OpenGrok
Home
Sort by relevance
Sort by last modified time
Full Search
Definition
Symbol
File Path
History
|
|
Help
Searched
refs:subdiag
(Results
1 - 4
of
4
) sorted by null
/external/eigen/doc/snippets/
Tridiagonalization_decomposeInPlace.cpp
6
VectorXd
subdiag
(4);
7
internal::tridiagonalization_inplace(A, diag,
subdiag
, true);
10
cout << "The subdiagonal of the tridiagonal matrix T is:" << endl <<
subdiag
<< endl;
Tridiagonalization_diagonal.cpp
12
VectorXd
subdiag
= triOfA.subDiagonal();
variable
13
cout << "The subdiagonal is:" << endl <<
subdiag
<< endl;
/external/eigen/Eigen/src/Eigenvalues/
Tridiagonalization.h
394
* \param[out]
subdiag
The subdiagonal of the tridiagonal matrix T in
403
* The tridiagonal matrix T is passed to the output parameters \p diag and \p
subdiag
. If
407
* The vectors \p diag and \p
subdiag
are not resized. The function
410
* length of the vector \p
subdiag
should be one left.
427
void tridiagonalization_inplace(MatrixType& mat, DiagonalType& diag, SubDiagonalType&
subdiag
, bool extractQ)
429
eigen_assert(mat.cols()==mat.rows() && diag.size()==mat.rows() &&
subdiag
.size()==mat.rows()-1);
430
tridiagonalization_inplace_selector<MatrixType>::run(mat, diag,
subdiag
, extractQ);
443
static void run(MatrixType& mat, DiagonalType& diag, SubDiagonalType&
subdiag
, bool extractQ)
448
subdiag
= mat.template diagonal<-1>().real();
467
static void run(MatrixType& mat, DiagonalType& diag, SubDiagonalType&
subdiag
, bool extractQ
[
all
...]
SelfAdjointEigenSolver.h
367
* pair of two vectors \a diag and \a
subdiag
.
380
static void tridiagonal_qr_step(RealScalar* diag, RealScalar*
subdiag
, Index start, Index end, Scalar* matrixQ, Index n);
750
static void tridiagonal_qr_step(RealScalar* diag, RealScalar*
subdiag
, Index start, Index end, Scalar* matrixQ, Index n)
754
RealScalar e =
subdiag
[end-1];
757
// RealScalar e2 = numext::abs2(
subdiag
[end-1]);
765
RealScalar e2 = numext::abs2(
subdiag
[end-1]);
772
RealScalar z =
subdiag
[start];
779
RealScalar sdk = rot.s() * diag[k] + rot.c() *
subdiag
[k];
780
RealScalar dkp1 = rot.s() *
subdiag
[k] + rot.c() * diag[k+1];
782
diag[k] = rot.c() * (rot.c() * diag[k] - rot.s() *
subdiag
[k]) - rot.s() * (rot.c() * subdiag[k] - rot.s() * diag[k+1])
[
all
...]
Completed in 883 milliseconds