1 /******************************************************************** 2 * * 3 * THIS FILE IS PART OF THE OggVorbis SOFTWARE CODEC SOURCE CODE. * 4 * USE, DISTRIBUTION AND REPRODUCTION OF THIS LIBRARY SOURCE IS * 5 * GOVERNED BY A BSD-STYLE SOURCE LICENSE INCLUDED WITH THIS SOURCE * 6 * IN 'COPYING'. PLEASE READ THESE TERMS BEFORE DISTRIBUTING. * 7 * * 8 * THE OggVorbis SOURCE CODE IS (C) COPYRIGHT 1994-2009 * 9 * by the Xiph.Org Foundation http://www.xiph.org/ * 10 * * 11 ******************************************************************** 12 13 function: linear scale -> dB, Bark and Mel scales 14 last mod: $Id: scales.h 16227 2009-07-08 06:58:46Z xiphmont $ 15 16 ********************************************************************/ 17 18 #ifndef _V_SCALES_H_ 19 #define _V_SCALES_H_ 20 21 #include <math.h> 22 #include "os.h" 23 24 #ifdef _MSC_VER 25 /* MS Visual Studio doesn't have C99 inline keyword. */ 26 #define inline __inline 27 #endif 28 29 /* 20log10(x) */ 30 #define VORBIS_IEEE_FLOAT32 1 31 #ifdef VORBIS_IEEE_FLOAT32 32 33 static inline float unitnorm(float x){ 34 union { 35 ogg_uint32_t i; 36 float f; 37 } ix; 38 ix.f = x; 39 ix.i = (ix.i & 0x80000000U) | (0x3f800000U); 40 return ix.f; 41 } 42 43 /* Segher was off (too high) by ~ .3 decibel. Center the conversion correctly. */ 44 static inline float todB(const float *x){ 45 union { 46 ogg_uint32_t i; 47 float f; 48 } ix; 49 ix.f = *x; 50 ix.i = ix.i&0x7fffffff; 51 return (float)(ix.i * 7.17711438e-7f -764.6161886f); 52 } 53 54 #define todB_nn(x) todB(x) 55 56 #else 57 58 static float unitnorm(float x){ 59 if(x<0)return(-1.f); 60 return(1.f); 61 } 62 63 #define todB(x) (*(x)==0?-400.f:log(*(x)**(x))*4.34294480f) 64 #define todB_nn(x) (*(x)==0.f?-400.f:log(*(x))*8.6858896f) 65 66 #endif 67 68 #define fromdB(x) (exp((x)*.11512925f)) 69 70 /* The bark scale equations are approximations, since the original 71 table was somewhat hand rolled. The below are chosen to have the 72 best possible fit to the rolled tables, thus their somewhat odd 73 appearance (these are more accurate and over a longer range than 74 the oft-quoted bark equations found in the texts I have). The 75 approximations are valid from 0 - 30kHz (nyquist) or so. 76 77 all f in Hz, z in Bark */ 78 79 #define toBARK(n) (13.1f*atan(.00074f*(n))+2.24f*atan((n)*(n)*1.85e-8f)+1e-4f*(n)) 80 #define fromBARK(z) (102.f*(z)-2.f*pow(z,2.f)+.4f*pow(z,3.f)+pow(1.46f,z)-1.f) 81 #define toMEL(n) (log(1.f+(n)*.001f)*1442.695f) 82 #define fromMEL(m) (1000.f*exp((m)/1442.695f)-1000.f) 83 84 /* Frequency to octave. We arbitrarily declare 63.5 Hz to be octave 85 0.0 */ 86 87 #define toOC(n) (log(n)*1.442695f-5.965784f) 88 #define fromOC(o) (exp(((o)+5.965784f)*.693147f)) 89 90 #endif 91