Home | History | Annotate | Download | only in i18n
      1 /*
      2 *******************************************************************************
      3 * Copyright (C) 1997-2015, International Business Machines Corporation and    *
      4 * others. All Rights Reserved.                                                *
      5 *******************************************************************************
      6 *
      7 * File DECIMFMT.CPP
      8 *
      9 * Modification History:
     10 *
     11 *   Date        Name        Description
     12 *   02/19/97    aliu        Converted from java.
     13 *   03/20/97    clhuang     Implemented with new APIs.
     14 *   03/31/97    aliu        Moved isLONG_MIN to DigitList, and fixed it.
     15 *   04/3/97     aliu        Rewrote parsing and formatting completely, and
     16 *                           cleaned up and debugged.  Actually works now.
     17 *                           Implemented NAN and INF handling, for both parsing
     18 *                           and formatting.  Extensive testing & debugging.
     19 *   04/10/97    aliu        Modified to compile on AIX.
     20 *   04/16/97    aliu        Rewrote to use DigitList, which has been resurrected.
     21 *                           Changed DigitCount to int per code review.
     22 *   07/09/97    helena      Made ParsePosition into a class.
     23 *   08/26/97    aliu        Extensive changes to applyPattern; completely
     24 *                           rewritten from the Java.
     25 *   09/09/97    aliu        Ported over support for exponential formats.
     26 *   07/20/98    stephen     JDK 1.2 sync up.
     27 *                             Various instances of '0' replaced with 'NULL'
     28 *                             Check for grouping size in subFormat()
     29 *                             Brought subParse() in line with Java 1.2
     30 *                             Added method appendAffix()
     31 *   08/24/1998  srl         Removed Mutex calls. This is not a thread safe class!
     32 *   02/22/99    stephen     Removed character literals for EBCDIC safety
     33 *   06/24/99    helena      Integrated Alan's NF enhancements and Java2 bug fixes
     34 *   06/28/99    stephen     Fixed bugs in toPattern().
     35 *   06/29/99    stephen     Fixed operator= to copy fFormatWidth, fPad,
     36 *                             fPadPosition
     37 ********************************************************************************
     38 */
     39 
     40 #include "unicode/utypes.h"
     41 
     42 #if !UCONFIG_NO_FORMATTING
     43 
     44 #include "fphdlimp.h"
     45 #include "unicode/decimfmt.h"
     46 #include "unicode/choicfmt.h"
     47 #include "unicode/ucurr.h"
     48 #include "unicode/ustring.h"
     49 #include "unicode/dcfmtsym.h"
     50 #include "unicode/ures.h"
     51 #include "unicode/uchar.h"
     52 #include "unicode/uniset.h"
     53 #include "unicode/curramt.h"
     54 #include "unicode/currpinf.h"
     55 #include "unicode/plurrule.h"
     56 #include "unicode/utf16.h"
     57 #include "unicode/numsys.h"
     58 #include "unicode/localpointer.h"
     59 #include "uresimp.h"
     60 #include "ucurrimp.h"
     61 #include "charstr.h"
     62 #include "cmemory.h"
     63 #include "patternprops.h"
     64 #include "digitlst.h"
     65 #include "cstring.h"
     66 #include "umutex.h"
     67 #include "uassert.h"
     68 #include "putilimp.h"
     69 #include <math.h>
     70 #include "hash.h"
     71 #include "decfmtst.h"
     72 #include "dcfmtimp.h"
     73 #include "plurrule_impl.h"
     74 #include "decimalformatpattern.h"
     75 #include "fmtableimp.h"
     76 
     77 /*
     78  * On certain platforms, round is a macro defined in math.h
     79  * This undefine is to avoid conflict between the macro and
     80  * the function defined below.
     81  */
     82 #ifdef round
     83 #undef round
     84 #endif
     85 
     86 
     87 U_NAMESPACE_BEGIN
     88 
     89 #ifdef FMT_DEBUG
     90 #include <stdio.h>
     91 static void _debugout(const char *f, int l, const UnicodeString& s) {
     92     char buf[2000];
     93     s.extract((int32_t) 0, s.length(), buf, "utf-8");
     94     printf("%s:%d: %s\n", f,l, buf);
     95 }
     96 #define debugout(x) _debugout(__FILE__,__LINE__,x)
     97 #define debug(x) printf("%s:%d: %s\n", __FILE__,__LINE__, x);
     98 static const UnicodeString dbg_null("<NULL>","");
     99 #define DEREFSTR(x)   ((x!=NULL)?(*x):(dbg_null))
    100 #else
    101 #define debugout(x)
    102 #define debug(x)
    103 #endif
    104 
    105 
    106 
    107 /* == Fastpath calculation. ==
    108  */
    109 #if UCONFIG_FORMAT_FASTPATHS_49
    110 inline DecimalFormatInternal& internalData(uint8_t *reserved) {
    111   return *reinterpret_cast<DecimalFormatInternal*>(reserved);
    112 }
    113 inline const DecimalFormatInternal& internalData(const uint8_t *reserved) {
    114   return *reinterpret_cast<const DecimalFormatInternal*>(reserved);
    115 }
    116 #else
    117 #endif
    118 
    119 /* For currency parsing purose,
    120  * Need to remember all prefix patterns and suffix patterns of
    121  * every currency format pattern,
    122  * including the pattern of default currecny style
    123  * and plural currency style. And the patterns are set through applyPattern.
    124  */
    125 struct AffixPatternsForCurrency : public UMemory {
    126 	// negative prefix pattern
    127 	UnicodeString negPrefixPatternForCurrency;
    128 	// negative suffix pattern
    129 	UnicodeString negSuffixPatternForCurrency;
    130 	// positive prefix pattern
    131 	UnicodeString posPrefixPatternForCurrency;
    132 	// positive suffix pattern
    133 	UnicodeString posSuffixPatternForCurrency;
    134 	int8_t patternType;
    135 
    136 	AffixPatternsForCurrency(const UnicodeString& negPrefix,
    137 							 const UnicodeString& negSuffix,
    138 							 const UnicodeString& posPrefix,
    139 							 const UnicodeString& posSuffix,
    140 							 int8_t type) {
    141 		negPrefixPatternForCurrency = negPrefix;
    142 		negSuffixPatternForCurrency = negSuffix;
    143 		posPrefixPatternForCurrency = posPrefix;
    144 		posSuffixPatternForCurrency = posSuffix;
    145 		patternType = type;
    146 	}
    147 #ifdef FMT_DEBUG
    148   void dump() const  {
    149     debugout( UnicodeString("AffixPatternsForCurrency( -=\"") +
    150               negPrefixPatternForCurrency + (UnicodeString)"\"/\"" +
    151               negSuffixPatternForCurrency + (UnicodeString)"\" +=\"" +
    152               posPrefixPatternForCurrency + (UnicodeString)"\"/\"" +
    153               posSuffixPatternForCurrency + (UnicodeString)"\" )");
    154   }
    155 #endif
    156 };
    157 
    158 /* affix for currency formatting when the currency sign in the pattern
    159  * equals to 3, such as the pattern contains 3 currency sign or
    160  * the formatter style is currency plural format style.
    161  */
    162 struct AffixesForCurrency : public UMemory {
    163 	// negative prefix
    164 	UnicodeString negPrefixForCurrency;
    165 	// negative suffix
    166 	UnicodeString negSuffixForCurrency;
    167 	// positive prefix
    168 	UnicodeString posPrefixForCurrency;
    169 	// positive suffix
    170 	UnicodeString posSuffixForCurrency;
    171 
    172 	int32_t formatWidth;
    173 
    174 	AffixesForCurrency(const UnicodeString& negPrefix,
    175 					   const UnicodeString& negSuffix,
    176 					   const UnicodeString& posPrefix,
    177 					   const UnicodeString& posSuffix) {
    178 		negPrefixForCurrency = negPrefix;
    179 		negSuffixForCurrency = negSuffix;
    180 		posPrefixForCurrency = posPrefix;
    181 		posSuffixForCurrency = posSuffix;
    182 	}
    183 #ifdef FMT_DEBUG
    184   void dump() const {
    185     debugout( UnicodeString("AffixesForCurrency( -=\"") +
    186               negPrefixForCurrency + (UnicodeString)"\"/\"" +
    187               negSuffixForCurrency + (UnicodeString)"\" +=\"" +
    188               posPrefixForCurrency + (UnicodeString)"\"/\"" +
    189               posSuffixForCurrency + (UnicodeString)"\" )");
    190   }
    191 #endif
    192 };
    193 
    194 U_CDECL_BEGIN
    195 
    196 /**
    197  * @internal ICU 4.2
    198  */
    199 static UBool U_CALLCONV decimfmtAffixValueComparator(UHashTok val1, UHashTok val2);
    200 
    201 /**
    202  * @internal ICU 4.2
    203  */
    204 static UBool U_CALLCONV decimfmtAffixPatternValueComparator(UHashTok val1, UHashTok val2);
    205 
    206 
    207 static UBool
    208 U_CALLCONV decimfmtAffixValueComparator(UHashTok val1, UHashTok val2) {
    209     const AffixesForCurrency* affix_1 =
    210         (AffixesForCurrency*)val1.pointer;
    211     const AffixesForCurrency* affix_2 =
    212         (AffixesForCurrency*)val2.pointer;
    213     return affix_1->negPrefixForCurrency == affix_2->negPrefixForCurrency &&
    214            affix_1->negSuffixForCurrency == affix_2->negSuffixForCurrency &&
    215            affix_1->posPrefixForCurrency == affix_2->posPrefixForCurrency &&
    216            affix_1->posSuffixForCurrency == affix_2->posSuffixForCurrency;
    217 }
    218 
    219 
    220 static UBool
    221 U_CALLCONV decimfmtAffixPatternValueComparator(UHashTok val1, UHashTok val2) {
    222     const AffixPatternsForCurrency* affix_1 =
    223         (AffixPatternsForCurrency*)val1.pointer;
    224     const AffixPatternsForCurrency* affix_2 =
    225         (AffixPatternsForCurrency*)val2.pointer;
    226     return affix_1->negPrefixPatternForCurrency ==
    227            affix_2->negPrefixPatternForCurrency &&
    228            affix_1->negSuffixPatternForCurrency ==
    229            affix_2->negSuffixPatternForCurrency &&
    230            affix_1->posPrefixPatternForCurrency ==
    231            affix_2->posPrefixPatternForCurrency &&
    232            affix_1->posSuffixPatternForCurrency ==
    233            affix_2->posSuffixPatternForCurrency &&
    234            affix_1->patternType == affix_2->patternType;
    235 }
    236 
    237 U_CDECL_END
    238 
    239 
    240 
    241 
    242 // *****************************************************************************
    243 // class DecimalFormat
    244 // *****************************************************************************
    245 
    246 UOBJECT_DEFINE_RTTI_IMPLEMENTATION(DecimalFormat)
    247 
    248 // Constants for characters used in programmatic (unlocalized) patterns.
    249 #define kPatternZeroDigit            ((UChar)0x0030) /*'0'*/
    250 #define kPatternSignificantDigit     ((UChar)0x0040) /*'@'*/
    251 #define kPatternGroupingSeparator    ((UChar)0x002C) /*','*/
    252 #define kPatternDecimalSeparator     ((UChar)0x002E) /*'.'*/
    253 #define kPatternPerMill              ((UChar)0x2030)
    254 #define kPatternPercent              ((UChar)0x0025) /*'%'*/
    255 #define kPatternDigit                ((UChar)0x0023) /*'#'*/
    256 #define kPatternSeparator            ((UChar)0x003B) /*';'*/
    257 #define kPatternExponent             ((UChar)0x0045) /*'E'*/
    258 #define kPatternPlus                 ((UChar)0x002B) /*'+'*/
    259 #define kPatternMinus                ((UChar)0x002D) /*'-'*/
    260 #define kPatternPadEscape            ((UChar)0x002A) /*'*'*/
    261 #define kQuote                       ((UChar)0x0027) /*'\''*/
    262 /**
    263  * The CURRENCY_SIGN is the standard Unicode symbol for currency.  It
    264  * is used in patterns and substitued with either the currency symbol,
    265  * or if it is doubled, with the international currency symbol.  If the
    266  * CURRENCY_SIGN is seen in a pattern, then the decimal separator is
    267  * replaced with the monetary decimal separator.
    268  */
    269 #define kCurrencySign                ((UChar)0x00A4)
    270 #define kDefaultPad                  ((UChar)0x0020) /* */
    271 
    272 const int32_t DecimalFormat::kDoubleIntegerDigits  = 309;
    273 const int32_t DecimalFormat::kDoubleFractionDigits = 340;
    274 
    275 const int32_t DecimalFormat::kMaxScientificIntegerDigits = 8;
    276 
    277 /**
    278  * These are the tags we expect to see in normal resource bundle files associated
    279  * with a locale.
    280  */
    281 const char DecimalFormat::fgNumberPatterns[]="NumberPatterns"; // Deprecated - not used
    282 static const char fgNumberElements[]="NumberElements";
    283 static const char fgLatn[]="latn";
    284 static const char fgPatterns[]="patterns";
    285 static const char fgDecimalFormat[]="decimalFormat";
    286 static const char fgCurrencyFormat[]="currencyFormat";
    287 
    288 static const UChar fgTripleCurrencySign[] = {0xA4, 0xA4, 0xA4, 0};
    289 
    290 inline int32_t _min(int32_t a, int32_t b) { return (a<b) ? a : b; }
    291 inline int32_t _max(int32_t a, int32_t b) { return (a<b) ? b : a; }
    292 
    293 static void copyString(const UnicodeString& src, UBool isBogus, UnicodeString *& dest, UErrorCode &status) {
    294     if (U_FAILURE(status)) {
    295         return;
    296     }
    297     if (isBogus) {
    298         delete dest;
    299         dest = NULL;
    300     } else {
    301         if (dest != NULL) {
    302             *dest = src;
    303         } else {
    304             dest = new UnicodeString(src);
    305             if (dest == NULL) {
    306                 status = U_MEMORY_ALLOCATION_ERROR;
    307                 return;
    308             }
    309         }
    310     }
    311 }
    312 
    313 
    314 //------------------------------------------------------------------------------
    315 // Constructs a DecimalFormat instance in the default locale.
    316 
    317 DecimalFormat::DecimalFormat(UErrorCode& status) {
    318     init();
    319     UParseError parseError;
    320     construct(status, parseError);
    321 }
    322 
    323 //------------------------------------------------------------------------------
    324 // Constructs a DecimalFormat instance with the specified number format
    325 // pattern in the default locale.
    326 
    327 DecimalFormat::DecimalFormat(const UnicodeString& pattern,
    328                              UErrorCode& status) {
    329     init();
    330     UParseError parseError;
    331     construct(status, parseError, &pattern);
    332 }
    333 
    334 //------------------------------------------------------------------------------
    335 // Constructs a DecimalFormat instance with the specified number format
    336 // pattern and the number format symbols in the default locale.  The
    337 // created instance owns the symbols.
    338 
    339 DecimalFormat::DecimalFormat(const UnicodeString& pattern,
    340                              DecimalFormatSymbols* symbolsToAdopt,
    341                              UErrorCode& status) {
    342     init();
    343     UParseError parseError;
    344     if (symbolsToAdopt == NULL)
    345         status = U_ILLEGAL_ARGUMENT_ERROR;
    346     construct(status, parseError, &pattern, symbolsToAdopt);
    347 }
    348 
    349 DecimalFormat::DecimalFormat(  const UnicodeString& pattern,
    350                     DecimalFormatSymbols* symbolsToAdopt,
    351                     UParseError& parseErr,
    352                     UErrorCode& status) {
    353     init();
    354     if (symbolsToAdopt == NULL)
    355         status = U_ILLEGAL_ARGUMENT_ERROR;
    356     construct(status,parseErr, &pattern, symbolsToAdopt);
    357 }
    358 
    359 //------------------------------------------------------------------------------
    360 // Constructs a DecimalFormat instance with the specified number format
    361 // pattern and the number format symbols in the default locale.  The
    362 // created instance owns the clone of the symbols.
    363 
    364 DecimalFormat::DecimalFormat(const UnicodeString& pattern,
    365                              const DecimalFormatSymbols& symbols,
    366                              UErrorCode& status) {
    367     init();
    368     UParseError parseError;
    369     construct(status, parseError, &pattern, new DecimalFormatSymbols(symbols));
    370 }
    371 
    372 //------------------------------------------------------------------------------
    373 // Constructs a DecimalFormat instance with the specified number format
    374 // pattern, the number format symbols, and the number format style.
    375 // The created instance owns the clone of the symbols.
    376 
    377 DecimalFormat::DecimalFormat(const UnicodeString& pattern,
    378                              DecimalFormatSymbols* symbolsToAdopt,
    379                              UNumberFormatStyle style,
    380                              UErrorCode& status) {
    381     init();
    382     fStyle = style;
    383     UParseError parseError;
    384     construct(status, parseError, &pattern, symbolsToAdopt);
    385 }
    386 
    387 //-----------------------------------------------------------------------------
    388 // Common DecimalFormat initialization.
    389 //    Put all fields of an uninitialized object into a known state.
    390 //    Common code, shared by all constructors.
    391 //    Can not fail. Leave the object in good enough shape that the destructor
    392 //    or assignment operator can run successfully.
    393 void
    394 DecimalFormat::init() {
    395     fPosPrefixPattern = 0;
    396     fPosSuffixPattern = 0;
    397     fNegPrefixPattern = 0;
    398     fNegSuffixPattern = 0;
    399     fCurrencyChoice = 0;
    400     fMultiplier = NULL;
    401     fScale = 0;
    402     fGroupingSize = 0;
    403     fGroupingSize2 = 0;
    404     fDecimalSeparatorAlwaysShown = FALSE;
    405     fSymbols = NULL;
    406     fUseSignificantDigits = FALSE;
    407     fMinSignificantDigits = 1;
    408     fMaxSignificantDigits = 6;
    409     fUseExponentialNotation = FALSE;
    410     fMinExponentDigits = 0;
    411     fExponentSignAlwaysShown = FALSE;
    412     fBoolFlags.clear();
    413     fRoundingIncrement = 0;
    414     fRoundingMode = kRoundHalfEven;
    415     fPad = 0;
    416     fFormatWidth = 0;
    417     fPadPosition = kPadBeforePrefix;
    418     fStyle = UNUM_DECIMAL;
    419     fCurrencySignCount = fgCurrencySignCountZero;
    420     fAffixPatternsForCurrency = NULL;
    421     fAffixesForCurrency = NULL;
    422     fPluralAffixesForCurrency = NULL;
    423     fCurrencyPluralInfo = NULL;
    424     fCurrencyUsage = UCURR_USAGE_STANDARD;
    425 #if UCONFIG_HAVE_PARSEALLINPUT
    426     fParseAllInput = UNUM_MAYBE;
    427 #endif
    428 
    429 #if UCONFIG_FORMAT_FASTPATHS_49
    430     DecimalFormatInternal &data = internalData(fReserved);
    431     data.fFastFormatStatus=kFastpathUNKNOWN; // don't try to calculate the fastpath until later.
    432     data.fFastParseStatus=kFastpathUNKNOWN; // don't try to calculate the fastpath until later.
    433 #endif
    434     fStaticSets = NULL;
    435 }
    436 
    437 //------------------------------------------------------------------------------
    438 // Constructs a DecimalFormat instance with the specified number format
    439 // pattern and the number format symbols in the desired locale.  The
    440 // created instance owns the symbols.
    441 
    442 void
    443 DecimalFormat::construct(UErrorCode&            status,
    444                          UParseError&           parseErr,
    445                          const UnicodeString*   pattern,
    446                          DecimalFormatSymbols*  symbolsToAdopt)
    447 {
    448     fSymbols = symbolsToAdopt; // Do this BEFORE aborting on status failure!!!
    449     fRoundingIncrement = NULL;
    450     fRoundingMode = kRoundHalfEven;
    451     fPad = kPatternPadEscape;
    452     fPadPosition = kPadBeforePrefix;
    453     if (U_FAILURE(status))
    454         return;
    455 
    456     fPosPrefixPattern = fPosSuffixPattern = NULL;
    457     fNegPrefixPattern = fNegSuffixPattern = NULL;
    458     setMultiplier(1);
    459     fGroupingSize = 3;
    460     fGroupingSize2 = 0;
    461     fDecimalSeparatorAlwaysShown = FALSE;
    462     fUseExponentialNotation = FALSE;
    463     fMinExponentDigits = 0;
    464 
    465     if (fSymbols == NULL)
    466     {
    467         fSymbols = new DecimalFormatSymbols(Locale::getDefault(), status);
    468         if (fSymbols == 0) {
    469             status = U_MEMORY_ALLOCATION_ERROR;
    470             return;
    471         }
    472     }
    473     fStaticSets = DecimalFormatStaticSets::getStaticSets(status);
    474     if (U_FAILURE(status)) {
    475         return;
    476     }
    477     UErrorCode nsStatus = U_ZERO_ERROR;
    478     NumberingSystem *ns = NumberingSystem::createInstance(nsStatus);
    479     if (U_FAILURE(nsStatus)) {
    480         status = nsStatus;
    481         return;
    482     }
    483 
    484     UnicodeString str;
    485     // Uses the default locale's number format pattern if there isn't
    486     // one specified.
    487     if (pattern == NULL)
    488     {
    489         int32_t len = 0;
    490         UResourceBundle *top = ures_open(NULL, Locale::getDefault().getName(), &status);
    491 
    492         UResourceBundle *resource = ures_getByKeyWithFallback(top, fgNumberElements, NULL, &status);
    493         resource = ures_getByKeyWithFallback(resource, ns->getName(), resource, &status);
    494         resource = ures_getByKeyWithFallback(resource, fgPatterns, resource, &status);
    495         const UChar *resStr = ures_getStringByKeyWithFallback(resource, fgDecimalFormat, &len, &status);
    496         if ( status == U_MISSING_RESOURCE_ERROR && uprv_strcmp(fgLatn,ns->getName())) {
    497             status = U_ZERO_ERROR;
    498             resource = ures_getByKeyWithFallback(top, fgNumberElements, resource, &status);
    499             resource = ures_getByKeyWithFallback(resource, fgLatn, resource, &status);
    500             resource = ures_getByKeyWithFallback(resource, fgPatterns, resource, &status);
    501             resStr = ures_getStringByKeyWithFallback(resource, fgDecimalFormat, &len, &status);
    502         }
    503         str.setTo(TRUE, resStr, len);
    504         pattern = &str;
    505         ures_close(resource);
    506         ures_close(top);
    507     }
    508 
    509     delete ns;
    510 
    511     if (U_FAILURE(status))
    512     {
    513         return;
    514     }
    515 
    516     if (pattern->indexOf((UChar)kCurrencySign) >= 0) {
    517         // If it looks like we are going to use a currency pattern
    518         // then do the time consuming lookup.
    519         setCurrencyForSymbols();
    520     } else {
    521         setCurrencyInternally(NULL, status);
    522     }
    523 
    524     const UnicodeString* patternUsed;
    525     UnicodeString currencyPluralPatternForOther;
    526     // apply pattern
    527     if (fStyle == UNUM_CURRENCY_PLURAL) {
    528         fCurrencyPluralInfo = new CurrencyPluralInfo(fSymbols->getLocale(), status);
    529         if (U_FAILURE(status)) {
    530             return;
    531         }
    532 
    533         // the pattern used in format is not fixed until formatting,
    534         // in which, the number is known and
    535         // will be used to pick the right pattern based on plural count.
    536         // Here, set the pattern as the pattern of plural count == "other".
    537         // For most locale, the patterns are probably the same for all
    538         // plural count. If not, the right pattern need to be re-applied
    539         // during format.
    540         fCurrencyPluralInfo->getCurrencyPluralPattern(UNICODE_STRING("other", 5), currencyPluralPatternForOther);
    541         patternUsed = &currencyPluralPatternForOther;
    542         // TODO: not needed?
    543         setCurrencyForSymbols();
    544 
    545     } else {
    546         patternUsed = pattern;
    547     }
    548 
    549     if (patternUsed->indexOf(kCurrencySign) != -1) {
    550         // initialize for currency, not only for plural format,
    551         // but also for mix parsing
    552         if (fCurrencyPluralInfo == NULL) {
    553            fCurrencyPluralInfo = new CurrencyPluralInfo(fSymbols->getLocale(), status);
    554            if (U_FAILURE(status)) {
    555                return;
    556            }
    557         }
    558         // need it for mix parsing
    559         setupCurrencyAffixPatterns(status);
    560         // expanded affixes for plural names
    561         if (patternUsed->indexOf(fgTripleCurrencySign, 3, 0) != -1) {
    562             setupCurrencyAffixes(*patternUsed, TRUE, TRUE, status);
    563         }
    564     }
    565 
    566     applyPatternWithoutExpandAffix(*patternUsed,FALSE, parseErr, status);
    567 
    568     // expand affixes
    569     if (fCurrencySignCount != fgCurrencySignCountInPluralFormat) {
    570         expandAffixAdjustWidth(NULL);
    571     }
    572 
    573     // If it was a currency format, apply the appropriate rounding by
    574     // resetting the currency. NOTE: this copies fCurrency on top of itself.
    575     if (fCurrencySignCount != fgCurrencySignCountZero) {
    576         setCurrencyInternally(getCurrency(), status);
    577     }
    578 #if UCONFIG_FORMAT_FASTPATHS_49
    579     DecimalFormatInternal &data = internalData(fReserved);
    580     data.fFastFormatStatus = kFastpathNO; // allow it to be calculated
    581     data.fFastParseStatus = kFastpathNO; // allow it to be calculated
    582     handleChanged();
    583 #endif
    584 }
    585 
    586 
    587 void
    588 DecimalFormat::setupCurrencyAffixPatterns(UErrorCode& status) {
    589     if (U_FAILURE(status)) {
    590         return;
    591     }
    592     UParseError parseErr;
    593     fAffixPatternsForCurrency = initHashForAffixPattern(status);
    594     if (U_FAILURE(status)) {
    595         return;
    596     }
    597 
    598     NumberingSystem *ns = NumberingSystem::createInstance(fSymbols->getLocale(),status);
    599     if (U_FAILURE(status)) {
    600         return;
    601     }
    602 
    603     // Save the default currency patterns of this locale.
    604     // Here, chose onlyApplyPatternWithoutExpandAffix without
    605     // expanding the affix patterns into affixes.
    606     UnicodeString currencyPattern;
    607     UErrorCode error = U_ZERO_ERROR;
    608 
    609     UResourceBundle *resource = ures_open(NULL, fSymbols->getLocale().getName(), &error);
    610     UResourceBundle *numElements = ures_getByKeyWithFallback(resource, fgNumberElements, NULL, &error);
    611     resource = ures_getByKeyWithFallback(numElements, ns->getName(), resource, &error);
    612     resource = ures_getByKeyWithFallback(resource, fgPatterns, resource, &error);
    613     int32_t patLen = 0;
    614     const UChar *patResStr = ures_getStringByKeyWithFallback(resource, fgCurrencyFormat,  &patLen, &error);
    615     if ( error == U_MISSING_RESOURCE_ERROR && uprv_strcmp(ns->getName(),fgLatn)) {
    616         error = U_ZERO_ERROR;
    617         resource = ures_getByKeyWithFallback(numElements, fgLatn, resource, &error);
    618         resource = ures_getByKeyWithFallback(resource, fgPatterns, resource, &error);
    619         patResStr = ures_getStringByKeyWithFallback(resource, fgCurrencyFormat,  &patLen, &error);
    620     }
    621     ures_close(numElements);
    622     ures_close(resource);
    623     delete ns;
    624 
    625     if (U_SUCCESS(error)) {
    626         applyPatternWithoutExpandAffix(UnicodeString(patResStr, patLen), false,
    627                                        parseErr, status);
    628         AffixPatternsForCurrency* affixPtn = new AffixPatternsForCurrency(
    629                                                     *fNegPrefixPattern,
    630                                                     *fNegSuffixPattern,
    631                                                     *fPosPrefixPattern,
    632                                                     *fPosSuffixPattern,
    633                                                     UCURR_SYMBOL_NAME);
    634         fAffixPatternsForCurrency->put(UNICODE_STRING("default", 7), affixPtn, status);
    635     }
    636 
    637     // save the unique currency plural patterns of this locale.
    638     Hashtable* pluralPtn = fCurrencyPluralInfo->fPluralCountToCurrencyUnitPattern;
    639     const UHashElement* element = NULL;
    640     int32_t pos = UHASH_FIRST;
    641     Hashtable pluralPatternSet;
    642     while ((element = pluralPtn->nextElement(pos)) != NULL) {
    643         const UHashTok valueTok = element->value;
    644         const UnicodeString* value = (UnicodeString*)valueTok.pointer;
    645         const UHashTok keyTok = element->key;
    646         const UnicodeString* key = (UnicodeString*)keyTok.pointer;
    647         if (pluralPatternSet.geti(*value) != 1) {
    648             pluralPatternSet.puti(*value, 1, status);
    649             applyPatternWithoutExpandAffix(*value, false, parseErr, status);
    650             AffixPatternsForCurrency* affixPtn = new AffixPatternsForCurrency(
    651                                                     *fNegPrefixPattern,
    652                                                     *fNegSuffixPattern,
    653                                                     *fPosPrefixPattern,
    654                                                     *fPosSuffixPattern,
    655                                                     UCURR_LONG_NAME);
    656             fAffixPatternsForCurrency->put(*key, affixPtn, status);
    657         }
    658     }
    659 }
    660 
    661 
    662 void
    663 DecimalFormat::setupCurrencyAffixes(const UnicodeString& pattern,
    664                                     UBool setupForCurrentPattern,
    665                                     UBool setupForPluralPattern,
    666                                     UErrorCode& status) {
    667     if (U_FAILURE(status)) {
    668         return;
    669     }
    670     UParseError parseErr;
    671     if (setupForCurrentPattern) {
    672         if (fAffixesForCurrency) {
    673             deleteHashForAffix(fAffixesForCurrency);
    674         }
    675         fAffixesForCurrency = initHashForAffix(status);
    676         if (U_SUCCESS(status)) {
    677             applyPatternWithoutExpandAffix(pattern, false, parseErr, status);
    678             const PluralRules* pluralRules = fCurrencyPluralInfo->getPluralRules();
    679             StringEnumeration* keywords = pluralRules->getKeywords(status);
    680             if (U_SUCCESS(status)) {
    681                 const UnicodeString* pluralCount;
    682                 while ((pluralCount = keywords->snext(status)) != NULL) {
    683                     if ( U_SUCCESS(status) ) {
    684                         expandAffixAdjustWidth(pluralCount);
    685                         AffixesForCurrency* affix = new AffixesForCurrency(
    686                             fNegativePrefix, fNegativeSuffix, fPositivePrefix, fPositiveSuffix);
    687                         fAffixesForCurrency->put(*pluralCount, affix, status);
    688                     }
    689                 }
    690             }
    691             delete keywords;
    692         }
    693     }
    694 
    695     if (U_FAILURE(status)) {
    696         return;
    697     }
    698 
    699     if (setupForPluralPattern) {
    700         if (fPluralAffixesForCurrency) {
    701             deleteHashForAffix(fPluralAffixesForCurrency);
    702         }
    703         fPluralAffixesForCurrency = initHashForAffix(status);
    704         if (U_SUCCESS(status)) {
    705             const PluralRules* pluralRules = fCurrencyPluralInfo->getPluralRules();
    706             StringEnumeration* keywords = pluralRules->getKeywords(status);
    707             if (U_SUCCESS(status)) {
    708                 const UnicodeString* pluralCount;
    709                 while ((pluralCount = keywords->snext(status)) != NULL) {
    710                     if ( U_SUCCESS(status) ) {
    711                         UnicodeString ptn;
    712                         fCurrencyPluralInfo->getCurrencyPluralPattern(*pluralCount, ptn);
    713                         applyPatternInternally(*pluralCount, ptn, false, parseErr, status);
    714                         AffixesForCurrency* affix = new AffixesForCurrency(
    715                             fNegativePrefix, fNegativeSuffix, fPositivePrefix, fPositiveSuffix);
    716                         fPluralAffixesForCurrency->put(*pluralCount, affix, status);
    717                     }
    718                 }
    719             }
    720             delete keywords;
    721         }
    722     }
    723 }
    724 
    725 
    726 //------------------------------------------------------------------------------
    727 
    728 DecimalFormat::~DecimalFormat()
    729 {
    730     delete fPosPrefixPattern;
    731     delete fPosSuffixPattern;
    732     delete fNegPrefixPattern;
    733     delete fNegSuffixPattern;
    734     delete fCurrencyChoice;
    735     delete fMultiplier;
    736     delete fSymbols;
    737     delete fRoundingIncrement;
    738     deleteHashForAffixPattern();
    739     deleteHashForAffix(fAffixesForCurrency);
    740     deleteHashForAffix(fPluralAffixesForCurrency);
    741     delete fCurrencyPluralInfo;
    742 }
    743 
    744 //------------------------------------------------------------------------------
    745 // copy constructor
    746 
    747 DecimalFormat::DecimalFormat(const DecimalFormat &source) :
    748     NumberFormat(source) {
    749     init();
    750     *this = source;
    751 }
    752 
    753 //------------------------------------------------------------------------------
    754 // assignment operator
    755 
    756 template <class T>
    757 static void _copy_ptr(T** pdest, const T* source) {
    758     if (source == NULL) {
    759         delete *pdest;
    760         *pdest = NULL;
    761     } else if (*pdest == NULL) {
    762         *pdest = new T(*source);
    763     } else {
    764         **pdest = *source;
    765     }
    766 }
    767 
    768 template <class T>
    769 static void _clone_ptr(T** pdest, const T* source) {
    770     delete *pdest;
    771     if (source == NULL) {
    772         *pdest = NULL;
    773     } else {
    774         *pdest = static_cast<T*>(source->clone());
    775     }
    776 }
    777 
    778 DecimalFormat&
    779 DecimalFormat::operator=(const DecimalFormat& rhs)
    780 {
    781     if(this != &rhs) {
    782         UErrorCode status = U_ZERO_ERROR;
    783         NumberFormat::operator=(rhs);
    784         fStaticSets     = DecimalFormatStaticSets::getStaticSets(status);
    785         fPositivePrefix = rhs.fPositivePrefix;
    786         fPositiveSuffix = rhs.fPositiveSuffix;
    787         fNegativePrefix = rhs.fNegativePrefix;
    788         fNegativeSuffix = rhs.fNegativeSuffix;
    789         _copy_ptr(&fPosPrefixPattern, rhs.fPosPrefixPattern);
    790         _copy_ptr(&fPosSuffixPattern, rhs.fPosSuffixPattern);
    791         _copy_ptr(&fNegPrefixPattern, rhs.fNegPrefixPattern);
    792         _copy_ptr(&fNegSuffixPattern, rhs.fNegSuffixPattern);
    793         _clone_ptr(&fCurrencyChoice, rhs.fCurrencyChoice);
    794         setRoundingIncrement(rhs.getRoundingIncrement());
    795         fRoundingMode = rhs.fRoundingMode;
    796         setMultiplier(rhs.getMultiplier());
    797         fGroupingSize = rhs.fGroupingSize;
    798         fGroupingSize2 = rhs.fGroupingSize2;
    799         fDecimalSeparatorAlwaysShown = rhs.fDecimalSeparatorAlwaysShown;
    800         _copy_ptr(&fSymbols, rhs.fSymbols);
    801         fUseExponentialNotation = rhs.fUseExponentialNotation;
    802         fExponentSignAlwaysShown = rhs.fExponentSignAlwaysShown;
    803         fBoolFlags = rhs.fBoolFlags;
    804         /*Bertrand A. D. Update 98.03.17*/
    805         fCurrencySignCount = rhs.fCurrencySignCount;
    806         /*end of Update*/
    807         fMinExponentDigits = rhs.fMinExponentDigits;
    808 
    809         /* sfb 990629 */
    810         fFormatWidth = rhs.fFormatWidth;
    811         fPad = rhs.fPad;
    812         fPadPosition = rhs.fPadPosition;
    813         /* end sfb */
    814         fMinSignificantDigits = rhs.fMinSignificantDigits;
    815         fMaxSignificantDigits = rhs.fMaxSignificantDigits;
    816         fUseSignificantDigits = rhs.fUseSignificantDigits;
    817         fFormatPattern = rhs.fFormatPattern;
    818         fCurrencyUsage = rhs.fCurrencyUsage;
    819         fStyle = rhs.fStyle;
    820         _clone_ptr(&fCurrencyPluralInfo, rhs.fCurrencyPluralInfo);
    821         deleteHashForAffixPattern();
    822         if (rhs.fAffixPatternsForCurrency) {
    823             UErrorCode status = U_ZERO_ERROR;
    824             fAffixPatternsForCurrency = initHashForAffixPattern(status);
    825             copyHashForAffixPattern(rhs.fAffixPatternsForCurrency,
    826                                     fAffixPatternsForCurrency, status);
    827         }
    828         deleteHashForAffix(fAffixesForCurrency);
    829         if (rhs.fAffixesForCurrency) {
    830             UErrorCode status = U_ZERO_ERROR;
    831             fAffixesForCurrency = initHashForAffixPattern(status);
    832             copyHashForAffix(rhs.fAffixesForCurrency, fAffixesForCurrency, status);
    833         }
    834         deleteHashForAffix(fPluralAffixesForCurrency);
    835         if (rhs.fPluralAffixesForCurrency) {
    836             UErrorCode status = U_ZERO_ERROR;
    837             fPluralAffixesForCurrency = initHashForAffixPattern(status);
    838             copyHashForAffix(rhs.fPluralAffixesForCurrency, fPluralAffixesForCurrency, status);
    839         }
    840 #if UCONFIG_FORMAT_FASTPATHS_49
    841         DecimalFormatInternal &data    = internalData(fReserved);
    842         const DecimalFormatInternal &rhsData = internalData(rhs.fReserved);
    843         data = rhsData;
    844 #endif
    845     }
    846     return *this;
    847 }
    848 
    849 //------------------------------------------------------------------------------
    850 
    851 UBool
    852 DecimalFormat::operator==(const Format& that) const
    853 {
    854     if (this == &that)
    855         return TRUE;
    856 
    857     // NumberFormat::operator== guarantees this cast is safe
    858     const DecimalFormat* other = (DecimalFormat*)&that;
    859 
    860 #ifdef FMT_DEBUG
    861     // This code makes it easy to determine why two format objects that should
    862     // be equal aren't.
    863     UBool first = TRUE;
    864     if (!NumberFormat::operator==(that)) {
    865         if (first) { printf("[ "); first = FALSE; } else { printf(", "); }
    866         debug("NumberFormat::!=");
    867     } else {
    868     if (!((fPosPrefixPattern == other->fPosPrefixPattern && // both null
    869               fPositivePrefix == other->fPositivePrefix)
    870            || (fPosPrefixPattern != 0 && other->fPosPrefixPattern != 0 &&
    871                *fPosPrefixPattern  == *other->fPosPrefixPattern))) {
    872         if (first) { printf("[ "); first = FALSE; } else { printf(", "); }
    873         debug("Pos Prefix !=");
    874     }
    875     if (!((fPosSuffixPattern == other->fPosSuffixPattern && // both null
    876            fPositiveSuffix == other->fPositiveSuffix)
    877           || (fPosSuffixPattern != 0 && other->fPosSuffixPattern != 0 &&
    878               *fPosSuffixPattern  == *other->fPosSuffixPattern))) {
    879         if (first) { printf("[ "); first = FALSE; } else { printf(", "); }
    880         debug("Pos Suffix !=");
    881     }
    882     if (!((fNegPrefixPattern == other->fNegPrefixPattern && // both null
    883            fNegativePrefix == other->fNegativePrefix)
    884           || (fNegPrefixPattern != 0 && other->fNegPrefixPattern != 0 &&
    885               *fNegPrefixPattern  == *other->fNegPrefixPattern))) {
    886         if (first) { printf("[ "); first = FALSE; } else { printf(", "); }
    887         debug("Neg Prefix ");
    888         if (fNegPrefixPattern == NULL) {
    889             debug("NULL(");
    890             debugout(fNegativePrefix);
    891             debug(")");
    892         } else {
    893             debugout(*fNegPrefixPattern);
    894         }
    895         debug(" != ");
    896         if (other->fNegPrefixPattern == NULL) {
    897             debug("NULL(");
    898             debugout(other->fNegativePrefix);
    899             debug(")");
    900         } else {
    901             debugout(*other->fNegPrefixPattern);
    902         }
    903     }
    904     if (!((fNegSuffixPattern == other->fNegSuffixPattern && // both null
    905            fNegativeSuffix == other->fNegativeSuffix)
    906           || (fNegSuffixPattern != 0 && other->fNegSuffixPattern != 0 &&
    907               *fNegSuffixPattern  == *other->fNegSuffixPattern))) {
    908         if (first) { printf("[ "); first = FALSE; } else { printf(", "); }
    909         debug("Neg Suffix ");
    910         if (fNegSuffixPattern == NULL) {
    911             debug("NULL(");
    912             debugout(fNegativeSuffix);
    913             debug(")");
    914         } else {
    915             debugout(*fNegSuffixPattern);
    916         }
    917         debug(" != ");
    918         if (other->fNegSuffixPattern == NULL) {
    919             debug("NULL(");
    920             debugout(other->fNegativeSuffix);
    921             debug(")");
    922         } else {
    923             debugout(*other->fNegSuffixPattern);
    924         }
    925     }
    926     if (!((fRoundingIncrement == other->fRoundingIncrement) // both null
    927           || (fRoundingIncrement != NULL &&
    928               other->fRoundingIncrement != NULL &&
    929               *fRoundingIncrement == *other->fRoundingIncrement))) {
    930         if (first) { printf("[ "); first = FALSE; } else { printf(", "); }
    931         debug("Rounding Increment !=");
    932               }
    933     if (fRoundingMode != other->fRoundingMode) {
    934         if (first) { printf("[ "); first = FALSE; } else { printf(", "); }
    935         printf("Rounding Mode %d != %d", (int)fRoundingMode, (int)other->fRoundingMode);
    936     }
    937     if (getMultiplier() != other->getMultiplier()) {
    938         if (first) { printf("[ "); first = FALSE; }
    939         printf("Multiplier %ld != %ld", getMultiplier(), other->getMultiplier());
    940     }
    941     if (fGroupingSize != other->fGroupingSize) {
    942         if (first) { printf("[ "); first = FALSE; } else { printf(", "); }
    943         printf("Grouping Size %ld != %ld", fGroupingSize, other->fGroupingSize);
    944     }
    945     if (fGroupingSize2 != other->fGroupingSize2) {
    946         if (first) { printf("[ "); first = FALSE; } else { printf(", "); }
    947         printf("Secondary Grouping Size %ld != %ld", fGroupingSize2, other->fGroupingSize2);
    948     }
    949     if (fDecimalSeparatorAlwaysShown != other->fDecimalSeparatorAlwaysShown) {
    950         if (first) { printf("[ "); first = FALSE; } else { printf(", "); }
    951         printf("fDecimalSeparatorAlwaysShown %d != %d", fDecimalSeparatorAlwaysShown, other->fDecimalSeparatorAlwaysShown);
    952     }
    953     if (fUseExponentialNotation != other->fUseExponentialNotation) {
    954         if (first) { printf("[ "); first = FALSE; } else { printf(", "); }
    955         debug("fUseExponentialNotation !=");
    956     }
    957     if (fUseExponentialNotation &&
    958         fMinExponentDigits != other->fMinExponentDigits) {
    959         if (first) { printf("[ "); first = FALSE; } else { printf(", "); }
    960         debug("fMinExponentDigits !=");
    961     }
    962     if (fUseExponentialNotation &&
    963         fExponentSignAlwaysShown != other->fExponentSignAlwaysShown) {
    964         if (first) { printf("[ "); first = FALSE; } else { printf(", "); }
    965         debug("fExponentSignAlwaysShown !=");
    966     }
    967     if (fBoolFlags.getAll() != other->fBoolFlags.getAll()) {
    968         if (first) { printf("[ "); first = FALSE; } else { printf(", "); }
    969         debug("fBoolFlags !=");
    970     }
    971     if (*fSymbols != *(other->fSymbols)) {
    972         if (first) { printf("[ "); first = FALSE; } else { printf(", "); }
    973         debug("Symbols !=");
    974     }
    975     // TODO Add debug stuff for significant digits here
    976     if (fUseSignificantDigits != other->fUseSignificantDigits) {
    977         if (first) { printf("[ "); first = FALSE; } else { printf(", "); }
    978         debug("fUseSignificantDigits !=");
    979     }
    980     if (fUseSignificantDigits &&
    981         fMinSignificantDigits != other->fMinSignificantDigits) {
    982         if (first) { printf("[ "); first = FALSE; } else { printf(", "); }
    983         debug("fMinSignificantDigits !=");
    984     }
    985     if (fUseSignificantDigits &&
    986         fMaxSignificantDigits != other->fMaxSignificantDigits) {
    987         if (first) { printf("[ "); first = FALSE; } else { printf(", "); }
    988         debug("fMaxSignificantDigits !=");
    989     }
    990     if (fFormatWidth != other->fFormatWidth) {
    991         if (first) { printf("[ "); first = FALSE; } else { printf(", "); }
    992         debug("fFormatWidth !=");
    993     }
    994     if (fPad != other->fPad) {
    995         if (first) { printf("[ "); first = FALSE; } else { printf(", "); }
    996         debug("fPad !=");
    997     }
    998     if (fPadPosition != other->fPadPosition) {
    999         if (first) { printf("[ "); first = FALSE; } else { printf(", "); }
   1000         debug("fPadPosition !=");
   1001     }
   1002     if (fStyle == UNUM_CURRENCY_PLURAL &&
   1003         fStyle != other->fStyle)
   1004         if (first) { printf("[ "); first = FALSE; } else { printf(", "); }
   1005         debug("fStyle !=");
   1006     }
   1007     if (fStyle == UNUM_CURRENCY_PLURAL &&
   1008         fFormatPattern != other->fFormatPattern) {
   1009         if (first) { printf("[ "); first = FALSE; } else { printf(", "); }
   1010         debug("fFormatPattern !=");
   1011     }
   1012 
   1013     if (!first) { printf(" ]"); }
   1014     if (fCurrencySignCount != other->fCurrencySignCount) {
   1015         debug("fCurrencySignCount !=");
   1016     }
   1017     if (fCurrencyPluralInfo == other->fCurrencyPluralInfo) {
   1018         debug("fCurrencyPluralInfo == ");
   1019         if (fCurrencyPluralInfo == NULL) {
   1020             debug("fCurrencyPluralInfo == NULL");
   1021         }
   1022     }
   1023     if (fCurrencyPluralInfo != NULL && other->fCurrencyPluralInfo != NULL &&
   1024          *fCurrencyPluralInfo != *(other->fCurrencyPluralInfo)) {
   1025         debug("fCurrencyPluralInfo !=");
   1026     }
   1027     if (fCurrencyPluralInfo != NULL && other->fCurrencyPluralInfo == NULL ||
   1028         fCurrencyPluralInfo == NULL && other->fCurrencyPluralInfo != NULL) {
   1029         debug("fCurrencyPluralInfo one NULL, the other not");
   1030     }
   1031     if (fCurrencyPluralInfo == NULL && other->fCurrencyPluralInfo == NULL) {
   1032         debug("fCurrencyPluralInfo == ");
   1033     }
   1034     }
   1035 #endif
   1036 
   1037     return (
   1038         NumberFormat::operator==(that) &&
   1039 
   1040         ((fCurrencySignCount == fgCurrencySignCountInPluralFormat) ?
   1041         (fAffixPatternsForCurrency->equals(*other->fAffixPatternsForCurrency)) :
   1042         (((fPosPrefixPattern == other->fPosPrefixPattern && // both null
   1043           fPositivePrefix == other->fPositivePrefix)
   1044          || (fPosPrefixPattern != 0 && other->fPosPrefixPattern != 0 &&
   1045              *fPosPrefixPattern  == *other->fPosPrefixPattern)) &&
   1046         ((fPosSuffixPattern == other->fPosSuffixPattern && // both null
   1047           fPositiveSuffix == other->fPositiveSuffix)
   1048          || (fPosSuffixPattern != 0 && other->fPosSuffixPattern != 0 &&
   1049              *fPosSuffixPattern  == *other->fPosSuffixPattern)) &&
   1050         ((fNegPrefixPattern == other->fNegPrefixPattern && // both null
   1051           fNegativePrefix == other->fNegativePrefix)
   1052          || (fNegPrefixPattern != 0 && other->fNegPrefixPattern != 0 &&
   1053              *fNegPrefixPattern  == *other->fNegPrefixPattern)) &&
   1054         ((fNegSuffixPattern == other->fNegSuffixPattern && // both null
   1055           fNegativeSuffix == other->fNegativeSuffix)
   1056          || (fNegSuffixPattern != 0 && other->fNegSuffixPattern != 0 &&
   1057              *fNegSuffixPattern  == *other->fNegSuffixPattern)))) &&
   1058 
   1059         ((fRoundingIncrement == other->fRoundingIncrement) // both null
   1060          || (fRoundingIncrement != NULL &&
   1061              other->fRoundingIncrement != NULL &&
   1062              *fRoundingIncrement == *other->fRoundingIncrement)) &&
   1063 
   1064         fRoundingMode == other->fRoundingMode &&
   1065         getMultiplier() == other->getMultiplier() &&
   1066         fGroupingSize == other->fGroupingSize &&
   1067         fGroupingSize2 == other->fGroupingSize2 &&
   1068         fDecimalSeparatorAlwaysShown == other->fDecimalSeparatorAlwaysShown &&
   1069         fUseExponentialNotation == other->fUseExponentialNotation &&
   1070 
   1071         (!fUseExponentialNotation ||
   1072             (fMinExponentDigits == other->fMinExponentDigits && fExponentSignAlwaysShown == other->fExponentSignAlwaysShown)) &&
   1073 
   1074         fBoolFlags.getAll() == other->fBoolFlags.getAll() &&
   1075         *fSymbols == *(other->fSymbols) &&
   1076         fUseSignificantDigits == other->fUseSignificantDigits &&
   1077 
   1078         (!fUseSignificantDigits ||
   1079             (fMinSignificantDigits == other->fMinSignificantDigits && fMaxSignificantDigits == other->fMaxSignificantDigits)) &&
   1080 
   1081         fFormatWidth == other->fFormatWidth &&
   1082         fPad == other->fPad &&
   1083         fPadPosition == other->fPadPosition &&
   1084 
   1085         (fStyle != UNUM_CURRENCY_PLURAL ||
   1086             (fStyle == other->fStyle && fFormatPattern == other->fFormatPattern)) &&
   1087 
   1088         fCurrencySignCount == other->fCurrencySignCount &&
   1089 
   1090         ((fCurrencyPluralInfo == other->fCurrencyPluralInfo &&
   1091           fCurrencyPluralInfo == NULL) ||
   1092          (fCurrencyPluralInfo != NULL && other->fCurrencyPluralInfo != NULL &&
   1093          *fCurrencyPluralInfo == *(other->fCurrencyPluralInfo))) &&
   1094 
   1095         fCurrencyUsage == other->fCurrencyUsage
   1096 
   1097         // depending on other settings we may also need to compare
   1098         // fCurrencyChoice (mostly deprecated?),
   1099         // fAffixesForCurrency & fPluralAffixesForCurrency (only relevant in some cases)
   1100         );
   1101 }
   1102 
   1103 //------------------------------------------------------------------------------
   1104 
   1105 Format*
   1106 DecimalFormat::clone() const
   1107 {
   1108     return new DecimalFormat(*this);
   1109 }
   1110 
   1111 
   1112 FixedDecimal
   1113 DecimalFormat::getFixedDecimal(double number, UErrorCode &status) const {
   1114     FixedDecimal result;
   1115 
   1116     if (U_FAILURE(status)) {
   1117         return result;
   1118     }
   1119 
   1120     if (uprv_isNaN(number) || uprv_isPositiveInfinity(fabs(number))) {
   1121         // For NaN and Infinity the state of the formatter is ignored.
   1122         result.init(number);
   1123         return result;
   1124     }
   1125 
   1126     if (fMultiplier == NULL && fScale == 0 && fRoundingIncrement == 0 && areSignificantDigitsUsed() == FALSE &&
   1127             result.quickInit(number) && result.visibleDecimalDigitCount <= getMaximumFractionDigits()) {
   1128         // Fast Path. Construction of an exact FixedDecimal directly from the double, without passing
   1129         //   through a DigitList, was successful, and the formatter is doing nothing tricky with rounding.
   1130         // printf("getFixedDecimal(%g): taking fast path.\n", number);
   1131         result.adjustForMinFractionDigits(getMinimumFractionDigits());
   1132     } else {
   1133         // Slow path. Create a DigitList, and have this formatter round it according to the
   1134         //     requirements of the format, and fill the fixedDecimal from that.
   1135         DigitList digits;
   1136         digits.set(number);
   1137         result = getFixedDecimal(digits, status);
   1138     }
   1139     return result;
   1140 }
   1141 
   1142 FixedDecimal
   1143 DecimalFormat::getFixedDecimal(const Formattable &number, UErrorCode &status) const {
   1144     if (U_FAILURE(status)) {
   1145         return FixedDecimal();
   1146     }
   1147     if (!number.isNumeric()) {
   1148         status = U_ILLEGAL_ARGUMENT_ERROR;
   1149         return FixedDecimal();
   1150     }
   1151 
   1152     DigitList *dl = number.getDigitList();
   1153     if (dl != NULL) {
   1154         DigitList clonedDL(*dl);
   1155         return getFixedDecimal(clonedDL, status);
   1156     }
   1157 
   1158     Formattable::Type type = number.getType();
   1159     if (type == Formattable::kDouble || type == Formattable::kLong) {
   1160         return getFixedDecimal(number.getDouble(status), status);
   1161     }
   1162 
   1163     if (type == Formattable::kInt64 && number.getInt64() <= MAX_INT64_IN_DOUBLE &&
   1164                                        number.getInt64() >= -MAX_INT64_IN_DOUBLE) {
   1165         return getFixedDecimal(number.getDouble(status), status);
   1166     }
   1167 
   1168     // The only case left is type==int64_t, with a value with more digits than a double can represent.
   1169     // Any formattable originating as a big decimal will have had a pre-existing digit list.
   1170     // Any originating as a double or int32 will have been handled as a double.
   1171 
   1172     U_ASSERT(type == Formattable::kInt64);
   1173     DigitList digits;
   1174     digits.set(number.getInt64());
   1175     return getFixedDecimal(digits, status);
   1176 }
   1177 
   1178 
   1179 // Create a fixed decimal from a DigitList.
   1180 //    The digit list may be modified.
   1181 //    Internal function only.
   1182 FixedDecimal
   1183 DecimalFormat::getFixedDecimal(DigitList &number, UErrorCode &status) const {
   1184     // Round the number according to the requirements of this Format.
   1185     FixedDecimal result;
   1186     _round(number, number, result.isNegative, status);
   1187 
   1188     // The int64_t fields in FixedDecimal can easily overflow.
   1189     // In deciding what to discard in this event, consider that fixedDecimal
   1190     //   is being used only with PluralRules, and those rules mostly look at least significant
   1191     //   few digits of the integer part, and whether the fraction part is zero or not.
   1192     //
   1193     // So, in case of overflow when filling in the fields of the FixedDecimal object,
   1194     //    for the integer part, discard the most significant digits.
   1195     //    for the fraction part, discard the least significant digits,
   1196     //                           don't truncate the fraction value to zero.
   1197     // For simplicity, the int64_t fields are limited to 18 decimal digits, even
   1198     // though they could hold most (but not all) 19 digit values.
   1199 
   1200     // Integer Digits.
   1201     int32_t di = number.getDecimalAt()-18;  // Take at most 18 digits.
   1202     if (di < 0) {
   1203         di = 0;
   1204     }
   1205     result.intValue = 0;
   1206     for (; di<number.getDecimalAt(); di++) {
   1207         result.intValue = result.intValue * 10 + (number.getDigit(di) & 0x0f);
   1208     }
   1209     if (result.intValue == 0 && number.getDecimalAt()-18 > 0) {
   1210         // The number is something like 100000000000000000000000.
   1211         // More than 18 digits integer digits, but the least significant 18 are all zero.
   1212         // We don't want to return zero as the int part, but want to keep zeros
   1213         //   for several of the least significant digits.
   1214         result.intValue = 100000000000000000LL;
   1215     }
   1216 
   1217     // Fraction digits.
   1218     result.decimalDigits = result.decimalDigitsWithoutTrailingZeros = result.visibleDecimalDigitCount = 0;
   1219     for (di = number.getDecimalAt(); di < number.getCount(); di++) {
   1220         result.visibleDecimalDigitCount++;
   1221         if (result.decimalDigits <  100000000000000000LL) {
   1222                    //              9223372036854775807    Largest 64 bit signed integer
   1223             int32_t digitVal = number.getDigit(di) & 0x0f;  // getDigit() returns a char, '0'-'9'.
   1224             result.decimalDigits = result.decimalDigits * 10 + digitVal;
   1225             if (digitVal > 0) {
   1226                 result.decimalDigitsWithoutTrailingZeros = result.decimalDigits;
   1227             }
   1228         }
   1229     }
   1230 
   1231     result.hasIntegerValue = (result.decimalDigits == 0);
   1232 
   1233     // Trailing fraction zeros. The format specification may require more trailing
   1234     //    zeros than the numeric value. Add any such on now.
   1235 
   1236     int32_t minFractionDigits;
   1237     if (areSignificantDigitsUsed()) {
   1238         minFractionDigits = getMinimumSignificantDigits() - number.getDecimalAt();
   1239         if (minFractionDigits < 0) {
   1240             minFractionDigits = 0;
   1241         }
   1242     } else {
   1243         minFractionDigits = getMinimumFractionDigits();
   1244     }
   1245     result.adjustForMinFractionDigits(minFractionDigits);
   1246 
   1247     return result;
   1248 }
   1249 
   1250 
   1251 //------------------------------------------------------------------------------
   1252 
   1253 UnicodeString&
   1254 DecimalFormat::format(int32_t number,
   1255                       UnicodeString& appendTo,
   1256                       FieldPosition& fieldPosition) const
   1257 {
   1258     return format((int64_t)number, appendTo, fieldPosition);
   1259 }
   1260 
   1261 UnicodeString&
   1262 DecimalFormat::format(int32_t number,
   1263                       UnicodeString& appendTo,
   1264                       FieldPosition& fieldPosition,
   1265                       UErrorCode& status) const
   1266 {
   1267     return format((int64_t)number, appendTo, fieldPosition, status);
   1268 }
   1269 
   1270 UnicodeString&
   1271 DecimalFormat::format(int32_t number,
   1272                       UnicodeString& appendTo,
   1273                       FieldPositionIterator* posIter,
   1274                       UErrorCode& status) const
   1275 {
   1276     return format((int64_t)number, appendTo, posIter, status);
   1277 }
   1278 
   1279 
   1280 #if UCONFIG_FORMAT_FASTPATHS_49
   1281 void DecimalFormat::handleChanged() {
   1282   DecimalFormatInternal &data = internalData(fReserved);
   1283 
   1284   if(data.fFastFormatStatus == kFastpathUNKNOWN || data.fFastParseStatus == kFastpathUNKNOWN) {
   1285     return; // still constructing. Wait.
   1286   }
   1287 
   1288   data.fFastParseStatus = data.fFastFormatStatus = kFastpathNO;
   1289 
   1290 #if UCONFIG_HAVE_PARSEALLINPUT
   1291   if(fParseAllInput == UNUM_NO) {
   1292     debug("No Parse fastpath: fParseAllInput==UNUM_NO");
   1293   } else
   1294 #endif
   1295   if (fFormatWidth!=0) {
   1296       debug("No Parse fastpath: fFormatWidth");
   1297   } else if(fPositivePrefix.length()>0) {
   1298     debug("No Parse fastpath: positive prefix");
   1299   } else if(fPositiveSuffix.length()>0) {
   1300     debug("No Parse fastpath: positive suffix");
   1301   } else if(fNegativePrefix.length()>1
   1302             || ((fNegativePrefix.length()==1) && (fNegativePrefix.charAt(0)!=0x002D))) {
   1303     debug("No Parse fastpath: negative prefix that isn't '-'");
   1304   } else if(fNegativeSuffix.length()>0) {
   1305     debug("No Parse fastpath: negative suffix");
   1306   } else {
   1307     data.fFastParseStatus = kFastpathYES;
   1308     debug("parse fastpath: YES");
   1309   }
   1310 
   1311   if(fUseExponentialNotation) {
   1312     debug("No format fastpath: fUseExponentialNotation");
   1313   } else if(fFormatWidth!=0) {
   1314     debug("No format fastpath: fFormatWidth!=0");
   1315   } else if(fMinSignificantDigits!=1) {
   1316     debug("No format fastpath: fMinSignificantDigits!=1");
   1317   } else if(fMultiplier!=NULL) {
   1318     debug("No format fastpath: fMultiplier!=NULL");
   1319   } else if(fScale!=0) {
   1320     debug("No format fastpath: fScale!=0");
   1321   } else if(0x0030 != getConstSymbol(DecimalFormatSymbols::kZeroDigitSymbol).char32At(0)) {
   1322     debug("No format fastpath: 0x0030 != getConstSymbol(DecimalFormatSymbols::kZeroDigitSymbol).char32At(0)");
   1323   } else if(fDecimalSeparatorAlwaysShown) {
   1324     debug("No format fastpath: fDecimalSeparatorAlwaysShown");
   1325   } else if(getMinimumFractionDigits()>0) {
   1326     debug("No format fastpath: fMinFractionDigits>0");
   1327   } else if(fCurrencySignCount != fgCurrencySignCountZero) {
   1328     debug("No format fastpath: fCurrencySignCount != fgCurrencySignCountZero");
   1329   } else if(fRoundingIncrement!=0) {
   1330     debug("No format fastpath: fRoundingIncrement!=0");
   1331   } else if (fGroupingSize!=0 && isGroupingUsed()) {
   1332     debug("Maybe format fastpath: fGroupingSize!=0 and grouping is used");
   1333 #ifdef FMT_DEBUG
   1334     printf("groupingsize=%d\n", fGroupingSize);
   1335 #endif
   1336 
   1337     if (getMinimumIntegerDigits() <= fGroupingSize) {
   1338       data.fFastFormatStatus = kFastpathMAYBE;
   1339     }
   1340   } else if(fGroupingSize2!=0 && isGroupingUsed()) {
   1341     debug("No format fastpath: fGroupingSize2!=0");
   1342   } else {
   1343     data.fFastFormatStatus = kFastpathYES;
   1344     debug("format:kFastpathYES!");
   1345   }
   1346 
   1347 
   1348 }
   1349 #endif
   1350 //------------------------------------------------------------------------------
   1351 
   1352 UnicodeString&
   1353 DecimalFormat::format(int64_t number,
   1354                       UnicodeString& appendTo,
   1355                       FieldPosition& fieldPosition) const
   1356 {
   1357     UErrorCode status = U_ZERO_ERROR; /* ignored */
   1358     FieldPositionOnlyHandler handler(fieldPosition);
   1359     return _format(number, appendTo, handler, status);
   1360 }
   1361 
   1362 UnicodeString&
   1363 DecimalFormat::format(int64_t number,
   1364                       UnicodeString& appendTo,
   1365                       FieldPosition& fieldPosition,
   1366                       UErrorCode& status) const
   1367 {
   1368     FieldPositionOnlyHandler handler(fieldPosition);
   1369     return _format(number, appendTo, handler, status);
   1370 }
   1371 
   1372 UnicodeString&
   1373 DecimalFormat::format(int64_t number,
   1374                       UnicodeString& appendTo,
   1375                       FieldPositionIterator* posIter,
   1376                       UErrorCode& status) const
   1377 {
   1378     FieldPositionIteratorHandler handler(posIter, status);
   1379     return _format(number, appendTo, handler, status);
   1380 }
   1381 
   1382 UnicodeString&
   1383 DecimalFormat::_format(int64_t number,
   1384                        UnicodeString& appendTo,
   1385                        FieldPositionHandler& handler,
   1386                        UErrorCode &status) const
   1387 {
   1388     // Bottleneck function for formatting int64_t
   1389     if (U_FAILURE(status)) {
   1390         return appendTo;
   1391     }
   1392 
   1393 #if UCONFIG_FORMAT_FASTPATHS_49
   1394   // const UnicodeString *posPrefix = fPosPrefixPattern;
   1395   // const UnicodeString *posSuffix = fPosSuffixPattern;
   1396   // const UnicodeString *negSuffix = fNegSuffixPattern;
   1397 
   1398   const DecimalFormatInternal &data = internalData(fReserved);
   1399 
   1400 #ifdef FMT_DEBUG
   1401   data.dump();
   1402   printf("fastpath? [%d]\n", number);
   1403 #endif
   1404 
   1405   if( data.fFastFormatStatus==kFastpathYES ||
   1406       data.fFastFormatStatus==kFastpathMAYBE) {
   1407     int32_t noGroupingThreshold = 0;
   1408 
   1409 #define kZero 0x0030
   1410     const int32_t MAX_IDX = MAX_DIGITS+2;
   1411     UChar outputStr[MAX_IDX];
   1412     int32_t destIdx = MAX_IDX;
   1413     outputStr[--destIdx] = 0;  // term
   1414 
   1415     if (data.fFastFormatStatus==kFastpathMAYBE) {
   1416       noGroupingThreshold = destIdx - fGroupingSize;
   1417     }
   1418     int64_t  n = number;
   1419     if (number < 1) {
   1420       // Negative numbers are slightly larger than positive
   1421       // output the first digit (or the leading zero)
   1422       outputStr[--destIdx] = (-(n % 10) + kZero);
   1423       n /= -10;
   1424     }
   1425     // get any remaining digits
   1426     while (n > 0) {
   1427       if (destIdx == noGroupingThreshold) {
   1428         goto slowPath;
   1429       }
   1430       outputStr[--destIdx] = (n % 10) + kZero;
   1431       n /= 10;
   1432     }
   1433 
   1434         // Slide the number to the start of the output str
   1435     U_ASSERT(destIdx >= 0);
   1436     int32_t length = MAX_IDX - destIdx -1;
   1437     /*int32_t prefixLen = */ appendAffix(appendTo, static_cast<double>(number), handler, number<0, TRUE);
   1438 
   1439     // This will be at least 0 even if it was set to a negative number.
   1440     int32_t maxIntDig = getMaximumIntegerDigits();
   1441     int32_t destlength = length<=maxIntDig?length:maxIntDig; // dest length pinned to max int digits
   1442 
   1443     if(length>maxIntDig && fBoolFlags.contains(UNUM_FORMAT_FAIL_IF_MORE_THAN_MAX_DIGITS)) {
   1444       status = U_ILLEGAL_ARGUMENT_ERROR;
   1445     }
   1446 
   1447     int32_t minDigits = getMinimumIntegerDigits();
   1448 
   1449     // We always want at least one digit, even if it is just a 0.
   1450     int32_t prependZero = (minDigits < 1 ? 1 : minDigits) - destlength;
   1451 
   1452 #ifdef FMT_DEBUG
   1453     printf("prependZero=%d, length=%d, minintdig=%d maxintdig=%d destlength=%d skip=%d\n", prependZero, length, getMinimumIntegerDigits(), maxIntDig, destlength, length-destlength);
   1454 #endif
   1455     int32_t intBegin = appendTo.length();
   1456 
   1457     while((prependZero--)>0) {
   1458       appendTo.append((UChar)0x0030); // '0'
   1459     }
   1460 
   1461     appendTo.append(outputStr+destIdx+
   1462                     (length-destlength), // skip any leading digits
   1463                     destlength);
   1464     handler.addAttribute(kIntegerField, intBegin, appendTo.length());
   1465 
   1466     /*int32_t suffixLen =*/ appendAffix(appendTo, static_cast<double>(number), handler, number<0, FALSE);
   1467 
   1468     //outputStr[length]=0;
   1469 
   1470 #ifdef FMT_DEBUG
   1471         printf("Writing [%s] length [%d] max %d for [%d]\n", outputStr+destIdx, length, MAX_IDX, number);
   1472 #endif
   1473 
   1474 #undef kZero
   1475 
   1476     return appendTo;
   1477   } // end fastpath
   1478 #endif
   1479   slowPath:
   1480 
   1481   // Else the slow way - via DigitList
   1482     DigitList digits;
   1483     digits.set(number);
   1484     return _format(digits, appendTo, handler, status);
   1485 }
   1486 
   1487 //------------------------------------------------------------------------------
   1488 
   1489 UnicodeString&
   1490 DecimalFormat::format(  double number,
   1491                         UnicodeString& appendTo,
   1492                         FieldPosition& fieldPosition) const
   1493 {
   1494     UErrorCode status = U_ZERO_ERROR; /* ignored */
   1495     FieldPositionOnlyHandler handler(fieldPosition);
   1496     return _format(number, appendTo, handler, status);
   1497 }
   1498 
   1499 UnicodeString&
   1500 DecimalFormat::format(  double number,
   1501                         UnicodeString& appendTo,
   1502                         FieldPosition& fieldPosition,
   1503                         UErrorCode& status) const
   1504 {
   1505     FieldPositionOnlyHandler handler(fieldPosition);
   1506     return _format(number, appendTo, handler, status);
   1507 }
   1508 
   1509 UnicodeString&
   1510 DecimalFormat::format(  double number,
   1511                         UnicodeString& appendTo,
   1512                         FieldPositionIterator* posIter,
   1513                         UErrorCode& status) const
   1514 {
   1515   FieldPositionIteratorHandler handler(posIter, status);
   1516   return _format(number, appendTo, handler, status);
   1517 }
   1518 
   1519 UnicodeString&
   1520 DecimalFormat::_format( double number,
   1521                         UnicodeString& appendTo,
   1522                         FieldPositionHandler& handler,
   1523                         UErrorCode &status) const
   1524 {
   1525     if (U_FAILURE(status)) {
   1526         return appendTo;
   1527     }
   1528     // Special case for NaN, sets the begin and end index to be the
   1529     // the string length of localized name of NaN.
   1530     // TODO:  let NaNs go through DigitList.
   1531     if (uprv_isNaN(number))
   1532     {
   1533         int begin = appendTo.length();
   1534         appendTo += getConstSymbol(DecimalFormatSymbols::kNaNSymbol);
   1535 
   1536         handler.addAttribute(kIntegerField, begin, appendTo.length());
   1537 
   1538         addPadding(appendTo, handler, 0, 0);
   1539         return appendTo;
   1540     }
   1541 
   1542     DigitList digits;
   1543     digits.set(number);
   1544     _format(digits, appendTo, handler, status);
   1545     // No way to return status from here.
   1546     return appendTo;
   1547 }
   1548 
   1549 //------------------------------------------------------------------------------
   1550 
   1551 
   1552 UnicodeString&
   1553 DecimalFormat::format(const StringPiece &number,
   1554                       UnicodeString &toAppendTo,
   1555                       FieldPositionIterator *posIter,
   1556                       UErrorCode &status) const
   1557 {
   1558 #if UCONFIG_FORMAT_FASTPATHS_49
   1559   // don't bother if the int64 path is not optimized
   1560   int32_t len    = number.length();
   1561 
   1562   if(len>0&&len<10) { /* 10 or more digits may not be an int64 */
   1563     const char *data = number.data();
   1564     int64_t num = 0;
   1565     UBool neg = FALSE;
   1566     UBool ok = TRUE;
   1567 
   1568     int32_t start  = 0;
   1569 
   1570     if(data[start]=='+') {
   1571       start++;
   1572     } else if(data[start]=='-') {
   1573       neg=TRUE;
   1574       start++;
   1575     }
   1576 
   1577     int32_t place = 1; /* 1, 10, ... */
   1578     for(int32_t i=len-1;i>=start;i--) {
   1579       if(data[i]>='0'&&data[i]<='9') {
   1580         num+=place*(int64_t)(data[i]-'0');
   1581       } else {
   1582         ok=FALSE;
   1583         break;
   1584       }
   1585       place *= 10;
   1586     }
   1587 
   1588     if(ok) {
   1589       if(neg) {
   1590         num = -num;// add minus bit
   1591       }
   1592       // format as int64_t
   1593       return format(num, toAppendTo, posIter, status);
   1594     }
   1595     // else fall through
   1596   }
   1597 #endif
   1598 
   1599     DigitList   dnum;
   1600     dnum.set(number, status);
   1601     if (U_FAILURE(status)) {
   1602         return toAppendTo;
   1603     }
   1604     FieldPositionIteratorHandler handler(posIter, status);
   1605     _format(dnum, toAppendTo, handler, status);
   1606     return toAppendTo;
   1607 }
   1608 
   1609 
   1610 UnicodeString&
   1611 DecimalFormat::format(const DigitList &number,
   1612                       UnicodeString &appendTo,
   1613                       FieldPositionIterator *posIter,
   1614                       UErrorCode &status) const {
   1615     FieldPositionIteratorHandler handler(posIter, status);
   1616     _format(number, appendTo, handler, status);
   1617     return appendTo;
   1618 }
   1619 
   1620 
   1621 
   1622 UnicodeString&
   1623 DecimalFormat::format(const DigitList &number,
   1624                      UnicodeString& appendTo,
   1625                      FieldPosition& pos,
   1626                      UErrorCode &status) const {
   1627     FieldPositionOnlyHandler handler(pos);
   1628     _format(number, appendTo, handler, status);
   1629     return appendTo;
   1630 }
   1631 
   1632 DigitList&
   1633 DecimalFormat::_round(const DigitList &number, DigitList &adjustedNum, UBool& isNegative, UErrorCode &status) const {
   1634     if (U_FAILURE(status)) {
   1635         return adjustedNum;
   1636     }
   1637 
   1638     // note: number and adjustedNum may refer to the same DigitList, in cases where a copy
   1639     //       is not needed by the caller.
   1640 
   1641     adjustedNum = number;
   1642     isNegative = false;
   1643     if (number.isNaN()) {
   1644         return adjustedNum;
   1645     }
   1646 
   1647     // Do this BEFORE checking to see if value is infinite or negative! Sets the
   1648     // begin and end index to be length of the string composed of
   1649     // localized name of Infinite and the positive/negative localized
   1650     // signs.
   1651 
   1652     adjustedNum.setRoundingMode(fRoundingMode);
   1653     if (fMultiplier != NULL) {
   1654         adjustedNum.mult(*fMultiplier, status);
   1655         if (U_FAILURE(status)) {
   1656             return adjustedNum;
   1657         }
   1658     }
   1659 
   1660     if (fScale != 0) {
   1661         DigitList ten;
   1662         ten.set((int32_t)10);
   1663         if (fScale > 0) {
   1664             for (int32_t i = fScale ; i > 0 ; i--) {
   1665                 adjustedNum.mult(ten, status);
   1666                 if (U_FAILURE(status)) {
   1667                     return adjustedNum;
   1668                 }
   1669             }
   1670         } else {
   1671             for (int32_t i = fScale ; i < 0 ; i++) {
   1672                 adjustedNum.div(ten, status);
   1673                 if (U_FAILURE(status)) {
   1674                     return adjustedNum;
   1675                 }
   1676             }
   1677         }
   1678     }
   1679 
   1680     /*
   1681      * Note: sign is important for zero as well as non-zero numbers.
   1682      * Proper detection of -0.0 is needed to deal with the
   1683      * issues raised by bugs 4106658, 4106667, and 4147706.  Liu 7/6/98.
   1684      */
   1685     isNegative = !adjustedNum.isPositive();
   1686 
   1687     // Apply rounding after multiplier
   1688 
   1689     adjustedNum.fContext.status &= ~DEC_Inexact;
   1690     if (fRoundingIncrement != NULL) {
   1691         adjustedNum.div(*fRoundingIncrement, status);
   1692         adjustedNum.toIntegralValue();
   1693         adjustedNum.mult(*fRoundingIncrement, status);
   1694         adjustedNum.trim();
   1695         if (U_FAILURE(status)) {
   1696             return adjustedNum;
   1697         }
   1698     }
   1699     if (fRoundingMode == kRoundUnnecessary && (adjustedNum.fContext.status & DEC_Inexact)) {
   1700         status = U_FORMAT_INEXACT_ERROR;
   1701         return adjustedNum;
   1702     }
   1703 
   1704     if (adjustedNum.isInfinite()) {
   1705         return adjustedNum;
   1706     }
   1707 
   1708     if (fUseExponentialNotation || areSignificantDigitsUsed()) {
   1709         int32_t sigDigits = precision();
   1710         if (sigDigits > 0) {
   1711             adjustedNum.round(sigDigits);
   1712             // Travis Keep (21/2/2014): Calling round on a digitList does not necessarily
   1713             // preserve the sign of that digit list. Preserving the sign is especially
   1714             // important when formatting -0.0 for instance. Not preserving the sign seems
   1715             // like a bug because I cannot think of any case where the sign would actually
   1716             // have to change when rounding. For now, we preserve the sign by setting the
   1717             // positive attribute directly.
   1718             adjustedNum.setPositive(!isNegative);
   1719         }
   1720     } else {
   1721         // Fixed point format.  Round to a set number of fraction digits.
   1722         int32_t numFractionDigits = precision();
   1723         adjustedNum.roundFixedPoint(numFractionDigits);
   1724     }
   1725     if (fRoundingMode == kRoundUnnecessary && (adjustedNum.fContext.status & DEC_Inexact)) {
   1726         status = U_FORMAT_INEXACT_ERROR;
   1727         return adjustedNum;
   1728     }
   1729     return adjustedNum;
   1730 }
   1731 
   1732 UnicodeString&
   1733 DecimalFormat::_format(const DigitList &number,
   1734                         UnicodeString& appendTo,
   1735                         FieldPositionHandler& handler,
   1736                         UErrorCode &status) const
   1737 {
   1738     if (U_FAILURE(status)) {
   1739         return appendTo;
   1740     }
   1741 
   1742     // Special case for NaN, sets the begin and end index to be the
   1743     // the string length of localized name of NaN.
   1744     if (number.isNaN())
   1745     {
   1746         int begin = appendTo.length();
   1747         appendTo += getConstSymbol(DecimalFormatSymbols::kNaNSymbol);
   1748 
   1749         handler.addAttribute(kIntegerField, begin, appendTo.length());
   1750 
   1751         addPadding(appendTo, handler, 0, 0);
   1752         return appendTo;
   1753     }
   1754 
   1755     DigitList adjustedNum;
   1756     UBool isNegative;
   1757     _round(number, adjustedNum, isNegative, status);
   1758     if (U_FAILURE(status)) {
   1759         return appendTo;
   1760     }
   1761 
   1762     // Special case for INFINITE,
   1763     if (adjustedNum.isInfinite()) {
   1764         int32_t prefixLen = appendAffix(appendTo, adjustedNum.getDouble(), handler, isNegative, TRUE);
   1765 
   1766         int begin = appendTo.length();
   1767         appendTo += getConstSymbol(DecimalFormatSymbols::kInfinitySymbol);
   1768 
   1769         handler.addAttribute(kIntegerField, begin, appendTo.length());
   1770 
   1771         int32_t suffixLen = appendAffix(appendTo, adjustedNum.getDouble(), handler, isNegative, FALSE);
   1772 
   1773         addPadding(appendTo, handler, prefixLen, suffixLen);
   1774         return appendTo;
   1775     }
   1776     return subformat(appendTo, handler, adjustedNum, FALSE, status);
   1777 }
   1778 
   1779 /**
   1780  * Return true if a grouping separator belongs at the given
   1781  * position, based on whether grouping is in use and the values of
   1782  * the primary and secondary grouping interval.
   1783  * @param pos the number of integer digits to the right of
   1784  * the current position.  Zero indicates the position after the
   1785  * rightmost integer digit.
   1786  * @return true if a grouping character belongs at the current
   1787  * position.
   1788  */
   1789 UBool DecimalFormat::isGroupingPosition(int32_t pos) const {
   1790     UBool result = FALSE;
   1791     if (isGroupingUsed() && (pos > 0) && (fGroupingSize > 0)) {
   1792         if ((fGroupingSize2 > 0) && (pos > fGroupingSize)) {
   1793             result = ((pos - fGroupingSize) % fGroupingSize2) == 0;
   1794         } else {
   1795             result = pos % fGroupingSize == 0;
   1796         }
   1797     }
   1798     return result;
   1799 }
   1800 
   1801 //------------------------------------------------------------------------------
   1802 
   1803 /**
   1804  * Complete the formatting of a finite number.  On entry, the DigitList must
   1805  * be filled in with the correct digits.
   1806  */
   1807 UnicodeString&
   1808 DecimalFormat::subformat(UnicodeString& appendTo,
   1809                          FieldPositionHandler& handler,
   1810                          DigitList&     digits,
   1811                          UBool          isInteger,
   1812                          UErrorCode& status) const
   1813 {
   1814     // char zero = '0';
   1815     // DigitList returns digits as '0' thru '9', so we will need to
   1816     // always need to subtract the character 0 to get the numeric value to use for indexing.
   1817 
   1818     UChar32 localizedDigits[10];
   1819     localizedDigits[0] = getConstSymbol(DecimalFormatSymbols::kZeroDigitSymbol).char32At(0);
   1820     localizedDigits[1] = getConstSymbol(DecimalFormatSymbols::kOneDigitSymbol).char32At(0);
   1821     localizedDigits[2] = getConstSymbol(DecimalFormatSymbols::kTwoDigitSymbol).char32At(0);
   1822     localizedDigits[3] = getConstSymbol(DecimalFormatSymbols::kThreeDigitSymbol).char32At(0);
   1823     localizedDigits[4] = getConstSymbol(DecimalFormatSymbols::kFourDigitSymbol).char32At(0);
   1824     localizedDigits[5] = getConstSymbol(DecimalFormatSymbols::kFiveDigitSymbol).char32At(0);
   1825     localizedDigits[6] = getConstSymbol(DecimalFormatSymbols::kSixDigitSymbol).char32At(0);
   1826     localizedDigits[7] = getConstSymbol(DecimalFormatSymbols::kSevenDigitSymbol).char32At(0);
   1827     localizedDigits[8] = getConstSymbol(DecimalFormatSymbols::kEightDigitSymbol).char32At(0);
   1828     localizedDigits[9] = getConstSymbol(DecimalFormatSymbols::kNineDigitSymbol).char32At(0);
   1829 
   1830     const UnicodeString *grouping ;
   1831     if(fCurrencySignCount == fgCurrencySignCountZero) {
   1832         grouping = &getConstSymbol(DecimalFormatSymbols::kGroupingSeparatorSymbol);
   1833     }else{
   1834         grouping = &getConstSymbol(DecimalFormatSymbols::kMonetaryGroupingSeparatorSymbol);
   1835     }
   1836     const UnicodeString *decimal;
   1837     if(fCurrencySignCount == fgCurrencySignCountZero) {
   1838         decimal = &getConstSymbol(DecimalFormatSymbols::kDecimalSeparatorSymbol);
   1839     } else {
   1840         decimal = &getConstSymbol(DecimalFormatSymbols::kMonetarySeparatorSymbol);
   1841     }
   1842     UBool useSigDig = areSignificantDigitsUsed();
   1843     int32_t maxIntDig = getMaximumIntegerDigits();
   1844     int32_t minIntDig = getMinimumIntegerDigits();
   1845 
   1846     // Appends the prefix.
   1847     double doubleValue = digits.getDouble();
   1848     int32_t prefixLen = appendAffix(appendTo, doubleValue, handler, !digits.isPositive(), TRUE);
   1849 
   1850     if (fUseExponentialNotation)
   1851     {
   1852         int currentLength = appendTo.length();
   1853         int intBegin = currentLength;
   1854         int intEnd = -1;
   1855         int fracBegin = -1;
   1856 
   1857         int32_t minFracDig = 0;
   1858         if (useSigDig) {
   1859             maxIntDig = minIntDig = 1;
   1860             minFracDig = getMinimumSignificantDigits() - 1;
   1861         } else {
   1862             minFracDig = getMinimumFractionDigits();
   1863             if (maxIntDig > kMaxScientificIntegerDigits) {
   1864                 maxIntDig = 1;
   1865                 if (maxIntDig < minIntDig) {
   1866                     maxIntDig = minIntDig;
   1867                 }
   1868             }
   1869             if (maxIntDig > minIntDig) {
   1870                 minIntDig = 1;
   1871             }
   1872         }
   1873 
   1874         // Minimum integer digits are handled in exponential format by
   1875         // adjusting the exponent.  For example, 0.01234 with 3 minimum
   1876         // integer digits is "123.4E-4".
   1877 
   1878         // Maximum integer digits are interpreted as indicating the
   1879         // repeating range.  This is useful for engineering notation, in
   1880         // which the exponent is restricted to a multiple of 3.  For
   1881         // example, 0.01234 with 3 maximum integer digits is "12.34e-3".
   1882         // If maximum integer digits are defined and are larger than
   1883         // minimum integer digits, then minimum integer digits are
   1884         // ignored.
   1885         digits.reduce();   // Removes trailing zero digits.
   1886         int32_t exponent = digits.getDecimalAt();
   1887         if (maxIntDig > 1 && maxIntDig != minIntDig) {
   1888             // A exponent increment is defined; adjust to it.
   1889             exponent = (exponent > 0) ? (exponent - 1) / maxIntDig
   1890                                       : (exponent / maxIntDig) - 1;
   1891             exponent *= maxIntDig;
   1892         } else {
   1893             // No exponent increment is defined; use minimum integer digits.
   1894             // If none is specified, as in "#E0", generate 1 integer digit.
   1895             exponent -= (minIntDig > 0 || minFracDig > 0)
   1896                         ? minIntDig : 1;
   1897         }
   1898 
   1899         // We now output a minimum number of digits, and more if there
   1900         // are more digits, up to the maximum number of digits.  We
   1901         // place the decimal point after the "integer" digits, which
   1902         // are the first (decimalAt - exponent) digits.
   1903         int32_t minimumDigits =  minIntDig + minFracDig;
   1904         // The number of integer digits is handled specially if the number
   1905         // is zero, since then there may be no digits.
   1906         int32_t integerDigits = digits.isZero() ? minIntDig :
   1907             digits.getDecimalAt() - exponent;
   1908         int32_t totalDigits = digits.getCount();
   1909         if (minimumDigits > totalDigits)
   1910             totalDigits = minimumDigits;
   1911         if (integerDigits > totalDigits)
   1912             totalDigits = integerDigits;
   1913 
   1914         // totalDigits records total number of digits needs to be processed
   1915         int32_t i;
   1916         for (i=0; i<totalDigits; ++i)
   1917         {
   1918             if (i == integerDigits)
   1919             {
   1920                 intEnd = appendTo.length();
   1921                 handler.addAttribute(kIntegerField, intBegin, intEnd);
   1922 
   1923                 appendTo += *decimal;
   1924 
   1925                 fracBegin = appendTo.length();
   1926                 handler.addAttribute(kDecimalSeparatorField, fracBegin - 1, fracBegin);
   1927             }
   1928             // Restores the digit character or pads the buffer with zeros.
   1929             UChar32 c = (UChar32)((i < digits.getCount()) ?
   1930                           localizedDigits[digits.getDigitValue(i)] :
   1931                           localizedDigits[0]);
   1932             appendTo += c;
   1933         }
   1934 
   1935         currentLength = appendTo.length();
   1936 
   1937         if (intEnd < 0) {
   1938             handler.addAttribute(kIntegerField, intBegin, currentLength);
   1939         }
   1940         if (fracBegin > 0) {
   1941             handler.addAttribute(kFractionField, fracBegin, currentLength);
   1942         }
   1943 
   1944         // The exponent is output using the pattern-specified minimum
   1945         // exponent digits.  There is no maximum limit to the exponent
   1946         // digits, since truncating the exponent would appendTo in an
   1947         // unacceptable inaccuracy.
   1948         appendTo += getConstSymbol(DecimalFormatSymbols::kExponentialSymbol);
   1949 
   1950         handler.addAttribute(kExponentSymbolField, currentLength, appendTo.length());
   1951         currentLength = appendTo.length();
   1952 
   1953         // For zero values, we force the exponent to zero.  We
   1954         // must do this here, and not earlier, because the value
   1955         // is used to determine integer digit count above.
   1956         if (digits.isZero())
   1957             exponent = 0;
   1958 
   1959         if (exponent < 0) {
   1960             appendTo += getConstSymbol(DecimalFormatSymbols::kMinusSignSymbol);
   1961             handler.addAttribute(kExponentSignField, currentLength, appendTo.length());
   1962         } else if (fExponentSignAlwaysShown) {
   1963             appendTo += getConstSymbol(DecimalFormatSymbols::kPlusSignSymbol);
   1964             handler.addAttribute(kExponentSignField, currentLength, appendTo.length());
   1965         }
   1966 
   1967         currentLength = appendTo.length();
   1968 
   1969         DigitList expDigits;
   1970         expDigits.set(exponent);
   1971         {
   1972             int expDig = fMinExponentDigits;
   1973             if (fUseExponentialNotation && expDig < 1) {
   1974                 expDig = 1;
   1975             }
   1976             for (i=expDigits.getDecimalAt(); i<expDig; ++i)
   1977                 appendTo += (localizedDigits[0]);
   1978         }
   1979         for (i=0; i<expDigits.getDecimalAt(); ++i)
   1980         {
   1981             UChar32 c = (UChar32)((i < expDigits.getCount()) ?
   1982                           localizedDigits[expDigits.getDigitValue(i)] :
   1983                           localizedDigits[0]);
   1984             appendTo += c;
   1985         }
   1986 
   1987         handler.addAttribute(kExponentField, currentLength, appendTo.length());
   1988     }
   1989     else  // Not using exponential notation
   1990     {
   1991         int currentLength = appendTo.length();
   1992         int intBegin = currentLength;
   1993 
   1994         int32_t sigCount = 0;
   1995         int32_t minSigDig = getMinimumSignificantDigits();
   1996         int32_t maxSigDig = getMaximumSignificantDigits();
   1997         if (!useSigDig) {
   1998             minSigDig = 0;
   1999             maxSigDig = INT32_MAX;
   2000         }
   2001 
   2002         // Output the integer portion.  Here 'count' is the total
   2003         // number of integer digits we will display, including both
   2004         // leading zeros required to satisfy getMinimumIntegerDigits,
   2005         // and actual digits present in the number.
   2006         int32_t count = useSigDig ?
   2007             _max(1, digits.getDecimalAt()) : minIntDig;
   2008         if (digits.getDecimalAt() > 0 && count < digits.getDecimalAt()) {
   2009             count = digits.getDecimalAt();
   2010         }
   2011 
   2012         // Handle the case where getMaximumIntegerDigits() is smaller
   2013         // than the real number of integer digits.  If this is so, we
   2014         // output the least significant max integer digits.  For example,
   2015         // the value 1997 printed with 2 max integer digits is just "97".
   2016 
   2017         int32_t digitIndex = 0; // Index into digitList.fDigits[]
   2018         if (count > maxIntDig && maxIntDig >= 0) {
   2019             count = maxIntDig;
   2020             digitIndex = digits.getDecimalAt() - count;
   2021             if(fBoolFlags.contains(UNUM_FORMAT_FAIL_IF_MORE_THAN_MAX_DIGITS)) {
   2022                 status = U_ILLEGAL_ARGUMENT_ERROR;
   2023             }
   2024         }
   2025 
   2026         int32_t sizeBeforeIntegerPart = appendTo.length();
   2027 
   2028         int32_t i;
   2029         for (i=count-1; i>=0; --i)
   2030         {
   2031             if (i < digits.getDecimalAt() && digitIndex < digits.getCount() &&
   2032                 sigCount < maxSigDig) {
   2033                 // Output a real digit
   2034                 appendTo += (UChar32)localizedDigits[digits.getDigitValue(digitIndex++)];
   2035                 ++sigCount;
   2036             }
   2037             else
   2038             {
   2039                 // Output a zero (leading or trailing)
   2040                 appendTo += localizedDigits[0];
   2041                 if (sigCount > 0) {
   2042                     ++sigCount;
   2043                 }
   2044             }
   2045 
   2046             // Output grouping separator if necessary.
   2047             if (isGroupingPosition(i)) {
   2048                 currentLength = appendTo.length();
   2049                 appendTo.append(*grouping);
   2050                 handler.addAttribute(kGroupingSeparatorField, currentLength, appendTo.length());
   2051             }
   2052         }
   2053 
   2054         // This handles the special case of formatting 0. For zero only, we count the
   2055         // zero to the left of the decimal point as one signficant digit. Ordinarily we
   2056         // do not count any leading 0's as significant. If the number we are formatting
   2057         // is not zero, then either sigCount or digits.getCount() will be non-zero.
   2058         if (sigCount == 0 && digits.getCount() == 0) {
   2059           sigCount = 1;
   2060         }
   2061 
   2062         // TODO(dlf): this looks like it was a bug, we marked the int field as ending
   2063         // before the zero was generated.
   2064         // Record field information for caller.
   2065         // if (fieldPosition.getField() == NumberFormat::kIntegerField)
   2066         //     fieldPosition.setEndIndex(appendTo.length());
   2067 
   2068         // Determine whether or not there are any printable fractional
   2069         // digits.  If we've used up the digits we know there aren't.
   2070         UBool fractionPresent = (!isInteger && digitIndex < digits.getCount()) ||
   2071             (useSigDig ? (sigCount < minSigDig) : (getMinimumFractionDigits() > 0));
   2072 
   2073         // If there is no fraction present, and we haven't printed any
   2074         // integer digits, then print a zero.  Otherwise we won't print
   2075         // _any_ digits, and we won't be able to parse this string.
   2076         if (!fractionPresent && appendTo.length() == sizeBeforeIntegerPart)
   2077             appendTo += localizedDigits[0];
   2078 
   2079         currentLength = appendTo.length();
   2080         handler.addAttribute(kIntegerField, intBegin, currentLength);
   2081 
   2082         // Output the decimal separator if we always do so.
   2083         if (fDecimalSeparatorAlwaysShown || fractionPresent) {
   2084             appendTo += *decimal;
   2085             handler.addAttribute(kDecimalSeparatorField, currentLength, appendTo.length());
   2086             currentLength = appendTo.length();
   2087         }
   2088 
   2089         int fracBegin = currentLength;
   2090 
   2091         count = useSigDig ? INT32_MAX : getMaximumFractionDigits();
   2092         if (useSigDig && (sigCount == maxSigDig ||
   2093                           (sigCount >= minSigDig && digitIndex == digits.getCount()))) {
   2094             count = 0;
   2095         }
   2096 
   2097         for (i=0; i < count; ++i) {
   2098             // Here is where we escape from the loop.  We escape
   2099             // if we've output the maximum fraction digits
   2100             // (specified in the for expression above).  We also
   2101             // stop when we've output the minimum digits and
   2102             // either: we have an integer, so there is no
   2103             // fractional stuff to display, or we're out of
   2104             // significant digits.
   2105             if (!useSigDig && i >= getMinimumFractionDigits() &&
   2106                 (isInteger || digitIndex >= digits.getCount())) {
   2107                 break;
   2108             }
   2109 
   2110             // Output leading fractional zeros.  These are zeros
   2111             // that come after the decimal but before any
   2112             // significant digits.  These are only output if
   2113             // abs(number being formatted) < 1.0.
   2114             if (-1-i > (digits.getDecimalAt()-1)) {
   2115                 appendTo += localizedDigits[0];
   2116                 continue;
   2117             }
   2118 
   2119             // Output a digit, if we have any precision left, or a
   2120             // zero if we don't.  We don't want to output noise digits.
   2121             if (!isInteger && digitIndex < digits.getCount()) {
   2122                 appendTo += (UChar32)localizedDigits[digits.getDigitValue(digitIndex++)];
   2123             } else {
   2124                 appendTo += localizedDigits[0];
   2125             }
   2126 
   2127             // If we reach the maximum number of significant
   2128             // digits, or if we output all the real digits and
   2129             // reach the minimum, then we are done.
   2130             ++sigCount;
   2131             if (useSigDig &&
   2132                 (sigCount == maxSigDig ||
   2133                  (digitIndex == digits.getCount() && sigCount >= minSigDig))) {
   2134                 break;
   2135             }
   2136         }
   2137 
   2138         handler.addAttribute(kFractionField, fracBegin, appendTo.length());
   2139     }
   2140 
   2141     int32_t suffixLen = appendAffix(appendTo, doubleValue, handler, !digits.isPositive(), FALSE);
   2142 
   2143     addPadding(appendTo, handler, prefixLen, suffixLen);
   2144     return appendTo;
   2145 }
   2146 
   2147 /**
   2148  * Inserts the character fPad as needed to expand result to fFormatWidth.
   2149  * @param result the string to be padded
   2150  */
   2151 void DecimalFormat::addPadding(UnicodeString& appendTo,
   2152                                FieldPositionHandler& handler,
   2153                                int32_t prefixLen,
   2154                                int32_t suffixLen) const
   2155 {
   2156     if (fFormatWidth > 0) {
   2157         int32_t len = fFormatWidth - appendTo.length();
   2158         if (len > 0) {
   2159             UnicodeString padding;
   2160             for (int32_t i=0; i<len; ++i) {
   2161                 padding += fPad;
   2162             }
   2163             switch (fPadPosition) {
   2164             case kPadAfterPrefix:
   2165                 appendTo.insert(prefixLen, padding);
   2166                 break;
   2167             case kPadBeforePrefix:
   2168                 appendTo.insert(0, padding);
   2169                 break;
   2170             case kPadBeforeSuffix:
   2171                 appendTo.insert(appendTo.length() - suffixLen, padding);
   2172                 break;
   2173             case kPadAfterSuffix:
   2174                 appendTo += padding;
   2175                 break;
   2176             }
   2177             if (fPadPosition == kPadBeforePrefix || fPadPosition == kPadAfterPrefix) {
   2178                 handler.shiftLast(len);
   2179             }
   2180         }
   2181     }
   2182 }
   2183 
   2184 //------------------------------------------------------------------------------
   2185 
   2186 void
   2187 DecimalFormat::parse(const UnicodeString& text,
   2188                      Formattable& result,
   2189                      ParsePosition& parsePosition) const {
   2190     parse(text, result, parsePosition, NULL);
   2191 }
   2192 
   2193 CurrencyAmount* DecimalFormat::parseCurrency(const UnicodeString& text,
   2194                                              ParsePosition& pos) const {
   2195     Formattable parseResult;
   2196     int32_t start = pos.getIndex();
   2197     UChar curbuf[4] = {};
   2198     parse(text, parseResult, pos, curbuf);
   2199     if (pos.getIndex() != start) {
   2200         UErrorCode ec = U_ZERO_ERROR;
   2201         LocalPointer<CurrencyAmount> currAmt(new CurrencyAmount(parseResult, curbuf, ec), ec);
   2202         if (U_FAILURE(ec)) {
   2203             pos.setIndex(start); // indicate failure
   2204         } else {
   2205             return currAmt.orphan();
   2206         }
   2207     }
   2208     return NULL;
   2209 }
   2210 
   2211 /**
   2212  * Parses the given text as a number, optionally providing a currency amount.
   2213  * @param text the string to parse
   2214  * @param result output parameter for the numeric result.
   2215  * @param parsePosition input-output position; on input, the
   2216  * position within text to match; must have 0 <= pos.getIndex() <
   2217  * text.length(); on output, the position after the last matched
   2218  * character. If the parse fails, the position in unchanged upon
   2219  * output.
   2220  * @param currency if non-NULL, it should point to a 4-UChar buffer.
   2221  * In this case the text is parsed as a currency format, and the
   2222  * ISO 4217 code for the parsed currency is put into the buffer.
   2223  * Otherwise the text is parsed as a non-currency format.
   2224  */
   2225 void DecimalFormat::parse(const UnicodeString& text,
   2226                           Formattable& result,
   2227                           ParsePosition& parsePosition,
   2228                           UChar* currency) const {
   2229     int32_t startIdx, backup;
   2230     int32_t i = startIdx = backup = parsePosition.getIndex();
   2231 
   2232     // clear any old contents in the result.  In particular, clears any DigitList
   2233     //   that it may be holding.
   2234     result.setLong(0);
   2235     if (currency != NULL) {
   2236         for (int32_t ci=0; ci<4; ci++) {
   2237             currency[ci] = 0;
   2238         }
   2239     }
   2240 
   2241     // Handle NaN as a special case:
   2242 
   2243     // Skip padding characters, if around prefix
   2244     if (fFormatWidth > 0 && (fPadPosition == kPadBeforePrefix ||
   2245                              fPadPosition == kPadAfterPrefix)) {
   2246         i = skipPadding(text, i);
   2247     }
   2248 
   2249     if (isLenient()) {
   2250         // skip any leading whitespace
   2251         i = backup = skipUWhiteSpace(text, i);
   2252     }
   2253 
   2254     // If the text is composed of the representation of NaN, returns NaN.length
   2255     const UnicodeString *nan = &getConstSymbol(DecimalFormatSymbols::kNaNSymbol);
   2256     int32_t nanLen = (text.compare(i, nan->length(), *nan)
   2257                       ? 0 : nan->length());
   2258     if (nanLen) {
   2259         i += nanLen;
   2260         if (fFormatWidth > 0 && (fPadPosition == kPadBeforeSuffix ||
   2261                                  fPadPosition == kPadAfterSuffix)) {
   2262             i = skipPadding(text, i);
   2263         }
   2264         parsePosition.setIndex(i);
   2265         result.setDouble(uprv_getNaN());
   2266         return;
   2267     }
   2268 
   2269     // NaN parse failed; start over
   2270     i = backup;
   2271     parsePosition.setIndex(i);
   2272 
   2273     // status is used to record whether a number is infinite.
   2274     UBool status[fgStatusLength];
   2275 
   2276     DigitList *digits = result.getInternalDigitList(); // get one from the stack buffer
   2277     if (digits == NULL) {
   2278         return;    // no way to report error from here.
   2279     }
   2280 
   2281     if (fCurrencySignCount != fgCurrencySignCountZero) {
   2282         if (!parseForCurrency(text, parsePosition, *digits,
   2283                               status, currency)) {
   2284           return;
   2285         }
   2286     } else {
   2287         if (!subparse(text,
   2288                       fNegPrefixPattern, fNegSuffixPattern,
   2289                       fPosPrefixPattern, fPosSuffixPattern,
   2290                       FALSE, UCURR_SYMBOL_NAME,
   2291                       parsePosition, *digits, status, currency)) {
   2292             debug("!subparse(...) - rewind");
   2293             parsePosition.setIndex(startIdx);
   2294             return;
   2295         }
   2296     }
   2297 
   2298     // Handle infinity
   2299     if (status[fgStatusInfinite]) {
   2300         double inf = uprv_getInfinity();
   2301         result.setDouble(digits->isPositive() ? inf : -inf);
   2302         // TODO:  set the dl to infinity, and let it fall into the code below.
   2303     }
   2304 
   2305     else {
   2306 
   2307         if (fMultiplier != NULL) {
   2308             UErrorCode ec = U_ZERO_ERROR;
   2309             digits->div(*fMultiplier, ec);
   2310         }
   2311 
   2312         if (fScale != 0) {
   2313             DigitList ten;
   2314             ten.set((int32_t)10);
   2315             if (fScale > 0) {
   2316                 for (int32_t i = fScale; i > 0; i--) {
   2317                     UErrorCode ec = U_ZERO_ERROR;
   2318                     digits->div(ten,ec);
   2319                 }
   2320             } else {
   2321                 for (int32_t i = fScale; i < 0; i++) {
   2322                     UErrorCode ec = U_ZERO_ERROR;
   2323                     digits->mult(ten,ec);
   2324                 }
   2325             }
   2326         }
   2327 
   2328         // Negative zero special case:
   2329         //    if parsing integerOnly, change to +0, which goes into an int32 in a Formattable.
   2330         //    if not parsing integerOnly, leave as -0, which a double can represent.
   2331         if (digits->isZero() && !digits->isPositive() && isParseIntegerOnly()) {
   2332             digits->setPositive(TRUE);
   2333         }
   2334         result.adoptDigitList(digits);
   2335     }
   2336 }
   2337 
   2338 
   2339 
   2340 UBool
   2341 DecimalFormat::parseForCurrency(const UnicodeString& text,
   2342                                 ParsePosition& parsePosition,
   2343                                 DigitList& digits,
   2344                                 UBool* status,
   2345                                 UChar* currency) const {
   2346     int origPos = parsePosition.getIndex();
   2347     int maxPosIndex = origPos;
   2348     int maxErrorPos = -1;
   2349     // First, parse against current pattern.
   2350     // Since current pattern could be set by applyPattern(),
   2351     // it could be an arbitrary pattern, and it may not be the one
   2352     // defined in current locale.
   2353     UBool tmpStatus[fgStatusLength];
   2354     ParsePosition tmpPos(origPos);
   2355     DigitList tmpDigitList;
   2356     UBool found;
   2357     if (fStyle == UNUM_CURRENCY_PLURAL) {
   2358         found = subparse(text,
   2359                          fNegPrefixPattern, fNegSuffixPattern,
   2360                          fPosPrefixPattern, fPosSuffixPattern,
   2361                          TRUE, UCURR_LONG_NAME,
   2362                          tmpPos, tmpDigitList, tmpStatus, currency);
   2363     } else {
   2364         found = subparse(text,
   2365                          fNegPrefixPattern, fNegSuffixPattern,
   2366                          fPosPrefixPattern, fPosSuffixPattern,
   2367                          TRUE, UCURR_SYMBOL_NAME,
   2368                          tmpPos, tmpDigitList, tmpStatus, currency);
   2369     }
   2370     if (found) {
   2371         if (tmpPos.getIndex() > maxPosIndex) {
   2372             maxPosIndex = tmpPos.getIndex();
   2373             for (int32_t i = 0; i < fgStatusLength; ++i) {
   2374                 status[i] = tmpStatus[i];
   2375             }
   2376             digits = tmpDigitList;
   2377         }
   2378     } else {
   2379         maxErrorPos = tmpPos.getErrorIndex();
   2380     }
   2381     // Then, parse against affix patterns.
   2382     // Those are currency patterns and currency plural patterns.
   2383     int32_t pos = UHASH_FIRST;
   2384     const UHashElement* element = NULL;
   2385     while ( (element = fAffixPatternsForCurrency->nextElement(pos)) != NULL ) {
   2386         const UHashTok valueTok = element->value;
   2387         const AffixPatternsForCurrency* affixPtn = (AffixPatternsForCurrency*)valueTok.pointer;
   2388         UBool tmpStatus[fgStatusLength];
   2389         ParsePosition tmpPos(origPos);
   2390         DigitList tmpDigitList;
   2391 
   2392 #ifdef FMT_DEBUG
   2393         debug("trying affix for currency..");
   2394         affixPtn->dump();
   2395 #endif
   2396 
   2397         UBool result = subparse(text,
   2398                                 &affixPtn->negPrefixPatternForCurrency,
   2399                                 &affixPtn->negSuffixPatternForCurrency,
   2400                                 &affixPtn->posPrefixPatternForCurrency,
   2401                                 &affixPtn->posSuffixPatternForCurrency,
   2402                                 TRUE, affixPtn->patternType,
   2403                                 tmpPos, tmpDigitList, tmpStatus, currency);
   2404         if (result) {
   2405             found = true;
   2406             if (tmpPos.getIndex() > maxPosIndex) {
   2407                 maxPosIndex = tmpPos.getIndex();
   2408                 for (int32_t i = 0; i < fgStatusLength; ++i) {
   2409                     status[i] = tmpStatus[i];
   2410                 }
   2411                 digits = tmpDigitList;
   2412             }
   2413         } else {
   2414             maxErrorPos = (tmpPos.getErrorIndex() > maxErrorPos) ?
   2415                           tmpPos.getErrorIndex() : maxErrorPos;
   2416         }
   2417     }
   2418     // Finally, parse against simple affix to find the match.
   2419     // For example, in TestMonster suite,
   2420     // if the to-be-parsed text is "-\u00A40,00".
   2421     // complexAffixCompare will not find match,
   2422     // since there is no ISO code matches "\u00A4",
   2423     // and the parse stops at "\u00A4".
   2424     // We will just use simple affix comparison (look for exact match)
   2425     // to pass it.
   2426     //
   2427     // TODO: We should parse against simple affix first when
   2428     // output currency is not requested. After the complex currency
   2429     // parsing implementation was introduced, the default currency
   2430     // instance parsing slowed down because of the new code flow.
   2431     // I filed #10312 - Yoshito
   2432     UBool tmpStatus_2[fgStatusLength];
   2433     ParsePosition tmpPos_2(origPos);
   2434     DigitList tmpDigitList_2;
   2435 
   2436     // Disable complex currency parsing and try it again.
   2437     UBool result = subparse(text,
   2438                             &fNegativePrefix, &fNegativeSuffix,
   2439                             &fPositivePrefix, &fPositiveSuffix,
   2440                             FALSE /* disable complex currency parsing */, UCURR_SYMBOL_NAME,
   2441                             tmpPos_2, tmpDigitList_2, tmpStatus_2,
   2442                             currency);
   2443     if (result) {
   2444         if (tmpPos_2.getIndex() > maxPosIndex) {
   2445             maxPosIndex = tmpPos_2.getIndex();
   2446             for (int32_t i = 0; i < fgStatusLength; ++i) {
   2447                 status[i] = tmpStatus_2[i];
   2448             }
   2449             digits = tmpDigitList_2;
   2450         }
   2451         found = true;
   2452     } else {
   2453             maxErrorPos = (tmpPos_2.getErrorIndex() > maxErrorPos) ?
   2454                           tmpPos_2.getErrorIndex() : maxErrorPos;
   2455     }
   2456 
   2457     if (!found) {
   2458         //parsePosition.setIndex(origPos);
   2459         parsePosition.setErrorIndex(maxErrorPos);
   2460     } else {
   2461         parsePosition.setIndex(maxPosIndex);
   2462         parsePosition.setErrorIndex(-1);
   2463     }
   2464     return found;
   2465 }
   2466 
   2467 
   2468 /**
   2469  * Parse the given text into a number.  The text is parsed beginning at
   2470  * parsePosition, until an unparseable character is seen.
   2471  * @param text the string to parse.
   2472  * @param negPrefix negative prefix.
   2473  * @param negSuffix negative suffix.
   2474  * @param posPrefix positive prefix.
   2475  * @param posSuffix positive suffix.
   2476  * @param complexCurrencyParsing whether it is complex currency parsing or not.
   2477  * @param type the currency type to parse against, LONG_NAME only or not.
   2478  * @param parsePosition The position at which to being parsing.  Upon
   2479  * return, the first unparsed character.
   2480  * @param digits the DigitList to set to the parsed value.
   2481  * @param status output param containing boolean status flags indicating
   2482  * whether the value was infinite and whether it was positive.
   2483  * @param currency return value for parsed currency, for generic
   2484  * currency parsing mode, or NULL for normal parsing. In generic
   2485  * currency parsing mode, any currency is parsed, not just the
   2486  * currency that this formatter is set to.
   2487  */
   2488 UBool DecimalFormat::subparse(const UnicodeString& text,
   2489                               const UnicodeString* negPrefix,
   2490                               const UnicodeString* negSuffix,
   2491                               const UnicodeString* posPrefix,
   2492                               const UnicodeString* posSuffix,
   2493                               UBool complexCurrencyParsing,
   2494                               int8_t type,
   2495                               ParsePosition& parsePosition,
   2496                               DigitList& digits, UBool* status,
   2497                               UChar* currency) const
   2498 {
   2499     //  The parsing process builds up the number as char string, in the neutral format that
   2500     //  will be acceptable to the decNumber library, then at the end passes that string
   2501     //  off for conversion to a decNumber.
   2502     UErrorCode err = U_ZERO_ERROR;
   2503     CharString parsedNum;
   2504     digits.setToZero();
   2505 
   2506     int32_t position = parsePosition.getIndex();
   2507     int32_t oldStart = position;
   2508     int32_t textLength = text.length(); // One less pointer to follow
   2509     UBool strictParse = !isLenient();
   2510     UChar32 zero = getConstSymbol(DecimalFormatSymbols::kZeroDigitSymbol).char32At(0);
   2511     const UnicodeString *groupingString = &getConstSymbol(fCurrencySignCount == fgCurrencySignCountZero ?
   2512         DecimalFormatSymbols::kGroupingSeparatorSymbol : DecimalFormatSymbols::kMonetaryGroupingSeparatorSymbol);
   2513     UChar32 groupingChar = groupingString->char32At(0);
   2514     int32_t groupingStringLength = groupingString->length();
   2515     int32_t groupingCharLength   = U16_LENGTH(groupingChar);
   2516     UBool   groupingUsed = isGroupingUsed();
   2517 #ifdef FMT_DEBUG
   2518     UChar dbgbuf[300];
   2519     UnicodeString s(dbgbuf,0,300);;
   2520     s.append((UnicodeString)"PARSE \"").append(text.tempSubString(position)).append((UnicodeString)"\" " );
   2521 #define DBGAPPD(x) if(x) { s.append(UnicodeString(#x "="));  if(x->isEmpty()) { s.append(UnicodeString("<empty>")); } else { s.append(*x); } s.append(UnicodeString(" ")); } else { s.append(UnicodeString(#x "=NULL ")); }
   2522     DBGAPPD(negPrefix);
   2523     DBGAPPD(negSuffix);
   2524     DBGAPPD(posPrefix);
   2525     DBGAPPD(posSuffix);
   2526     debugout(s);
   2527     printf("currencyParsing=%d, fFormatWidth=%d, isParseIntegerOnly=%c text.length=%d negPrefLen=%d\n", currencyParsing, fFormatWidth, (isParseIntegerOnly())?'Y':'N', text.length(),  negPrefix!=NULL?negPrefix->length():-1);
   2528 #endif
   2529 
   2530     UBool fastParseOk = false; /* TRUE iff fast parse is OK */
   2531     // UBool fastParseHadDecimal = FALSE; /* true if fast parse saw a decimal point. */
   2532     const DecimalFormatInternal &data = internalData(fReserved);
   2533     if((data.fFastParseStatus==kFastpathYES) &&
   2534        fCurrencySignCount == fgCurrencySignCountZero &&
   2535        //       (negPrefix!=NULL&&negPrefix->isEmpty()) ||
   2536        text.length()>0 &&
   2537        text.length()<32 &&
   2538        (posPrefix==NULL||posPrefix->isEmpty()) &&
   2539        (posSuffix==NULL||posSuffix->isEmpty()) &&
   2540        //            (negPrefix==NULL||negPrefix->isEmpty()) &&
   2541        //            (negSuffix==NULL||(negSuffix->isEmpty()) ) &&
   2542        TRUE) {  // optimized path
   2543       int j=position;
   2544       int l=text.length();
   2545       int digitCount=0;
   2546       UChar32 ch = text.char32At(j);
   2547       const UnicodeString *decimalString = &getConstSymbol(DecimalFormatSymbols::kDecimalSeparatorSymbol);
   2548       UChar32 decimalChar = 0;
   2549       UBool intOnly = FALSE;
   2550       UChar32 lookForGroup = (groupingUsed&&intOnly&&strictParse)?groupingChar:0;
   2551 
   2552       int32_t decimalCount = decimalString->countChar32(0,3);
   2553       if(isParseIntegerOnly()) {
   2554         decimalChar = 0; // not allowed
   2555         intOnly = TRUE; // Don't look for decimals.
   2556       } else if(decimalCount==1) {
   2557         decimalChar = decimalString->char32At(0); // Look for this decimal
   2558       } else if(decimalCount==0) {
   2559         decimalChar=0; // NO decimal set
   2560       } else {
   2561         j=l+1;//Set counter to end of line, so that we break. Unknown decimal situation.
   2562       }
   2563 
   2564 #ifdef FMT_DEBUG
   2565       printf("Preparing to do fastpath parse: decimalChar=U+%04X, groupingChar=U+%04X, first ch=U+%04X intOnly=%c strictParse=%c\n",
   2566         decimalChar, groupingChar, ch,
   2567         (intOnly)?'y':'n',
   2568         (strictParse)?'y':'n');
   2569 #endif
   2570       if(ch==0x002D) { // '-'
   2571         j=l+1;//=break - negative number.
   2572 
   2573         /*
   2574           parsedNum.append('-',err);
   2575           j+=U16_LENGTH(ch);
   2576           if(j<l) ch = text.char32At(j);
   2577         */
   2578       } else {
   2579         parsedNum.append('+',err);
   2580       }
   2581       while(j<l) {
   2582         int32_t digit = ch - zero;
   2583         if(digit >=0 && digit <= 9) {
   2584           parsedNum.append((char)(digit + '0'), err);
   2585           if((digitCount>0) || digit!=0 || j==(l-1)) {
   2586             digitCount++;
   2587           }
   2588         } else if(ch == 0) { // break out
   2589           digitCount=-1;
   2590           break;
   2591         } else if(ch == decimalChar) {
   2592           parsedNum.append((char)('.'), err);
   2593           decimalChar=0; // no more decimals.
   2594           // fastParseHadDecimal=TRUE;
   2595         } else if(ch == lookForGroup) {
   2596           // ignore grouping char. No decimals, so it has to be an ignorable grouping sep
   2597         } else if(intOnly && (lookForGroup!=0) && !u_isdigit(ch)) {
   2598           // parsing integer only and can fall through
   2599         } else {
   2600           digitCount=-1; // fail - fall through to slow parse
   2601           break;
   2602         }
   2603         j+=U16_LENGTH(ch);
   2604         ch = text.char32At(j); // for next
   2605       }
   2606       if(
   2607          ((j==l)||intOnly) // end OR only parsing integer
   2608          && (digitCount>0)) { // and have at least one digit
   2609 #ifdef FMT_DEBUG
   2610         printf("PP -> %d, good = [%s]  digitcount=%d, fGroupingSize=%d fGroupingSize2=%d!\n", j, parsedNum.data(), digitCount, fGroupingSize, fGroupingSize2);
   2611 #endif
   2612         fastParseOk=true; // Fast parse OK!
   2613 
   2614 #ifdef SKIP_OPT
   2615         debug("SKIP_OPT");
   2616         /* for testing, try it the slow way. also */
   2617         fastParseOk=false;
   2618         parsedNum.clear();
   2619 #else
   2620         parsePosition.setIndex(position=j);
   2621         status[fgStatusInfinite]=false;
   2622 #endif
   2623       } else {
   2624         // was not OK. reset, retry
   2625 #ifdef FMT_DEBUG
   2626         printf("Fall through: j=%d, l=%d, digitCount=%d\n", j, l, digitCount);
   2627 #endif
   2628         parsedNum.clear();
   2629       }
   2630     } else {
   2631 #ifdef FMT_DEBUG
   2632       printf("Could not fastpath parse. ");
   2633       printf("fFormatWidth=%d ", fFormatWidth);
   2634       printf("text.length()=%d ", text.length());
   2635       printf("posPrefix=%p posSuffix=%p ", posPrefix, posSuffix);
   2636 
   2637       printf("\n");
   2638 #endif
   2639     }
   2640 
   2641   if(!fastParseOk
   2642 #if UCONFIG_HAVE_PARSEALLINPUT
   2643      && fParseAllInput!=UNUM_YES
   2644 #endif
   2645      )
   2646   {
   2647     // Match padding before prefix
   2648     if (fFormatWidth > 0 && fPadPosition == kPadBeforePrefix) {
   2649         position = skipPadding(text, position);
   2650     }
   2651 
   2652     // Match positive and negative prefixes; prefer longest match.
   2653     int32_t posMatch = compareAffix(text, position, FALSE, TRUE, posPrefix, complexCurrencyParsing, type, currency);
   2654     int32_t negMatch = compareAffix(text, position, TRUE,  TRUE, negPrefix, complexCurrencyParsing, type, currency);
   2655     if (posMatch >= 0 && negMatch >= 0) {
   2656         if (posMatch > negMatch) {
   2657             negMatch = -1;
   2658         } else if (negMatch > posMatch) {
   2659             posMatch = -1;
   2660         }
   2661     }
   2662     if (posMatch >= 0) {
   2663         position += posMatch;
   2664         parsedNum.append('+', err);
   2665     } else if (negMatch >= 0) {
   2666         position += negMatch;
   2667         parsedNum.append('-', err);
   2668     } else if (strictParse){
   2669         parsePosition.setErrorIndex(position);
   2670         return FALSE;
   2671     } else {
   2672         // Temporary set positive. This might be changed after checking suffix
   2673         parsedNum.append('+', err);
   2674     }
   2675 
   2676     // Match padding before prefix
   2677     if (fFormatWidth > 0 && fPadPosition == kPadAfterPrefix) {
   2678         position = skipPadding(text, position);
   2679     }
   2680 
   2681     if (! strictParse) {
   2682         position = skipUWhiteSpace(text, position);
   2683     }
   2684 
   2685     // process digits or Inf, find decimal position
   2686     const UnicodeString *inf = &getConstSymbol(DecimalFormatSymbols::kInfinitySymbol);
   2687     int32_t infLen = (text.compare(position, inf->length(), *inf)
   2688         ? 0 : inf->length());
   2689     position += infLen; // infLen is non-zero when it does equal to infinity
   2690     status[fgStatusInfinite] = infLen != 0;
   2691 
   2692     if (infLen != 0) {
   2693         parsedNum.append("Infinity", err);
   2694     } else {
   2695         // We now have a string of digits, possibly with grouping symbols,
   2696         // and decimal points.  We want to process these into a DigitList.
   2697         // We don't want to put a bunch of leading zeros into the DigitList
   2698         // though, so we keep track of the location of the decimal point,
   2699         // put only significant digits into the DigitList, and adjust the
   2700         // exponent as needed.
   2701 
   2702 
   2703         UBool strictFail = FALSE; // did we exit with a strict parse failure?
   2704         int32_t lastGroup = -1; // where did we last see a grouping separator?
   2705         int32_t digitStart = position;
   2706         int32_t gs2 = fGroupingSize2 == 0 ? fGroupingSize : fGroupingSize2;
   2707 
   2708         const UnicodeString *decimalString;
   2709         if (fCurrencySignCount != fgCurrencySignCountZero) {
   2710             decimalString = &getConstSymbol(DecimalFormatSymbols::kMonetarySeparatorSymbol);
   2711         } else {
   2712             decimalString = &getConstSymbol(DecimalFormatSymbols::kDecimalSeparatorSymbol);
   2713         }
   2714         UChar32 decimalChar = decimalString->char32At(0);
   2715         int32_t decimalStringLength = decimalString->length();
   2716         int32_t decimalCharLength   = U16_LENGTH(decimalChar);
   2717 
   2718         UBool sawDecimal = FALSE;
   2719         UChar32 sawDecimalChar = 0xFFFF;
   2720         UBool sawGrouping = FALSE;
   2721         UChar32 sawGroupingChar = 0xFFFF;
   2722         UBool sawDigit = FALSE;
   2723         int32_t backup = -1;
   2724         int32_t digit;
   2725 
   2726         // equivalent grouping and decimal support
   2727         const UnicodeSet *decimalSet = NULL;
   2728         const UnicodeSet *groupingSet = NULL;
   2729 
   2730         if (decimalCharLength == decimalStringLength) {
   2731             decimalSet = DecimalFormatStaticSets::getSimilarDecimals(decimalChar, strictParse);
   2732         }
   2733 
   2734         if (groupingCharLength == groupingStringLength) {
   2735             if (strictParse) {
   2736                 groupingSet = fStaticSets->fStrictDefaultGroupingSeparators;
   2737             } else {
   2738                 groupingSet = fStaticSets->fDefaultGroupingSeparators;
   2739             }
   2740         }
   2741 
   2742         // We need to test groupingChar and decimalChar separately from groupingSet and decimalSet, if the sets are even initialized.
   2743         // If sawDecimal is TRUE, only consider sawDecimalChar and NOT decimalSet
   2744         // If a character matches decimalSet, don't consider it to be a member of the groupingSet.
   2745 
   2746         // We have to track digitCount ourselves, because digits.fCount will
   2747         // pin when the maximum allowable digits is reached.
   2748         int32_t digitCount = 0;
   2749         int32_t integerDigitCount = 0;
   2750 
   2751         for (; position < textLength; )
   2752         {
   2753             UChar32 ch = text.char32At(position);
   2754 
   2755             /* We recognize all digit ranges, not only the Latin digit range
   2756              * '0'..'9'.  We do so by using the Character.digit() method,
   2757              * which converts a valid Unicode digit to the range 0..9.
   2758              *
   2759              * The character 'ch' may be a digit.  If so, place its value
   2760              * from 0 to 9 in 'digit'.  First try using the locale digit,
   2761              * which may or MAY NOT be a standard Unicode digit range.  If
   2762              * this fails, try using the standard Unicode digit ranges by
   2763              * calling Character.digit().  If this also fails, digit will
   2764              * have a value outside the range 0..9.
   2765              */
   2766             digit = ch - zero;
   2767             if (digit < 0 || digit > 9)
   2768             {
   2769                 digit = u_charDigitValue(ch);
   2770             }
   2771 
   2772             // As a last resort, look through the localized digits if the zero digit
   2773             // is not a "standard" Unicode digit.
   2774             if ( (digit < 0 || digit > 9) && u_charDigitValue(zero) != 0) {
   2775                 digit = 0;
   2776                 if ( getConstSymbol((DecimalFormatSymbols::ENumberFormatSymbol)(DecimalFormatSymbols::kZeroDigitSymbol)).char32At(0) == ch ) {
   2777                     break;
   2778                 }
   2779                 for (digit = 1 ; digit < 10 ; digit++ ) {
   2780                     if ( getConstSymbol((DecimalFormatSymbols::ENumberFormatSymbol)(DecimalFormatSymbols::kOneDigitSymbol+digit-1)).char32At(0) == ch ) {
   2781                         break;
   2782                     }
   2783                 }
   2784             }
   2785 
   2786             if (digit >= 0 && digit <= 9)
   2787             {
   2788                 if (strictParse && backup != -1) {
   2789                     // comma followed by digit, so group before comma is a
   2790                     // secondary group.  If there was a group separator
   2791                     // before that, the group must == the secondary group
   2792                     // length, else it can be <= the the secondary group
   2793                     // length.
   2794                     if ((lastGroup != -1 && backup - lastGroup - 1 != gs2) ||
   2795                         (lastGroup == -1 && position - digitStart - 1 > gs2)) {
   2796                         strictFail = TRUE;
   2797                         break;
   2798                     }
   2799 
   2800                     lastGroup = backup;
   2801                 }
   2802 
   2803                 // Cancel out backup setting (see grouping handler below)
   2804                 backup = -1;
   2805                 sawDigit = TRUE;
   2806 
   2807                 // Note: this will append leading zeros
   2808                 parsedNum.append((char)(digit + '0'), err);
   2809 
   2810                 // count any digit that's not a leading zero
   2811                 if (digit > 0 || digitCount > 0 || sawDecimal) {
   2812                     digitCount += 1;
   2813 
   2814                     // count any integer digit that's not a leading zero
   2815                     if (! sawDecimal) {
   2816                         integerDigitCount += 1;
   2817                     }
   2818                 }
   2819 
   2820                 position += U16_LENGTH(ch);
   2821             }
   2822             else if (groupingStringLength > 0 &&
   2823                 matchGrouping(groupingChar, sawGrouping, sawGroupingChar, groupingSet,
   2824                             decimalChar, decimalSet,
   2825                             ch) && groupingUsed)
   2826             {
   2827                 if (sawDecimal) {
   2828                     break;
   2829                 }
   2830 
   2831                 if (strictParse) {
   2832                     if ((!sawDigit || backup != -1)) {
   2833                         // leading group, or two group separators in a row
   2834                         strictFail = TRUE;
   2835                         break;
   2836                     }
   2837                 }
   2838 
   2839                 // Ignore grouping characters, if we are using them, but require
   2840                 // that they be followed by a digit.  Otherwise we backup and
   2841                 // reprocess them.
   2842                 backup = position;
   2843                 position += groupingStringLength;
   2844                 sawGrouping=TRUE;
   2845                 // Once we see a grouping character, we only accept that grouping character from then on.
   2846                 sawGroupingChar=ch;
   2847             }
   2848             else if (matchDecimal(decimalChar,sawDecimal,sawDecimalChar, decimalSet, ch))
   2849             {
   2850                 if (strictParse) {
   2851                     if (backup != -1 ||
   2852                         (lastGroup != -1 && position - lastGroup != fGroupingSize + 1)) {
   2853                         strictFail = TRUE;
   2854                         break;
   2855                     }
   2856                 }
   2857 
   2858                 // If we're only parsing integers, or if we ALREADY saw the
   2859                 // decimal, then don't parse this one.
   2860                 if (isParseIntegerOnly() || sawDecimal) {
   2861                     break;
   2862                 }
   2863 
   2864                 parsedNum.append('.', err);
   2865                 position += decimalStringLength;
   2866                 sawDecimal = TRUE;
   2867                 // Once we see a decimal character, we only accept that decimal character from then on.
   2868                 sawDecimalChar=ch;
   2869                 // decimalSet is considered to consist of (ch,ch)
   2870             }
   2871             else {
   2872 
   2873                 if(!fBoolFlags.contains(UNUM_PARSE_NO_EXPONENT) || // don't parse if this is set unless..
   2874                    isScientificNotation()) { // .. it's an exponent format - ignore setting and parse anyways
   2875                     const UnicodeString *tmp;
   2876                     tmp = &getConstSymbol(DecimalFormatSymbols::kExponentialSymbol);
   2877                     // TODO: CASE
   2878                     if (!text.caseCompare(position, tmp->length(), *tmp, U_FOLD_CASE_DEFAULT))    // error code is set below if !sawDigit
   2879                     {
   2880                         // Parse sign, if present
   2881                         int32_t pos = position + tmp->length();
   2882                         char exponentSign = '+';
   2883 
   2884                         if (pos < textLength)
   2885                         {
   2886                             tmp = &getConstSymbol(DecimalFormatSymbols::kPlusSignSymbol);
   2887                             if (!text.compare(pos, tmp->length(), *tmp))
   2888                             {
   2889                                 pos += tmp->length();
   2890                             }
   2891                             else {
   2892                                 tmp = &getConstSymbol(DecimalFormatSymbols::kMinusSignSymbol);
   2893                                 if (!text.compare(pos, tmp->length(), *tmp))
   2894                                 {
   2895                                     exponentSign = '-';
   2896                                     pos += tmp->length();
   2897                                 }
   2898                             }
   2899                         }
   2900 
   2901                         UBool sawExponentDigit = FALSE;
   2902                         while (pos < textLength) {
   2903                             ch = text[(int32_t)pos];
   2904                             digit = ch - zero;
   2905 
   2906                             if (digit < 0 || digit > 9) {
   2907                                 digit = u_charDigitValue(ch);
   2908                             }
   2909                             if (0 <= digit && digit <= 9) {
   2910                                 if (!sawExponentDigit) {
   2911                                     parsedNum.append('E', err);
   2912                                     parsedNum.append(exponentSign, err);
   2913                                     sawExponentDigit = TRUE;
   2914                                 }
   2915                                 ++pos;
   2916                                 parsedNum.append((char)(digit + '0'), err);
   2917                             } else {
   2918                                 break;
   2919                             }
   2920                         }
   2921 
   2922                         if (sawExponentDigit) {
   2923                             position = pos; // Advance past the exponent
   2924                         }
   2925 
   2926                         break; // Whether we fail or succeed, we exit this loop
   2927                     } else {
   2928                         break;
   2929                     }
   2930                 } else { // not parsing exponent
   2931                     break;
   2932               }
   2933             }
   2934         }
   2935 
   2936         // if we didn't see a decimal and it is required, check to see if the pattern had one
   2937         if(!sawDecimal && isDecimalPatternMatchRequired())
   2938         {
   2939             if(fFormatPattern.indexOf(DecimalFormatSymbols::kDecimalSeparatorSymbol) != 0)
   2940             {
   2941                 parsePosition.setIndex(oldStart);
   2942                 parsePosition.setErrorIndex(position);
   2943                 debug("decimal point match required fail!");
   2944                 return FALSE;
   2945             }
   2946         }
   2947 
   2948         if (backup != -1)
   2949         {
   2950             position = backup;
   2951         }
   2952 
   2953         if (strictParse && !sawDecimal) {
   2954             if (lastGroup != -1 && position - lastGroup != fGroupingSize + 1) {
   2955                 strictFail = TRUE;
   2956             }
   2957         }
   2958 
   2959         if (strictFail) {
   2960             // only set with strictParse and a grouping separator error
   2961 
   2962             parsePosition.setIndex(oldStart);
   2963             parsePosition.setErrorIndex(position);
   2964             debug("strictFail!");
   2965             return FALSE;
   2966         }
   2967 
   2968         // If there was no decimal point we have an integer
   2969 
   2970         // If none of the text string was recognized.  For example, parse
   2971         // "x" with pattern "#0.00" (return index and error index both 0)
   2972         // parse "$" with pattern "$#0.00". (return index 0 and error index
   2973         // 1).
   2974         if (!sawDigit && digitCount == 0) {
   2975 #ifdef FMT_DEBUG
   2976             debug("none of text rec");
   2977             printf("position=%d\n",position);
   2978 #endif
   2979             parsePosition.setIndex(oldStart);
   2980             parsePosition.setErrorIndex(oldStart);
   2981             return FALSE;
   2982         }
   2983     }
   2984 
   2985     // Match padding before suffix
   2986     if (fFormatWidth > 0 && fPadPosition == kPadBeforeSuffix) {
   2987         position = skipPadding(text, position);
   2988     }
   2989 
   2990     int32_t posSuffixMatch = -1, negSuffixMatch = -1;
   2991 
   2992     // Match positive and negative suffixes; prefer longest match.
   2993     if (posMatch >= 0 || (!strictParse && negMatch < 0)) {
   2994         posSuffixMatch = compareAffix(text, position, FALSE, FALSE, posSuffix, complexCurrencyParsing, type, currency);
   2995     }
   2996     if (negMatch >= 0) {
   2997         negSuffixMatch = compareAffix(text, position, TRUE, FALSE, negSuffix, complexCurrencyParsing, type, currency);
   2998     }
   2999     if (posSuffixMatch >= 0 && negSuffixMatch >= 0) {
   3000         if (posSuffixMatch > negSuffixMatch) {
   3001             negSuffixMatch = -1;
   3002         } else if (negSuffixMatch > posSuffixMatch) {
   3003             posSuffixMatch = -1;
   3004         }
   3005     }
   3006 
   3007     // Fail if neither or both
   3008     if (strictParse && ((posSuffixMatch >= 0) == (negSuffixMatch >= 0))) {
   3009         parsePosition.setErrorIndex(position);
   3010         debug("neither or both");
   3011         return FALSE;
   3012     }
   3013 
   3014     position += (posSuffixMatch >= 0 ? posSuffixMatch : (negSuffixMatch >= 0 ? negSuffixMatch : 0));
   3015 
   3016     // Match padding before suffix
   3017     if (fFormatWidth > 0 && fPadPosition == kPadAfterSuffix) {
   3018         position = skipPadding(text, position);
   3019     }
   3020 
   3021     parsePosition.setIndex(position);
   3022 
   3023     parsedNum.data()[0] = (posSuffixMatch >= 0 || (!strictParse && negMatch < 0 && negSuffixMatch < 0)) ? '+' : '-';
   3024 #ifdef FMT_DEBUG
   3025 printf("PP -> %d, SLOW = [%s]!    pp=%d, os=%d, err=%s\n", position, parsedNum.data(), parsePosition.getIndex(),oldStart,u_errorName(err));
   3026 #endif
   3027   } /* end SLOW parse */
   3028   if(parsePosition.getIndex() == oldStart)
   3029     {
   3030 #ifdef FMT_DEBUG
   3031       printf(" PP didnt move, err\n");
   3032 #endif
   3033         parsePosition.setErrorIndex(position);
   3034         return FALSE;
   3035     }
   3036 #if UCONFIG_HAVE_PARSEALLINPUT
   3037   else if (fParseAllInput==UNUM_YES&&parsePosition.getIndex()!=textLength)
   3038     {
   3039 #ifdef FMT_DEBUG
   3040       printf(" PP didnt consume all (UNUM_YES), err\n");
   3041 #endif
   3042         parsePosition.setErrorIndex(position);
   3043         return FALSE;
   3044     }
   3045 #endif
   3046     // uint32_t bits = (fastParseOk?kFastpathOk:0) |
   3047     //   (fastParseHadDecimal?0:kNoDecimal);
   3048     //printf("FPOK=%d, FPHD=%d, bits=%08X\n", fastParseOk, fastParseHadDecimal, bits);
   3049     digits.set(parsedNum.toStringPiece(),
   3050                err,
   3051                0//bits
   3052                );
   3053 
   3054     if (U_FAILURE(err)) {
   3055 #ifdef FMT_DEBUG
   3056       printf(" err setting %s\n", u_errorName(err));
   3057 #endif
   3058         parsePosition.setErrorIndex(position);
   3059         return FALSE;
   3060     }
   3061 
   3062     // check if we missed a required decimal point
   3063     if(fastParseOk && isDecimalPatternMatchRequired())
   3064     {
   3065         if(fFormatPattern.indexOf(DecimalFormatSymbols::kDecimalSeparatorSymbol) != 0)
   3066         {
   3067             parsePosition.setIndex(oldStart);
   3068             parsePosition.setErrorIndex(position);
   3069             debug("decimal point match required fail!");
   3070             return FALSE;
   3071         }
   3072     }
   3073 
   3074 
   3075     return TRUE;
   3076 }
   3077 
   3078 /**
   3079  * Starting at position, advance past a run of pad characters, if any.
   3080  * Return the index of the first character after position that is not a pad
   3081  * character.  Result is >= position.
   3082  */
   3083 int32_t DecimalFormat::skipPadding(const UnicodeString& text, int32_t position) const {
   3084     int32_t padLen = U16_LENGTH(fPad);
   3085     while (position < text.length() &&
   3086            text.char32At(position) == fPad) {
   3087         position += padLen;
   3088     }
   3089     return position;
   3090 }
   3091 
   3092 /**
   3093  * Return the length matched by the given affix, or -1 if none.
   3094  * Runs of white space in the affix, match runs of white space in
   3095  * the input.  Pattern white space and input white space are
   3096  * determined differently; see code.
   3097  * @param text input text
   3098  * @param pos offset into input at which to begin matching
   3099  * @param isNegative
   3100  * @param isPrefix
   3101  * @param affixPat affix pattern used for currency affix comparison.
   3102  * @param complexCurrencyParsing whether it is currency parsing or not
   3103  * @param type the currency type to parse against, LONG_NAME only or not.
   3104  * @param currency return value for parsed currency, for generic
   3105  * currency parsing mode, or null for normal parsing. In generic
   3106  * currency parsing mode, any currency is parsed, not just the
   3107  * currency that this formatter is set to.
   3108  * @return length of input that matches, or -1 if match failure
   3109  */
   3110 int32_t DecimalFormat::compareAffix(const UnicodeString& text,
   3111                                     int32_t pos,
   3112                                     UBool isNegative,
   3113                                     UBool isPrefix,
   3114                                     const UnicodeString* affixPat,
   3115                                     UBool complexCurrencyParsing,
   3116                                     int8_t type,
   3117                                     UChar* currency) const
   3118 {
   3119     const UnicodeString *patternToCompare;
   3120     if (fCurrencyChoice != NULL || currency != NULL ||
   3121         (fCurrencySignCount != fgCurrencySignCountZero && complexCurrencyParsing)) {
   3122 
   3123         if (affixPat != NULL) {
   3124             return compareComplexAffix(*affixPat, text, pos, type, currency);
   3125         }
   3126     }
   3127 
   3128     if (isNegative) {
   3129         if (isPrefix) {
   3130             patternToCompare = &fNegativePrefix;
   3131         }
   3132         else {
   3133             patternToCompare = &fNegativeSuffix;
   3134         }
   3135     }
   3136     else {
   3137         if (isPrefix) {
   3138             patternToCompare = &fPositivePrefix;
   3139         }
   3140         else {
   3141             patternToCompare = &fPositiveSuffix;
   3142         }
   3143     }
   3144     return compareSimpleAffix(*patternToCompare, text, pos, isLenient());
   3145 }
   3146 
   3147 UBool DecimalFormat::equalWithSignCompatibility(UChar32 lhs, UChar32 rhs) const {
   3148     if (lhs == rhs) {
   3149         return TRUE;
   3150     }
   3151     U_ASSERT(fStaticSets != NULL); // should already be loaded
   3152     const UnicodeSet *minusSigns = fStaticSets->fMinusSigns;
   3153     const UnicodeSet *plusSigns = fStaticSets->fPlusSigns;
   3154     return (minusSigns->contains(lhs) && minusSigns->contains(rhs)) ||
   3155         (plusSigns->contains(lhs) && plusSigns->contains(rhs));
   3156 }
   3157 
   3158 // check for LRM 0x200E, RLM 0x200F, ALM 0x061C
   3159 #define IS_BIDI_MARK(c) (c==0x200E || c==0x200F || c==0x061C)
   3160 
   3161 #define TRIM_BUFLEN 32
   3162 UnicodeString& DecimalFormat::trimMarksFromAffix(const UnicodeString& affix, UnicodeString& trimmedAffix) {
   3163     UChar trimBuf[TRIM_BUFLEN];
   3164     int32_t affixLen = affix.length();
   3165     int32_t affixPos, trimLen = 0;
   3166 
   3167     for (affixPos = 0; affixPos < affixLen; affixPos++) {
   3168         UChar c = affix.charAt(affixPos);
   3169         if (!IS_BIDI_MARK(c)) {
   3170             if (trimLen < TRIM_BUFLEN) {
   3171                 trimBuf[trimLen++] = c;
   3172             } else {
   3173                 trimLen = 0;
   3174                 break;
   3175             }
   3176         }
   3177     }
   3178     return (trimLen > 0)? trimmedAffix.setTo(trimBuf, trimLen): trimmedAffix.setTo(affix);
   3179 }
   3180 
   3181 /**
   3182  * Return the length matched by the given affix, or -1 if none.
   3183  * Runs of white space in the affix, match runs of white space in
   3184  * the input.  Pattern white space and input white space are
   3185  * determined differently; see code.
   3186  * @param affix pattern string, taken as a literal
   3187  * @param input input text
   3188  * @param pos offset into input at which to begin matching
   3189  * @return length of input that matches, or -1 if match failure
   3190  */
   3191 int32_t DecimalFormat::compareSimpleAffix(const UnicodeString& affix,
   3192                                           const UnicodeString& input,
   3193                                           int32_t pos,
   3194                                           UBool lenient) const {
   3195     int32_t start = pos;
   3196     UnicodeString trimmedAffix;
   3197     // For more efficiency we should keep lazily-created trimmed affixes around in
   3198     // instance variables instead of trimming each time they are used (the next step)
   3199     trimMarksFromAffix(affix, trimmedAffix);
   3200     UChar32 affixChar = trimmedAffix.char32At(0);
   3201     int32_t affixLength = trimmedAffix.length();
   3202     int32_t inputLength = input.length();
   3203     int32_t affixCharLength = U16_LENGTH(affixChar);
   3204     UnicodeSet *affixSet;
   3205     UErrorCode status = U_ZERO_ERROR;
   3206 
   3207     U_ASSERT(fStaticSets != NULL); // should already be loaded
   3208 
   3209     if (U_FAILURE(status)) {
   3210         return -1;
   3211     }
   3212     if (!lenient) {
   3213         affixSet = fStaticSets->fStrictDashEquivalents;
   3214 
   3215         // If the trimmedAffix is exactly one character long and that character
   3216         // is in the dash set and the very next input character is also
   3217         // in the dash set, return a match.
   3218         if (affixCharLength == affixLength && affixSet->contains(affixChar))  {
   3219             UChar32 ic = input.char32At(pos);
   3220             if (affixSet->contains(ic)) {
   3221                 pos += U16_LENGTH(ic);
   3222                 pos = skipBidiMarks(input, pos); // skip any trailing bidi marks
   3223                 return pos - start;
   3224             }
   3225         }
   3226 
   3227         for (int32_t i = 0; i < affixLength; ) {
   3228             UChar32 c = trimmedAffix.char32At(i);
   3229             int32_t len = U16_LENGTH(c);
   3230             if (PatternProps::isWhiteSpace(c)) {
   3231                 // We may have a pattern like: \u200F \u0020
   3232                 //        and input text like: \u200F \u0020
   3233                 // Note that U+200F and U+0020 are Pattern_White_Space but only
   3234                 // U+0020 is UWhiteSpace.  So we have to first do a direct
   3235                 // match of the run of Pattern_White_Space in the pattern,
   3236                 // then match any extra characters.
   3237                 UBool literalMatch = FALSE;
   3238                 while (pos < inputLength) {
   3239                     UChar32 ic = input.char32At(pos);
   3240                     if (ic == c) {
   3241                         literalMatch = TRUE;
   3242                         i += len;
   3243                         pos += len;
   3244                         if (i == affixLength) {
   3245                             break;
   3246                         }
   3247                         c = trimmedAffix.char32At(i);
   3248                         len = U16_LENGTH(c);
   3249                         if (!PatternProps::isWhiteSpace(c)) {
   3250                             break;
   3251                         }
   3252                     } else if (IS_BIDI_MARK(ic)) {
   3253                         pos ++; // just skip over this input text
   3254                     } else {
   3255                         break;
   3256                     }
   3257                 }
   3258 
   3259                 // Advance over run in pattern
   3260                 i = skipPatternWhiteSpace(trimmedAffix, i);
   3261 
   3262                 // Advance over run in input text
   3263                 // Must see at least one white space char in input,
   3264                 // unless we've already matched some characters literally.
   3265                 int32_t s = pos;
   3266                 pos = skipUWhiteSpace(input, pos);
   3267                 if (pos == s && !literalMatch) {
   3268                     return -1;
   3269                 }
   3270 
   3271                 // If we skip UWhiteSpace in the input text, we need to skip it in the pattern.
   3272                 // Otherwise, the previous lines may have skipped over text (such as U+00A0) that
   3273                 // is also in the trimmedAffix.
   3274                 i = skipUWhiteSpace(trimmedAffix, i);
   3275             } else {
   3276                 UBool match = FALSE;
   3277                 while (pos < inputLength) {
   3278                     UChar32 ic = input.char32At(pos);
   3279                     if (!match && ic == c) {
   3280                         i += len;
   3281                         pos += len;
   3282                         match = TRUE;
   3283                     } else if (IS_BIDI_MARK(ic)) {
   3284                         pos++; // just skip over this input text
   3285                     } else {
   3286                         break;
   3287                     }
   3288                 }
   3289                 if (!match) {
   3290                     return -1;
   3291                 }
   3292             }
   3293         }
   3294     } else {
   3295         UBool match = FALSE;
   3296 
   3297         affixSet = fStaticSets->fDashEquivalents;
   3298 
   3299         if (affixCharLength == affixLength && affixSet->contains(affixChar))  {
   3300             pos = skipUWhiteSpaceAndMarks(input, pos);
   3301             UChar32 ic = input.char32At(pos);
   3302 
   3303             if (affixSet->contains(ic)) {
   3304                 pos += U16_LENGTH(ic);
   3305                 pos = skipBidiMarks(input, pos);
   3306                 return pos - start;
   3307             }
   3308         }
   3309 
   3310         for (int32_t i = 0; i < affixLength; )
   3311         {
   3312             //i = skipRuleWhiteSpace(trimmedAffix, i);
   3313             i = skipUWhiteSpace(trimmedAffix, i);
   3314             pos = skipUWhiteSpaceAndMarks(input, pos);
   3315 
   3316             if (i >= affixLength || pos >= inputLength) {
   3317                 break;
   3318             }
   3319 
   3320             UChar32 c = trimmedAffix.char32At(i);
   3321             UChar32 ic = input.char32At(pos);
   3322 
   3323             if (!equalWithSignCompatibility(ic, c)) {
   3324                 return -1;
   3325             }
   3326 
   3327             match = TRUE;
   3328             i += U16_LENGTH(c);
   3329             pos += U16_LENGTH(ic);
   3330             pos = skipBidiMarks(input, pos);
   3331         }
   3332 
   3333         if (affixLength > 0 && ! match) {
   3334             return -1;
   3335         }
   3336     }
   3337     return pos - start;
   3338 }
   3339 
   3340 /**
   3341  * Skip over a run of zero or more Pattern_White_Space characters at
   3342  * pos in text.
   3343  */
   3344 int32_t DecimalFormat::skipPatternWhiteSpace(const UnicodeString& text, int32_t pos) {
   3345     const UChar* s = text.getBuffer();
   3346     return (int32_t)(PatternProps::skipWhiteSpace(s + pos, text.length() - pos) - s);
   3347 }
   3348 
   3349 /**
   3350  * Skip over a run of zero or more isUWhiteSpace() characters at pos
   3351  * in text.
   3352  */
   3353 int32_t DecimalFormat::skipUWhiteSpace(const UnicodeString& text, int32_t pos) {
   3354     while (pos < text.length()) {
   3355         UChar32 c = text.char32At(pos);
   3356         if (!u_isUWhiteSpace(c)) {
   3357             break;
   3358         }
   3359         pos += U16_LENGTH(c);
   3360     }
   3361     return pos;
   3362 }
   3363 
   3364 /**
   3365  * Skip over a run of zero or more isUWhiteSpace() characters or bidi marks at pos
   3366  * in text.
   3367  */
   3368 int32_t DecimalFormat::skipUWhiteSpaceAndMarks(const UnicodeString& text, int32_t pos) {
   3369     while (pos < text.length()) {
   3370         UChar32 c = text.char32At(pos);
   3371         if (!u_isUWhiteSpace(c) && !IS_BIDI_MARK(c)) { // u_isUWhiteSpace doesn't include LRM,RLM,ALM
   3372             break;
   3373         }
   3374         pos += U16_LENGTH(c);
   3375     }
   3376     return pos;
   3377 }
   3378 
   3379 /**
   3380  * Skip over a run of zero or more bidi marks at pos in text.
   3381  */
   3382 int32_t DecimalFormat::skipBidiMarks(const UnicodeString& text, int32_t pos) {
   3383     while (pos < text.length()) {
   3384         UChar c = text.charAt(pos);
   3385         if (!IS_BIDI_MARK(c)) {
   3386             break;
   3387         }
   3388         pos++;
   3389     }
   3390     return pos;
   3391 }
   3392 
   3393 /**
   3394  * Return the length matched by the given affix, or -1 if none.
   3395  * @param affixPat pattern string
   3396  * @param input input text
   3397  * @param pos offset into input at which to begin matching
   3398  * @param type the currency type to parse against, LONG_NAME only or not.
   3399  * @param currency return value for parsed currency, for generic
   3400  * currency parsing mode, or null for normal parsing. In generic
   3401  * currency parsing mode, any currency is parsed, not just the
   3402  * currency that this formatter is set to.
   3403  * @return length of input that matches, or -1 if match failure
   3404  */
   3405 int32_t DecimalFormat::compareComplexAffix(const UnicodeString& affixPat,
   3406                                            const UnicodeString& text,
   3407                                            int32_t pos,
   3408                                            int8_t type,
   3409                                            UChar* currency) const
   3410 {
   3411     int32_t start = pos;
   3412     U_ASSERT(currency != NULL ||
   3413              (fCurrencyChoice != NULL && *getCurrency() != 0) ||
   3414              fCurrencySignCount != fgCurrencySignCountZero);
   3415 
   3416     for (int32_t i=0;
   3417          i<affixPat.length() && pos >= 0; ) {
   3418         UChar32 c = affixPat.char32At(i);
   3419         i += U16_LENGTH(c);
   3420 
   3421         if (c == kQuote) {
   3422             U_ASSERT(i <= affixPat.length());
   3423             c = affixPat.char32At(i);
   3424             i += U16_LENGTH(c);
   3425 
   3426             const UnicodeString* affix = NULL;
   3427 
   3428             switch (c) {
   3429             case kCurrencySign: {
   3430                 // since the currency names in choice format is saved
   3431                 // the same way as other currency names,
   3432                 // do not need to do currency choice parsing here.
   3433                 // the general currency parsing parse against all names,
   3434                 // including names in choice format.
   3435                 UBool intl = i<affixPat.length() &&
   3436                     affixPat.char32At(i) == kCurrencySign;
   3437                 if (intl) {
   3438                     ++i;
   3439                 }
   3440                 UBool plural = i<affixPat.length() &&
   3441                     affixPat.char32At(i) == kCurrencySign;
   3442                 if (plural) {
   3443                     ++i;
   3444                     intl = FALSE;
   3445                 }
   3446                 // Parse generic currency -- anything for which we
   3447                 // have a display name, or any 3-letter ISO code.
   3448                 // Try to parse display name for our locale; first
   3449                 // determine our locale.
   3450                 const char* loc = fCurrencyPluralInfo->getLocale().getName();
   3451                 ParsePosition ppos(pos);
   3452                 UChar curr[4];
   3453                 UErrorCode ec = U_ZERO_ERROR;
   3454                 // Delegate parse of display name => ISO code to Currency
   3455                 uprv_parseCurrency(loc, text, ppos, type, curr, ec);
   3456 
   3457                 // If parse succeeds, populate currency[0]
   3458                 if (U_SUCCESS(ec) && ppos.getIndex() != pos) {
   3459                     if (currency) {
   3460                         u_strcpy(currency, curr);
   3461                     } else {
   3462                         // The formatter is currency-style but the client has not requested
   3463                         // the value of the parsed currency. In this case, if that value does
   3464                         // not match the formatter's current value, then the parse fails.
   3465                         UChar effectiveCurr[4];
   3466                         getEffectiveCurrency(effectiveCurr, ec);
   3467                         if ( U_FAILURE(ec) || u_strncmp(curr,effectiveCurr,4) != 0 ) {
   3468                             pos = -1;
   3469                             continue;
   3470                         }
   3471                     }
   3472                     pos = ppos.getIndex();
   3473                 } else if (!isLenient()){
   3474                     pos = -1;
   3475                 }
   3476                 continue;
   3477             }
   3478             case kPatternPercent:
   3479                 affix = &getConstSymbol(DecimalFormatSymbols::kPercentSymbol);
   3480                 break;
   3481             case kPatternPerMill:
   3482                 affix = &getConstSymbol(DecimalFormatSymbols::kPerMillSymbol);
   3483                 break;
   3484             case kPatternPlus:
   3485                 affix = &getConstSymbol(DecimalFormatSymbols::kPlusSignSymbol);
   3486                 break;
   3487             case kPatternMinus:
   3488                 affix = &getConstSymbol(DecimalFormatSymbols::kMinusSignSymbol);
   3489                 break;
   3490             default:
   3491                 // fall through to affix!=0 test, which will fail
   3492                 break;
   3493             }
   3494 
   3495             if (affix != NULL) {
   3496                 pos = match(text, pos, *affix);
   3497                 continue;
   3498             }
   3499         }
   3500 
   3501         pos = match(text, pos, c);
   3502         if (PatternProps::isWhiteSpace(c)) {
   3503             i = skipPatternWhiteSpace(affixPat, i);
   3504         }
   3505     }
   3506     return pos - start;
   3507 }
   3508 
   3509 /**
   3510  * Match a single character at text[pos] and return the index of the
   3511  * next character upon success.  Return -1 on failure.  If
   3512  * ch is a Pattern_White_Space then match a run of white space in text.
   3513  */
   3514 int32_t DecimalFormat::match(const UnicodeString& text, int32_t pos, UChar32 ch) {
   3515     if (PatternProps::isWhiteSpace(ch)) {
   3516         // Advance over run of white space in input text
   3517         // Must see at least one white space char in input
   3518         int32_t s = pos;
   3519         pos = skipPatternWhiteSpace(text, pos);
   3520         if (pos == s) {
   3521             return -1;
   3522         }
   3523         return pos;
   3524     }
   3525     return (pos >= 0 && text.char32At(pos) == ch) ?
   3526         (pos + U16_LENGTH(ch)) : -1;
   3527 }
   3528 
   3529 /**
   3530  * Match a string at text[pos] and return the index of the next
   3531  * character upon success.  Return -1 on failure.  Match a run of
   3532  * white space in str with a run of white space in text.
   3533  */
   3534 int32_t DecimalFormat::match(const UnicodeString& text, int32_t pos, const UnicodeString& str) {
   3535     for (int32_t i=0; i<str.length() && pos >= 0; ) {
   3536         UChar32 ch = str.char32At(i);
   3537         i += U16_LENGTH(ch);
   3538         if (PatternProps::isWhiteSpace(ch)) {
   3539             i = skipPatternWhiteSpace(str, i);
   3540         }
   3541         pos = match(text, pos, ch);
   3542     }
   3543     return pos;
   3544 }
   3545 
   3546 UBool DecimalFormat::matchSymbol(const UnicodeString &text, int32_t position, int32_t length, const UnicodeString &symbol,
   3547                          UnicodeSet *sset, UChar32 schar)
   3548 {
   3549     if (sset != NULL) {
   3550         return sset->contains(schar);
   3551     }
   3552 
   3553     return text.compare(position, length, symbol) == 0;
   3554 }
   3555 
   3556 UBool DecimalFormat::matchDecimal(UChar32 symbolChar,
   3557                             UBool sawDecimal,  UChar32 sawDecimalChar,
   3558                              const UnicodeSet *sset, UChar32 schar) {
   3559    if(sawDecimal) {
   3560        return schar==sawDecimalChar;
   3561    } else if(schar==symbolChar) {
   3562        return TRUE;
   3563    } else if(sset!=NULL) {
   3564         return sset->contains(schar);
   3565    } else {
   3566        return FALSE;
   3567    }
   3568 }
   3569 
   3570 UBool DecimalFormat::matchGrouping(UChar32 groupingChar,
   3571                             UBool sawGrouping, UChar32 sawGroupingChar,
   3572                              const UnicodeSet *sset,
   3573                              UChar32 /*decimalChar*/, const UnicodeSet *decimalSet,
   3574                              UChar32 schar) {
   3575     if(sawGrouping) {
   3576         return schar==sawGroupingChar;  // previously found
   3577     } else if(schar==groupingChar) {
   3578         return TRUE; // char from symbols
   3579     } else if(sset!=NULL) {
   3580         return sset->contains(schar) &&  // in groupingSet but...
   3581            ((decimalSet==NULL) || !decimalSet->contains(schar)); // Exclude decimalSet from groupingSet
   3582     } else {
   3583         return FALSE;
   3584     }
   3585 }
   3586 
   3587 
   3588 
   3589 //------------------------------------------------------------------------------
   3590 // Gets the pointer to the localized decimal format symbols
   3591 
   3592 const DecimalFormatSymbols*
   3593 DecimalFormat::getDecimalFormatSymbols() const
   3594 {
   3595     return fSymbols;
   3596 }
   3597 
   3598 //------------------------------------------------------------------------------
   3599 // De-owning the current localized symbols and adopt the new symbols.
   3600 
   3601 void
   3602 DecimalFormat::adoptDecimalFormatSymbols(DecimalFormatSymbols* symbolsToAdopt)
   3603 {
   3604     if (symbolsToAdopt == NULL) {
   3605         return; // do not allow caller to set fSymbols to NULL
   3606     }
   3607 
   3608     UBool sameSymbols = FALSE;
   3609     if (fSymbols != NULL) {
   3610         sameSymbols = (UBool)(getConstSymbol(DecimalFormatSymbols::kCurrencySymbol) ==
   3611             symbolsToAdopt->getConstSymbol(DecimalFormatSymbols::kCurrencySymbol) &&
   3612             getConstSymbol(DecimalFormatSymbols::kIntlCurrencySymbol) ==
   3613             symbolsToAdopt->getConstSymbol(DecimalFormatSymbols::kIntlCurrencySymbol));
   3614         delete fSymbols;
   3615     }
   3616 
   3617     fSymbols = symbolsToAdopt;
   3618     if (!sameSymbols) {
   3619         // If the currency symbols are the same, there is no need to recalculate.
   3620         setCurrencyForSymbols();
   3621     }
   3622     expandAffixes(NULL);
   3623 #if UCONFIG_FORMAT_FASTPATHS_49
   3624     handleChanged();
   3625 #endif
   3626 }
   3627 //------------------------------------------------------------------------------
   3628 // Setting the symbols is equlivalent to adopting a newly created localized
   3629 // symbols.
   3630 
   3631 void
   3632 DecimalFormat::setDecimalFormatSymbols(const DecimalFormatSymbols& symbols)
   3633 {
   3634     adoptDecimalFormatSymbols(new DecimalFormatSymbols(symbols));
   3635 #if UCONFIG_FORMAT_FASTPATHS_49
   3636     handleChanged();
   3637 #endif
   3638 }
   3639 
   3640 
   3641 const CurrencyPluralInfo*
   3642 DecimalFormat::getCurrencyPluralInfo(void) const
   3643 {
   3644     return fCurrencyPluralInfo;
   3645 }
   3646 
   3647 
   3648 void
   3649 DecimalFormat::adoptCurrencyPluralInfo(CurrencyPluralInfo* toAdopt)
   3650 {
   3651     if (toAdopt != NULL) {
   3652         delete fCurrencyPluralInfo;
   3653         fCurrencyPluralInfo = toAdopt;
   3654         // re-set currency affix patterns and currency affixes.
   3655         if (fCurrencySignCount != fgCurrencySignCountZero) {
   3656             UErrorCode status = U_ZERO_ERROR;
   3657             if (fAffixPatternsForCurrency) {
   3658                 deleteHashForAffixPattern();
   3659             }
   3660             setupCurrencyAffixPatterns(status);
   3661             if (fCurrencySignCount == fgCurrencySignCountInPluralFormat) {
   3662                 // only setup the affixes of the plural pattern.
   3663                 setupCurrencyAffixes(fFormatPattern, FALSE, TRUE, status);
   3664             }
   3665         }
   3666     }
   3667 #if UCONFIG_FORMAT_FASTPATHS_49
   3668     handleChanged();
   3669 #endif
   3670 }
   3671 
   3672 void
   3673 DecimalFormat::setCurrencyPluralInfo(const CurrencyPluralInfo& info)
   3674 {
   3675     adoptCurrencyPluralInfo(info.clone());
   3676 #if UCONFIG_FORMAT_FASTPATHS_49
   3677     handleChanged();
   3678 #endif
   3679 }
   3680 
   3681 
   3682 /**
   3683  * Update the currency object to match the symbols.  This method
   3684  * is used only when the caller has passed in a symbols object
   3685  * that may not be the default object for its locale.
   3686  */
   3687 void
   3688 DecimalFormat::setCurrencyForSymbols() {
   3689     /*Bug 4212072
   3690       Update the affix strings accroding to symbols in order to keep
   3691       the affix strings up to date.
   3692       [Richard/GCL]
   3693     */
   3694 
   3695     // With the introduction of the Currency object, the currency
   3696     // symbols in the DFS object are ignored.  For backward
   3697     // compatibility, we check any explicitly set DFS object.  If it
   3698     // is a default symbols object for its locale, we change the
   3699     // currency object to one for that locale.  If it is custom,
   3700     // we set the currency to null.
   3701     UErrorCode ec = U_ZERO_ERROR;
   3702     const UChar* c = NULL;
   3703     const char* loc = fSymbols->getLocale().getName();
   3704     UChar intlCurrencySymbol[4];
   3705     ucurr_forLocale(loc, intlCurrencySymbol, 4, &ec);
   3706     UnicodeString currencySymbol;
   3707 
   3708     uprv_getStaticCurrencyName(intlCurrencySymbol, loc, currencySymbol, ec);
   3709     if (U_SUCCESS(ec)
   3710         && getConstSymbol(DecimalFormatSymbols::kCurrencySymbol) == currencySymbol
   3711         && getConstSymbol(DecimalFormatSymbols::kIntlCurrencySymbol) == UnicodeString(intlCurrencySymbol))
   3712     {
   3713         // Trap an error in mapping locale to currency.  If we can't
   3714         // map, then don't fail and set the currency to "".
   3715         c = intlCurrencySymbol;
   3716     }
   3717     ec = U_ZERO_ERROR; // reset local error code!
   3718     setCurrencyInternally(c, ec);
   3719 #if UCONFIG_FORMAT_FASTPATHS_49
   3720     handleChanged();
   3721 #endif
   3722 }
   3723 
   3724 
   3725 //------------------------------------------------------------------------------
   3726 // Gets the positive prefix of the number pattern.
   3727 
   3728 UnicodeString&
   3729 DecimalFormat::getPositivePrefix(UnicodeString& result) const
   3730 {
   3731     result = fPositivePrefix;
   3732     return result;
   3733 }
   3734 
   3735 //------------------------------------------------------------------------------
   3736 // Sets the positive prefix of the number pattern.
   3737 
   3738 void
   3739 DecimalFormat::setPositivePrefix(const UnicodeString& newValue)
   3740 {
   3741     fPositivePrefix = newValue;
   3742     delete fPosPrefixPattern;
   3743     fPosPrefixPattern = 0;
   3744 #if UCONFIG_FORMAT_FASTPATHS_49
   3745     handleChanged();
   3746 #endif
   3747 }
   3748 
   3749 //------------------------------------------------------------------------------
   3750 // Gets the negative prefix  of the number pattern.
   3751 
   3752 UnicodeString&
   3753 DecimalFormat::getNegativePrefix(UnicodeString& result) const
   3754 {
   3755     result = fNegativePrefix;
   3756     return result;
   3757 }
   3758 
   3759 //------------------------------------------------------------------------------
   3760 // Gets the negative prefix  of the number pattern.
   3761 
   3762 void
   3763 DecimalFormat::setNegativePrefix(const UnicodeString& newValue)
   3764 {
   3765     fNegativePrefix = newValue;
   3766     delete fNegPrefixPattern;
   3767     fNegPrefixPattern = 0;
   3768 #if UCONFIG_FORMAT_FASTPATHS_49
   3769     handleChanged();
   3770 #endif
   3771 }
   3772 
   3773 //------------------------------------------------------------------------------
   3774 // Gets the positive suffix of the number pattern.
   3775 
   3776 UnicodeString&
   3777 DecimalFormat::getPositiveSuffix(UnicodeString& result) const
   3778 {
   3779     result = fPositiveSuffix;
   3780     return result;
   3781 }
   3782 
   3783 //------------------------------------------------------------------------------
   3784 // Sets the positive suffix of the number pattern.
   3785 
   3786 void
   3787 DecimalFormat::setPositiveSuffix(const UnicodeString& newValue)
   3788 {
   3789     fPositiveSuffix = newValue;
   3790     delete fPosSuffixPattern;
   3791     fPosSuffixPattern = 0;
   3792 #if UCONFIG_FORMAT_FASTPATHS_49
   3793     handleChanged();
   3794 #endif
   3795 }
   3796 
   3797 //------------------------------------------------------------------------------
   3798 // Gets the negative suffix of the number pattern.
   3799 
   3800 UnicodeString&
   3801 DecimalFormat::getNegativeSuffix(UnicodeString& result) const
   3802 {
   3803     result = fNegativeSuffix;
   3804     return result;
   3805 }
   3806 
   3807 //------------------------------------------------------------------------------
   3808 // Sets the negative suffix of the number pattern.
   3809 
   3810 void
   3811 DecimalFormat::setNegativeSuffix(const UnicodeString& newValue)
   3812 {
   3813     fNegativeSuffix = newValue;
   3814     delete fNegSuffixPattern;
   3815     fNegSuffixPattern = 0;
   3816 #if UCONFIG_FORMAT_FASTPATHS_49
   3817     handleChanged();
   3818 #endif
   3819 }
   3820 
   3821 //------------------------------------------------------------------------------
   3822 // Gets the multiplier of the number pattern.
   3823 //   Multipliers are stored as decimal numbers (DigitLists) because that
   3824 //      is the most convenient for muliplying or dividing the numbers to be formatted.
   3825 //   A NULL multiplier implies one, and the scaling operations are skipped.
   3826 
   3827 int32_t
   3828 DecimalFormat::getMultiplier() const
   3829 {
   3830     if (fMultiplier == NULL) {
   3831         return 1;
   3832     } else {
   3833         return fMultiplier->getLong();
   3834     }
   3835 }
   3836 
   3837 //------------------------------------------------------------------------------
   3838 // Sets the multiplier of the number pattern.
   3839 void
   3840 DecimalFormat::setMultiplier(int32_t newValue)
   3841 {
   3842 //  if (newValue == 0) {
   3843 //      throw new IllegalArgumentException("Bad multiplier: " + newValue);
   3844 //  }
   3845     if (newValue == 0) {
   3846         newValue = 1;     // one being the benign default value for a multiplier.
   3847     }
   3848     if (newValue == 1) {
   3849         delete fMultiplier;
   3850         fMultiplier = NULL;
   3851     } else {
   3852         if (fMultiplier == NULL) {
   3853             fMultiplier = new DigitList;
   3854         }
   3855         if (fMultiplier != NULL) {
   3856             fMultiplier->set(newValue);
   3857         }
   3858     }
   3859 #if UCONFIG_FORMAT_FASTPATHS_49
   3860     handleChanged();
   3861 #endif
   3862 }
   3863 
   3864 /**
   3865  * Get the rounding increment.
   3866  * @return A positive rounding increment, or 0.0 if rounding
   3867  * is not in effect.
   3868  * @see #setRoundingIncrement
   3869  * @see #getRoundingMode
   3870  * @see #setRoundingMode
   3871  */
   3872 double DecimalFormat::getRoundingIncrement() const {
   3873     if (fRoundingIncrement == NULL) {
   3874         return 0.0;
   3875     } else {
   3876         return fRoundingIncrement->getDouble();
   3877     }
   3878 }
   3879 
   3880 /**
   3881  * Set the rounding increment.  This method also controls whether
   3882  * rounding is enabled.
   3883  * @param newValue A positive rounding increment, or 0.0 to disable rounding.
   3884  * Negative increments are equivalent to 0.0.
   3885  * @see #getRoundingIncrement
   3886  * @see #getRoundingMode
   3887  * @see #setRoundingMode
   3888  */
   3889 void DecimalFormat::setRoundingIncrement(double newValue) {
   3890     if (newValue > 0.0) {
   3891         if (fRoundingIncrement == NULL) {
   3892             fRoundingIncrement = new DigitList();
   3893         }
   3894         if (fRoundingIncrement != NULL) {
   3895             fRoundingIncrement->set(newValue);
   3896             return;
   3897         }
   3898     }
   3899     // These statements are executed if newValue is less than 0.0
   3900     // or fRoundingIncrement could not be created.
   3901     delete fRoundingIncrement;
   3902     fRoundingIncrement = NULL;
   3903 #if UCONFIG_FORMAT_FASTPATHS_49
   3904     handleChanged();
   3905 #endif
   3906 }
   3907 
   3908 /**
   3909  * Get the rounding mode.
   3910  * @return A rounding mode
   3911  * @see #setRoundingIncrement
   3912  * @see #getRoundingIncrement
   3913  * @see #setRoundingMode
   3914  */
   3915 DecimalFormat::ERoundingMode DecimalFormat::getRoundingMode() const {
   3916     return fRoundingMode;
   3917 }
   3918 
   3919 /**
   3920  * Set the rounding mode.  This has no effect unless the rounding
   3921  * increment is greater than zero.
   3922  * @param roundingMode A rounding mode
   3923  * @see #setRoundingIncrement
   3924  * @see #getRoundingIncrement
   3925  * @see #getRoundingMode
   3926  */
   3927 void DecimalFormat::setRoundingMode(ERoundingMode roundingMode) {
   3928     fRoundingMode = roundingMode;
   3929 #if UCONFIG_FORMAT_FASTPATHS_49
   3930     handleChanged();
   3931 #endif
   3932 }
   3933 
   3934 /**
   3935  * Get the width to which the output of <code>format()</code> is padded.
   3936  * @return the format width, or zero if no padding is in effect
   3937  * @see #setFormatWidth
   3938  * @see #getPadCharacter
   3939  * @see #setPadCharacter
   3940  * @see #getPadPosition
   3941  * @see #setPadPosition
   3942  */
   3943 int32_t DecimalFormat::getFormatWidth() const {
   3944     return fFormatWidth;
   3945 }
   3946 
   3947 /**
   3948  * Set the width to which the output of <code>format()</code> is padded.
   3949  * This method also controls whether padding is enabled.
   3950  * @param width the width to which to pad the result of
   3951  * <code>format()</code>, or zero to disable padding.  A negative
   3952  * width is equivalent to 0.
   3953  * @see #getFormatWidth
   3954  * @see #getPadCharacter
   3955  * @see #setPadCharacter
   3956  * @see #getPadPosition
   3957  * @see #setPadPosition
   3958  */
   3959 void DecimalFormat::setFormatWidth(int32_t width) {
   3960     fFormatWidth = (width > 0) ? width : 0;
   3961 #if UCONFIG_FORMAT_FASTPATHS_49
   3962     handleChanged();
   3963 #endif
   3964 }
   3965 
   3966 UnicodeString DecimalFormat::getPadCharacterString() const {
   3967     return UnicodeString(fPad);
   3968 }
   3969 
   3970 void DecimalFormat::setPadCharacter(const UnicodeString &padChar) {
   3971     if (padChar.length() > 0) {
   3972         fPad = padChar.char32At(0);
   3973     }
   3974     else {
   3975         fPad = kDefaultPad;
   3976     }
   3977 #if UCONFIG_FORMAT_FASTPATHS_49
   3978     handleChanged();
   3979 #endif
   3980 }
   3981 
   3982 /**
   3983  * Get the position at which padding will take place.  This is the location
   3984  * at which padding will be inserted if the result of <code>format()</code>
   3985  * is shorter than the format width.
   3986  * @return the pad position, one of <code>kPadBeforePrefix</code>,
   3987  * <code>kPadAfterPrefix</code>, <code>kPadBeforeSuffix</code>, or
   3988  * <code>kPadAfterSuffix</code>.
   3989  * @see #setFormatWidth
   3990  * @see #getFormatWidth
   3991  * @see #setPadCharacter
   3992  * @see #getPadCharacter
   3993  * @see #setPadPosition
   3994  * @see #kPadBeforePrefix
   3995  * @see #kPadAfterPrefix
   3996  * @see #kPadBeforeSuffix
   3997  * @see #kPadAfterSuffix
   3998  */
   3999 DecimalFormat::EPadPosition DecimalFormat::getPadPosition() const {
   4000     return fPadPosition;
   4001 }
   4002 
   4003 /**
   4004  * <strong><font face=helvetica color=red>NEW</font></strong>
   4005  * Set the position at which padding will take place.  This is the location
   4006  * at which padding will be inserted if the result of <code>format()</code>
   4007  * is shorter than the format width.  This has no effect unless padding is
   4008  * enabled.
   4009  * @param padPos the pad position, one of <code>kPadBeforePrefix</code>,
   4010  * <code>kPadAfterPrefix</code>, <code>kPadBeforeSuffix</code>, or
   4011  * <code>kPadAfterSuffix</code>.
   4012  * @see #setFormatWidth
   4013  * @see #getFormatWidth
   4014  * @see #setPadCharacter
   4015  * @see #getPadCharacter
   4016  * @see #getPadPosition
   4017  * @see #kPadBeforePrefix
   4018  * @see #kPadAfterPrefix
   4019  * @see #kPadBeforeSuffix
   4020  * @see #kPadAfterSuffix
   4021  */
   4022 void DecimalFormat::setPadPosition(EPadPosition padPos) {
   4023     fPadPosition = padPos;
   4024 #if UCONFIG_FORMAT_FASTPATHS_49
   4025     handleChanged();
   4026 #endif
   4027 }
   4028 
   4029 /**
   4030  * Return whether or not scientific notation is used.
   4031  * @return TRUE if this object formats and parses scientific notation
   4032  * @see #setScientificNotation
   4033  * @see #getMinimumExponentDigits
   4034  * @see #setMinimumExponentDigits
   4035  * @see #isExponentSignAlwaysShown
   4036  * @see #setExponentSignAlwaysShown
   4037  */
   4038 UBool DecimalFormat::isScientificNotation() const {
   4039     return fUseExponentialNotation;
   4040 }
   4041 
   4042 /**
   4043  * Set whether or not scientific notation is used.
   4044  * @param useScientific TRUE if this object formats and parses scientific
   4045  * notation
   4046  * @see #isScientificNotation
   4047  * @see #getMinimumExponentDigits
   4048  * @see #setMinimumExponentDigits
   4049  * @see #isExponentSignAlwaysShown
   4050  * @see #setExponentSignAlwaysShown
   4051  */
   4052 void DecimalFormat::setScientificNotation(UBool useScientific) {
   4053     fUseExponentialNotation = useScientific;
   4054 #if UCONFIG_FORMAT_FASTPATHS_49
   4055     handleChanged();
   4056 #endif
   4057 }
   4058 
   4059 /**
   4060  * Return the minimum exponent digits that will be shown.
   4061  * @return the minimum exponent digits that will be shown
   4062  * @see #setScientificNotation
   4063  * @see #isScientificNotation
   4064  * @see #setMinimumExponentDigits
   4065  * @see #isExponentSignAlwaysShown
   4066  * @see #setExponentSignAlwaysShown
   4067  */
   4068 int8_t DecimalFormat::getMinimumExponentDigits() const {
   4069     return fMinExponentDigits;
   4070 }
   4071 
   4072 /**
   4073  * Set the minimum exponent digits that will be shown.  This has no
   4074  * effect unless scientific notation is in use.
   4075  * @param minExpDig a value >= 1 indicating the fewest exponent digits
   4076  * that will be shown.  Values less than 1 will be treated as 1.
   4077  * @see #setScientificNotation
   4078  * @see #isScientificNotation
   4079  * @see #getMinimumExponentDigits
   4080  * @see #isExponentSignAlwaysShown
   4081  * @see #setExponentSignAlwaysShown
   4082  */
   4083 void DecimalFormat::setMinimumExponentDigits(int8_t minExpDig) {
   4084     fMinExponentDigits = (int8_t)((minExpDig > 0) ? minExpDig : 1);
   4085 #if UCONFIG_FORMAT_FASTPATHS_49
   4086     handleChanged();
   4087 #endif
   4088 }
   4089 
   4090 /**
   4091  * Return whether the exponent sign is always shown.
   4092  * @return TRUE if the exponent is always prefixed with either the
   4093  * localized minus sign or the localized plus sign, false if only negative
   4094  * exponents are prefixed with the localized minus sign.
   4095  * @see #setScientificNotation
   4096  * @see #isScientificNotation
   4097  * @see #setMinimumExponentDigits
   4098  * @see #getMinimumExponentDigits
   4099  * @see #setExponentSignAlwaysShown
   4100  */
   4101 UBool DecimalFormat::isExponentSignAlwaysShown() const {
   4102     return fExponentSignAlwaysShown;
   4103 }
   4104 
   4105 /**
   4106  * Set whether the exponent sign is always shown.  This has no effect
   4107  * unless scientific notation is in use.
   4108  * @param expSignAlways TRUE if the exponent is always prefixed with either
   4109  * the localized minus sign or the localized plus sign, false if only
   4110  * negative exponents are prefixed with the localized minus sign.
   4111  * @see #setScientificNotation
   4112  * @see #isScientificNotation
   4113  * @see #setMinimumExponentDigits
   4114  * @see #getMinimumExponentDigits
   4115  * @see #isExponentSignAlwaysShown
   4116  */
   4117 void DecimalFormat::setExponentSignAlwaysShown(UBool expSignAlways) {
   4118     fExponentSignAlwaysShown = expSignAlways;
   4119 #if UCONFIG_FORMAT_FASTPATHS_49
   4120     handleChanged();
   4121 #endif
   4122 }
   4123 
   4124 //------------------------------------------------------------------------------
   4125 // Gets the grouping size of the number pattern.  For example, thousand or 10
   4126 // thousand groupings.
   4127 
   4128 int32_t
   4129 DecimalFormat::getGroupingSize() const
   4130 {
   4131     return isGroupingUsed() ? fGroupingSize : 0;
   4132 }
   4133 
   4134 //------------------------------------------------------------------------------
   4135 // Gets the grouping size of the number pattern.
   4136 
   4137 void
   4138 DecimalFormat::setGroupingSize(int32_t newValue)
   4139 {
   4140     fGroupingSize = newValue;
   4141 #if UCONFIG_FORMAT_FASTPATHS_49
   4142     handleChanged();
   4143 #endif
   4144 }
   4145 
   4146 //------------------------------------------------------------------------------
   4147 
   4148 int32_t
   4149 DecimalFormat::getSecondaryGroupingSize() const
   4150 {
   4151     return fGroupingSize2;
   4152 }
   4153 
   4154 //------------------------------------------------------------------------------
   4155 
   4156 void
   4157 DecimalFormat::setSecondaryGroupingSize(int32_t newValue)
   4158 {
   4159     fGroupingSize2 = newValue;
   4160 #if UCONFIG_FORMAT_FASTPATHS_49
   4161     handleChanged();
   4162 #endif
   4163 }
   4164 
   4165 //------------------------------------------------------------------------------
   4166 // Checks if to show the decimal separator.
   4167 
   4168 UBool
   4169 DecimalFormat::isDecimalSeparatorAlwaysShown() const
   4170 {
   4171     return fDecimalSeparatorAlwaysShown;
   4172 }
   4173 
   4174 //------------------------------------------------------------------------------
   4175 // Sets to always show the decimal separator.
   4176 
   4177 void
   4178 DecimalFormat::setDecimalSeparatorAlwaysShown(UBool newValue)
   4179 {
   4180     fDecimalSeparatorAlwaysShown = newValue;
   4181 #if UCONFIG_FORMAT_FASTPATHS_49
   4182     handleChanged();
   4183 #endif
   4184 }
   4185 
   4186 //------------------------------------------------------------------------------
   4187 // Checks if decimal point pattern match is required
   4188 UBool
   4189 DecimalFormat::isDecimalPatternMatchRequired(void) const
   4190 {
   4191     return fBoolFlags.contains(UNUM_PARSE_DECIMAL_MARK_REQUIRED);
   4192 }
   4193 
   4194 //------------------------------------------------------------------------------
   4195 // Checks if decimal point pattern match is required
   4196 
   4197 void
   4198 DecimalFormat::setDecimalPatternMatchRequired(UBool newValue)
   4199 {
   4200     fBoolFlags.set(UNUM_PARSE_DECIMAL_MARK_REQUIRED, newValue);
   4201 }
   4202 
   4203 
   4204 //------------------------------------------------------------------------------
   4205 // Emits the pattern of this DecimalFormat instance.
   4206 
   4207 UnicodeString&
   4208 DecimalFormat::toPattern(UnicodeString& result) const
   4209 {
   4210     return toPattern(result, FALSE);
   4211 }
   4212 
   4213 //------------------------------------------------------------------------------
   4214 // Emits the localized pattern this DecimalFormat instance.
   4215 
   4216 UnicodeString&
   4217 DecimalFormat::toLocalizedPattern(UnicodeString& result) const
   4218 {
   4219     return toPattern(result, TRUE);
   4220 }
   4221 
   4222 //------------------------------------------------------------------------------
   4223 /**
   4224  * Expand the affix pattern strings into the expanded affix strings.  If any
   4225  * affix pattern string is null, do not expand it.  This method should be
   4226  * called any time the symbols or the affix patterns change in order to keep
   4227  * the expanded affix strings up to date.
   4228  * This method also will be called before formatting if format currency
   4229  * plural names, since the plural name is not a static one, it is
   4230  * based on the currency plural count, the affix will be known only
   4231  * after the currency plural count is know.
   4232  * In which case, the parameter
   4233  * 'pluralCount' will be a non-null currency plural count.
   4234  * In all other cases, the 'pluralCount' is null, which means it is not needed.
   4235  */
   4236 void DecimalFormat::expandAffixes(const UnicodeString* pluralCount) {
   4237     FieldPositionHandler none;
   4238     if (fPosPrefixPattern != 0) {
   4239       expandAffix(*fPosPrefixPattern, fPositivePrefix, 0, none, FALSE, pluralCount);
   4240     }
   4241     if (fPosSuffixPattern != 0) {
   4242       expandAffix(*fPosSuffixPattern, fPositiveSuffix, 0, none, FALSE, pluralCount);
   4243     }
   4244     if (fNegPrefixPattern != 0) {
   4245       expandAffix(*fNegPrefixPattern, fNegativePrefix, 0, none, FALSE, pluralCount);
   4246     }
   4247     if (fNegSuffixPattern != 0) {
   4248       expandAffix(*fNegSuffixPattern, fNegativeSuffix, 0, none, FALSE, pluralCount);
   4249     }
   4250 #ifdef FMT_DEBUG
   4251     UnicodeString s;
   4252     s.append(UnicodeString("["))
   4253       .append(DEREFSTR(fPosPrefixPattern)).append((UnicodeString)"|").append(DEREFSTR(fPosSuffixPattern))
   4254       .append((UnicodeString)";") .append(DEREFSTR(fNegPrefixPattern)).append((UnicodeString)"|").append(DEREFSTR(fNegSuffixPattern))
   4255         .append((UnicodeString)"]->[")
   4256         .append(fPositivePrefix).append((UnicodeString)"|").append(fPositiveSuffix)
   4257         .append((UnicodeString)";") .append(fNegativePrefix).append((UnicodeString)"|").append(fNegativeSuffix)
   4258         .append((UnicodeString)"]\n");
   4259     debugout(s);
   4260 #endif
   4261 }
   4262 
   4263 /**
   4264  * Expand an affix pattern into an affix string.  All characters in the
   4265  * pattern are literal unless prefixed by kQuote.  The following characters
   4266  * after kQuote are recognized: PATTERN_PERCENT, PATTERN_PER_MILLE,
   4267  * PATTERN_MINUS, and kCurrencySign.  If kCurrencySign is doubled (kQuote +
   4268  * kCurrencySign + kCurrencySign), it is interpreted as an international
   4269  * currency sign. If CURRENCY_SIGN is tripled, it is interpreted as
   4270  * currency plural long names, such as "US Dollars".
   4271  * Any other character after a kQuote represents itself.
   4272  * kQuote must be followed by another character; kQuote may not occur by
   4273  * itself at the end of the pattern.
   4274  *
   4275  * This method is used in two distinct ways.  First, it is used to expand
   4276  * the stored affix patterns into actual affixes.  For this usage, doFormat
   4277  * must be false.  Second, it is used to expand the stored affix patterns
   4278  * given a specific number (doFormat == true), for those rare cases in
   4279  * which a currency format references a ChoiceFormat (e.g., en_IN display
   4280  * name for INR).  The number itself is taken from digitList.
   4281  *
   4282  * When used in the first way, this method has a side effect: It sets
   4283  * currencyChoice to a ChoiceFormat object, if the currency's display name
   4284  * in this locale is a ChoiceFormat pattern (very rare).  It only does this
   4285  * if currencyChoice is null to start with.
   4286  *
   4287  * @param pattern the non-null, fPossibly empty pattern
   4288  * @param affix string to receive the expanded equivalent of pattern.
   4289  * Previous contents are deleted.
   4290  * @param doFormat if false, then the pattern will be expanded, and if a
   4291  * currency symbol is encountered that expands to a ChoiceFormat, the
   4292  * currencyChoice member variable will be initialized if it is null.  If
   4293  * doFormat is true, then it is assumed that the currencyChoice has been
   4294  * created, and it will be used to format the value in digitList.
   4295  * @param pluralCount the plural count. It is only used for currency
   4296  *                    plural format. In which case, it is the plural
   4297  *                    count of the currency amount. For example,
   4298  *                    in en_US, it is the singular "one", or the plural
   4299  *                    "other". For all other cases, it is null, and
   4300  *                    is not being used.
   4301  */
   4302 void DecimalFormat::expandAffix(const UnicodeString& pattern,
   4303                                 UnicodeString& affix,
   4304                                 double number,
   4305                                 FieldPositionHandler& handler,
   4306                                 UBool doFormat,
   4307                                 const UnicodeString* pluralCount) const {
   4308     affix.remove();
   4309     for (int i=0; i<pattern.length(); ) {
   4310         UChar32 c = pattern.char32At(i);
   4311         i += U16_LENGTH(c);
   4312         if (c == kQuote) {
   4313             c = pattern.char32At(i);
   4314             i += U16_LENGTH(c);
   4315             int beginIdx = affix.length();
   4316             switch (c) {
   4317             case kCurrencySign: {
   4318                 // As of ICU 2.2 we use the currency object, and
   4319                 // ignore the currency symbols in the DFS, unless
   4320                 // we have a null currency object.  This occurs if
   4321                 // resurrecting a pre-2.2 object or if the user
   4322                 // sets a custom DFS.
   4323                 UBool intl = i<pattern.length() &&
   4324                     pattern.char32At(i) == kCurrencySign;
   4325                 UBool plural = FALSE;
   4326                 if (intl) {
   4327                     ++i;
   4328                     plural = i<pattern.length() &&
   4329                         pattern.char32At(i) == kCurrencySign;
   4330                     if (plural) {
   4331                         intl = FALSE;
   4332                         ++i;
   4333                     }
   4334                 }
   4335                 const UChar* currencyUChars = getCurrency();
   4336                 if (currencyUChars[0] != 0) {
   4337                     UErrorCode ec = U_ZERO_ERROR;
   4338                     if (plural && pluralCount != NULL) {
   4339                         // plural name is only needed when pluralCount != null,
   4340                         // which means when formatting currency plural names.
   4341                         // For other cases, pluralCount == null,
   4342                         // and plural names are not needed.
   4343                         int32_t len;
   4344                         CharString pluralCountChar;
   4345                         pluralCountChar.appendInvariantChars(*pluralCount, ec);
   4346                         UBool isChoiceFormat;
   4347                         const UChar* s = ucurr_getPluralName(currencyUChars,
   4348                             fSymbols != NULL ? fSymbols->getLocale().getName() :
   4349                             Locale::getDefault().getName(), &isChoiceFormat,
   4350                             pluralCountChar.data(), &len, &ec);
   4351                         affix += UnicodeString(s, len);
   4352                         handler.addAttribute(kCurrencyField, beginIdx, affix.length());
   4353                     } else if(intl) {
   4354                         affix.append(currencyUChars, -1);
   4355                         handler.addAttribute(kCurrencyField, beginIdx, affix.length());
   4356                     } else {
   4357                         int32_t len;
   4358                         UBool isChoiceFormat;
   4359                         // If fSymbols is NULL, use default locale
   4360                         const UChar* s = ucurr_getName(currencyUChars,
   4361                             fSymbols != NULL ? fSymbols->getLocale().getName() : Locale::getDefault().getName(),
   4362                             UCURR_SYMBOL_NAME, &isChoiceFormat, &len, &ec);
   4363                         if (isChoiceFormat) {
   4364                             // Two modes here: If doFormat is false, we set up
   4365                             // currencyChoice.  If doFormat is true, we use the
   4366                             // previously created currencyChoice to format the
   4367                             // value in digitList.
   4368                             if (!doFormat) {
   4369                                 // If the currency is handled by a ChoiceFormat,
   4370                                 // then we're not going to use the expanded
   4371                                 // patterns.  Instantiate the ChoiceFormat and
   4372                                 // return.
   4373                                 if (fCurrencyChoice == NULL) {
   4374                                     // TODO Replace double-check with proper thread-safe code
   4375                                     ChoiceFormat* fmt = new ChoiceFormat(UnicodeString(s), ec);
   4376                                     if (U_SUCCESS(ec)) {
   4377                                         umtx_lock(NULL);
   4378                                         if (fCurrencyChoice == NULL) {
   4379                                             // Cast away const
   4380                                             ((DecimalFormat*)this)->fCurrencyChoice = fmt;
   4381                                             fmt = NULL;
   4382                                         }
   4383                                         umtx_unlock(NULL);
   4384                                         delete fmt;
   4385                                     }
   4386                                 }
   4387                                 // We could almost return null or "" here, since the
   4388                                 // expanded affixes are almost not used at all
   4389                                 // in this situation.  However, one method --
   4390                                 // toPattern() -- still does use the expanded
   4391                                 // affixes, in order to set up a padding
   4392                                 // pattern.  We use the CURRENCY_SIGN as a
   4393                                 // placeholder.
   4394                                 affix.append(kCurrencySign);
   4395                             } else {
   4396                                 if (fCurrencyChoice != NULL) {
   4397                                     FieldPosition pos(0); // ignored
   4398                                     if (number < 0) {
   4399                                         number = -number;
   4400                                     }
   4401                                     fCurrencyChoice->format(number, affix, pos);
   4402                                 } else {
   4403                                     // We only arrive here if the currency choice
   4404                                     // format in the locale data is INVALID.
   4405                                     affix.append(currencyUChars, -1);
   4406                                     handler.addAttribute(kCurrencyField, beginIdx, affix.length());
   4407                                 }
   4408                             }
   4409                             continue;
   4410                         }
   4411                         affix += UnicodeString(s, len);
   4412                         handler.addAttribute(kCurrencyField, beginIdx, affix.length());
   4413                     }
   4414                 } else {
   4415                     if(intl) {
   4416                         affix += getConstSymbol(DecimalFormatSymbols::kIntlCurrencySymbol);
   4417                     } else {
   4418                         affix += getConstSymbol(DecimalFormatSymbols::kCurrencySymbol);
   4419                     }
   4420                     handler.addAttribute(kCurrencyField, beginIdx, affix.length());
   4421                 }
   4422                 break;
   4423             }
   4424             case kPatternPercent:
   4425                 affix += getConstSymbol(DecimalFormatSymbols::kPercentSymbol);
   4426                 handler.addAttribute(kPercentField, beginIdx, affix.length());
   4427                 break;
   4428             case kPatternPerMill:
   4429                 affix += getConstSymbol(DecimalFormatSymbols::kPerMillSymbol);
   4430                 handler.addAttribute(kPermillField, beginIdx, affix.length());
   4431                 break;
   4432             case kPatternPlus:
   4433                 affix += getConstSymbol(DecimalFormatSymbols::kPlusSignSymbol);
   4434                 handler.addAttribute(kSignField, beginIdx, affix.length());
   4435                 break;
   4436             case kPatternMinus:
   4437                 affix += getConstSymbol(DecimalFormatSymbols::kMinusSignSymbol);
   4438                 handler.addAttribute(kSignField, beginIdx, affix.length());
   4439                 break;
   4440             default:
   4441                 affix.append(c);
   4442                 break;
   4443             }
   4444         }
   4445         else {
   4446             affix.append(c);
   4447         }
   4448     }
   4449 }
   4450 
   4451 /**
   4452  * Append an affix to the given StringBuffer.
   4453  * @param buf buffer to append to
   4454  * @param isNegative
   4455  * @param isPrefix
   4456  */
   4457 int32_t DecimalFormat::appendAffix(UnicodeString& buf, double number,
   4458                                    FieldPositionHandler& handler,
   4459                                    UBool isNegative, UBool isPrefix) const {
   4460     // plural format precedes choice format
   4461     if (fCurrencyChoice != 0 &&
   4462         fCurrencySignCount != fgCurrencySignCountInPluralFormat) {
   4463         const UnicodeString* affixPat;
   4464         if (isPrefix) {
   4465             affixPat = isNegative ? fNegPrefixPattern : fPosPrefixPattern;
   4466         } else {
   4467             affixPat = isNegative ? fNegSuffixPattern : fPosSuffixPattern;
   4468         }
   4469         if (affixPat) {
   4470             UnicodeString affixBuf;
   4471             expandAffix(*affixPat, affixBuf, number, handler, TRUE, NULL);
   4472             buf.append(affixBuf);
   4473             return affixBuf.length();
   4474         }
   4475         // else someone called a function that reset the pattern.
   4476     }
   4477 
   4478     const UnicodeString* affix;
   4479     if (fCurrencySignCount == fgCurrencySignCountInPluralFormat) {
   4480         // TODO: get an accurate count of visible fraction digits.
   4481         UnicodeString pluralCount;
   4482         int32_t minFractionDigits = this->getMinimumFractionDigits();
   4483         if (minFractionDigits > 0) {
   4484             FixedDecimal ni(number, this->getMinimumFractionDigits());
   4485             pluralCount = fCurrencyPluralInfo->getPluralRules()->select(ni);
   4486         } else {
   4487             pluralCount = fCurrencyPluralInfo->getPluralRules()->select(number);
   4488         }
   4489         AffixesForCurrency* oneSet;
   4490         if (fStyle == UNUM_CURRENCY_PLURAL) {
   4491             oneSet = (AffixesForCurrency*)fPluralAffixesForCurrency->get(pluralCount);
   4492         } else {
   4493             oneSet = (AffixesForCurrency*)fAffixesForCurrency->get(pluralCount);
   4494         }
   4495         if (isPrefix) {
   4496             affix = isNegative ? &oneSet->negPrefixForCurrency :
   4497                                  &oneSet->posPrefixForCurrency;
   4498         } else {
   4499             affix = isNegative ? &oneSet->negSuffixForCurrency :
   4500                                  &oneSet->posSuffixForCurrency;
   4501         }
   4502     } else {
   4503         if (isPrefix) {
   4504             affix = isNegative ? &fNegativePrefix : &fPositivePrefix;
   4505         } else {
   4506             affix = isNegative ? &fNegativeSuffix : &fPositiveSuffix;
   4507         }
   4508     }
   4509 
   4510     int32_t begin = (int) buf.length();
   4511 
   4512     buf.append(*affix);
   4513 
   4514     if (handler.isRecording()) {
   4515       int32_t offset = (int) (*affix).indexOf(getConstSymbol(DecimalFormatSymbols::kCurrencySymbol));
   4516       if (offset > -1) {
   4517         UnicodeString aff = getConstSymbol(DecimalFormatSymbols::kCurrencySymbol);
   4518         handler.addAttribute(kCurrencyField, begin + offset, begin + offset + aff.length());
   4519       }
   4520 
   4521       offset = (int) (*affix).indexOf(getConstSymbol(DecimalFormatSymbols::kIntlCurrencySymbol));
   4522       if (offset > -1) {
   4523         UnicodeString aff = getConstSymbol(DecimalFormatSymbols::kIntlCurrencySymbol);
   4524         handler.addAttribute(kCurrencyField, begin + offset, begin + offset + aff.length());
   4525       }
   4526 
   4527       offset = (int) (*affix).indexOf(getConstSymbol(DecimalFormatSymbols::kMinusSignSymbol));
   4528       if (offset > -1) {
   4529         UnicodeString aff = getConstSymbol(DecimalFormatSymbols::kMinusSignSymbol);
   4530         handler.addAttribute(kSignField, begin + offset, begin + offset + aff.length());
   4531       }
   4532 
   4533       offset = (int) (*affix).indexOf(getConstSymbol(DecimalFormatSymbols::kPercentSymbol));
   4534       if (offset > -1) {
   4535         UnicodeString aff = getConstSymbol(DecimalFormatSymbols::kPercentSymbol);
   4536         handler.addAttribute(kPercentField, begin + offset, begin + offset + aff.length());
   4537       }
   4538 
   4539       offset = (int) (*affix).indexOf(getConstSymbol(DecimalFormatSymbols::kPerMillSymbol));
   4540       if (offset > -1) {
   4541         UnicodeString aff = getConstSymbol(DecimalFormatSymbols::kPerMillSymbol);
   4542         handler.addAttribute(kPermillField, begin + offset, begin + offset + aff.length());
   4543       }
   4544     }
   4545     return affix->length();
   4546 }
   4547 
   4548 /**
   4549  * Appends an affix pattern to the given StringBuffer, quoting special
   4550  * characters as needed.  Uses the internal affix pattern, if that exists,
   4551  * or the literal affix, if the internal affix pattern is null.  The
   4552  * appended string will generate the same affix pattern (or literal affix)
   4553  * when passed to toPattern().
   4554  *
   4555  * @param appendTo the affix string is appended to this
   4556  * @param affixPattern a pattern such as fPosPrefixPattern; may be null
   4557  * @param expAffix a corresponding expanded affix, such as fPositivePrefix.
   4558  * Ignored unless affixPattern is null.  If affixPattern is null, then
   4559  * expAffix is appended as a literal affix.
   4560  * @param localized true if the appended pattern should contain localized
   4561  * pattern characters; otherwise, non-localized pattern chars are appended
   4562  */
   4563 void DecimalFormat::appendAffixPattern(UnicodeString& appendTo,
   4564                                        const UnicodeString* affixPattern,
   4565                                        const UnicodeString& expAffix,
   4566                                        UBool localized) const {
   4567     if (affixPattern == 0) {
   4568         appendAffixPattern(appendTo, expAffix, localized);
   4569     } else {
   4570         int i;
   4571         for (int pos=0; pos<affixPattern->length(); pos=i) {
   4572             i = affixPattern->indexOf(kQuote, pos);
   4573             if (i < 0) {
   4574                 UnicodeString s;
   4575                 affixPattern->extractBetween(pos, affixPattern->length(), s);
   4576                 appendAffixPattern(appendTo, s, localized);
   4577                 break;
   4578             }
   4579             if (i > pos) {
   4580                 UnicodeString s;
   4581                 affixPattern->extractBetween(pos, i, s);
   4582                 appendAffixPattern(appendTo, s, localized);
   4583             }
   4584             UChar32 c = affixPattern->char32At(++i);
   4585             ++i;
   4586             if (c == kQuote) {
   4587                 appendTo.append(c).append(c);
   4588                 // Fall through and append another kQuote below
   4589             } else if (c == kCurrencySign &&
   4590                        i<affixPattern->length() &&
   4591                        affixPattern->char32At(i) == kCurrencySign) {
   4592                 ++i;
   4593                 appendTo.append(c).append(c);
   4594             } else if (localized) {
   4595                 switch (c) {
   4596                 case kPatternPercent:
   4597                     appendTo += getConstSymbol(DecimalFormatSymbols::kPercentSymbol);
   4598                     break;
   4599                 case kPatternPerMill:
   4600                     appendTo += getConstSymbol(DecimalFormatSymbols::kPerMillSymbol);
   4601                     break;
   4602                 case kPatternPlus:
   4603                     appendTo += getConstSymbol(DecimalFormatSymbols::kPlusSignSymbol);
   4604                     break;
   4605                 case kPatternMinus:
   4606                     appendTo += getConstSymbol(DecimalFormatSymbols::kMinusSignSymbol);
   4607                     break;
   4608                 default:
   4609                     appendTo.append(c);
   4610                 }
   4611             } else {
   4612                 appendTo.append(c);
   4613             }
   4614         }
   4615     }
   4616 }
   4617 
   4618 /**
   4619  * Append an affix to the given StringBuffer, using quotes if
   4620  * there are special characters.  Single quotes themselves must be
   4621  * escaped in either case.
   4622  */
   4623 void
   4624 DecimalFormat::appendAffixPattern(UnicodeString& appendTo,
   4625                                   const UnicodeString& affix,
   4626                                   UBool localized) const {
   4627     UBool needQuote;
   4628     if(localized) {
   4629         needQuote = affix.indexOf(getConstSymbol(DecimalFormatSymbols::kZeroDigitSymbol)) >= 0
   4630             || affix.indexOf(getConstSymbol(DecimalFormatSymbols::kGroupingSeparatorSymbol)) >= 0
   4631             || affix.indexOf(getConstSymbol(DecimalFormatSymbols::kDecimalSeparatorSymbol)) >= 0
   4632             || affix.indexOf(getConstSymbol(DecimalFormatSymbols::kPercentSymbol)) >= 0
   4633             || affix.indexOf(getConstSymbol(DecimalFormatSymbols::kPerMillSymbol)) >= 0
   4634             || affix.indexOf(getConstSymbol(DecimalFormatSymbols::kDigitSymbol)) >= 0
   4635             || affix.indexOf(getConstSymbol(DecimalFormatSymbols::kPatternSeparatorSymbol)) >= 0
   4636             || affix.indexOf(getConstSymbol(DecimalFormatSymbols::kPlusSignSymbol)) >= 0
   4637             || affix.indexOf(getConstSymbol(DecimalFormatSymbols::kMinusSignSymbol)) >= 0
   4638             || affix.indexOf(kCurrencySign) >= 0;
   4639     }
   4640     else {
   4641         needQuote = affix.indexOf(kPatternZeroDigit) >= 0
   4642             || affix.indexOf(kPatternGroupingSeparator) >= 0
   4643             || affix.indexOf(kPatternDecimalSeparator) >= 0
   4644             || affix.indexOf(kPatternPercent) >= 0
   4645             || affix.indexOf(kPatternPerMill) >= 0
   4646             || affix.indexOf(kPatternDigit) >= 0
   4647             || affix.indexOf(kPatternSeparator) >= 0
   4648             || affix.indexOf(kPatternExponent) >= 0
   4649             || affix.indexOf(kPatternPlus) >= 0
   4650             || affix.indexOf(kPatternMinus) >= 0
   4651             || affix.indexOf(kCurrencySign) >= 0;
   4652     }
   4653     if (needQuote)
   4654         appendTo += (UChar)0x0027 /*'\''*/;
   4655     if (affix.indexOf((UChar)0x0027 /*'\''*/) < 0)
   4656         appendTo += affix;
   4657     else {
   4658         for (int32_t j = 0; j < affix.length(); ) {
   4659             UChar32 c = affix.char32At(j);
   4660             j += U16_LENGTH(c);
   4661             appendTo += c;
   4662             if (c == 0x0027 /*'\''*/)
   4663                 appendTo += c;
   4664         }
   4665     }
   4666     if (needQuote)
   4667         appendTo += (UChar)0x0027 /*'\''*/;
   4668 }
   4669 
   4670 //------------------------------------------------------------------------------
   4671 
   4672 UnicodeString&
   4673 DecimalFormat::toPattern(UnicodeString& result, UBool localized) const
   4674 {
   4675     if (fStyle == UNUM_CURRENCY_PLURAL) {
   4676         // the prefix or suffix pattern might not be defined yet,
   4677         // so they can not be synthesized,
   4678         // instead, get them directly.
   4679         // but it might not be the actual pattern used in formatting.
   4680         // the actual pattern used in formatting depends on the
   4681         // formatted number's plural count.
   4682         result = fFormatPattern;
   4683         return result;
   4684     }
   4685     result.remove();
   4686     UChar32 zero, sigDigit = kPatternSignificantDigit;
   4687     UnicodeString digit, group;
   4688     int32_t i;
   4689     int32_t roundingDecimalPos = 0; // Pos of decimal in roundingDigits
   4690     UnicodeString roundingDigits;
   4691     int32_t padPos = (fFormatWidth > 0) ? fPadPosition : -1;
   4692     UnicodeString padSpec;
   4693     UBool useSigDig = areSignificantDigitsUsed();
   4694 
   4695     if (localized) {
   4696         digit.append(getConstSymbol(DecimalFormatSymbols::kDigitSymbol));
   4697         group.append(getConstSymbol(DecimalFormatSymbols::kGroupingSeparatorSymbol));
   4698         zero = getConstSymbol(DecimalFormatSymbols::kZeroDigitSymbol).char32At(0);
   4699         if (useSigDig) {
   4700             sigDigit = getConstSymbol(DecimalFormatSymbols::kSignificantDigitSymbol).char32At(0);
   4701         }
   4702     }
   4703     else {
   4704         digit.append((UChar)kPatternDigit);
   4705         group.append((UChar)kPatternGroupingSeparator);
   4706         zero = (UChar32)kPatternZeroDigit;
   4707     }
   4708     if (fFormatWidth > 0) {
   4709         if (localized) {
   4710             padSpec.append(getConstSymbol(DecimalFormatSymbols::kPadEscapeSymbol));
   4711         }
   4712         else {
   4713             padSpec.append((UChar)kPatternPadEscape);
   4714         }
   4715         padSpec.append(fPad);
   4716     }
   4717     if (fRoundingIncrement != NULL) {
   4718         for(i=0; i<fRoundingIncrement->getCount(); ++i) {
   4719           roundingDigits.append(zero+(fRoundingIncrement->getDigitValue(i))); // Convert to Unicode digit
   4720         }
   4721         roundingDecimalPos = fRoundingIncrement->getDecimalAt();
   4722     }
   4723     for (int32_t part=0; part<2; ++part) {
   4724         if (padPos == kPadBeforePrefix) {
   4725             result.append(padSpec);
   4726         }
   4727         appendAffixPattern(result,
   4728                     (part==0 ? fPosPrefixPattern : fNegPrefixPattern),
   4729                     (part==0 ? fPositivePrefix : fNegativePrefix),
   4730                     localized);
   4731         if (padPos == kPadAfterPrefix && ! padSpec.isEmpty()) {
   4732             result.append(padSpec);
   4733         }
   4734         int32_t sub0Start = result.length();
   4735         int32_t g = isGroupingUsed() ? _max(0, fGroupingSize) : 0;
   4736         if (g > 0 && fGroupingSize2 > 0 && fGroupingSize2 != fGroupingSize) {
   4737             g += fGroupingSize2;
   4738         }
   4739         int32_t maxDig = 0, minDig = 0, maxSigDig = 0;
   4740         if (useSigDig) {
   4741             minDig = getMinimumSignificantDigits();
   4742             maxDig = maxSigDig = getMaximumSignificantDigits();
   4743         } else {
   4744             minDig = getMinimumIntegerDigits();
   4745             maxDig = getMaximumIntegerDigits();
   4746         }
   4747         if (fUseExponentialNotation) {
   4748             if (maxDig > kMaxScientificIntegerDigits) {
   4749                 maxDig = 1;
   4750             }
   4751         } else if (useSigDig) {
   4752             maxDig = _max(maxDig, g+1);
   4753         } else {
   4754             maxDig = _max(_max(g, getMinimumIntegerDigits()),
   4755                           roundingDecimalPos) + 1;
   4756         }
   4757         for (i = maxDig; i > 0; --i) {
   4758             if (!fUseExponentialNotation && i<maxDig &&
   4759                 isGroupingPosition(i)) {
   4760                 result.append(group);
   4761             }
   4762             if (useSigDig) {
   4763                 //  #@,@###   (maxSigDig == 5, minSigDig == 2)
   4764                 //  65 4321   (1-based pos, count from the right)
   4765                 // Use # if pos > maxSigDig or 1 <= pos <= (maxSigDig - minSigDig)
   4766                 // Use @ if (maxSigDig - minSigDig) < pos <= maxSigDig
   4767                 if (maxSigDig >= i && i > (maxSigDig - minDig)) {
   4768                     result.append(sigDigit);
   4769                 } else {
   4770                     result.append(digit);
   4771                 }
   4772             } else {
   4773                 if (! roundingDigits.isEmpty()) {
   4774                     int32_t pos = roundingDecimalPos - i;
   4775                     if (pos >= 0 && pos < roundingDigits.length()) {
   4776                         result.append((UChar) (roundingDigits.char32At(pos) - kPatternZeroDigit + zero));
   4777                         continue;
   4778                     }
   4779                 }
   4780                 if (i<=minDig) {
   4781                     result.append(zero);
   4782                 } else {
   4783                     result.append(digit);
   4784                 }
   4785             }
   4786         }
   4787         if (!useSigDig) {
   4788             if (getMaximumFractionDigits() > 0 || fDecimalSeparatorAlwaysShown) {
   4789                 if (localized) {
   4790                     result += getConstSymbol(DecimalFormatSymbols::kDecimalSeparatorSymbol);
   4791                 }
   4792                 else {
   4793                     result.append((UChar)kPatternDecimalSeparator);
   4794                 }
   4795             }
   4796             int32_t pos = roundingDecimalPos;
   4797             for (i = 0; i < getMaximumFractionDigits(); ++i) {
   4798                 if (! roundingDigits.isEmpty() && pos < roundingDigits.length()) {
   4799                     if (pos < 0) {
   4800                         result.append(zero);
   4801                     }
   4802                     else {
   4803                         result.append((UChar)(roundingDigits.char32At(pos) - kPatternZeroDigit + zero));
   4804                     }
   4805                     ++pos;
   4806                     continue;
   4807                 }
   4808                 if (i<getMinimumFractionDigits()) {
   4809                     result.append(zero);
   4810                 }
   4811                 else {
   4812                     result.append(digit);
   4813                 }
   4814             }
   4815         }
   4816         if (fUseExponentialNotation) {
   4817             if (localized) {
   4818                 result += getConstSymbol(DecimalFormatSymbols::kExponentialSymbol);
   4819             }
   4820             else {
   4821                 result.append((UChar)kPatternExponent);
   4822             }
   4823             if (fExponentSignAlwaysShown) {
   4824                 if (localized) {
   4825                     result += getConstSymbol(DecimalFormatSymbols::kPlusSignSymbol);
   4826                 }
   4827                 else {
   4828                     result.append((UChar)kPatternPlus);
   4829                 }
   4830             }
   4831             for (i=0; i<fMinExponentDigits; ++i) {
   4832                 result.append(zero);
   4833             }
   4834         }
   4835         if (! padSpec.isEmpty() && !fUseExponentialNotation) {
   4836             int32_t add = fFormatWidth - result.length() + sub0Start
   4837                 - ((part == 0)
   4838                    ? fPositivePrefix.length() + fPositiveSuffix.length()
   4839                    : fNegativePrefix.length() + fNegativeSuffix.length());
   4840             while (add > 0) {
   4841                 result.insert(sub0Start, digit);
   4842                 ++maxDig;
   4843                 --add;
   4844                 // Only add a grouping separator if we have at least
   4845                 // 2 additional characters to be added, so we don't
   4846                 // end up with ",###".
   4847                 if (add>1 && isGroupingPosition(maxDig)) {
   4848                     result.insert(sub0Start, group);
   4849                     --add;
   4850                 }
   4851             }
   4852         }
   4853         if (fPadPosition == kPadBeforeSuffix && ! padSpec.isEmpty()) {
   4854             result.append(padSpec);
   4855         }
   4856         if (part == 0) {
   4857             appendAffixPattern(result, fPosSuffixPattern, fPositiveSuffix, localized);
   4858             if (fPadPosition == kPadAfterSuffix && ! padSpec.isEmpty()) {
   4859                 result.append(padSpec);
   4860             }
   4861             UBool isDefault = FALSE;
   4862             if ((fNegSuffixPattern == fPosSuffixPattern && // both null
   4863                  fNegativeSuffix == fPositiveSuffix)
   4864                 || (fNegSuffixPattern != 0 && fPosSuffixPattern != 0 &&
   4865                     *fNegSuffixPattern == *fPosSuffixPattern))
   4866             {
   4867                 if (fNegPrefixPattern != NULL && fPosPrefixPattern != NULL)
   4868                 {
   4869                     int32_t length = fPosPrefixPattern->length();
   4870                     isDefault = fNegPrefixPattern->length() == (length+2) &&
   4871                         (*fNegPrefixPattern)[(int32_t)0] == kQuote &&
   4872                         (*fNegPrefixPattern)[(int32_t)1] == kPatternMinus &&
   4873                         fNegPrefixPattern->compare(2, length, *fPosPrefixPattern, 0, length) == 0;
   4874                 }
   4875                 if (!isDefault &&
   4876                     fNegPrefixPattern == NULL && fPosPrefixPattern == NULL)
   4877                 {
   4878                     int32_t length = fPositivePrefix.length();
   4879                     isDefault = fNegativePrefix.length() == (length+1) &&
   4880                         fNegativePrefix.compare(getConstSymbol(DecimalFormatSymbols::kMinusSignSymbol)) == 0 &&
   4881                         fNegativePrefix.compare(1, length, fPositivePrefix, 0, length) == 0;
   4882                 }
   4883             }
   4884             if (isDefault) {
   4885                 break; // Don't output default negative subpattern
   4886             } else {
   4887                 if (localized) {
   4888                     result += getConstSymbol(DecimalFormatSymbols::kPatternSeparatorSymbol);
   4889                 }
   4890                 else {
   4891                     result.append((UChar)kPatternSeparator);
   4892                 }
   4893             }
   4894         } else {
   4895             appendAffixPattern(result, fNegSuffixPattern, fNegativeSuffix, localized);
   4896             if (fPadPosition == kPadAfterSuffix && ! padSpec.isEmpty()) {
   4897                 result.append(padSpec);
   4898             }
   4899         }
   4900     }
   4901 
   4902     return result;
   4903 }
   4904 
   4905 //------------------------------------------------------------------------------
   4906 
   4907 void
   4908 DecimalFormat::applyPattern(const UnicodeString& pattern, UErrorCode& status)
   4909 {
   4910     UParseError parseError;
   4911     applyPattern(pattern, FALSE, parseError, status);
   4912 }
   4913 
   4914 //------------------------------------------------------------------------------
   4915 
   4916 void
   4917 DecimalFormat::applyPattern(const UnicodeString& pattern,
   4918                             UParseError& parseError,
   4919                             UErrorCode& status)
   4920 {
   4921     applyPattern(pattern, FALSE, parseError, status);
   4922 }
   4923 //------------------------------------------------------------------------------
   4924 
   4925 void
   4926 DecimalFormat::applyLocalizedPattern(const UnicodeString& pattern, UErrorCode& status)
   4927 {
   4928     UParseError parseError;
   4929     applyPattern(pattern, TRUE,parseError,status);
   4930 }
   4931 
   4932 //------------------------------------------------------------------------------
   4933 
   4934 void
   4935 DecimalFormat::applyLocalizedPattern(const UnicodeString& pattern,
   4936                                      UParseError& parseError,
   4937                                      UErrorCode& status)
   4938 {
   4939     applyPattern(pattern, TRUE,parseError,status);
   4940 }
   4941 
   4942 //------------------------------------------------------------------------------
   4943 
   4944 void
   4945 DecimalFormat::applyPatternWithoutExpandAffix(const UnicodeString& pattern,
   4946                                               UBool localized,
   4947                                               UParseError& parseError,
   4948                                               UErrorCode& status)
   4949 {
   4950     if (U_FAILURE(status))
   4951     {
   4952         return;
   4953     }
   4954     DecimalFormatPatternParser patternParser;
   4955     if (localized) {
   4956       patternParser.useSymbols(*fSymbols);
   4957     }
   4958     fFormatPattern = pattern;
   4959     DecimalFormatPattern out;
   4960     patternParser.applyPatternWithoutExpandAffix(
   4961         pattern,
   4962         out,
   4963         parseError,
   4964         status);
   4965     if (U_FAILURE(status)) {
   4966       return;
   4967     }
   4968 
   4969     setMinimumIntegerDigits(out.fMinimumIntegerDigits);
   4970     setMaximumIntegerDigits(out.fMaximumIntegerDigits);
   4971     setMinimumFractionDigits(out.fMinimumFractionDigits);
   4972     setMaximumFractionDigits(out.fMaximumFractionDigits);
   4973     setSignificantDigitsUsed(out.fUseSignificantDigits);
   4974     if (out.fUseSignificantDigits) {
   4975         setMinimumSignificantDigits(out.fMinimumSignificantDigits);
   4976         setMaximumSignificantDigits(out.fMaximumSignificantDigits);
   4977     }
   4978     fUseExponentialNotation = out.fUseExponentialNotation;
   4979     if (out.fUseExponentialNotation) {
   4980         fMinExponentDigits = out.fMinExponentDigits;
   4981     }
   4982     fExponentSignAlwaysShown = out.fExponentSignAlwaysShown;
   4983     fCurrencySignCount = out.fCurrencySignCount;
   4984     setGroupingUsed(out.fGroupingUsed);
   4985     if (out.fGroupingUsed) {
   4986         fGroupingSize = out.fGroupingSize;
   4987         fGroupingSize2 = out.fGroupingSize2;
   4988     }
   4989     setMultiplier(out.fMultiplier);
   4990     fDecimalSeparatorAlwaysShown = out.fDecimalSeparatorAlwaysShown;
   4991     fFormatWidth = out.fFormatWidth;
   4992     if (out.fRoundingIncrementUsed) {
   4993         if (fRoundingIncrement != NULL) {
   4994             *fRoundingIncrement = out.fRoundingIncrement;
   4995         } else {
   4996             fRoundingIncrement = new DigitList(out.fRoundingIncrement);
   4997             /* test for NULL */
   4998             if (fRoundingIncrement == NULL) {
   4999                  status = U_MEMORY_ALLOCATION_ERROR;
   5000                  return;
   5001             }
   5002         }
   5003     } else {
   5004         setRoundingIncrement(0.0);
   5005     }
   5006     fPad = out.fPad;
   5007     switch (out.fPadPosition) {
   5008         case DecimalFormatPattern::kPadBeforePrefix:
   5009             fPadPosition = kPadBeforePrefix;
   5010             break;
   5011         case DecimalFormatPattern::kPadAfterPrefix:
   5012             fPadPosition = kPadAfterPrefix;
   5013             break;
   5014         case DecimalFormatPattern::kPadBeforeSuffix:
   5015             fPadPosition = kPadBeforeSuffix;
   5016             break;
   5017         case DecimalFormatPattern::kPadAfterSuffix:
   5018             fPadPosition = kPadAfterSuffix;
   5019             break;
   5020     }
   5021     copyString(out.fNegPrefixPattern, out.fNegPatternsBogus, fNegPrefixPattern, status);
   5022     copyString(out.fNegSuffixPattern, out.fNegPatternsBogus, fNegSuffixPattern, status);
   5023     copyString(out.fPosPrefixPattern, out.fPosPatternsBogus, fPosPrefixPattern, status);
   5024     copyString(out.fPosSuffixPattern, out.fPosPatternsBogus, fPosSuffixPattern, status);
   5025 }
   5026 
   5027 
   5028 void
   5029 DecimalFormat::expandAffixAdjustWidth(const UnicodeString* pluralCount) {
   5030     expandAffixes(pluralCount);
   5031     if (fFormatWidth > 0) {
   5032         // Finish computing format width (see above)
   5033             // TODO: how to handle fFormatWidth,
   5034             // need to save in f(Plural)AffixesForCurrecy?
   5035             fFormatWidth += fPositivePrefix.length() + fPositiveSuffix.length();
   5036     }
   5037 }
   5038 
   5039 
   5040 void
   5041 DecimalFormat::applyPattern(const UnicodeString& pattern,
   5042                             UBool localized,
   5043                             UParseError& parseError,
   5044                             UErrorCode& status)
   5045 {
   5046     // do the following re-set first. since they change private data by
   5047     // apply pattern again.
   5048     if (pattern.indexOf(kCurrencySign) != -1) {
   5049         if (fCurrencyPluralInfo == NULL) {
   5050             // initialize currencyPluralInfo if needed
   5051             fCurrencyPluralInfo = new CurrencyPluralInfo(fSymbols->getLocale(), status);
   5052         }
   5053         if (fAffixPatternsForCurrency == NULL) {
   5054             setupCurrencyAffixPatterns(status);
   5055         }
   5056         if (pattern.indexOf(fgTripleCurrencySign, 3, 0) != -1) {
   5057             // only setup the affixes of the current pattern.
   5058             setupCurrencyAffixes(pattern, TRUE, FALSE, status);
   5059         }
   5060     }
   5061     applyPatternWithoutExpandAffix(pattern, localized, parseError, status);
   5062     expandAffixAdjustWidth(NULL);
   5063 #if UCONFIG_FORMAT_FASTPATHS_49
   5064     handleChanged();
   5065 #endif
   5066 }
   5067 
   5068 
   5069 void
   5070 DecimalFormat::applyPatternInternally(const UnicodeString& pluralCount,
   5071                                       const UnicodeString& pattern,
   5072                                       UBool localized,
   5073                                       UParseError& parseError,
   5074                                       UErrorCode& status) {
   5075     applyPatternWithoutExpandAffix(pattern, localized, parseError, status);
   5076     expandAffixAdjustWidth(&pluralCount);
   5077 #if UCONFIG_FORMAT_FASTPATHS_49
   5078     handleChanged();
   5079 #endif
   5080 }
   5081 
   5082 
   5083 /**
   5084  * Sets the maximum number of digits allowed in the integer portion of a
   5085  * number.
   5086  * @see NumberFormat#setMaximumIntegerDigits
   5087  */
   5088 void DecimalFormat::setMaximumIntegerDigits(int32_t newValue) {
   5089     NumberFormat::setMaximumIntegerDigits(_min(newValue, gDefaultMaxIntegerDigits));
   5090 #if UCONFIG_FORMAT_FASTPATHS_49
   5091     handleChanged();
   5092 #endif
   5093 }
   5094 
   5095 /**
   5096  * Sets the minimum number of digits allowed in the integer portion of a
   5097  * number. This override limits the integer digit count to 309.
   5098  * @see NumberFormat#setMinimumIntegerDigits
   5099  */
   5100 void DecimalFormat::setMinimumIntegerDigits(int32_t newValue) {
   5101     NumberFormat::setMinimumIntegerDigits(_min(newValue, kDoubleIntegerDigits));
   5102 #if UCONFIG_FORMAT_FASTPATHS_49
   5103     handleChanged();
   5104 #endif
   5105 }
   5106 
   5107 /**
   5108  * Sets the maximum number of digits allowed in the fraction portion of a
   5109  * number. This override limits the fraction digit count to 340.
   5110  * @see NumberFormat#setMaximumFractionDigits
   5111  */
   5112 void DecimalFormat::setMaximumFractionDigits(int32_t newValue) {
   5113     NumberFormat::setMaximumFractionDigits(_min(newValue, kDoubleFractionDigits));
   5114 #if UCONFIG_FORMAT_FASTPATHS_49
   5115     handleChanged();
   5116 #endif
   5117 }
   5118 
   5119 /**
   5120  * Sets the minimum number of digits allowed in the fraction portion of a
   5121  * number. This override limits the fraction digit count to 340.
   5122  * @see NumberFormat#setMinimumFractionDigits
   5123  */
   5124 void DecimalFormat::setMinimumFractionDigits(int32_t newValue) {
   5125     NumberFormat::setMinimumFractionDigits(_min(newValue, kDoubleFractionDigits));
   5126 #if UCONFIG_FORMAT_FASTPATHS_49
   5127     handleChanged();
   5128 #endif
   5129 }
   5130 
   5131 int32_t DecimalFormat::getMinimumSignificantDigits() const {
   5132     return fMinSignificantDigits;
   5133 }
   5134 
   5135 int32_t DecimalFormat::getMaximumSignificantDigits() const {
   5136     return fMaxSignificantDigits;
   5137 }
   5138 
   5139 void DecimalFormat::setMinimumSignificantDigits(int32_t min) {
   5140     if (min < 1) {
   5141         min = 1;
   5142     }
   5143     // pin max sig dig to >= min
   5144     int32_t max = _max(fMaxSignificantDigits, min);
   5145     fMinSignificantDigits = min;
   5146     fMaxSignificantDigits = max;
   5147     fUseSignificantDigits = TRUE;
   5148 #if UCONFIG_FORMAT_FASTPATHS_49
   5149     handleChanged();
   5150 #endif
   5151 }
   5152 
   5153 void DecimalFormat::setMaximumSignificantDigits(int32_t max) {
   5154     if (max < 1) {
   5155         max = 1;
   5156     }
   5157     // pin min sig dig to 1..max
   5158     U_ASSERT(fMinSignificantDigits >= 1);
   5159     int32_t min = _min(fMinSignificantDigits, max);
   5160     fMinSignificantDigits = min;
   5161     fMaxSignificantDigits = max;
   5162     fUseSignificantDigits = TRUE;
   5163 #if UCONFIG_FORMAT_FASTPATHS_49
   5164     handleChanged();
   5165 #endif
   5166 }
   5167 
   5168 UBool DecimalFormat::areSignificantDigitsUsed() const {
   5169     return fUseSignificantDigits;
   5170 }
   5171 
   5172 void DecimalFormat::setSignificantDigitsUsed(UBool useSignificantDigits) {
   5173     fUseSignificantDigits = useSignificantDigits;
   5174 #if UCONFIG_FORMAT_FASTPATHS_49
   5175     handleChanged();
   5176 #endif
   5177 }
   5178 
   5179 void DecimalFormat::setCurrencyInternally(const UChar* theCurrency,
   5180                                           UErrorCode& ec) {
   5181     // If we are a currency format, then modify our affixes to
   5182     // encode the currency symbol for the given currency in our
   5183     // locale, and adjust the decimal digits and rounding for the
   5184     // given currency.
   5185 
   5186     // Note: The code is ordered so that this object is *not changed*
   5187     // until we are sure we are going to succeed.
   5188 
   5189     // NULL or empty currency is *legal* and indicates no currency.
   5190     UBool isCurr = (theCurrency && *theCurrency);
   5191 
   5192     double rounding = 0.0;
   5193     int32_t frac = 0;
   5194     if (fCurrencySignCount != fgCurrencySignCountZero && isCurr) {
   5195         rounding = ucurr_getRoundingIncrementForUsage(theCurrency, fCurrencyUsage, &ec);
   5196         frac = ucurr_getDefaultFractionDigitsForUsage(theCurrency, fCurrencyUsage, &ec);
   5197     }
   5198 
   5199     NumberFormat::setCurrency(theCurrency, ec);
   5200     if (U_FAILURE(ec)) return;
   5201 
   5202     if (fCurrencySignCount != fgCurrencySignCountZero) {
   5203         // NULL or empty currency is *legal* and indicates no currency.
   5204         if (isCurr) {
   5205             setRoundingIncrement(rounding);
   5206             setMinimumFractionDigits(frac);
   5207             setMaximumFractionDigits(frac);
   5208         }
   5209         expandAffixes(NULL);
   5210     }
   5211 #if UCONFIG_FORMAT_FASTPATHS_49
   5212     handleChanged();
   5213 #endif
   5214 }
   5215 
   5216 void DecimalFormat::setCurrency(const UChar* theCurrency, UErrorCode& ec) {
   5217     // set the currency before compute affixes to get the right currency names
   5218     NumberFormat::setCurrency(theCurrency, ec);
   5219     if (fFormatPattern.indexOf(fgTripleCurrencySign, 3, 0) != -1) {
   5220         UnicodeString savedPtn = fFormatPattern;
   5221         setupCurrencyAffixes(fFormatPattern, TRUE, TRUE, ec);
   5222         UParseError parseErr;
   5223         applyPattern(savedPtn, FALSE, parseErr, ec);
   5224     }
   5225     // set the currency after apply pattern to get the correct rounding/fraction
   5226     setCurrencyInternally(theCurrency, ec);
   5227 #if UCONFIG_FORMAT_FASTPATHS_49
   5228     handleChanged();
   5229 #endif
   5230 }
   5231 
   5232 void DecimalFormat::setCurrencyUsage(UCurrencyUsage newContext, UErrorCode* ec){
   5233     fCurrencyUsage = newContext;
   5234 
   5235     const UChar* theCurrency = getCurrency();
   5236 
   5237     // We set rounding/digit based on currency context
   5238     if(theCurrency){
   5239         double rounding = ucurr_getRoundingIncrementForUsage(theCurrency, fCurrencyUsage, ec);
   5240         int32_t frac = ucurr_getDefaultFractionDigitsForUsage(theCurrency, fCurrencyUsage, ec);
   5241 
   5242         if (U_SUCCESS(*ec)) {
   5243             setRoundingIncrement(rounding);
   5244             setMinimumFractionDigits(frac);
   5245             setMaximumFractionDigits(frac);
   5246         }
   5247     }
   5248 }
   5249 
   5250 UCurrencyUsage DecimalFormat::getCurrencyUsage() const {
   5251     return fCurrencyUsage;
   5252 }
   5253 
   5254 // Deprecated variant with no UErrorCode parameter
   5255 void DecimalFormat::setCurrency(const UChar* theCurrency) {
   5256     UErrorCode ec = U_ZERO_ERROR;
   5257     setCurrency(theCurrency, ec);
   5258 #if UCONFIG_FORMAT_FASTPATHS_49
   5259     handleChanged();
   5260 #endif
   5261 }
   5262 
   5263 void DecimalFormat::getEffectiveCurrency(UChar* result, UErrorCode& ec) const {
   5264     if (fSymbols == NULL) {
   5265         ec = U_MEMORY_ALLOCATION_ERROR;
   5266         return;
   5267     }
   5268     ec = U_ZERO_ERROR;
   5269     const UChar* c = getCurrency();
   5270     if (*c == 0) {
   5271         const UnicodeString &intl =
   5272             fSymbols->getConstSymbol(DecimalFormatSymbols::kIntlCurrencySymbol);
   5273         c = intl.getBuffer(); // ok for intl to go out of scope
   5274     }
   5275     u_strncpy(result, c, 3);
   5276     result[3] = 0;
   5277 }
   5278 
   5279 /**
   5280  * Return the number of fraction digits to display, or the total
   5281  * number of digits for significant digit formats and exponential
   5282  * formats.
   5283  */
   5284 int32_t
   5285 DecimalFormat::precision() const {
   5286     if (areSignificantDigitsUsed()) {
   5287         return getMaximumSignificantDigits();
   5288     } else if (fUseExponentialNotation) {
   5289         return getMinimumIntegerDigits() + getMaximumFractionDigits();
   5290     } else {
   5291         return getMaximumFractionDigits();
   5292     }
   5293 }
   5294 
   5295 
   5296 // TODO: template algorithm
   5297 Hashtable*
   5298 DecimalFormat::initHashForAffix(UErrorCode& status) {
   5299     if ( U_FAILURE(status) ) {
   5300         return NULL;
   5301     }
   5302     Hashtable* hTable;
   5303     if ( (hTable = new Hashtable(TRUE, status)) == NULL ) {
   5304         status = U_MEMORY_ALLOCATION_ERROR;
   5305         return NULL;
   5306     }
   5307     if ( U_FAILURE(status) ) {
   5308         delete hTable;
   5309         return NULL;
   5310     }
   5311     hTable->setValueComparator(decimfmtAffixValueComparator);
   5312     return hTable;
   5313 }
   5314 
   5315 Hashtable*
   5316 DecimalFormat::initHashForAffixPattern(UErrorCode& status) {
   5317     if ( U_FAILURE(status) ) {
   5318         return NULL;
   5319     }
   5320     Hashtable* hTable;
   5321     if ( (hTable = new Hashtable(TRUE, status)) == NULL ) {
   5322         status = U_MEMORY_ALLOCATION_ERROR;
   5323         return NULL;
   5324     }
   5325     if ( U_FAILURE(status) ) {
   5326         delete hTable;
   5327         return NULL;
   5328     }
   5329     hTable->setValueComparator(decimfmtAffixPatternValueComparator);
   5330     return hTable;
   5331 }
   5332 
   5333 void
   5334 DecimalFormat::deleteHashForAffix(Hashtable*& table)
   5335 {
   5336     if ( table == NULL ) {
   5337         return;
   5338     }
   5339     int32_t pos = UHASH_FIRST;
   5340     const UHashElement* element = NULL;
   5341     while ( (element = table->nextElement(pos)) != NULL ) {
   5342         const UHashTok valueTok = element->value;
   5343         const AffixesForCurrency* value = (AffixesForCurrency*)valueTok.pointer;
   5344         delete value;
   5345     }
   5346     delete table;
   5347     table = NULL;
   5348 }
   5349 
   5350 
   5351 
   5352 void
   5353 DecimalFormat::deleteHashForAffixPattern()
   5354 {
   5355     if ( fAffixPatternsForCurrency == NULL ) {
   5356         return;
   5357     }
   5358     int32_t pos = UHASH_FIRST;
   5359     const UHashElement* element = NULL;
   5360     while ( (element = fAffixPatternsForCurrency->nextElement(pos)) != NULL ) {
   5361         const UHashTok valueTok = element->value;
   5362         const AffixPatternsForCurrency* value = (AffixPatternsForCurrency*)valueTok.pointer;
   5363         delete value;
   5364     }
   5365     delete fAffixPatternsForCurrency;
   5366     fAffixPatternsForCurrency = NULL;
   5367 }
   5368 
   5369 
   5370 void
   5371 DecimalFormat::copyHashForAffixPattern(const Hashtable* source,
   5372                                        Hashtable* target,
   5373                                        UErrorCode& status) {
   5374     if ( U_FAILURE(status) ) {
   5375         return;
   5376     }
   5377     int32_t pos = UHASH_FIRST;
   5378     const UHashElement* element = NULL;
   5379     if ( source ) {
   5380         while ( (element = source->nextElement(pos)) != NULL ) {
   5381             const UHashTok keyTok = element->key;
   5382             const UnicodeString* key = (UnicodeString*)keyTok.pointer;
   5383             const UHashTok valueTok = element->value;
   5384             const AffixPatternsForCurrency* value = (AffixPatternsForCurrency*)valueTok.pointer;
   5385             AffixPatternsForCurrency* copy = new AffixPatternsForCurrency(
   5386                 value->negPrefixPatternForCurrency,
   5387                 value->negSuffixPatternForCurrency,
   5388                 value->posPrefixPatternForCurrency,
   5389                 value->posSuffixPatternForCurrency,
   5390                 value->patternType);
   5391             target->put(UnicodeString(*key), copy, status);
   5392             if ( U_FAILURE(status) ) {
   5393                 return;
   5394             }
   5395         }
   5396     }
   5397 }
   5398 
   5399 // this is only overridden to call handleChanged() for fastpath purposes.
   5400 void
   5401 DecimalFormat::setGroupingUsed(UBool newValue) {
   5402   NumberFormat::setGroupingUsed(newValue);
   5403   handleChanged();
   5404 }
   5405 
   5406 // this is only overridden to call handleChanged() for fastpath purposes.
   5407 void
   5408 DecimalFormat::setParseIntegerOnly(UBool newValue) {
   5409   NumberFormat::setParseIntegerOnly(newValue);
   5410   handleChanged();
   5411 }
   5412 
   5413 // this is only overridden to call handleChanged() for fastpath purposes.
   5414 // setContext doesn't affect the fastPath right now, but this is called for completeness
   5415 void
   5416 DecimalFormat::setContext(UDisplayContext value, UErrorCode& status) {
   5417   NumberFormat::setContext(value, status);
   5418   handleChanged();
   5419 }
   5420 
   5421 
   5422 DecimalFormat& DecimalFormat::setAttribute( UNumberFormatAttribute attr,
   5423                                             int32_t newValue,
   5424                                             UErrorCode &status) {
   5425   if(U_FAILURE(status)) return *this;
   5426 
   5427   switch(attr) {
   5428   case UNUM_LENIENT_PARSE:
   5429     setLenient(newValue!=0);
   5430     break;
   5431 
   5432     case UNUM_PARSE_INT_ONLY:
   5433       setParseIntegerOnly(newValue!=0);
   5434       break;
   5435 
   5436     case UNUM_GROUPING_USED:
   5437       setGroupingUsed(newValue!=0);
   5438       break;
   5439 
   5440     case UNUM_DECIMAL_ALWAYS_SHOWN:
   5441       setDecimalSeparatorAlwaysShown(newValue!=0);
   5442         break;
   5443 
   5444     case UNUM_MAX_INTEGER_DIGITS:
   5445       setMaximumIntegerDigits(newValue);
   5446         break;
   5447 
   5448     case UNUM_MIN_INTEGER_DIGITS:
   5449       setMinimumIntegerDigits(newValue);
   5450         break;
   5451 
   5452     case UNUM_INTEGER_DIGITS:
   5453       setMinimumIntegerDigits(newValue);
   5454       setMaximumIntegerDigits(newValue);
   5455         break;
   5456 
   5457     case UNUM_MAX_FRACTION_DIGITS:
   5458       setMaximumFractionDigits(newValue);
   5459         break;
   5460 
   5461     case UNUM_MIN_FRACTION_DIGITS:
   5462       setMinimumFractionDigits(newValue);
   5463         break;
   5464 
   5465     case UNUM_FRACTION_DIGITS:
   5466       setMinimumFractionDigits(newValue);
   5467       setMaximumFractionDigits(newValue);
   5468       break;
   5469 
   5470     case UNUM_SIGNIFICANT_DIGITS_USED:
   5471       setSignificantDigitsUsed(newValue!=0);
   5472         break;
   5473 
   5474     case UNUM_MAX_SIGNIFICANT_DIGITS:
   5475       setMaximumSignificantDigits(newValue);
   5476         break;
   5477 
   5478     case UNUM_MIN_SIGNIFICANT_DIGITS:
   5479       setMinimumSignificantDigits(newValue);
   5480         break;
   5481 
   5482     case UNUM_MULTIPLIER:
   5483       setMultiplier(newValue);
   5484        break;
   5485 
   5486     case UNUM_GROUPING_SIZE:
   5487       setGroupingSize(newValue);
   5488         break;
   5489 
   5490     case UNUM_ROUNDING_MODE:
   5491       setRoundingMode((DecimalFormat::ERoundingMode)newValue);
   5492         break;
   5493 
   5494     case UNUM_FORMAT_WIDTH:
   5495       setFormatWidth(newValue);
   5496         break;
   5497 
   5498     case UNUM_PADDING_POSITION:
   5499         /** The position at which padding will take place. */
   5500       setPadPosition((DecimalFormat::EPadPosition)newValue);
   5501         break;
   5502 
   5503     case UNUM_SECONDARY_GROUPING_SIZE:
   5504       setSecondaryGroupingSize(newValue);
   5505         break;
   5506 
   5507 #if UCONFIG_HAVE_PARSEALLINPUT
   5508     case UNUM_PARSE_ALL_INPUT:
   5509       setParseAllInput((UNumberFormatAttributeValue)newValue);
   5510         break;
   5511 #endif
   5512 
   5513     /* These are stored in fBoolFlags */
   5514     case UNUM_PARSE_NO_EXPONENT:
   5515     case UNUM_FORMAT_FAIL_IF_MORE_THAN_MAX_DIGITS:
   5516     case UNUM_PARSE_DECIMAL_MARK_REQUIRED:
   5517       if(!fBoolFlags.isValidValue(newValue)) {
   5518           status = U_ILLEGAL_ARGUMENT_ERROR;
   5519       } else {
   5520           fBoolFlags.set(attr, newValue);
   5521       }
   5522       break;
   5523 
   5524     case UNUM_SCALE:
   5525         fScale = newValue;
   5526         break;
   5527 
   5528     case UNUM_CURRENCY_USAGE:
   5529         setCurrencyUsage((UCurrencyUsage)newValue, &status);
   5530 
   5531     default:
   5532       status = U_UNSUPPORTED_ERROR;
   5533       break;
   5534   }
   5535   return *this;
   5536 }
   5537 
   5538 int32_t DecimalFormat::getAttribute( UNumberFormatAttribute attr,
   5539                                      UErrorCode &status ) const {
   5540   if(U_FAILURE(status)) return -1;
   5541   switch(attr) {
   5542     case UNUM_LENIENT_PARSE:
   5543         return isLenient();
   5544 
   5545     case UNUM_PARSE_INT_ONLY:
   5546         return isParseIntegerOnly();
   5547 
   5548     case UNUM_GROUPING_USED:
   5549         return isGroupingUsed();
   5550 
   5551     case UNUM_DECIMAL_ALWAYS_SHOWN:
   5552         return isDecimalSeparatorAlwaysShown();
   5553 
   5554     case UNUM_MAX_INTEGER_DIGITS:
   5555         return getMaximumIntegerDigits();
   5556 
   5557     case UNUM_MIN_INTEGER_DIGITS:
   5558         return getMinimumIntegerDigits();
   5559 
   5560     case UNUM_INTEGER_DIGITS:
   5561         // TBD: what should this return?
   5562         return getMinimumIntegerDigits();
   5563 
   5564     case UNUM_MAX_FRACTION_DIGITS:
   5565         return getMaximumFractionDigits();
   5566 
   5567     case UNUM_MIN_FRACTION_DIGITS:
   5568         return getMinimumFractionDigits();
   5569 
   5570     case UNUM_FRACTION_DIGITS:
   5571         // TBD: what should this return?
   5572         return getMinimumFractionDigits();
   5573 
   5574     case UNUM_SIGNIFICANT_DIGITS_USED:
   5575         return areSignificantDigitsUsed();
   5576 
   5577     case UNUM_MAX_SIGNIFICANT_DIGITS:
   5578         return getMaximumSignificantDigits();
   5579 
   5580     case UNUM_MIN_SIGNIFICANT_DIGITS:
   5581         return getMinimumSignificantDigits();
   5582 
   5583     case UNUM_MULTIPLIER:
   5584         return getMultiplier();
   5585 
   5586     case UNUM_GROUPING_SIZE:
   5587         return getGroupingSize();
   5588 
   5589     case UNUM_ROUNDING_MODE:
   5590         return getRoundingMode();
   5591 
   5592     case UNUM_FORMAT_WIDTH:
   5593         return getFormatWidth();
   5594 
   5595     case UNUM_PADDING_POSITION:
   5596         return getPadPosition();
   5597 
   5598     case UNUM_SECONDARY_GROUPING_SIZE:
   5599         return getSecondaryGroupingSize();
   5600 
   5601     /* These are stored in fBoolFlags */
   5602     case UNUM_PARSE_NO_EXPONENT:
   5603     case UNUM_FORMAT_FAIL_IF_MORE_THAN_MAX_DIGITS:
   5604     case UNUM_PARSE_DECIMAL_MARK_REQUIRED:
   5605       return fBoolFlags.get(attr);
   5606 
   5607     case UNUM_SCALE:
   5608         return fScale;
   5609 
   5610     case UNUM_CURRENCY_USAGE:
   5611         return fCurrencyUsage;
   5612 
   5613     default:
   5614         status = U_UNSUPPORTED_ERROR;
   5615         break;
   5616   }
   5617 
   5618   return -1; /* undefined */
   5619 }
   5620 
   5621 #if UCONFIG_HAVE_PARSEALLINPUT
   5622 void DecimalFormat::setParseAllInput(UNumberFormatAttributeValue value) {
   5623   fParseAllInput = value;
   5624 #if UCONFIG_FORMAT_FASTPATHS_49
   5625   handleChanged();
   5626 #endif
   5627 }
   5628 #endif
   5629 
   5630 void
   5631 DecimalFormat::copyHashForAffix(const Hashtable* source,
   5632                                 Hashtable* target,
   5633                                 UErrorCode& status) {
   5634     if ( U_FAILURE(status) ) {
   5635         return;
   5636     }
   5637     int32_t pos = UHASH_FIRST;
   5638     const UHashElement* element = NULL;
   5639     if ( source ) {
   5640         while ( (element = source->nextElement(pos)) != NULL ) {
   5641             const UHashTok keyTok = element->key;
   5642             const UnicodeString* key = (UnicodeString*)keyTok.pointer;
   5643 
   5644             const UHashTok valueTok = element->value;
   5645             const AffixesForCurrency* value = (AffixesForCurrency*)valueTok.pointer;
   5646             AffixesForCurrency* copy = new AffixesForCurrency(
   5647                 value->negPrefixForCurrency,
   5648                 value->negSuffixForCurrency,
   5649                 value->posPrefixForCurrency,
   5650                 value->posSuffixForCurrency);
   5651             target->put(UnicodeString(*key), copy, status);
   5652             if ( U_FAILURE(status) ) {
   5653                 return;
   5654             }
   5655         }
   5656     }
   5657 }
   5658 
   5659 U_NAMESPACE_END
   5660 
   5661 #endif /* #if !UCONFIG_NO_FORMATTING */
   5662 
   5663 //eof
   5664