HomeSort by relevance Sort by last modified time
    Searched refs:subdiag (Results 1 - 4 of 4) sorted by null

  /external/eigen/doc/snippets/
Tridiagonalization_decomposeInPlace.cpp 6 VectorXd subdiag(4);
7 internal::tridiagonalization_inplace(A, diag, subdiag, true);
10 cout << "The subdiagonal of the tridiagonal matrix T is:" << endl << subdiag << endl;
Tridiagonalization_diagonal.cpp 12 VectorXd subdiag = triOfA.subDiagonal(); variable
13 cout << "The subdiagonal is:" << endl << subdiag << endl;
  /external/eigen/Eigen/src/Eigenvalues/
Tridiagonalization.h 394 * \param[out] subdiag The subdiagonal of the tridiagonal matrix T in
403 * The tridiagonal matrix T is passed to the output parameters \p diag and \p subdiag. If
407 * The vectors \p diag and \p subdiag are not resized. The function
410 * length of the vector \p subdiag should be one left.
427 void tridiagonalization_inplace(MatrixType& mat, DiagonalType& diag, SubDiagonalType& subdiag, bool extractQ)
429 eigen_assert(mat.cols()==mat.rows() && diag.size()==mat.rows() && subdiag.size()==mat.rows()-1);
430 tridiagonalization_inplace_selector<MatrixType>::run(mat, diag, subdiag, extractQ);
443 static void run(MatrixType& mat, DiagonalType& diag, SubDiagonalType& subdiag, bool extractQ)
448 subdiag = mat.template diagonal<-1>().real();
467 static void run(MatrixType& mat, DiagonalType& diag, SubDiagonalType& subdiag, bool extractQ
    [all...]
SelfAdjointEigenSolver.h 367 * pair of two vectors \a diag and \a subdiag.
380 static void tridiagonal_qr_step(RealScalar* diag, RealScalar* subdiag, Index start, Index end, Scalar* matrixQ, Index n);
750 static void tridiagonal_qr_step(RealScalar* diag, RealScalar* subdiag, Index start, Index end, Scalar* matrixQ, Index n)
754 RealScalar e = subdiag[end-1];
757 // RealScalar e2 = numext::abs2(subdiag[end-1]);
765 RealScalar e2 = numext::abs2(subdiag[end-1]);
772 RealScalar z = subdiag[start];
779 RealScalar sdk = rot.s() * diag[k] + rot.c() * subdiag[k];
780 RealScalar dkp1 = rot.s() * subdiag[k] + rot.c() * diag[k+1];
782 diag[k] = rot.c() * (rot.c() * diag[k] - rot.s() * subdiag[k]) - rot.s() * (rot.c() * subdiag[k] - rot.s() * diag[k+1])
    [all...]

Completed in 883 milliseconds