Home | History | Annotate | Download | only in IPO
      1 //===- Inliner.cpp - Code common to all inliners --------------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements the mechanics required to implement inlining without
     11 // missing any calls and updating the call graph.  The decisions of which calls
     12 // are profitable to inline are implemented elsewhere.
     13 //
     14 //===----------------------------------------------------------------------===//
     15 
     16 #include "llvm/Transforms/IPO/InlinerPass.h"
     17 #include "llvm/ADT/SmallPtrSet.h"
     18 #include "llvm/ADT/Statistic.h"
     19 #include "llvm/Analysis/AliasAnalysis.h"
     20 #include "llvm/Analysis/AssumptionCache.h"
     21 #include "llvm/Analysis/CallGraph.h"
     22 #include "llvm/Analysis/InlineCost.h"
     23 #include "llvm/Analysis/TargetLibraryInfo.h"
     24 #include "llvm/IR/CallSite.h"
     25 #include "llvm/IR/DataLayout.h"
     26 #include "llvm/IR/DiagnosticInfo.h"
     27 #include "llvm/IR/Instructions.h"
     28 #include "llvm/IR/IntrinsicInst.h"
     29 #include "llvm/IR/Module.h"
     30 #include "llvm/Support/CommandLine.h"
     31 #include "llvm/Support/Debug.h"
     32 #include "llvm/Support/raw_ostream.h"
     33 #include "llvm/Transforms/Utils/Cloning.h"
     34 #include "llvm/Transforms/Utils/Local.h"
     35 using namespace llvm;
     36 
     37 #define DEBUG_TYPE "inline"
     38 
     39 STATISTIC(NumInlined, "Number of functions inlined");
     40 STATISTIC(NumCallsDeleted, "Number of call sites deleted, not inlined");
     41 STATISTIC(NumDeleted, "Number of functions deleted because all callers found");
     42 STATISTIC(NumMergedAllocas, "Number of allocas merged together");
     43 
     44 // This weirdly named statistic tracks the number of times that, when attempting
     45 // to inline a function A into B, we analyze the callers of B in order to see
     46 // if those would be more profitable and blocked inline steps.
     47 STATISTIC(NumCallerCallersAnalyzed, "Number of caller-callers analyzed");
     48 
     49 static cl::opt<int>
     50 InlineLimit("inline-threshold", cl::Hidden, cl::init(225), cl::ZeroOrMore,
     51         cl::desc("Control the amount of inlining to perform (default = 225)"));
     52 
     53 static cl::opt<int>
     54 HintThreshold("inlinehint-threshold", cl::Hidden, cl::init(325),
     55               cl::desc("Threshold for inlining functions with inline hint"));
     56 
     57 // We instroduce this threshold to help performance of instrumentation based
     58 // PGO before we actually hook up inliner with analysis passes such as BPI and
     59 // BFI.
     60 static cl::opt<int>
     61 ColdThreshold("inlinecold-threshold", cl::Hidden, cl::init(225),
     62               cl::desc("Threshold for inlining functions with cold attribute"));
     63 
     64 // Threshold to use when optsize is specified (and there is no -inline-limit).
     65 const int OptSizeThreshold = 75;
     66 
     67 Inliner::Inliner(char &ID)
     68   : CallGraphSCCPass(ID), InlineThreshold(InlineLimit), InsertLifetime(true) {}
     69 
     70 Inliner::Inliner(char &ID, int Threshold, bool InsertLifetime)
     71   : CallGraphSCCPass(ID), InlineThreshold(InlineLimit.getNumOccurrences() > 0 ?
     72                                           InlineLimit : Threshold),
     73     InsertLifetime(InsertLifetime) {}
     74 
     75 /// For this class, we declare that we require and preserve the call graph.
     76 /// If the derived class implements this method, it should
     77 /// always explicitly call the implementation here.
     78 void Inliner::getAnalysisUsage(AnalysisUsage &AU) const {
     79   AU.addRequired<AliasAnalysis>();
     80   AU.addRequired<AssumptionCacheTracker>();
     81   CallGraphSCCPass::getAnalysisUsage(AU);
     82 }
     83 
     84 
     85 typedef DenseMap<ArrayType*, std::vector<AllocaInst*> >
     86 InlinedArrayAllocasTy;
     87 
     88 /// \brief If the inlined function had a higher stack protection level than the
     89 /// calling function, then bump up the caller's stack protection level.
     90 static void AdjustCallerSSPLevel(Function *Caller, Function *Callee) {
     91   // If upgrading the SSP attribute, clear out the old SSP Attributes first.
     92   // Having multiple SSP attributes doesn't actually hurt, but it adds useless
     93   // clutter to the IR.
     94   AttrBuilder B;
     95   B.addAttribute(Attribute::StackProtect)
     96     .addAttribute(Attribute::StackProtectStrong);
     97   AttributeSet OldSSPAttr = AttributeSet::get(Caller->getContext(),
     98                                               AttributeSet::FunctionIndex,
     99                                               B);
    100 
    101   if (Callee->hasFnAttribute(Attribute::StackProtectReq)) {
    102     Caller->removeAttributes(AttributeSet::FunctionIndex, OldSSPAttr);
    103     Caller->addFnAttr(Attribute::StackProtectReq);
    104   } else if (Callee->hasFnAttribute(Attribute::StackProtectStrong) &&
    105              !Caller->hasFnAttribute(Attribute::StackProtectReq)) {
    106     Caller->removeAttributes(AttributeSet::FunctionIndex, OldSSPAttr);
    107     Caller->addFnAttr(Attribute::StackProtectStrong);
    108   } else if (Callee->hasFnAttribute(Attribute::StackProtect) &&
    109              !Caller->hasFnAttribute(Attribute::StackProtectReq) &&
    110              !Caller->hasFnAttribute(Attribute::StackProtectStrong))
    111     Caller->addFnAttr(Attribute::StackProtect);
    112 }
    113 
    114 /// If it is possible to inline the specified call site,
    115 /// do so and update the CallGraph for this operation.
    116 ///
    117 /// This function also does some basic book-keeping to update the IR.  The
    118 /// InlinedArrayAllocas map keeps track of any allocas that are already
    119 /// available from other functions inlined into the caller.  If we are able to
    120 /// inline this call site we attempt to reuse already available allocas or add
    121 /// any new allocas to the set if not possible.
    122 static bool InlineCallIfPossible(CallSite CS, InlineFunctionInfo &IFI,
    123                                  InlinedArrayAllocasTy &InlinedArrayAllocas,
    124                                  int InlineHistory, bool InsertLifetime) {
    125   Function *Callee = CS.getCalledFunction();
    126   Function *Caller = CS.getCaller();
    127 
    128   // Try to inline the function.  Get the list of static allocas that were
    129   // inlined.
    130   if (!InlineFunction(CS, IFI, InsertLifetime))
    131     return false;
    132 
    133   AdjustCallerSSPLevel(Caller, Callee);
    134 
    135   // Look at all of the allocas that we inlined through this call site.  If we
    136   // have already inlined other allocas through other calls into this function,
    137   // then we know that they have disjoint lifetimes and that we can merge them.
    138   //
    139   // There are many heuristics possible for merging these allocas, and the
    140   // different options have different tradeoffs.  One thing that we *really*
    141   // don't want to hurt is SRoA: once inlining happens, often allocas are no
    142   // longer address taken and so they can be promoted.
    143   //
    144   // Our "solution" for that is to only merge allocas whose outermost type is an
    145   // array type.  These are usually not promoted because someone is using a
    146   // variable index into them.  These are also often the most important ones to
    147   // merge.
    148   //
    149   // A better solution would be to have real memory lifetime markers in the IR
    150   // and not have the inliner do any merging of allocas at all.  This would
    151   // allow the backend to do proper stack slot coloring of all allocas that
    152   // *actually make it to the backend*, which is really what we want.
    153   //
    154   // Because we don't have this information, we do this simple and useful hack.
    155   //
    156   SmallPtrSet<AllocaInst*, 16> UsedAllocas;
    157 
    158   // When processing our SCC, check to see if CS was inlined from some other
    159   // call site.  For example, if we're processing "A" in this code:
    160   //   A() { B() }
    161   //   B() { x = alloca ... C() }
    162   //   C() { y = alloca ... }
    163   // Assume that C was not inlined into B initially, and so we're processing A
    164   // and decide to inline B into A.  Doing this makes an alloca available for
    165   // reuse and makes a callsite (C) available for inlining.  When we process
    166   // the C call site we don't want to do any alloca merging between X and Y
    167   // because their scopes are not disjoint.  We could make this smarter by
    168   // keeping track of the inline history for each alloca in the
    169   // InlinedArrayAllocas but this isn't likely to be a significant win.
    170   if (InlineHistory != -1)  // Only do merging for top-level call sites in SCC.
    171     return true;
    172 
    173   // Loop over all the allocas we have so far and see if they can be merged with
    174   // a previously inlined alloca.  If not, remember that we had it.
    175   for (unsigned AllocaNo = 0, e = IFI.StaticAllocas.size();
    176        AllocaNo != e; ++AllocaNo) {
    177     AllocaInst *AI = IFI.StaticAllocas[AllocaNo];
    178 
    179     // Don't bother trying to merge array allocations (they will usually be
    180     // canonicalized to be an allocation *of* an array), or allocations whose
    181     // type is not itself an array (because we're afraid of pessimizing SRoA).
    182     ArrayType *ATy = dyn_cast<ArrayType>(AI->getAllocatedType());
    183     if (!ATy || AI->isArrayAllocation())
    184       continue;
    185 
    186     // Get the list of all available allocas for this array type.
    187     std::vector<AllocaInst*> &AllocasForType = InlinedArrayAllocas[ATy];
    188 
    189     // Loop over the allocas in AllocasForType to see if we can reuse one.  Note
    190     // that we have to be careful not to reuse the same "available" alloca for
    191     // multiple different allocas that we just inlined, we use the 'UsedAllocas'
    192     // set to keep track of which "available" allocas are being used by this
    193     // function.  Also, AllocasForType can be empty of course!
    194     bool MergedAwayAlloca = false;
    195     for (unsigned i = 0, e = AllocasForType.size(); i != e; ++i) {
    196       AllocaInst *AvailableAlloca = AllocasForType[i];
    197 
    198       unsigned Align1 = AI->getAlignment(),
    199                Align2 = AvailableAlloca->getAlignment();
    200 
    201       // The available alloca has to be in the right function, not in some other
    202       // function in this SCC.
    203       if (AvailableAlloca->getParent() != AI->getParent())
    204         continue;
    205 
    206       // If the inlined function already uses this alloca then we can't reuse
    207       // it.
    208       if (!UsedAllocas.insert(AvailableAlloca).second)
    209         continue;
    210 
    211       // Otherwise, we *can* reuse it, RAUW AI into AvailableAlloca and declare
    212       // success!
    213       DEBUG(dbgs() << "    ***MERGED ALLOCA: " << *AI << "\n\t\tINTO: "
    214                    << *AvailableAlloca << '\n');
    215 
    216       AI->replaceAllUsesWith(AvailableAlloca);
    217 
    218       if (Align1 != Align2) {
    219         if (!Align1 || !Align2) {
    220           const DataLayout &DL = Caller->getParent()->getDataLayout();
    221           unsigned TypeAlign = DL.getABITypeAlignment(AI->getAllocatedType());
    222 
    223           Align1 = Align1 ? Align1 : TypeAlign;
    224           Align2 = Align2 ? Align2 : TypeAlign;
    225         }
    226 
    227         if (Align1 > Align2)
    228           AvailableAlloca->setAlignment(AI->getAlignment());
    229       }
    230 
    231       AI->eraseFromParent();
    232       MergedAwayAlloca = true;
    233       ++NumMergedAllocas;
    234       IFI.StaticAllocas[AllocaNo] = nullptr;
    235       break;
    236     }
    237 
    238     // If we already nuked the alloca, we're done with it.
    239     if (MergedAwayAlloca)
    240       continue;
    241 
    242     // If we were unable to merge away the alloca either because there are no
    243     // allocas of the right type available or because we reused them all
    244     // already, remember that this alloca came from an inlined function and mark
    245     // it used so we don't reuse it for other allocas from this inline
    246     // operation.
    247     AllocasForType.push_back(AI);
    248     UsedAllocas.insert(AI);
    249   }
    250 
    251   return true;
    252 }
    253 
    254 unsigned Inliner::getInlineThreshold(CallSite CS) const {
    255   int thres = InlineThreshold; // -inline-threshold or else selected by
    256                                // overall opt level
    257 
    258   // If -inline-threshold is not given, listen to the optsize attribute when it
    259   // would decrease the threshold.
    260   Function *Caller = CS.getCaller();
    261   bool OptSize = Caller && !Caller->isDeclaration() &&
    262                  Caller->hasFnAttribute(Attribute::OptimizeForSize);
    263   if (!(InlineLimit.getNumOccurrences() > 0) && OptSize &&
    264       OptSizeThreshold < thres)
    265     thres = OptSizeThreshold;
    266 
    267   // Listen to the inlinehint attribute when it would increase the threshold
    268   // and the caller does not need to minimize its size.
    269   Function *Callee = CS.getCalledFunction();
    270   bool InlineHint = Callee && !Callee->isDeclaration() &&
    271                     Callee->hasFnAttribute(Attribute::InlineHint);
    272   if (InlineHint && HintThreshold > thres &&
    273       !Caller->hasFnAttribute(Attribute::MinSize))
    274     thres = HintThreshold;
    275 
    276   // Listen to the cold attribute when it would decrease the threshold.
    277   bool ColdCallee = Callee && !Callee->isDeclaration() &&
    278                     Callee->hasFnAttribute(Attribute::Cold);
    279   // Command line argument for InlineLimit will override the default
    280   // ColdThreshold. If we have -inline-threshold but no -inlinecold-threshold,
    281   // do not use the default cold threshold even if it is smaller.
    282   if ((InlineLimit.getNumOccurrences() == 0 ||
    283        ColdThreshold.getNumOccurrences() > 0) && ColdCallee &&
    284       ColdThreshold < thres)
    285     thres = ColdThreshold;
    286 
    287   return thres;
    288 }
    289 
    290 static void emitAnalysis(CallSite CS, const Twine &Msg) {
    291   Function *Caller = CS.getCaller();
    292   LLVMContext &Ctx = Caller->getContext();
    293   DebugLoc DLoc = CS.getInstruction()->getDebugLoc();
    294   emitOptimizationRemarkAnalysis(Ctx, DEBUG_TYPE, *Caller, DLoc, Msg);
    295 }
    296 
    297 /// Return true if the inliner should attempt to inline at the given CallSite.
    298 bool Inliner::shouldInline(CallSite CS) {
    299   InlineCost IC = getInlineCost(CS);
    300 
    301   if (IC.isAlways()) {
    302     DEBUG(dbgs() << "    Inlining: cost=always"
    303           << ", Call: " << *CS.getInstruction() << "\n");
    304     emitAnalysis(CS, Twine(CS.getCalledFunction()->getName()) +
    305                          " should always be inlined (cost=always)");
    306     return true;
    307   }
    308 
    309   if (IC.isNever()) {
    310     DEBUG(dbgs() << "    NOT Inlining: cost=never"
    311           << ", Call: " << *CS.getInstruction() << "\n");
    312     emitAnalysis(CS, Twine(CS.getCalledFunction()->getName() +
    313                            " should never be inlined (cost=never)"));
    314     return false;
    315   }
    316 
    317   Function *Caller = CS.getCaller();
    318   if (!IC) {
    319     DEBUG(dbgs() << "    NOT Inlining: cost=" << IC.getCost()
    320           << ", thres=" << (IC.getCostDelta() + IC.getCost())
    321           << ", Call: " << *CS.getInstruction() << "\n");
    322     emitAnalysis(CS, Twine(CS.getCalledFunction()->getName() +
    323                            " too costly to inline (cost=") +
    324                          Twine(IC.getCost()) + ", threshold=" +
    325                          Twine(IC.getCostDelta() + IC.getCost()) + ")");
    326     return false;
    327   }
    328 
    329   // Try to detect the case where the current inlining candidate caller (call
    330   // it B) is a static or linkonce-ODR function and is an inlining candidate
    331   // elsewhere, and the current candidate callee (call it C) is large enough
    332   // that inlining it into B would make B too big to inline later. In these
    333   // circumstances it may be best not to inline C into B, but to inline B into
    334   // its callers.
    335   //
    336   // This only applies to static and linkonce-ODR functions because those are
    337   // expected to be available for inlining in the translation units where they
    338   // are used. Thus we will always have the opportunity to make local inlining
    339   // decisions. Importantly the linkonce-ODR linkage covers inline functions
    340   // and templates in C++.
    341   //
    342   // FIXME: All of this logic should be sunk into getInlineCost. It relies on
    343   // the internal implementation of the inline cost metrics rather than
    344   // treating them as truly abstract units etc.
    345   if (Caller->hasLocalLinkage() || Caller->hasLinkOnceODRLinkage()) {
    346     int TotalSecondaryCost = 0;
    347     // The candidate cost to be imposed upon the current function.
    348     int CandidateCost = IC.getCost() - (InlineConstants::CallPenalty + 1);
    349     // This bool tracks what happens if we do NOT inline C into B.
    350     bool callerWillBeRemoved = Caller->hasLocalLinkage();
    351     // This bool tracks what happens if we DO inline C into B.
    352     bool inliningPreventsSomeOuterInline = false;
    353     for (User *U : Caller->users()) {
    354       CallSite CS2(U);
    355 
    356       // If this isn't a call to Caller (it could be some other sort
    357       // of reference) skip it.  Such references will prevent the caller
    358       // from being removed.
    359       if (!CS2 || CS2.getCalledFunction() != Caller) {
    360         callerWillBeRemoved = false;
    361         continue;
    362       }
    363 
    364       InlineCost IC2 = getInlineCost(CS2);
    365       ++NumCallerCallersAnalyzed;
    366       if (!IC2) {
    367         callerWillBeRemoved = false;
    368         continue;
    369       }
    370       if (IC2.isAlways())
    371         continue;
    372 
    373       // See if inlining or original callsite would erase the cost delta of
    374       // this callsite. We subtract off the penalty for the call instruction,
    375       // which we would be deleting.
    376       if (IC2.getCostDelta() <= CandidateCost) {
    377         inliningPreventsSomeOuterInline = true;
    378         TotalSecondaryCost += IC2.getCost();
    379       }
    380     }
    381     // If all outer calls to Caller would get inlined, the cost for the last
    382     // one is set very low by getInlineCost, in anticipation that Caller will
    383     // be removed entirely.  We did not account for this above unless there
    384     // is only one caller of Caller.
    385     if (callerWillBeRemoved && !Caller->use_empty())
    386       TotalSecondaryCost += InlineConstants::LastCallToStaticBonus;
    387 
    388     if (inliningPreventsSomeOuterInline && TotalSecondaryCost < IC.getCost()) {
    389       DEBUG(dbgs() << "    NOT Inlining: " << *CS.getInstruction() <<
    390            " Cost = " << IC.getCost() <<
    391            ", outer Cost = " << TotalSecondaryCost << '\n');
    392       emitAnalysis(
    393           CS, Twine("Not inlining. Cost of inlining " +
    394                     CS.getCalledFunction()->getName() +
    395                     " increases the cost of inlining " +
    396                     CS.getCaller()->getName() + " in other contexts"));
    397       return false;
    398     }
    399   }
    400 
    401   DEBUG(dbgs() << "    Inlining: cost=" << IC.getCost()
    402         << ", thres=" << (IC.getCostDelta() + IC.getCost())
    403         << ", Call: " << *CS.getInstruction() << '\n');
    404   emitAnalysis(
    405       CS, CS.getCalledFunction()->getName() + Twine(" can be inlined into ") +
    406               CS.getCaller()->getName() + " with cost=" + Twine(IC.getCost()) +
    407               " (threshold=" + Twine(IC.getCostDelta() + IC.getCost()) + ")");
    408   return true;
    409 }
    410 
    411 /// Return true if the specified inline history ID
    412 /// indicates an inline history that includes the specified function.
    413 static bool InlineHistoryIncludes(Function *F, int InlineHistoryID,
    414             const SmallVectorImpl<std::pair<Function*, int> > &InlineHistory) {
    415   while (InlineHistoryID != -1) {
    416     assert(unsigned(InlineHistoryID) < InlineHistory.size() &&
    417            "Invalid inline history ID");
    418     if (InlineHistory[InlineHistoryID].first == F)
    419       return true;
    420     InlineHistoryID = InlineHistory[InlineHistoryID].second;
    421   }
    422   return false;
    423 }
    424 
    425 bool Inliner::runOnSCC(CallGraphSCC &SCC) {
    426   CallGraph &CG = getAnalysis<CallGraphWrapperPass>().getCallGraph();
    427   AssumptionCacheTracker *ACT = &getAnalysis<AssumptionCacheTracker>();
    428   auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
    429   const TargetLibraryInfo *TLI = TLIP ? &TLIP->getTLI() : nullptr;
    430   AliasAnalysis *AA = &getAnalysis<AliasAnalysis>();
    431 
    432   SmallPtrSet<Function*, 8> SCCFunctions;
    433   DEBUG(dbgs() << "Inliner visiting SCC:");
    434   for (CallGraphSCC::iterator I = SCC.begin(), E = SCC.end(); I != E; ++I) {
    435     Function *F = (*I)->getFunction();
    436     if (F) SCCFunctions.insert(F);
    437     DEBUG(dbgs() << " " << (F ? F->getName() : "INDIRECTNODE"));
    438   }
    439 
    440   // Scan through and identify all call sites ahead of time so that we only
    441   // inline call sites in the original functions, not call sites that result
    442   // from inlining other functions.
    443   SmallVector<std::pair<CallSite, int>, 16> CallSites;
    444 
    445   // When inlining a callee produces new call sites, we want to keep track of
    446   // the fact that they were inlined from the callee.  This allows us to avoid
    447   // infinite inlining in some obscure cases.  To represent this, we use an
    448   // index into the InlineHistory vector.
    449   SmallVector<std::pair<Function*, int>, 8> InlineHistory;
    450 
    451   for (CallGraphSCC::iterator I = SCC.begin(), E = SCC.end(); I != E; ++I) {
    452     Function *F = (*I)->getFunction();
    453     if (!F) continue;
    454 
    455     for (Function::iterator BB = F->begin(), E = F->end(); BB != E; ++BB)
    456       for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
    457         CallSite CS(cast<Value>(I));
    458         // If this isn't a call, or it is a call to an intrinsic, it can
    459         // never be inlined.
    460         if (!CS || isa<IntrinsicInst>(I))
    461           continue;
    462 
    463         // If this is a direct call to an external function, we can never inline
    464         // it.  If it is an indirect call, inlining may resolve it to be a
    465         // direct call, so we keep it.
    466         if (CS.getCalledFunction() && CS.getCalledFunction()->isDeclaration())
    467           continue;
    468 
    469         CallSites.push_back(std::make_pair(CS, -1));
    470       }
    471   }
    472 
    473   DEBUG(dbgs() << ": " << CallSites.size() << " call sites.\n");
    474 
    475   // If there are no calls in this function, exit early.
    476   if (CallSites.empty())
    477     return false;
    478 
    479   // Now that we have all of the call sites, move the ones to functions in the
    480   // current SCC to the end of the list.
    481   unsigned FirstCallInSCC = CallSites.size();
    482   for (unsigned i = 0; i < FirstCallInSCC; ++i)
    483     if (Function *F = CallSites[i].first.getCalledFunction())
    484       if (SCCFunctions.count(F))
    485         std::swap(CallSites[i--], CallSites[--FirstCallInSCC]);
    486 
    487 
    488   InlinedArrayAllocasTy InlinedArrayAllocas;
    489   InlineFunctionInfo InlineInfo(&CG, AA, ACT);
    490 
    491   // Now that we have all of the call sites, loop over them and inline them if
    492   // it looks profitable to do so.
    493   bool Changed = false;
    494   bool LocalChange;
    495   do {
    496     LocalChange = false;
    497     // Iterate over the outer loop because inlining functions can cause indirect
    498     // calls to become direct calls.
    499     for (unsigned CSi = 0; CSi != CallSites.size(); ++CSi) {
    500       CallSite CS = CallSites[CSi].first;
    501 
    502       Function *Caller = CS.getCaller();
    503       Function *Callee = CS.getCalledFunction();
    504 
    505       // If this call site is dead and it is to a readonly function, we should
    506       // just delete the call instead of trying to inline it, regardless of
    507       // size.  This happens because IPSCCP propagates the result out of the
    508       // call and then we're left with the dead call.
    509       if (isInstructionTriviallyDead(CS.getInstruction(), TLI)) {
    510         DEBUG(dbgs() << "    -> Deleting dead call: "
    511                      << *CS.getInstruction() << "\n");
    512         // Update the call graph by deleting the edge from Callee to Caller.
    513         CG[Caller]->removeCallEdgeFor(CS);
    514         CS.getInstruction()->eraseFromParent();
    515         ++NumCallsDeleted;
    516       } else {
    517         // We can only inline direct calls to non-declarations.
    518         if (!Callee || Callee->isDeclaration()) continue;
    519 
    520         // If this call site was obtained by inlining another function, verify
    521         // that the include path for the function did not include the callee
    522         // itself.  If so, we'd be recursively inlining the same function,
    523         // which would provide the same callsites, which would cause us to
    524         // infinitely inline.
    525         int InlineHistoryID = CallSites[CSi].second;
    526         if (InlineHistoryID != -1 &&
    527             InlineHistoryIncludes(Callee, InlineHistoryID, InlineHistory))
    528           continue;
    529 
    530         LLVMContext &CallerCtx = Caller->getContext();
    531 
    532         // Get DebugLoc to report. CS will be invalid after Inliner.
    533         DebugLoc DLoc = CS.getInstruction()->getDebugLoc();
    534 
    535         // If the policy determines that we should inline this function,
    536         // try to do so.
    537         if (!shouldInline(CS)) {
    538           emitOptimizationRemarkMissed(CallerCtx, DEBUG_TYPE, *Caller, DLoc,
    539                                        Twine(Callee->getName() +
    540                                              " will not be inlined into " +
    541                                              Caller->getName()));
    542           continue;
    543         }
    544 
    545         // Attempt to inline the function.
    546         if (!InlineCallIfPossible(CS, InlineInfo, InlinedArrayAllocas,
    547                                   InlineHistoryID, InsertLifetime)) {
    548           emitOptimizationRemarkMissed(CallerCtx, DEBUG_TYPE, *Caller, DLoc,
    549                                        Twine(Callee->getName() +
    550                                              " will not be inlined into " +
    551                                              Caller->getName()));
    552           continue;
    553         }
    554         ++NumInlined;
    555 
    556         // Report the inline decision.
    557         emitOptimizationRemark(
    558             CallerCtx, DEBUG_TYPE, *Caller, DLoc,
    559             Twine(Callee->getName() + " inlined into " + Caller->getName()));
    560 
    561         // If inlining this function gave us any new call sites, throw them
    562         // onto our worklist to process.  They are useful inline candidates.
    563         if (!InlineInfo.InlinedCalls.empty()) {
    564           // Create a new inline history entry for this, so that we remember
    565           // that these new callsites came about due to inlining Callee.
    566           int NewHistoryID = InlineHistory.size();
    567           InlineHistory.push_back(std::make_pair(Callee, InlineHistoryID));
    568 
    569           for (unsigned i = 0, e = InlineInfo.InlinedCalls.size();
    570                i != e; ++i) {
    571             Value *Ptr = InlineInfo.InlinedCalls[i];
    572             CallSites.push_back(std::make_pair(CallSite(Ptr), NewHistoryID));
    573           }
    574         }
    575       }
    576 
    577       // If we inlined or deleted the last possible call site to the function,
    578       // delete the function body now.
    579       if (Callee && Callee->use_empty() && Callee->hasLocalLinkage() &&
    580           // TODO: Can remove if in SCC now.
    581           !SCCFunctions.count(Callee) &&
    582 
    583           // The function may be apparently dead, but if there are indirect
    584           // callgraph references to the node, we cannot delete it yet, this
    585           // could invalidate the CGSCC iterator.
    586           CG[Callee]->getNumReferences() == 0) {
    587         DEBUG(dbgs() << "    -> Deleting dead function: "
    588               << Callee->getName() << "\n");
    589         CallGraphNode *CalleeNode = CG[Callee];
    590 
    591         // Remove any call graph edges from the callee to its callees.
    592         CalleeNode->removeAllCalledFunctions();
    593 
    594         // Removing the node for callee from the call graph and delete it.
    595         delete CG.removeFunctionFromModule(CalleeNode);
    596         ++NumDeleted;
    597       }
    598 
    599       // Remove this call site from the list.  If possible, use
    600       // swap/pop_back for efficiency, but do not use it if doing so would
    601       // move a call site to a function in this SCC before the
    602       // 'FirstCallInSCC' barrier.
    603       if (SCC.isSingular()) {
    604         CallSites[CSi] = CallSites.back();
    605         CallSites.pop_back();
    606       } else {
    607         CallSites.erase(CallSites.begin()+CSi);
    608       }
    609       --CSi;
    610 
    611       Changed = true;
    612       LocalChange = true;
    613     }
    614   } while (LocalChange);
    615 
    616   return Changed;
    617 }
    618 
    619 /// Remove now-dead linkonce functions at the end of
    620 /// processing to avoid breaking the SCC traversal.
    621 bool Inliner::doFinalization(CallGraph &CG) {
    622   return removeDeadFunctions(CG);
    623 }
    624 
    625 /// Remove dead functions that are not included in DNR (Do Not Remove) list.
    626 bool Inliner::removeDeadFunctions(CallGraph &CG, bool AlwaysInlineOnly) {
    627   SmallVector<CallGraphNode*, 16> FunctionsToRemove;
    628 
    629   // Scan for all of the functions, looking for ones that should now be removed
    630   // from the program.  Insert the dead ones in the FunctionsToRemove set.
    631   for (CallGraph::iterator I = CG.begin(), E = CG.end(); I != E; ++I) {
    632     CallGraphNode *CGN = I->second;
    633     Function *F = CGN->getFunction();
    634     if (!F || F->isDeclaration())
    635       continue;
    636 
    637     // Handle the case when this function is called and we only want to care
    638     // about always-inline functions. This is a bit of a hack to share code
    639     // between here and the InlineAlways pass.
    640     if (AlwaysInlineOnly && !F->hasFnAttribute(Attribute::AlwaysInline))
    641       continue;
    642 
    643     // If the only remaining users of the function are dead constants, remove
    644     // them.
    645     F->removeDeadConstantUsers();
    646 
    647     if (!F->isDefTriviallyDead())
    648       continue;
    649 
    650     // It is unsafe to drop a function with discardable linkage from a COMDAT
    651     // without also dropping the other members of the COMDAT.
    652     // The inliner doesn't visit non-function entities which are in COMDAT
    653     // groups so it is unsafe to do so *unless* the linkage is local.
    654     if (!F->hasLocalLinkage() && F->hasComdat())
    655       continue;
    656 
    657     // Remove any call graph edges from the function to its callees.
    658     CGN->removeAllCalledFunctions();
    659 
    660     // Remove any edges from the external node to the function's call graph
    661     // node.  These edges might have been made irrelegant due to
    662     // optimization of the program.
    663     CG.getExternalCallingNode()->removeAnyCallEdgeTo(CGN);
    664 
    665     // Removing the node for callee from the call graph and delete it.
    666     FunctionsToRemove.push_back(CGN);
    667   }
    668   if (FunctionsToRemove.empty())
    669     return false;
    670 
    671   // Now that we know which functions to delete, do so.  We didn't want to do
    672   // this inline, because that would invalidate our CallGraph::iterator
    673   // objects. :(
    674   //
    675   // Note that it doesn't matter that we are iterating over a non-stable order
    676   // here to do this, it doesn't matter which order the functions are deleted
    677   // in.
    678   array_pod_sort(FunctionsToRemove.begin(), FunctionsToRemove.end());
    679   FunctionsToRemove.erase(std::unique(FunctionsToRemove.begin(),
    680                                       FunctionsToRemove.end()),
    681                           FunctionsToRemove.end());
    682   for (SmallVectorImpl<CallGraphNode *>::iterator I = FunctionsToRemove.begin(),
    683                                                   E = FunctionsToRemove.end();
    684        I != E; ++I) {
    685     delete CG.removeFunctionFromModule(*I);
    686     ++NumDeleted;
    687   }
    688   return true;
    689 }
    690