Home | History | Annotate | Download | only in CodeGen
      1 //=- llvm/CodeGen/MachineDominators.h - Machine Dom Calculation --*- C++ -*-==//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file defines classes mirroring those in llvm/Analysis/Dominators.h,
     11 // but for target-specific code rather than target-independent IR.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 #ifndef LLVM_CODEGEN_MACHINEDOMINATORS_H
     16 #define LLVM_CODEGEN_MACHINEDOMINATORS_H
     17 
     18 #include "llvm/ADT/SmallSet.h"
     19 #include "llvm/CodeGen/MachineBasicBlock.h"
     20 #include "llvm/CodeGen/MachineFunction.h"
     21 #include "llvm/CodeGen/MachineFunctionPass.h"
     22 #include "llvm/Support/GenericDomTree.h"
     23 #include "llvm/Support/GenericDomTreeConstruction.h"
     24 
     25 namespace llvm {
     26 
     27 template<>
     28 inline void DominatorTreeBase<MachineBasicBlock>::addRoot(MachineBasicBlock* MBB) {
     29   this->Roots.push_back(MBB);
     30 }
     31 
     32 EXTERN_TEMPLATE_INSTANTIATION(class DomTreeNodeBase<MachineBasicBlock>);
     33 EXTERN_TEMPLATE_INSTANTIATION(class DominatorTreeBase<MachineBasicBlock>);
     34 
     35 typedef DomTreeNodeBase<MachineBasicBlock> MachineDomTreeNode;
     36 
     37 //===-------------------------------------
     38 /// DominatorTree Class - Concrete subclass of DominatorTreeBase that is used to
     39 /// compute a normal dominator tree.
     40 ///
     41 class MachineDominatorTree : public MachineFunctionPass {
     42   /// \brief Helper structure used to hold all the basic blocks
     43   /// involved in the split of a critical edge.
     44   struct CriticalEdge {
     45     MachineBasicBlock *FromBB;
     46     MachineBasicBlock *ToBB;
     47     MachineBasicBlock *NewBB;
     48   };
     49 
     50   /// \brief Pile up all the critical edges to be split.
     51   /// The splitting of a critical edge is local and thus, it is possible
     52   /// to apply several of those changes at the same time.
     53   mutable SmallVector<CriticalEdge, 32> CriticalEdgesToSplit;
     54   /// \brief Remember all the basic blocks that are inserted during
     55   /// edge splitting.
     56   /// Invariant: NewBBs == all the basic blocks contained in the NewBB
     57   /// field of all the elements of CriticalEdgesToSplit.
     58   /// I.e., forall elt in CriticalEdgesToSplit, it exists BB in NewBBs
     59   /// such as BB == elt.NewBB.
     60   mutable SmallSet<MachineBasicBlock *, 32> NewBBs;
     61 
     62   /// \brief Apply all the recorded critical edges to the DT.
     63   /// This updates the underlying DT information in a way that uses
     64   /// the fast query path of DT as much as possible.
     65   ///
     66   /// \post CriticalEdgesToSplit.empty().
     67   void applySplitCriticalEdges() const;
     68 
     69 public:
     70   static char ID; // Pass ID, replacement for typeid
     71   DominatorTreeBase<MachineBasicBlock>* DT;
     72 
     73   MachineDominatorTree();
     74 
     75   ~MachineDominatorTree() override;
     76 
     77   DominatorTreeBase<MachineBasicBlock> &getBase() {
     78     applySplitCriticalEdges();
     79     return *DT;
     80   }
     81 
     82   void getAnalysisUsage(AnalysisUsage &AU) const override;
     83 
     84   /// getRoots -  Return the root blocks of the current CFG.  This may include
     85   /// multiple blocks if we are computing post dominators.  For forward
     86   /// dominators, this will always be a single block (the entry node).
     87   ///
     88   inline const std::vector<MachineBasicBlock*> &getRoots() const {
     89     applySplitCriticalEdges();
     90     return DT->getRoots();
     91   }
     92 
     93   inline MachineBasicBlock *getRoot() const {
     94     applySplitCriticalEdges();
     95     return DT->getRoot();
     96   }
     97 
     98   inline MachineDomTreeNode *getRootNode() const {
     99     applySplitCriticalEdges();
    100     return DT->getRootNode();
    101   }
    102 
    103   bool runOnMachineFunction(MachineFunction &F) override;
    104 
    105   inline bool dominates(const MachineDomTreeNode* A,
    106                         const MachineDomTreeNode* B) const {
    107     applySplitCriticalEdges();
    108     return DT->dominates(A, B);
    109   }
    110 
    111   inline bool dominates(const MachineBasicBlock* A,
    112                         const MachineBasicBlock* B) const {
    113     applySplitCriticalEdges();
    114     return DT->dominates(A, B);
    115   }
    116 
    117   // dominates - Return true if A dominates B. This performs the
    118   // special checks necessary if A and B are in the same basic block.
    119   bool dominates(const MachineInstr *A, const MachineInstr *B) const {
    120     applySplitCriticalEdges();
    121     const MachineBasicBlock *BBA = A->getParent(), *BBB = B->getParent();
    122     if (BBA != BBB) return DT->dominates(BBA, BBB);
    123 
    124     // Loop through the basic block until we find A or B.
    125     MachineBasicBlock::const_iterator I = BBA->begin();
    126     for (; &*I != A && &*I != B; ++I)
    127       /*empty*/ ;
    128 
    129     //if(!DT.IsPostDominators) {
    130       // A dominates B if it is found first in the basic block.
    131       return &*I == A;
    132     //} else {
    133     //  // A post-dominates B if B is found first in the basic block.
    134     //  return &*I == B;
    135     //}
    136   }
    137 
    138   inline bool properlyDominates(const MachineDomTreeNode* A,
    139                                 const MachineDomTreeNode* B) const {
    140     applySplitCriticalEdges();
    141     return DT->properlyDominates(A, B);
    142   }
    143 
    144   inline bool properlyDominates(const MachineBasicBlock* A,
    145                                 const MachineBasicBlock* B) const {
    146     applySplitCriticalEdges();
    147     return DT->properlyDominates(A, B);
    148   }
    149 
    150   /// findNearestCommonDominator - Find nearest common dominator basic block
    151   /// for basic block A and B. If there is no such block then return NULL.
    152   inline MachineBasicBlock *findNearestCommonDominator(MachineBasicBlock *A,
    153                                                        MachineBasicBlock *B) {
    154     applySplitCriticalEdges();
    155     return DT->findNearestCommonDominator(A, B);
    156   }
    157 
    158   inline MachineDomTreeNode *operator[](MachineBasicBlock *BB) const {
    159     applySplitCriticalEdges();
    160     return DT->getNode(BB);
    161   }
    162 
    163   /// getNode - return the (Post)DominatorTree node for the specified basic
    164   /// block.  This is the same as using operator[] on this class.
    165   ///
    166   inline MachineDomTreeNode *getNode(MachineBasicBlock *BB) const {
    167     applySplitCriticalEdges();
    168     return DT->getNode(BB);
    169   }
    170 
    171   /// addNewBlock - Add a new node to the dominator tree information.  This
    172   /// creates a new node as a child of DomBB dominator node,linking it into
    173   /// the children list of the immediate dominator.
    174   inline MachineDomTreeNode *addNewBlock(MachineBasicBlock *BB,
    175                                          MachineBasicBlock *DomBB) {
    176     applySplitCriticalEdges();
    177     return DT->addNewBlock(BB, DomBB);
    178   }
    179 
    180   /// changeImmediateDominator - This method is used to update the dominator
    181   /// tree information when a node's immediate dominator changes.
    182   ///
    183   inline void changeImmediateDominator(MachineBasicBlock *N,
    184                                        MachineBasicBlock* NewIDom) {
    185     applySplitCriticalEdges();
    186     DT->changeImmediateDominator(N, NewIDom);
    187   }
    188 
    189   inline void changeImmediateDominator(MachineDomTreeNode *N,
    190                                        MachineDomTreeNode* NewIDom) {
    191     applySplitCriticalEdges();
    192     DT->changeImmediateDominator(N, NewIDom);
    193   }
    194 
    195   /// eraseNode - Removes a node from  the dominator tree. Block must not
    196   /// dominate any other blocks. Removes node from its immediate dominator's
    197   /// children list. Deletes dominator node associated with basic block BB.
    198   inline void eraseNode(MachineBasicBlock *BB) {
    199     applySplitCriticalEdges();
    200     DT->eraseNode(BB);
    201   }
    202 
    203   /// splitBlock - BB is split and now it has one successor. Update dominator
    204   /// tree to reflect this change.
    205   inline void splitBlock(MachineBasicBlock* NewBB) {
    206     applySplitCriticalEdges();
    207     DT->splitBlock(NewBB);
    208   }
    209 
    210   /// isReachableFromEntry - Return true if A is dominated by the entry
    211   /// block of the function containing it.
    212   bool isReachableFromEntry(const MachineBasicBlock *A) {
    213     applySplitCriticalEdges();
    214     return DT->isReachableFromEntry(A);
    215   }
    216 
    217   void releaseMemory() override;
    218 
    219   void print(raw_ostream &OS, const Module*) const override;
    220 
    221   /// \brief Record that the critical edge (FromBB, ToBB) has been
    222   /// split with NewBB.
    223   /// This is best to use this method instead of directly update the
    224   /// underlying information, because this helps mitigating the
    225   /// number of time the DT information is invalidated.
    226   ///
    227   /// \note Do not use this method with regular edges.
    228   ///
    229   /// \note To benefit from the compile time improvement incurred by this
    230   /// method, the users of this method have to limit the queries to the DT
    231   /// interface between two edges splitting. In other words, they have to
    232   /// pack the splitting of critical edges as much as possible.
    233   void recordSplitCriticalEdge(MachineBasicBlock *FromBB,
    234                               MachineBasicBlock *ToBB,
    235                               MachineBasicBlock *NewBB) {
    236     bool Inserted = NewBBs.insert(NewBB).second;
    237     (void)Inserted;
    238     assert(Inserted &&
    239            "A basic block inserted via edge splitting cannot appear twice");
    240     CriticalEdgesToSplit.push_back({FromBB, ToBB, NewBB});
    241   }
    242 };
    243 
    244 //===-------------------------------------
    245 /// DominatorTree GraphTraits specialization so the DominatorTree can be
    246 /// iterable by generic graph iterators.
    247 ///
    248 
    249 template<class T> struct GraphTraits;
    250 
    251 template <> struct GraphTraits<MachineDomTreeNode *> {
    252   typedef MachineDomTreeNode NodeType;
    253   typedef NodeType::iterator  ChildIteratorType;
    254 
    255   static NodeType *getEntryNode(NodeType *N) {
    256     return N;
    257   }
    258   static inline ChildIteratorType child_begin(NodeType* N) {
    259     return N->begin();
    260   }
    261   static inline ChildIteratorType child_end(NodeType* N) {
    262     return N->end();
    263   }
    264 };
    265 
    266 template <> struct GraphTraits<MachineDominatorTree*>
    267   : public GraphTraits<MachineDomTreeNode *> {
    268   static NodeType *getEntryNode(MachineDominatorTree *DT) {
    269     return DT->getRootNode();
    270   }
    271 };
    272 
    273 }
    274 
    275 #endif
    276