utext_next32From(ut, i);
   1172             TEST_ASSERT(c32 == c32Map[i]);
   1173             int64_t cpIndex = utext_getNativeIndex(ut);
   1174             TEST_ASSERT(cpIndex == nextMap[i]);
   1175         }
   1176 
   1177         // check utext_previous32From
   1178         for (i=0; i<startMapLimit; i++) {
   1179             UChar32 c32 = utext_previous32From(ut, i);
   1180             TEST_ASSERT(c32 == pr32Map[i]);
   1181             int64_t cpIndex = utext_getNativeIndex(ut);
   1182             TEST_ASSERT(cpIndex == prevMap[i]);
   1183         }
   1184 
   1185         // check Extract
   1186         //   Extract from i to i+1, which may be zero or one code points,
   1187         //     depending on whether the indices straddle a cp boundary.
   1188         for (i=0; i<startMapLimit; i++) {
   1189             UChar buf[3];
   1190             status = U_ZERO_ERROR;
   1191             int32_t  extractedLen = utext_extract(ut, i, i+1, buf, 3, &status);
   1192             TEST_SUCCESS(status);
   1193             TEST_ASSERT(extractedLen == exLen[i]);
   1194             if (extractedLen > 0) {
   1195                 UChar32  c32;
   1196                 /* extractedLen-extractedLen == 0 is used to get around a compiler warning. */
   1197                 U16_GET(buf, 0, extractedLen-extractedLen, extractedLen, c32);
   1198                 TEST_ASSERT(c32 == c32Map[i]);
   1199             }
   1200         }
   1201 
   1202         utext_close(ut);
   1203     }
   1204 }
   1205 
   1206 
   1207 void UTextTest::FreezeTest() {
   1208     // Check isWritable() and freeze() behavior.
   1209     //
   1210 
   1211     UnicodeString  ustr("Hello, World.");
   1212     const char u8str[] = {char(0x31), (char)0x32, (char)0x33, 0};
   1213     const UChar u16str[] = {(UChar)0x31, (UChar)0x32, (UChar)0x44, 0};
   1214 
   1215     UErrorCode status = U_ZERO_ERROR;
   1216     UText  *ut        = NULL;
   1217     UText  *ut2       = NULL;
   1218 
   1219     ut = utext_openUTF8(ut, u8str, -1, &status);
   1220     TEST_SUCCESS(status);
   1221     UBool writable = utext_isWritable(ut);
   1222     TEST_ASSERT(writable == FALSE);
   1223     utext_copy(ut, 1, 2, 0, TRUE, &status);
   1224     TEST_ASSERT(status == U_NO_WRITE_PERMISSION);
   1225 
   1226     status = U_ZERO_ERROR;
   1227     ut = utext_openUChars(ut, u16str, -1, &status);
   1228     TEST_SUCCESS(status);
   1229     writable = utext_isWritable(ut);
   1230     TEST_ASSERT(writable == FALSE);
   1231     utext_copy(ut, 1, 2, 0, TRUE, &status);
   1232     TEST_ASSERT(status == U_NO_WRITE_PERMISSION);
   1233 
   1234     status = U_ZERO_ERROR;
   1235     ut = utext_openUnicodeString(ut, &ustr, &status);
   1236     TEST_SUCCESS(status);
   1237     writable = utext_isWritable(ut);
   1238     TEST_ASSERT(writable == TRUE);
   1239     utext_freeze(ut);
   1240     writable = utext_isWritable(ut);
   1241     TEST_ASSERT(writable == FALSE);
   1242     utext_copy(ut, 1, 2, 0, TRUE, &status);
   1243     TEST_ASSERT(status == U_NO_WRITE_PERMISSION);
   1244 
   1245     status = U_ZERO_ERROR;
   1246     ut = utext_openUnicodeString(ut, &ustr, &status);
   1247     TEST_SUCCESS(status);
   1248     ut2 = utext_clone(ut2, ut, FALSE, FALSE, &status);  // clone with readonly = false
   1249     TEST_SUCCESS(status);
   1250     writable = utext_isWritable(ut2);
   1251     TEST_ASSERT(writable == TRUE);
   1252     ut2 = utext_clone(ut2, ut, FALSE, TRUE, &status);  // clone with readonly = true
   1253     TEST_SUCCESS(status);
   1254     writable = utext_isWritable(ut2);
   1255     TEST_ASSERT(writable == FALSE);
   1256     utext_copy(ut2, 1, 2, 0, TRUE, &status);
   1257     TEST_ASSERT(status == U_NO_WRITE_PERMISSION);
   1258 
   1259     status = U_ZERO_ERROR;
   1260     ut = utext_openConstUnicodeString(ut, (const UnicodeString *)&ustr, &status);
   1261     TEST_SUCCESS(status);
   1262     writable = utext_isWritable(ut);
   1263     TEST_ASSERT(writable == FALSE);
   1264     utext_copy(ut, 1, 2, 0, TRUE, &status);
   1265     TEST_ASSERT(status == U_NO_WRITE_PERMISSION);
   1266 
   1267     // Deep Clone of a frozen UText should re-enable writing in the copy.
   1268     status = U_ZERO_ERROR;
   1269     ut = utext_openUnicodeString(ut, &ustr, &status);
   1270     TEST_SUCCESS(status);
   1271     utext_freeze(ut);
   1272     ut2 = utext_clone(ut2, ut, TRUE, FALSE, &status);   // deep clone
   1273     TEST_SUCCESS(status);
   1274     writable = utext_isWritable(ut2);
   1275     TEST_ASSERT(writable == TRUE);
   1276 
   1277 
   1278     // Deep clone of a frozen UText, where the base type is intrinsically non-writable,
   1279     //  should NOT enable writing in the copy.
   1280     status = U_ZERO_ERROR;
   1281     ut = utext_openUChars(ut, u16str, -1, &status);
   1282     TEST_SUCCESS(status);
   1283     utext_freeze(ut);
   1284     ut2 = utext_clone(ut2, ut, TRUE, FALSE, &status);   // deep clone
   1285     TEST_SUCCESS(status);
   1286     writable = utext_isWritable(ut2);
   1287     TEST_ASSERT(writable == FALSE);
   1288 
   1289     // cleanup
   1290     utext_close(ut);
   1291     utext_close(ut2);
   1292 }
   1293 
   1294 
   1295 //
   1296 //  Fragmented UText
   1297 //      A UText type that works with a chunk size of 1.
   1298 //      Intended to test for edge cases.
   1299 //      Input comes from a UnicodeString.
   1300 //
   1301 //       ut.b    the character.  Put into both halves.
   1302 //
   1303 
   1304 U_CDECL_BEGIN
   1305 static UBool U_CALLCONV
   1306 fragTextAccess(UText *ut, int64_t index, UBool forward) {
   1307     const UnicodeString *us = (const UnicodeString *)ut->context;
   1308     UChar  c;
   1309     int32_t length = us->length();
   1310     if (forward && index>=0 && index<length) {
   1311         c = us->charAt((int32_t)index);
   1312         ut->b = c | c<<16;
   1313         ut->chunkOffset = 0;
   1314         ut->chunkLength = 1;
   1315         ut->chunkNativeStart = index;
   1316         ut->chunkNativeLimit = index+1;
   1317         return true;
   1318     }
   1319     if (!forward && index>0 && index <=length) {
   1320         c = us->charAt((int32_t)index-1);
   1321         ut->b = c | c<<16;
   1322         ut->chunkOffset = 1;
   1323         ut->chunkLength = 1;
   1324         ut->chunkNativeStart = index-1;
   1325         ut->chunkNativeLimit = index;
   1326         return true;
   1327     }
   1328     ut->b = 0;
   1329     ut->chunkOffset = 0;
   1330     ut->chunkLength = 0;
   1331     if (index <= 0) {
   1332         ut->chunkNativeStart = 0;
   1333         ut->chunkNativeLimit = 0;
   1334     } else {
   1335         ut->chunkNativeStart = length;
   1336         ut->chunkNativeLimit = length;
   1337     }
   1338     return false;
   1339 }
   1340 
   1341 // Function table to be used with this fragmented text provider.
   1342 //   Initialized in the open function.
   1343 static UTextFuncs  fragmentFuncs;
   1344 
   1345 // Clone function for fragmented text provider.
   1346 //   Didn't really want to provide this, but it's easier to provide it than to keep it
   1347 //   out of the tests.
   1348 //
   1349 UText *
   1350 cloneFragmentedUnicodeString(UText *dest, const UText *src, UBool deep, UErrorCode *status) {
   1351     if (U_FAILURE(*status)) {
   1352         return NULL;
   1353     }
   1354     if (deep) {
   1355         *status = U_UNSUPPORTED_ERROR;
   1356         return NULL;
   1357     }
   1358     dest = utext_openUnicodeString(dest, (UnicodeString *)src->context, status);
   1359     utext_setNativeIndex(dest, utext_getNativeIndex(src));
   1360     return dest;
   1361 }
   1362 
   1363 U_CDECL_END
   1364 
   1365 // Open function for the fragmented text provider.
   1366 UText *
   1367 openFragmentedUnicodeString(UText *ut, UnicodeString *s, UErrorCode *status) {
   1368     ut = utext_openUnicodeString(ut, s, status);
   1369     if (U_FAILURE(*status)) {
   1370         return ut;
   1371     }
   1372 
   1373     // Copy of the function table from the stock UnicodeString UText,
   1374     //   and replace the entry for the access function.
   1375     memcpy(&fragmentFuncs, ut->pFuncs, sizeof(fragmentFuncs));
   1376     fragmentFuncs.access = fragTextAccess;
   1377     fragmentFuncs.clone  = cloneFragmentedUnicodeString;
   1378     ut->pFuncs = &fragmentFuncs;
   1379 
   1380     ut->chunkContents = (UChar *)&ut->b;
   1381     ut->pFuncs->access(ut, 0, TRUE);
   1382     return ut;
   1383 }
   1384 
   1385 // Regression test for Ticket 5560
   1386 //   Clone fails to update chunkContentPointer in the cloned copy.
   1387 //   This is only an issue for UText types that work in a local buffer,
   1388 //      (UTF-8 wrapper, for example)
   1389 //
   1390 //   The test:
   1391 //     1.  Create an inital UText
   1392 //     2.  Deep clone it.  Contents should match original.
   1393 //     3.  Reset original to something different.
   1394 //     4.  Check that clone contents did not change.
   1395 //
   1396 void UTextTest::Ticket5560() {
   1397     /* The following two strings are in UTF-8 even on EBCDIC platforms. */
   1398     static const char s1[] = {0x41,0x42,0x43,0x44,0x45,0x46,0}; /* "ABCDEF" */
   1399     static const char s2[] = {0x31,0x32,0x33,0x34,0x35,0x36,0}; /* "123456" */
   1400 	UErrorCode status = U_ZERO_ERROR;
   1401 
   1402 	UText ut1 = UTEXT_INITIALIZER;
   1403 	UText ut2 = UTEXT_INITIALIZER;
   1404 
   1405 	utext_openUTF8(&ut1, s1, -1, &status);
   1406 	UChar c = utext_next32(&ut1);
   1407 	TEST_ASSERT(c == 0x41);  // c == 'A'
   1408 
   1409 	utext_clone(&ut2, &ut1, TRUE, FALSE, &status);
   1410 	TEST_SUCCESS(status);
   1411     c = utext_next32(&ut2);
   1412 	TEST_ASSERT(c == 0x42);  // c == 'B'
   1413     c = utext_next32(&ut1);
   1414 	TEST_ASSERT(c == 0x42);  // c == 'B'
   1415 
   1416 	utext_openUTF8(&ut1, s2, -1, &status);
   1417 	c = utext_next32(&ut1);
   1418 	TEST_ASSERT(c == 0x31);  // c == '1'
   1419     c = utext_next32(&ut2);
   1420 	TEST_ASSERT(c == 0x43);  // c == 'C'
   1421 
   1422     utext_close(&ut1);
   1423     utext_close(&ut2);
   1424 }
   1425 
   1426 
   1427 // Test for Ticket 6847
   1428 //
   1429 void UTextTest::Ticket6847() {
   1430     const int STRLEN = 90;
   1431     UChar s[STRLEN+1];
   1432     u_memset(s, 0x41, STRLEN);
   1433     s[STRLEN] = 0;
   1434 
   1435     UErrorCode status = U_ZERO_ERROR;
   1436     UText *ut = utext_openUChars(NULL, s, -1, &status);
   1437 
   1438     utext_setNativeIndex(ut, 0);
   1439     int32_t count = 0;
   1440     UChar32 c = 0;
   1441     int64_t nativeIndex = UTEXT_GETNATIVEINDEX(ut);
   1442     TEST_ASSERT(nativeIndex == 0);
   1443     while ((c = utext_next32(ut)) != U_SENTINEL) {
   1444         TEST_ASSERT(c == 0x41);
   1445         TEST_ASSERT(count < STRLEN);
   1446         if (count >= STRLEN) {
   1447             break;
   1448         }
   1449         count++;
   1450         nativeIndex = UTEXT_GETNATIVEINDEX(ut);
   1451         TEST_ASSERT(nativeIndex == count);
   1452     }
   1453     TEST_ASSERT(count == STRLEN);
   1454     nativeIndex = UTEXT_GETNATIVEINDEX(ut);
   1455     TEST_ASSERT(nativeIndex == STRLEN);
   1456     utext_close(ut);
   1457 }
   1458 
   1459 
   1460 void UTextTest::Ticket10562() {
   1461     // Note: failures show as a heap error when the test is run under valgrind.
   1462     UErrorCode status = U_ZERO_ERROR;
   1463 
   1464     const char *utf8_string = "\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41";
   1465     UText *utf8Text = utext_openUTF8(NULL, utf8_string, -1, &status);
   1466     TEST_SUCCESS(status);
   1467     UText *deepClone = utext_clone(NULL, utf8Text, TRUE, FALSE, &status);
   1468     TEST_SUCCESS(status);
   1469     UText *shallowClone = utext_clone(NULL, deepClone, FALSE, FALSE, &status);
   1470     TEST_SUCCESS(status);
   1471     utext_close(shallowClone);
   1472     utext_close(deepClone);
   1473     utext_close(utf8Text);
   1474 
   1475     status = U_ZERO_ERROR;
   1476     UnicodeString usString("Hello, World.");
   1477     UText *usText = utext_openUnicodeString(NULL, &usString, &status);
   1478     TEST_SUCCESS(status);
   1479     UText *usDeepClone = utext_clone(NULL, usText, TRUE, FALSE, &status);
   1480     TEST_SUCCESS(status);
   1481     UText *usShallowClone = utext_clone(NULL, usDeepClone, FALSE, FALSE, &status);
   1482     TEST_SUCCESS(status);
   1483     utext_close(usShallowClone);
   1484     utext_close(usDeepClone);
   1485     utext_close(usText);
   1486 }
   1487 
   1488 
   1489 void UTextTest::Ticket10983() {
   1490     // Note: failure shows as a seg fault when the defect is present.
   1491 
   1492     UErrorCode status = U_ZERO_ERROR;
   1493     UnicodeString s("Hello, World");
   1494     UText *ut = utext_openConstUnicodeString(NULL, &s, &status);
   1495     TEST_SUCCESS(status);
   1496 
   1497     status = U_INVALID_STATE_ERROR;
   1498     UText *cloned = utext_clone(NULL, ut, TRUE, TRUE, &status);
   1499     TEST_ASSERT(cloned == NULL);
   1500     TEST_ASSERT(status == U_INVALID_STATE_ERROR);
   1501 
   1502     utext_close(ut);
   1503 }
   1504