Home | History | Annotate | Download | only in lib
      1 /*
      2  * lib/attr.c		Netlink Attributes
      3  *
      4  *	This library is free software; you can redistribute it and/or
      5  *	modify it under the terms of the GNU Lesser General Public
      6  *	License as published by the Free Software Foundation version 2.1
      7  *	of the License.
      8  *
      9  * Copyright (c) 2003-2008 Thomas Graf <tgraf (at) suug.ch>
     10  */
     11 
     12 #include <netlink-local.h>
     13 #include <netlink/netlink.h>
     14 #include <netlink/utils.h>
     15 #include <netlink/addr.h>
     16 #include <netlink/attr.h>
     17 #include <netlink/msg.h>
     18 #include <linux/socket.h>
     19 
     20 /**
     21  * @ingroup msg
     22  * @defgroup attr Attributes
     23  * Netlink Attributes Construction/Parsing Interface
     24  *
     25  * \section attr_sec Netlink Attributes
     26  * Netlink attributes allow for data chunks of arbitary length to be
     27  * attached to a netlink message. Each attribute is encoded with a
     28  * type and length field, both 16 bits, stored in the attribute header
     29  * preceding the attribute data. The main advantage of using attributes
     30  * over packing everything into the family header is that the interface
     31  * stays extendable as new attributes can supersede old attributes while
     32  * remaining backwards compatible. Also attributes can be defined optional
     33  * thus avoiding the transmission of unnecessary empty data blocks.
     34  * Special nested attributes allow for more complex data structures to
     35  * be transmitted, e.g. trees, lists, etc.
     36  *
     37  * While not required, netlink attributes typically follow the family
     38  * header of a netlink message and must be properly aligned to NLA_ALIGNTO:
     39  * @code
     40  *   +----------------+- - -+---------------+- - -+------------+- - -+
     41  *   | Netlink Header | Pad | Family Header | Pad | Attributes | Pad |
     42  *   +----------------+- - -+---------------+- - -+------------+- - -+
     43  * @endcode
     44  *
     45  * The actual attributes are chained together each separately aligned to
     46  * NLA_ALIGNTO. The position of an attribute is defined based on the
     47  * length field of the preceding attributes:
     48  * @code
     49  *   +-------------+- - -+-------------+- - -+------
     50  *   | Attribute 1 | Pad | Attribute 2 | Pad | ...
     51  *   +-------------+- - -+-------------+- - -+------
     52  *   nla_next(attr1)------^
     53  * @endcode
     54  *
     55  * The attribute itself consists of the attribute header followed by
     56  * the actual payload also aligned to NLA_ALIGNTO. The function nla_data()
     57  * returns a pointer to the start of the payload while nla_len() returns
     58  * the length of the payload in bytes.
     59  *
     60  * \b Note: Be aware, NLA_ALIGNTO equals to 4 bytes, therefore it is not
     61  * safe to dereference any 64 bit data types directly.
     62  *
     63  * @code
     64  *    <----------- nla_total_size(payload) ----------->
     65  *    <-------- nla_attr_size(payload) --------->
     66  *   +------------------+- - -+- - - - - - - - - +- - -+
     67  *   | Attribute Header | Pad |     Payload      | Pad |
     68  *   +------------------+- - -+- - - - - - - - - +- - -+
     69  *   nla_data(nla)-------------^
     70  *                             <- nla_len(nla) ->
     71  * @endcode
     72  *
     73  * @subsection attr_datatypes Attribute Data Types
     74  * A number of basic data types are supported to simplify access and
     75  * validation of netlink attributes. This data type information is
     76  * not encoded in the attribute, both the kernel and userspace part
     77  * are required to share this information on their own.
     78  *
     79  * One of the major advantages of these basic types is the automatic
     80  * validation of each attribute based on an attribute policy. The
     81  * validation covers most of the checks required to safely use
     82  * attributes and thus keeps the individual sanity check to a minimum.
     83  *
     84  * Never access attribute payload without ensuring basic validation
     85  * first, attributes may:
     86  * - not be present even though required
     87  * - contain less actual payload than expected
     88  * - fake a attribute length which exceeds the end of the message
     89  * - contain unterminated character strings
     90  *
     91  * Policies are defined as array of the struct nla_policy. The array is
     92  * indexed with the attribute type, therefore the array must be sized
     93  * accordingly.
     94  * @code
     95  * static struct nla_policy my_policy[ATTR_MAX+1] = {
     96  * 	[ATTR_FOO] = { .type = ..., .minlen = ..., .maxlen = ... },
     97  * };
     98  *
     99  * err = nla_validate(attrs, attrlen, ATTR_MAX, &my_policy);
    100  * @endcode
    101  *
    102  * Some basic validations are performed on every attribute, regardless of type.
    103  * - If the attribute type exceeds the maximum attribute type specified or
    104  *   the attribute type is lesser-or-equal than zero, the attribute will
    105  *   be silently ignored.
    106  * - If the payload length falls below the \a minlen value the attribute
    107  *   will be rejected.
    108  * - If \a maxlen is non-zero and the payload length exceeds the \a maxlen
    109  *   value the attribute will be rejected.
    110  *
    111  *
    112  * @par Unspecific Attribute (NLA_UNSPEC)
    113  * This is the standard type if no type is specified. It is used for
    114  * binary data of arbitary length. Typically this attribute carries
    115  * a binary structure or a stream of bytes.
    116  * @par
    117  * @code
    118  * // In this example, we will assume a binary structure requires to
    119  * // be transmitted. The definition of the structure will typically
    120  * // go into a header file available to both the kernel and userspace
    121  * // side.
    122  * //
    123  * // Note: Be careful when putting 64 bit data types into a structure.
    124  * // The attribute payload is only aligned to 4 bytes, dereferencing
    125  * // the member may fail.
    126  * struct my_struct {
    127  *     int a;
    128  *     int b;
    129  * };
    130  *
    131  * // The validation function will not enforce an exact length match to
    132  * // allow structures to grow as required. Note: While it is allowed
    133  * // to add members to the end of the structure, changing the order or
    134  * // inserting members in the middle of the structure will break your
    135  * // binary interface.
    136  * static struct nla_policy my_policy[ATTR_MAX+1] = {
    137  *     [ATTR_MY_STRICT] = { .type = NLA_UNSPEC,
    138  *                          .minlen = sizeof(struct my_struct) },
    139  *
    140  * // The binary structure is appened to the message using nla_put()
    141  * struct my_struct foo = { .a = 1, .b = 2 };
    142  * nla_put(msg, ATTR_MY_STRUCT, sizeof(foo), &foo);
    143  *
    144  * // On the receiving side, a pointer to the structure pointing inside
    145  * // the message payload is returned by nla_get().
    146  * if (attrs[ATTR_MY_STRUCT])
    147  *     struct my_struct *foo = nla_get(attrs[ATTR_MY_STRUCT]);
    148  * @endcode
    149  *
    150  * @par Integers (NLA_U8, NLA_U16, NLA_U32, NLA_U64)
    151  * Integers come in different sizes from 8 bit to 64 bit. However, since the
    152  * payload length is aligned to 4 bytes, integers smaller than 32 bit are
    153  * only useful to enforce the maximum range of values.
    154  * @par
    155  * \b Note: There is no difference made between signed and unsigned integers.
    156  * The validation only enforces the minimal payload length required to store
    157  * an integer of specified type.
    158  * @par
    159  * @code
    160  * // Even though possible, it does not make sense to specify .minlen or
    161  * // .maxlen for integer types. The data types implies the corresponding
    162  * // minimal payload length.
    163  * static struct nla_policy my_policy[ATTR_MAX+1] = {
    164  *     [ATTR_FOO] = { .type = NLA_U32 },
    165  *
    166  * // Numeric values can be appended directly using the respective
    167  * // nla_put_uxxx() function
    168  * nla_put_u32(msg, ATTR_FOO, 123);
    169  *
    170  * // Same for the receiving side.
    171  * if (attrs[ATTR_FOO])
    172  *     uint32_t foo = nla_get_u32(attrs[ATTR_FOO]);
    173  * @endcode
    174  *
    175  * @par Character string (NLA_STRING)
    176  * This data type represents a NUL terminated character string of variable
    177  * length. For binary data streams the type NLA_UNSPEC is recommended.
    178  * @par
    179  * @code
    180  * // Enforce a NUL terminated character string of at most 4 characters
    181  * // including the NUL termination.
    182  * static struct nla_policy my_policy[ATTR_MAX+1] = {
    183  *     [ATTR_BAR] = { .type = NLA_STRING, maxlen = 4 },
    184  *
    185  * // nla_put_string() creates a string attribute of the necessary length
    186  * // and appends it to the message including the NUL termination.
    187  * nla_put_string(msg, ATTR_BAR, "some text");
    188  *
    189  * // It is safe to use the returned character string directly if the
    190  * // attribute has been validated as the validation enforces the proper
    191  * // termination of the string.
    192  * if (attrs[ATTR_BAR])
    193  *     char *text = nla_get_string(attrs[ATTR_BAR]);
    194  * @endcode
    195  *
    196  * @par Flag (NLA_FLAG)
    197  * This attribute type may be used to indicate the presence of a flag. The
    198  * attribute is only valid if the payload length is zero. The presence of
    199  * the attribute header indicates the presence of the flag.
    200  * @par
    201  * @code
    202  * // This attribute type is special as .minlen and .maxlen have no effect.
    203  * static struct nla_policy my_policy[ATTR_MAX+1] = {
    204  *     [ATTR_FLAG] = { .type = NLA_FLAG },
    205  *
    206  * // nla_put_flag() appends a zero sized attribute to the message.
    207  * nla_put_flag(msg, ATTR_FLAG);
    208  *
    209  * // There is no need for a receival function, the presence is the value.
    210  * if (attrs[ATTR_FLAG])
    211  *     // flag is present
    212  * @endcode
    213  *
    214  * @par Micro Seconds (NLA_MSECS)
    215  *
    216  * @par Nested Attribute (NLA_NESTED)
    217  * Attributes can be nested and put into a container to create groups, lists
    218  * or to construct trees of attributes. Nested attributes are often used to
    219  * pass attributes to a subsystem where the top layer has no knowledge of the
    220  * configuration possibilities of each subsystem.
    221  * @par
    222  * \b Note: When validating the attributes using nlmsg_validate() or
    223  * nlmsg_parse() it will only affect the top level attributes. Each
    224  * level of nested attributes must be validated seperately using
    225  * nla_parse_nested() or nla_validate().
    226  * @par
    227  * @code
    228  * // The minimal length policy may be used to enforce the presence of at
    229  * // least one attribute.
    230  * static struct nla_policy my_policy[ATTR_MAX+1] = {
    231  *     [ATTR_OPTS] = { .type = NLA_NESTED, minlen = NLA_HDRLEN },
    232  *
    233  * // Nested attributes are constructed by enclosing the attributes
    234  * // to be nested with calls to nla_nest_start() respetively nla_nest_end().
    235  * struct nlattr *opts = nla_nest_start(msg, ATTR_OPTS);
    236  * nla_put_u32(msg, ATTR_FOO, 123);
    237  * nla_put_string(msg, ATTR_BAR, "some text");
    238  * nla_nest_end(msg, opts);
    239  *
    240  * // Various methods exist to parse nested attributes, the easiest being
    241  * // nla_parse_nested() which also allows validation in the same step.
    242  * if (attrs[ATTR_OPTS]) {
    243  *     struct nlattr *nested[ATTR_MAX+1];
    244  *
    245  *     nla_parse_nested(nested, ATTR_MAX, attrs[ATTR_OPTS], &policy);
    246  *
    247  *     if (nested[ATTR_FOO])
    248  *         uint32_t foo = nla_get_u32(nested[ATTR_FOO]);
    249  * }
    250  * @endcode
    251  *
    252  * @subsection attr_exceptions Exception Based Attribute Construction
    253  * Often a large number of attributes are added to a message in a single
    254  * function. In order to simplify error handling, a second set of
    255  * construction functions exist which jump to a error label when they
    256  * fail instead of returning an error code. This second set consists
    257  * of macros which are named after their error code based counterpart
    258  * except that the name is written all uppercase.
    259  *
    260  * All of the macros jump to the target \c nla_put_failure if they fail.
    261  * @code
    262  * void my_func(struct nl_msg *msg)
    263  * {
    264  *     NLA_PUT_U32(msg, ATTR_FOO, 10);
    265  *     NLA_PUT_STRING(msg, ATTR_BAR, "bar");
    266  *
    267  *     return 0;
    268  *
    269  * nla_put_failure:
    270  *     return -NLE_NOMEM;
    271  * }
    272  * @endcode
    273  *
    274  * @subsection attr_examples Examples
    275  * @par Example 1.1 Constructing a netlink message with attributes.
    276  * @code
    277  * struct nl_msg *build_msg(int ifindex, struct nl_addr *lladdr, int mtu)
    278  * {
    279  *     struct nl_msg *msg;
    280  *     struct nlattr *info, *vlan;
    281  *     struct ifinfomsg ifi = {
    282  *         .ifi_family = AF_INET,
    283  *         .ifi_index = ifindex,
    284  *     };
    285  *
    286  *     // Allocate a new netlink message, type=RTM_SETLINK, flags=NLM_F_ECHO
    287  *     if (!(msg = nlmsg_alloc_simple(RTM_SETLINK, NLM_F_ECHO)))
    288  *         return NULL;
    289  *
    290  *     // Append the family specific header (struct ifinfomsg)
    291  *     if (nlmsg_append(msg, &ifi, sizeof(ifi), NLMSG_ALIGNTO) < 0)
    292  *         goto nla_put_failure
    293  *
    294  *     // Append a 32 bit integer attribute to carry the MTU
    295  *     NLA_PUT_U32(msg, IFLA_MTU, mtu);
    296  *
    297  *     // Append a unspecific attribute to carry the link layer address
    298  *     NLA_PUT_ADDR(msg, IFLA_ADDRESS, lladdr);
    299  *
    300  *     // Append a container for nested attributes to carry link information
    301  *     if (!(info = nla_nest_start(msg, IFLA_LINKINFO)))
    302  *         goto nla_put_failure;
    303  *
    304  *     // Put a string attribute into the container
    305  *     NLA_PUT_STRING(msg, IFLA_INFO_KIND, "vlan");
    306  *
    307  *     // Append another container inside the open container to carry
    308  *     // vlan specific attributes
    309  *     if (!(vlan = nla_nest_start(msg, IFLA_INFO_DATA)))
    310  *         goto nla_put_failure;
    311  *
    312  *     // add vlan specific info attributes here...
    313  *
    314  *     // Finish nesting the vlan attributes and close the second container.
    315  *     nla_nest_end(msg, vlan);
    316  *
    317  *     // Finish nesting the link info attribute and close the first container.
    318  *     nla_nest_end(msg, info);
    319  *
    320  *     return msg;
    321  *
    322  * // If any of the construction macros fails, we end up here.
    323  * nla_put_failure:
    324  *     nlmsg_free(msg);
    325  *     return NULL;
    326  * }
    327  * @endcode
    328  *
    329  * @par Example 2.1 Parsing a netlink message with attributes.
    330  * @code
    331  * int parse_message(struct nl_msg *msg)
    332  * {
    333  *     // The policy defines two attributes: a 32 bit integer and a container
    334  *     // for nested attributes.
    335  *     struct nla_policy attr_policy[ATTR_MAX+1] = {
    336  *         [ATTR_FOO] = { .type = NLA_U32 },
    337  *         [ATTR_BAR] = { .type = NLA_NESTED },
    338  *     };
    339  *     struct nlattr *attrs[ATTR_MAX+1];
    340  *     int err;
    341  *
    342  *     // The nlmsg_parse() function will make sure that the message contains
    343  *     // enough payload to hold the header (struct my_hdr), validates any
    344  *     // attributes attached to the messages and stores a pointer to each
    345  *     // attribute in the attrs[] array accessable by attribute type.
    346  *     if ((err = nlmsg_parse(nlmsg_hdr(msg), sizeof(struct my_hdr), attrs,
    347  *                            ATTR_MAX, attr_policy)) < 0)
    348  *         goto errout;
    349  *
    350  *     if (attrs[ATTR_FOO]) {
    351  *         // It is safe to directly access the attribute payload without
    352  *         // any further checks since nlmsg_parse() enforced the policy.
    353  *         uint32_t foo = nla_get_u32(attrs[ATTR_FOO]);
    354  *     }
    355  *
    356  *     if (attrs[ATTR_BAR]) {
    357  *         struct nlattr *nested[NESTED_MAX+1];
    358  *
    359  *         // Attributes nested in a container can be parsed the same way
    360  *         // as top level attributes.
    361  *         if ((err = nla_parse_nested(nested, NESTED_MAX, attrs[ATTR_BAR],
    362  *                                     nested_policy)) < 0)
    363  *             goto errout;
    364  *
    365  *         // Process nested attributes here.
    366  *     }
    367  *
    368  *     err = 0;
    369  * errout:
    370  *     return err;
    371  * }
    372  * @endcode
    373  *
    374  * @{
    375  */
    376 
    377 /**
    378  * @name Attribute Size Calculation
    379  * @{
    380  */
    381 
    382 /**
    383  * Return size of attribute whithout padding.
    384  * @arg payload		Payload length of attribute.
    385  *
    386  * @code
    387  *    <-------- nla_attr_size(payload) --------->
    388  *   +------------------+- - -+- - - - - - - - - +- - -+
    389  *   | Attribute Header | Pad |     Payload      | Pad |
    390  *   +------------------+- - -+- - - - - - - - - +- - -+
    391  * @endcode
    392  *
    393  * @return Size of attribute in bytes without padding.
    394  */
    395 int nla_attr_size(int payload)
    396 {
    397 	return NLA_HDRLEN + payload;
    398 }
    399 
    400 /**
    401  * Return size of attribute including padding.
    402  * @arg payload		Payload length of attribute.
    403  *
    404  * @code
    405  *    <----------- nla_total_size(payload) ----------->
    406  *   +------------------+- - -+- - - - - - - - - +- - -+
    407  *   | Attribute Header | Pad |     Payload      | Pad |
    408  *   +------------------+- - -+- - - - - - - - - +- - -+
    409  * @endcode
    410  *
    411  * @return Size of attribute in bytes.
    412  */
    413 int nla_total_size(int payload)
    414 {
    415 	return NLA_ALIGN(nla_attr_size(payload));
    416 }
    417 
    418 /**
    419  * Return length of padding at the tail of the attribute.
    420  * @arg payload		Payload length of attribute.
    421  *
    422  * @code
    423  *   +------------------+- - -+- - - - - - - - - +- - -+
    424  *   | Attribute Header | Pad |     Payload      | Pad |
    425  *   +------------------+- - -+- - - - - - - - - +- - -+
    426  *                                                <--->
    427  * @endcode
    428  *
    429  * @return Length of padding in bytes.
    430  */
    431 int nla_padlen(int payload)
    432 {
    433 	return nla_total_size(payload) - nla_attr_size(payload);
    434 }
    435 
    436 /** @} */
    437 
    438 /**
    439  * @name Parsing Attributes
    440  * @{
    441  */
    442 
    443 /**
    444  * Return type of the attribute.
    445  * @arg nla		Attribute.
    446  *
    447  * @return Type of attribute.
    448  */
    449 int nla_type(const struct nlattr *nla)
    450 {
    451 	return nla->nla_type & NLA_TYPE_MASK;
    452 }
    453 
    454 /**
    455  * Return pointer to the payload section.
    456  * @arg nla		Attribute.
    457  *
    458  * @return Pointer to start of payload section.
    459  */
    460 void *nla_data(const struct nlattr *nla)
    461 {
    462 	return (char *) nla + NLA_HDRLEN;
    463 }
    464 
    465 /**
    466  * Return length of the payload .
    467  * @arg nla		Attribute
    468  *
    469  * @return Length of payload in bytes.
    470  */
    471 int nla_len(const struct nlattr *nla)
    472 {
    473 	return nla->nla_len - NLA_HDRLEN;
    474 }
    475 
    476 /**
    477  * Check if the attribute header and payload can be accessed safely.
    478  * @arg nla		Attribute of any kind.
    479  * @arg remaining	Number of bytes remaining in attribute stream.
    480  *
    481  * Verifies that the header and payload do not exceed the number of
    482  * bytes left in the attribute stream. This function must be called
    483  * before access the attribute header or payload when iterating over
    484  * the attribute stream using nla_next().
    485  *
    486  * @return True if the attribute can be accessed safely, false otherwise.
    487  */
    488 int nla_ok(const struct nlattr *nla, int remaining)
    489 {
    490 	return remaining >= sizeof(*nla) &&
    491 	       nla->nla_len >= sizeof(*nla) &&
    492 	       nla->nla_len <= remaining;
    493 }
    494 
    495 /**
    496  * Return next attribute in a stream of attributes.
    497  * @arg nla		Attribute of any kind.
    498  * @arg remaining	Variable to count remaining bytes in stream.
    499  *
    500  * Calculates the offset to the next attribute based on the attribute
    501  * given. The attribute provided is assumed to be accessible, the
    502  * caller is responsible to use nla_ok() beforehand. The offset (length
    503  * of specified attribute including padding) is then subtracted from
    504  * the remaining bytes variable and a pointer to the next attribute is
    505  * returned.
    506  *
    507  * nla_next() can be called as long as remainig is >0.
    508  *
    509  * @return Pointer to next attribute.
    510  */
    511 struct nlattr *nla_next(const struct nlattr *nla, int *remaining)
    512 {
    513 	int totlen = NLA_ALIGN(nla->nla_len);
    514 
    515 	*remaining -= totlen;
    516 	return (struct nlattr *) ((char *) nla + totlen);
    517 }
    518 
    519 static uint16_t nla_attr_minlen[NLA_TYPE_MAX+1] = {
    520 	[NLA_U8]	= sizeof(uint8_t),
    521 	[NLA_U16]	= sizeof(uint16_t),
    522 	[NLA_U32]	= sizeof(uint32_t),
    523 	[NLA_U64]	= sizeof(uint64_t),
    524 	[NLA_STRING]	= 1,
    525 };
    526 
    527 static int validate_nla(struct nlattr *nla, int maxtype,
    528 			struct nla_policy *policy)
    529 {
    530 	struct nla_policy *pt;
    531 	int minlen = 0, type = nla_type(nla);
    532 
    533 	if (type <= 0 || type > maxtype)
    534 		return 0;
    535 
    536 	pt = &policy[type];
    537 
    538 	if (pt->type > NLA_TYPE_MAX)
    539 		BUG();
    540 
    541 	if (pt->minlen)
    542 		minlen = pt->minlen;
    543 	else if (pt->type != NLA_UNSPEC)
    544 		minlen = nla_attr_minlen[pt->type];
    545 
    546 	if (pt->type == NLA_FLAG && nla_len(nla) > 0)
    547 		return -NLE_RANGE;
    548 
    549 	if (nla_len(nla) < minlen)
    550 		return -NLE_RANGE;
    551 
    552 	if (pt->maxlen && nla_len(nla) > pt->maxlen)
    553 		return -NLE_RANGE;
    554 
    555 	if (pt->type == NLA_STRING) {
    556 		char *data = nla_data(nla);
    557 		if (data[nla_len(nla) - 1] != '\0')
    558 			return -NLE_INVAL;
    559 	}
    560 
    561 	return 0;
    562 }
    563 
    564 
    565 /**
    566  * Create attribute index based on a stream of attributes.
    567  * @arg tb		Index array to be filled (maxtype+1 elements).
    568  * @arg maxtype		Maximum attribute type expected and accepted.
    569  * @arg head		Head of attribute stream.
    570  * @arg len		Length of attribute stream.
    571  * @arg policy		Attribute validation policy.
    572  *
    573  * Iterates over the stream of attributes and stores a pointer to each
    574  * attribute in the index array using the attribute type as index to
    575  * the array. Attribute with a type greater than the maximum type
    576  * specified will be silently ignored in order to maintain backwards
    577  * compatibility. If \a policy is not NULL, the attribute will be
    578  * validated using the specified policy.
    579  *
    580  * @see nla_validate
    581  * @return 0 on success or a negative error code.
    582  */
    583 int nla_parse(struct nlattr *tb[], int maxtype, struct nlattr *head, int len,
    584 	      struct nla_policy *policy)
    585 {
    586 	struct nlattr *nla;
    587 	int rem, err;
    588 
    589 	memset(tb, 0, sizeof(struct nlattr *) * (maxtype + 1));
    590 
    591 	nla_for_each_attr(nla, head, len, rem) {
    592 		int type = nla_type(nla);
    593 
    594 		if (type == 0) {
    595 			fprintf(stderr, "Illegal nla->nla_type == 0\n");
    596 			continue;
    597 		}
    598 
    599 		if (type <= maxtype) {
    600 			if (policy) {
    601 				err = validate_nla(nla, maxtype, policy);
    602 				if (err < 0)
    603 					goto errout;
    604 			}
    605 
    606 			tb[type] = nla;
    607 		}
    608 	}
    609 
    610 	if (rem > 0)
    611 		fprintf(stderr, "netlink: %d bytes leftover after parsing "
    612 		       "attributes.\n", rem);
    613 
    614 	err = 0;
    615 errout:
    616 	return err;
    617 }
    618 
    619 /**
    620  * Validate a stream of attributes.
    621  * @arg head		Head of attributes stream.
    622  * @arg len		Length of attributes stream.
    623  * @arg maxtype		Maximum attribute type expected and accepted.
    624  * @arg policy		Validation policy.
    625  *
    626  * Iterates over the stream of attributes and validates each attribute
    627  * one by one using the specified policy. Attributes with a type greater
    628  * than the maximum type specified will be silently ignored in order to
    629  * maintain backwards compatibility.
    630  *
    631  * See \ref attr_datatypes for more details on what kind of validation
    632  * checks are performed on each attribute data type.
    633  *
    634  * @return 0 on success or a negative error code.
    635  */
    636 int nla_validate(struct nlattr *head, int len, int maxtype,
    637 		 struct nla_policy *policy)
    638 {
    639 	struct nlattr *nla;
    640 	int rem, err;
    641 
    642 	nla_for_each_attr(nla, head, len, rem) {
    643 		err = validate_nla(nla, maxtype, policy);
    644 		if (err < 0)
    645 			goto errout;
    646 	}
    647 
    648 	err = 0;
    649 errout:
    650 	return err;
    651 }
    652 
    653 /**
    654  * Find a single attribute in a stream of attributes.
    655  * @arg head		Head of attributes stream.
    656  * @arg len		Length of attributes stream.
    657  * @arg attrtype	Attribute type to look for.
    658  *
    659  * Iterates over the stream of attributes and compares each type with
    660  * the type specified. Returns the first attribute which matches the
    661  * type.
    662  *
    663  * @return Pointer to attribute found or NULL.
    664  */
    665 struct nlattr *nla_find(struct nlattr *head, int len, int attrtype)
    666 {
    667 	struct nlattr *nla;
    668 	int rem;
    669 
    670 	nla_for_each_attr(nla, head, len, rem)
    671 		if (nla_type(nla) == attrtype)
    672 			return nla;
    673 
    674 	return NULL;
    675 }
    676 
    677 /** @} */
    678 
    679 /**
    680  * @name Helper Functions
    681  * @{
    682  */
    683 
    684 /**
    685  * Copy attribute payload to another memory area.
    686  * @arg dest		Pointer to destination memory area.
    687  * @arg src		Attribute
    688  * @arg count		Number of bytes to copy at most.
    689  *
    690  * Note: The number of bytes copied is limited by the length of
    691  *       the attribute payload.
    692  *
    693  * @return The number of bytes copied to dest.
    694  */
    695 int nla_memcpy(void *dest, struct nlattr *src, int count)
    696 {
    697 	int minlen;
    698 
    699 	if (!src)
    700 		return 0;
    701 
    702 	minlen = min_t(int, count, nla_len(src));
    703 	memcpy(dest, nla_data(src), minlen);
    704 
    705 	return minlen;
    706 }
    707 
    708 /**
    709  * Copy string attribute payload to a buffer.
    710  * @arg dst		Pointer to destination buffer.
    711  * @arg nla		Attribute of type NLA_STRING.
    712  * @arg dstsize		Size of destination buffer in bytes.
    713  *
    714  * Copies at most dstsize - 1 bytes to the destination buffer.
    715  * The result is always a valid NUL terminated string. Unlike
    716  * strlcpy the destination buffer is always padded out.
    717  *
    718  * @return The length of string attribute without the terminating NUL.
    719  */
    720 size_t nla_strlcpy(char *dst, const struct nlattr *nla, size_t dstsize)
    721 {
    722 	size_t srclen = nla_len(nla);
    723 	char *src = nla_data(nla);
    724 
    725 	if (srclen > 0 && src[srclen - 1] == '\0')
    726 		srclen--;
    727 
    728 	if (dstsize > 0) {
    729 		size_t len = (srclen >= dstsize) ? dstsize - 1 : srclen;
    730 
    731 		memset(dst, 0, dstsize);
    732 		memcpy(dst, src, len);
    733 	}
    734 
    735 	return srclen;
    736 }
    737 
    738 /**
    739  * Compare attribute payload with memory area.
    740  * @arg nla		Attribute.
    741  * @arg data		Memory area to compare to.
    742  * @arg size		Number of bytes to compare.
    743  *
    744  * @see memcmp(3)
    745  * @return An integer less than, equal to, or greater than zero.
    746  */
    747 int nla_memcmp(const struct nlattr *nla, const void *data, size_t size)
    748 {
    749 	int d = nla_len(nla) - size;
    750 
    751 	if (d == 0)
    752 		d = memcmp(nla_data(nla), data, size);
    753 
    754 	return d;
    755 }
    756 
    757 /**
    758  * Compare string attribute payload with string
    759  * @arg nla		Attribute of type NLA_STRING.
    760  * @arg str		NUL terminated string.
    761  *
    762  * @see strcmp(3)
    763  * @return An integer less than, equal to, or greater than zero.
    764  */
    765 int nla_strcmp(const struct nlattr *nla, const char *str)
    766 {
    767 	int len = strlen(str) + 1;
    768 	int d = nla_len(nla) - len;
    769 
    770 	if (d == 0)
    771 		d = memcmp(nla_data(nla), str, len);
    772 
    773 	return d;
    774 }
    775 
    776 /** @} */
    777 
    778 /**
    779  * @name Unspecific Attribute
    780  * @{
    781  */
    782 
    783 /**
    784  * Reserve space for a attribute.
    785  * @arg msg		Netlink Message.
    786  * @arg attrtype	Attribute Type.
    787  * @arg attrlen		Length of payload.
    788  *
    789  * Reserves room for a attribute in the specified netlink message and
    790  * fills in the attribute header (type, length). Returns NULL if there
    791  * is unsuficient space for the attribute.
    792  *
    793  * Any padding between payload and the start of the next attribute is
    794  * zeroed out.
    795  *
    796  * @return Pointer to start of attribute or NULL on failure.
    797  */
    798 struct nlattr *nla_reserve(struct nl_msg *msg, int attrtype, int attrlen)
    799 {
    800 	struct nlattr *nla;
    801 	int tlen;
    802 
    803 	tlen = NLMSG_ALIGN(msg->nm_nlh->nlmsg_len) + nla_total_size(attrlen);
    804 
    805 	if ((tlen + msg->nm_nlh->nlmsg_len) > msg->nm_size)
    806 		return NULL;
    807 
    808 	nla = (struct nlattr *) nlmsg_tail(msg->nm_nlh);
    809 	nla->nla_type = attrtype;
    810 	nla->nla_len = nla_attr_size(attrlen);
    811 
    812 	memset((unsigned char *) nla + nla->nla_len, 0, nla_padlen(attrlen));
    813 	msg->nm_nlh->nlmsg_len = tlen;
    814 
    815 	NL_DBG(2, "msg %p: Reserved %d bytes at offset +%td for attr %d "
    816 		  "nlmsg_len=%d\n", msg, attrlen,
    817 		  (void *) nla - nlmsg_data(msg->nm_nlh),
    818 		  attrtype, msg->nm_nlh->nlmsg_len);
    819 
    820 	return nla;
    821 }
    822 
    823 /**
    824  * Add a unspecific attribute to netlink message.
    825  * @arg msg		Netlink message.
    826  * @arg attrtype	Attribute type.
    827  * @arg datalen		Length of data to be used as payload.
    828  * @arg data		Pointer to data to be used as attribute payload.
    829  *
    830  * Reserves room for a unspecific attribute and copies the provided data
    831  * into the message as payload of the attribute. Returns an error if there
    832  * is insufficient space for the attribute.
    833  *
    834  * @see nla_reserve
    835  * @return 0 on success or a negative error code.
    836  */
    837 int nla_put(struct nl_msg *msg, int attrtype, int datalen, const void *data)
    838 {
    839 	struct nlattr *nla;
    840 
    841 	nla = nla_reserve(msg, attrtype, datalen);
    842 	if (!nla)
    843 		return -NLE_NOMEM;
    844 
    845 	memcpy(nla_data(nla), data, datalen);
    846 	NL_DBG(2, "msg %p: Wrote %d bytes at offset +%td for attr %d\n",
    847 	       msg, datalen, (void *) nla - nlmsg_data(msg->nm_nlh), attrtype);
    848 
    849 	return 0;
    850 }
    851 
    852 /**
    853  * Add abstract data as unspecific attribute to netlink message.
    854  * @arg msg		Netlink message.
    855  * @arg attrtype	Attribute type.
    856  * @arg data		Abstract data object.
    857  *
    858  * Equivalent to nla_put() except that the length of the payload is
    859  * derived from the abstract data object.
    860  *
    861  * @see nla_put
    862  * @return 0 on success or a negative error code.
    863  */
    864 int nla_put_data(struct nl_msg *msg, int attrtype, struct nl_data *data)
    865 {
    866 	return nla_put(msg, attrtype, nl_data_get_size(data),
    867 		       nl_data_get(data));
    868 }
    869 
    870 /**
    871  * Add abstract address as unspecific attribute to netlink message.
    872  * @arg msg		Netlink message.
    873  * @arg attrtype	Attribute type.
    874  * @arg addr		Abstract address object.
    875  *
    876  * @see nla_put
    877  * @return 0 on success or a negative error code.
    878  */
    879 int nla_put_addr(struct nl_msg *msg, int attrtype, struct nl_addr *addr)
    880 {
    881 	return nla_put(msg, attrtype, nl_addr_get_len(addr),
    882 		       nl_addr_get_binary_addr(addr));
    883 }
    884 
    885 /** @} */
    886 
    887 /**
    888  * @name Integer Attributes
    889  */
    890 
    891 /**
    892  * Add 8 bit integer attribute to netlink message.
    893  * @arg msg		Netlink message.
    894  * @arg attrtype	Attribute type.
    895  * @arg value		Numeric value to store as payload.
    896  *
    897  * @see nla_put
    898  * @return 0 on success or a negative error code.
    899  */
    900 int nla_put_u8(struct nl_msg *msg, int attrtype, uint8_t value)
    901 {
    902 	return nla_put(msg, attrtype, sizeof(uint8_t), &value);
    903 }
    904 
    905 /**
    906  * Return value of 8 bit integer attribute.
    907  * @arg nla		8 bit integer attribute
    908  *
    909  * @return Payload as 8 bit integer.
    910  */
    911 uint8_t nla_get_u8(struct nlattr *nla)
    912 {
    913 	return *(uint8_t *) nla_data(nla);
    914 }
    915 
    916 /**
    917  * Add 16 bit integer attribute to netlink message.
    918  * @arg msg		Netlink message.
    919  * @arg attrtype	Attribute type.
    920  * @arg value		Numeric value to store as payload.
    921  *
    922  * @see nla_put
    923  * @return 0 on success or a negative error code.
    924  */
    925 int nla_put_u16(struct nl_msg *msg, int attrtype, uint16_t value)
    926 {
    927 	return nla_put(msg, attrtype, sizeof(uint16_t), &value);
    928 }
    929 
    930 /**
    931  * Return payload of 16 bit integer attribute.
    932  * @arg nla		16 bit integer attribute
    933  *
    934  * @return Payload as 16 bit integer.
    935  */
    936 uint16_t nla_get_u16(struct nlattr *nla)
    937 {
    938 	return *(uint16_t *) nla_data(nla);
    939 }
    940 
    941 /**
    942  * Add 32 bit integer attribute to netlink message.
    943  * @arg msg		Netlink message.
    944  * @arg attrtype	Attribute type.
    945  * @arg value		Numeric value to store as payload.
    946  *
    947  * @see nla_put
    948  * @return 0 on success or a negative error code.
    949  */
    950 int nla_put_u32(struct nl_msg *msg, int attrtype, uint32_t value)
    951 {
    952 	return nla_put(msg, attrtype, sizeof(uint32_t), &value);
    953 }
    954 
    955 /**
    956  * Return payload of 32 bit integer attribute.
    957  * @arg nla		32 bit integer attribute.
    958  *
    959  * @return Payload as 32 bit integer.
    960  */
    961 uint32_t nla_get_u32(struct nlattr *nla)
    962 {
    963 	return *(uint32_t *) nla_data(nla);
    964 }
    965 
    966 /**
    967  * Add 64 bit integer attribute to netlink message.
    968  * @arg msg		Netlink message.
    969  * @arg attrtype	Attribute type.
    970  * @arg value		Numeric value to store as payload.
    971  *
    972  * @see nla_put
    973  * @return 0 on success or a negative error code.
    974  */
    975 int nla_put_u64(struct nl_msg *msg, int attrtype, uint64_t value)
    976 {
    977 	return nla_put(msg, attrtype, sizeof(uint64_t), &value);
    978 }
    979 
    980 /**
    981  * Return payload of u64 attribute
    982  * @arg nla		u64 netlink attribute
    983  *
    984  * @return Payload as 64 bit integer.
    985  */
    986 uint64_t nla_get_u64(struct nlattr *nla)
    987 {
    988 	uint64_t tmp;
    989 
    990 	nla_memcpy(&tmp, nla, sizeof(tmp));
    991 
    992 	return tmp;
    993 }
    994 
    995 /** @} */
    996 
    997 /**
    998  * @name String Attribute
    999  */
   1000 
   1001 /**
   1002  * Add string attribute to netlink message.
   1003  * @arg msg		Netlink message.
   1004  * @arg attrtype	Attribute type.
   1005  * @arg str		NUL terminated string.
   1006  *
   1007  * @see nla_put
   1008  * @return 0 on success or a negative error code.
   1009  */
   1010 int nla_put_string(struct nl_msg *msg, int attrtype, const char *str)
   1011 {
   1012 	return nla_put(msg, attrtype, strlen(str) + 1, str);
   1013 }
   1014 
   1015 /**
   1016  * Return payload of string attribute.
   1017  * @arg nla		String attribute.
   1018  *
   1019  * @return Pointer to attribute payload.
   1020  */
   1021 char *nla_get_string(struct nlattr *nla)
   1022 {
   1023 	return (char *) nla_data(nla);
   1024 }
   1025 
   1026 char *nla_strdup(struct nlattr *nla)
   1027 {
   1028 	return strdup(nla_get_string(nla));
   1029 }
   1030 
   1031 /** @} */
   1032 
   1033 /**
   1034  * @name Flag Attribute
   1035  */
   1036 
   1037 /**
   1038  * Add flag netlink attribute to netlink message.
   1039  * @arg msg		Netlink message.
   1040  * @arg attrtype	Attribute type.
   1041  *
   1042  * @see nla_put
   1043  * @return 0 on success or a negative error code.
   1044  */
   1045 int nla_put_flag(struct nl_msg *msg, int attrtype)
   1046 {
   1047 	return nla_put(msg, attrtype, 0, NULL);
   1048 }
   1049 
   1050 /**
   1051  * Return true if flag attribute is set.
   1052  * @arg nla		Flag netlink attribute.
   1053  *
   1054  * @return True if flag is set, otherwise false.
   1055  */
   1056 int nla_get_flag(struct nlattr *nla)
   1057 {
   1058 	return !!nla;
   1059 }
   1060 
   1061 /** @} */
   1062 
   1063 /**
   1064  * @name Microseconds Attribute
   1065  */
   1066 
   1067 /**
   1068  * Add a msecs netlink attribute to a netlink message
   1069  * @arg n		netlink message
   1070  * @arg attrtype	attribute type
   1071  * @arg msecs 		number of msecs
   1072  */
   1073 int nla_put_msecs(struct nl_msg *n, int attrtype, unsigned long msecs)
   1074 {
   1075 	return nla_put_u64(n, attrtype, msecs);
   1076 }
   1077 
   1078 /**
   1079  * Return payload of msecs attribute
   1080  * @arg nla		msecs netlink attribute
   1081  *
   1082  * @return the number of milliseconds.
   1083  */
   1084 unsigned long nla_get_msecs(struct nlattr *nla)
   1085 {
   1086 	return nla_get_u64(nla);
   1087 }
   1088 
   1089 /** @} */
   1090 
   1091 /**
   1092  * @name Nested Attribute
   1093  */
   1094 
   1095 /**
   1096  * Add nested attributes to netlink message.
   1097  * @arg msg		Netlink message.
   1098  * @arg attrtype	Attribute type.
   1099  * @arg nested		Message containing attributes to be nested.
   1100  *
   1101  * Takes the attributes found in the \a nested message and appends them
   1102  * to the message \a msg nested in a container of the type \a attrtype.
   1103  * The \a nested message may not have a family specific header.
   1104  *
   1105  * @see nla_put
   1106  * @return 0 on success or a negative error code.
   1107  */
   1108 int nla_put_nested(struct nl_msg *msg, int attrtype, struct nl_msg *nested)
   1109 {
   1110 	return nla_put(msg, attrtype, nlmsg_len(nested->nm_nlh),
   1111 		       nlmsg_data(nested->nm_nlh));
   1112 }
   1113 
   1114 
   1115 /**
   1116  * Start a new level of nested attributes.
   1117  * @arg msg		Netlink message.
   1118  * @arg attrtype	Attribute type of container.
   1119  *
   1120  * @return Pointer to container attribute.
   1121  */
   1122 struct nlattr *nla_nest_start(struct nl_msg *msg, int attrtype)
   1123 {
   1124 	struct nlattr *start = (struct nlattr *) nlmsg_tail(msg->nm_nlh);
   1125 
   1126 	if (nla_put(msg, attrtype, 0, NULL) < 0)
   1127 		return NULL;
   1128 
   1129 	return start;
   1130 }
   1131 
   1132 /**
   1133  * Finalize nesting of attributes.
   1134  * @arg msg		Netlink message.
   1135  * @arg start		Container attribute as returned from nla_nest_start().
   1136  *
   1137  * Corrects the container attribute header to include the appeneded attributes.
   1138  *
   1139  * @return 0
   1140  */
   1141 int nla_nest_end(struct nl_msg *msg, struct nlattr *start)
   1142 {
   1143 	start->nla_len = (unsigned char *) nlmsg_tail(msg->nm_nlh) -
   1144 				(unsigned char *) start;
   1145 	return 0;
   1146 }
   1147 
   1148 /**
   1149  * Create attribute index based on nested attribute
   1150  * @arg tb		Index array to be filled (maxtype+1 elements).
   1151  * @arg maxtype		Maximum attribute type expected and accepted.
   1152  * @arg nla		Nested Attribute.
   1153  * @arg policy		Attribute validation policy.
   1154  *
   1155  * Feeds the stream of attributes nested into the specified attribute
   1156  * to nla_parse().
   1157  *
   1158  * @see nla_parse
   1159  * @return 0 on success or a negative error code.
   1160  */
   1161 int nla_parse_nested(struct nlattr *tb[], int maxtype, struct nlattr *nla,
   1162 		     struct nla_policy *policy)
   1163 {
   1164 	return nla_parse(tb, maxtype, nla_data(nla), nla_len(nla), policy);
   1165 }
   1166 
   1167 /** @} */
   1168 
   1169 /** @} */
   1170