/prebuilts/python/linux-x86/2.7.5/lib/python2.7/site-packages/setoolsgui/networkx/algorithms/tests/ |
test_hierarchy.py | 3 import networkx as nx namespace 6 G = nx.cycle_graph(5) 7 assert_raises(nx.NetworkXError,nx.flow_hierarchy,G) 10 G = nx.cycle_graph(5,create_using=nx.DiGraph()) 11 assert_equal(nx.flow_hierarchy(G),0.0) 14 G = nx.full_rary_tree(2,16,create_using=nx.DiGraph()) 15 assert_equal(nx.flow_hierarchy(G),1.0 [all...] |
test_vitality.py | 3 import networkx as nx namespace 8 G=nx.cycle_graph(3) 9 v=nx.closeness_vitality(G) 14 G=nx.Graph() 16 v=nx.closeness_vitality(G,weight='weight') 20 G=nx.DiGraph() 22 v=nx.closeness_vitality(G) 26 G=nx.DiGraph() 28 v=nx.closeness_vitality(G,weight='weight') 32 G=nx.MultiDiGraph( [all...] |
/prebuilts/python/linux-x86/2.7.5/lib/python2.7/site-packages/setoolsgui/networkx/generators/ |
intersection.py | 12 import networkx as nx namespace 47 G=nx.bipartite_random_graph(n, m, p, seed=seed) 48 return nx.projected_graph(G, range(n)) 75 G = nx.empty_graph(n + m) 80 return nx.projected_graph(G, range(n)) 111 G = nx.empty_graph(n + m) 117 return nx.projected_graph(G, range(n))
|
/prebuilts/python/linux-x86/2.7.5/lib/python2.7/site-packages/setoolsgui/networkx/generators/tests/ |
test_atlas.py | 2 import networkx as nx namespace 7 self.GAG=nx.graph_atlas_g()
|
test_ego.py | 8 import networkx as nx namespace 12 G=nx.star_graph(3) 13 H=nx.ego_graph(G,0) 14 assert_true(nx.is_isomorphic(G,H)) 18 H=nx.ego_graph(G,0) 19 assert_true(nx.is_isomorphic(nx.star_graph(3),H)) 20 G=nx.path_graph(3) 21 H=nx.ego_graph(G,0) 23 H=nx.ego_graph(G,0,undirected=True [all...] |
test_geometric.py | 3 import networkx as nx namespace 7 G=nx.random_geometric_graph(50,0.25) 11 G=nx.geographical_threshold_graph(50,100) 15 G=nx.waxman_graph(50,0.5,0.1) 17 G=nx.waxman_graph(50,0.5,0.1,L=1) 21 G = nx.navigable_small_world_graph(5,p=1,q=0) 22 gg = nx.grid_2d_graph(5,5).to_directed() 23 assert_true(nx.is_isomorphic(G,gg)) 25 G = nx.navigable_small_world_graph(5,p=1,q=0,dim=3) 26 gg = nx.grid_graph([5,5,5]).to_directed( [all...] |
/prebuilts/python/linux-x86/2.7.5/lib/python2.7/site-packages/setoolsgui/networkx/readwrite/json_graph/ |
node_link.py | 9 import networkx as nx namespace 29 >>> G = nx.Graph([(1,2)]) 85 >>> G = nx.Graph([(1,2)]) 96 graph = nx.MultiGraph() 98 graph = nx.Graph()
|
/prebuilts/python/linux-x86/2.7.5/lib/python2.7/site-packages/setoolsgui/networkx/readwrite/ |
leda.py | 23 import networkx as nx namespace 43 G=nx.read_leda('file.leda') 68 G=nx.parse_leda(string) 82 G = nx.DiGraph() 84 G = nx.Graph()
|
/prebuilts/python/linux-x86/2.7.5/lib/python2.7/site-packages/setoolsgui/networkx/readwrite/tests/ |
test_gpickle.py | 3 import networkx as nx namespace 8 G=nx.Graph(name="test") 18 nx.write_gpickle(G,fname); 19 Gin=nx.read_gpickle(fname);
|
test_leda.py | 3 import networkx as nx namespace 10 G=nx.parse_leda(data) 11 G=nx.parse_leda(data.split('\n')) 26 G=nx.parse_leda(data) 31 Gin=nx.read_leda(fname)
|
/prebuilts/python/linux-x86/2.7.5/lib/python2.7/site-packages/setoolsgui/networkx/ |
relabel.py | 7 import networkx as nx namespace 30 >>> G=nx.path_graph(3) # nodes 0-1-2 32 >>> H=nx.relabel_nodes(G,mapping) 36 >>> G=nx.path_graph(26) # nodes 0..25 38 >>> H=nx.relabel_nodes(G,mapping) # nodes a..z 40 >>> G1=nx.relabel_nodes(G,mapping) # nodes 1..26 44 >>> G=nx.path_graph(3) # nodes 0-1-2 46 >>> G=nx.relabel_nodes(G,mapping, copy=False) 53 >>> G=nx.path_graph(3) 56 >>> H=nx.relabel_nodes(G,mapping [all...] |
/prebuilts/python/linux-x86/2.7.5/lib/python2.7/site-packages/setoolsgui/networkx/utils/ |
rcm.py | 9 import networkx as nx namespace 37 >>> G = nx.path_graph(4) 39 >>> A = nx.adjacency_matrix(G, nodelist=rcm) # doctest: +SKIP 58 for c in nx.connected_components(G): 86 >>> G = nx.path_graph(4) 88 >>> A = nx.adjacency_matrix(G, nodelist=rcm) # doctest: +SKIP 142 spl = nx.shortest_path_length(G, v)
|
union_find.py | 10 import networkx as nx namespace
|
/prebuilts/python/linux-x86/2.7.5/lib/python2.7/site-packages/setoolsgui/networkx/algorithms/assortativity/ |
pairs.py | 3 import networkx as nx namespace 30 >>> G = nx.DiGraph() 34 >>> list(nx.node_attribute_xy(G,'color')) 93 >>> G = nx.DiGraph() 95 >>> list(nx.node_degree_xy(G,x='out',y='in')) 97 >>> list(nx.node_degree_xy(G,x='in',y='out'))
|
/prebuilts/python/linux-x86/2.7.5/lib/python2.7/site-packages/setoolsgui/networkx/algorithms/assortativity/tests/ |
test_connectivity.py | 3 import networkx as nx namespace 8 G=nx.path_graph(4) 10 nd = nx.average_degree_connectivity(G) 15 nd = nx.average_degree_connectivity(D) 20 nd = nx.average_degree_connectivity(D, source='in', target='in') 24 nd = nx.average_degree_connectivity(D, source='in', target='in') 28 G=nx.path_graph(4) 31 nd = nx.average_degree_connectivity(G,weight='weight') 34 nd = nx.average_degree_connectivity(G) 39 nd = nx.average_degree_connectivity(D,weight='weight' [all...] |
/prebuilts/python/linux-x86/2.7.5/lib/python2.7/site-packages/setoolsgui/networkx/algorithms/bipartite/ |
projection.py | 4 import networkx as nx namespace 48 >>> B = nx.path_graph(4) 59 >>> B = nx.Graph() 89 raise nx.NetworkXError("not defined for multigraphs") 93 G=nx.MultiDiGraph() 95 G=nx.DiGraph() 99 G=nx.MultiGraph() 101 G=nx.Graph() 150 >>> B = nx.path_graph(4) 182 raise nx.NetworkXError("not defined for multigraphs" [all...] |
spectral.py | 5 import networkx as nx namespace 38 >>> G = nx.path_graph(4) 62 A = nx.to_numpy_matrix(G, nodelist, weight=weight)
|
/prebuilts/python/linux-x86/2.7.5/lib/python2.7/site-packages/setoolsgui/networkx/algorithms/bipartite/tests/ |
test_centrality.py | 2 import networkx as nx namespace 8 self.P4 = nx.path_graph(4) 9 self.K3 = nx.complete_bipartite_graph(3,3) 10 self.C4 = nx.cycle_graph(4) 11 self.davis = nx.davis_southern_women_graph() 47 G = nx.Graph()
|
test_spectral_bipartivity.py | 4 import networkx as nx namespace 26 G=nx.star_graph(2) 30 G=nx.star_graph(3) 34 G=nx.star_graph(4) 41 G=nx.complete_bipartite_graph(2,3) 45 G=nx.complete_bipartite_graph(2,3) 49 G=nx.complete_bipartite_graph(2,3) 55 G=nx.complete_bipartite_graph(2,3) 60 G=nx.complete_bipartite_graph(2,3) 66 G=nx.complete_bipartite_graph(2,3 [all...] |
/prebuilts/python/linux-x86/2.7.5/lib/python2.7/site-packages/setoolsgui/networkx/algorithms/centrality/ |
current_flow_closeness.py | 15 import networkx as nx namespace 85 raise nx.NetworkXError('current_flow_closeness_centrality ', 88 raise nx.NetworkXError(\ 90 if not nx.is_connected(G): 91 raise nx.NetworkXError("Graph not connected.") 99 H = nx.relabel_nodes(G,dict(zip(ordering,range(n))))
|
load.py | 18 import networkx as nx namespace 109 (pred,length)=nx.predecessor(G,source,cutoff=cutoff,return_seen=True) 111 (pred,length)=nx.dijkstra_predecessor_and_distance(G,source,weight=weight) 170 (pred,length)=nx.predecessor(G,source,cutoff=cutoff,return_seen=True)
|
/prebuilts/python/linux-x86/2.7.5/lib/python2.7/site-packages/setoolsgui/networkx/algorithms/centrality/tests/ |
test_closeness_centrality.py | 5 import networkx as nx namespace 10 self.K = nx.krackhardt_kite_graph() 11 self.P3 = nx.path_graph(3) 12 self.P4 = nx.path_graph(4) 13 self.K5 = nx.complete_graph(5) 15 self.C4=nx.cycle_graph(4) 16 self.T=nx.balanced_tree(r=2, h=2) 17 self.Gb = nx.Graph() 22 F = nx.florentine_families_graph() 27 c=nx.closeness_centrality(self.K5 [all...] |
test_degree_centrality.py | 7 import networkx as nx namespace 13 self.K = nx.krackhardt_kite_graph() 14 self.P3 = nx.path_graph(3) 15 self.K5 = nx.complete_graph(5) 17 F = nx.Graph() # Florentine families 40 G = nx.DiGraph() 52 d = nx.degree_centrality(self.K5) 58 d = nx.degree_centrality(self.P3) 64 d = nx.degree_centrality(self.K) 71 d = nx.degree_centrality(self.F [all...] |
/prebuilts/python/linux-x86/2.7.5/lib/python2.7/site-packages/setoolsgui/networkx/algorithms/chordal/tests/ |
test_chordal.py | 3 import networkx as nx namespace 9 connected_chordal_G=nx.Graph() 14 chordal_G = nx.Graph() 20 non_chordal_G = nx.Graph() 25 assert_false(nx.is_chordal(self.non_chordal_G)) 26 assert_true(nx.is_chordal(self.chordal_G)) 27 assert_true(nx.is_chordal(self.connected_chordal_G)) 28 assert_true(nx.is_chordal(nx.complete_graph(3))) 29 assert_true(nx.is_chordal(nx.cycle_graph(3)) [all...] |
/prebuilts/python/linux-x86/2.7.5/lib/python2.7/site-packages/setoolsgui/networkx/algorithms/components/ |
connected.py | 22 import networkx as nx namespace 47 raise nx.NetworkXError("""Not allowed for directed graph G. 53 c=nx.single_source_shortest_path_length(G,v) 99 >>> G=nx.path_graph(4) 100 >>> print(nx.is_connected(G)) 112 raise nx.NetworkXError(\ 117 raise nx.NetworkXPointlessConcept( 120 return len(nx.single_source_shortest_path_length(G, 141 >>> G=nx.path_graph(4) 143 >>> H=nx.connected_component_subgraphs(G)[0 [all...] |