OpenGrok
Home
Sort by relevance
Sort by last modified time
Full Search
Definition
Symbol
File Path
History
|
|
Help
Searched
full:distribution
(Results
1 - 25
of
30714
) sorted by null
1
2
3
4
5
6
7
8
9
10
11
>>
/external/llvm/utils/lit/utils/
README.txt
2
distribution
.
/external/pcre/dist/
COPYING
3
Please see the file LICENCE in the PCRE
distribution
for licensing details.
/prebuilts/eclipse/maven/apache-maven-3.2.1/
NOTICE
2
Apache Maven
Distribution
/external/apache-commons-math/src/main/java/org/apache/commons/math/distribution/
PascalDistribution.java
17
package org.apache.commons.math.
distribution
;
20
* The Pascal
distribution
. The Pascal
distribution
is a special case of the
21
* Negative Binomial
distribution
where the number of successes parameter is an
24
* There are various ways to express the probability mass and
distribution
25
* functions for the Pascal
distribution
. The convention employed by the
33
* Negative Binomial
Distribution
</a></li>
43
* Access the number of successes for this
distribution
.
50
* Access the probability of success for this
distribution
.
57
* Change the number of successes for this
distribution
[
all
...]
PoissonDistribution.java
17
package org.apache.commons.math.
distribution
;
22
* Interface representing the Poisson
Distribution
.
28
* Poisson
distribution
</a></li>
37
* Get the mean for the
distribution
.
39
* @return the mean for the
distribution
.
44
* Set the mean for the
distribution
.
56
* Calculates the Poisson
distribution
function using a normal approximation.
59
* @return the
distribution
function value calculated using a normal approximation
BinomialDistribution.java
17
package org.apache.commons.math.
distribution
;
20
* The Binomial
Distribution
.
26
* Binomial
Distribution
</a></li>
34
* Access the number of trials for this
distribution
.
40
* Access the probability of success for this
distribution
.
46
* Change the number of trials for this
distribution
.
54
* Change the probability of success for this
distribution
.
CauchyDistribution.java
18
package org.apache.commons.math.
distribution
;
21
* Cauchy
Distribution
.
27
* Cauchy
Distribution
</a></li>
38
* @return median for this
distribution
44
* @return scale parameter for this
distribution
50
* @param median for this
distribution
58
* @param s scale parameter for this
distribution
NormalDistribution.java
18
package org.apache.commons.math.
distribution
;
21
* Normal (Gauss)
Distribution
.
27
* Normal
Distribution
</a></li>
36
* @return mean for this
distribution
41
* @param mean for this
distribution
48
* @return standard deviation for this
distribution
53
* @param sd standard deviation for this
distribution
Distribution.java
17
package org.apache.commons.math.
distribution
;
26
public interface
Distribution
{
29
* to this
distribution
, this method returns P(X ≤ x). In other words,
30
* this method represents the (cumulative)
distribution
function, or
31
* CDF, for this
distribution
.
33
* @param x the value at which the
distribution
function is evaluated.
35
*
distribution
takes a value less than or equal to <code>x</code>
43
* to this
distribution
, this method returns P(x0 ≤ X ≤ x1).
47
* @return the probability that a random variable with this
distribution
CauchyDistributionImpl.java
18
package org.apache.commons.math.
distribution
;
28
* {@link org.apache.commons.math.
distribution
.CauchyDistribution}.
45
/** The median of this
distribution
. */
48
/** The scale of this
distribution
. */
55
* Creates cauchy
distribution
with the medain equal to zero and scale
63
* Create a cauchy
distribution
using the given median and scale.
64
* @param median median for this
distribution
65
* @param s scale parameter for this
distribution
72
* Create a cauchy
distribution
using the given median and scale.
73
* @param median median for this
distribution
[
all
...]
PoissonDistributionImpl.java
17
package org.apache.commons.math.
distribution
;
51
/**
Distribution
used to compute normal approximation. */
55
* Holds the Poisson mean for the
distribution
.
73
* Create a new Poisson
distribution
with the given the mean. The mean value
84
* Create a new Poisson
distribution
with the given mean, convergence criterion
99
* Create a new Poisson
distribution
with the given mean and convergence criterion.
111
* Create a new Poisson
distribution
with the given mean and maximum number of iterations.
124
* Create a new Poisson
distribution
with the given the mean. The mean value
128
* @param z a normal
distribution
used to compute normal approximations.
141
* Get the Poisson mean for the
distribution
[
all
...]
DiscreteDistribution.java
17
package org.apache.commons.math.
distribution
;
25
public interface DiscreteDistribution extends
Distribution
{
28
* to this
distribution
, this method returns P(X = x). In other words, this
29
* method represents the probability mass function, or PMF for the
distribution
.
TDistribution.java
17
package org.apache.commons.math.
distribution
;
20
* Student's t-
Distribution
.
25
* <li><a href="http://mathworld.wolfram.com/Studentst-
Distribution
.html">
26
* Student's t-
Distribution
</a></li>
/packages/inputmethods/LatinIME/native/jni/tests/suggest/core/layout/
normal_distribution_2d_test.cpp
33
const NormalDistribution2D
distribution
(ORIGIN_X, LARGE_STANDARD_DEVIATION, ORIGIN_Y,
38
// The probability density of the point near the
distribution
center is larger than the
39
// probability density of the point that is far from
distribution
center.
40
EXPECT_GE(
distribution
.getProbabilityDensity(SMALL_COORDINATE, SMALL_COORDINATE),
41
distribution
.getProbabilityDensity(LARGE_COORDINATE, LARGE_COORDINATE));
45
EXPECT_GE(
distribution
.getProbabilityDensity(LARGE_COORDINATE, SMALL_COORDINATE),
46
distribution
.getProbabilityDensity(SMALL_COORDINATE, LARGE_COORDINATE));
52
const NormalDistribution2D
distribution
(ORIGIN_X, LARGE_STANDARD_DEVIATION, ORIGIN_Y,
58
// The probability density of the rotated
distribution
at the point and the probability
59
// density of the original
distribution
at the rotated point are the same
[
all
...]
/external/iproute2/netem/
pareto.c
2
* Pareto
distribution
table generator
23
printf("# This is the
distribution
table for the pareto
distribution
.\n");
README.distribution
1
Notes about
distribution
tables from Nistnet
3
I. About the
distribution
tables
5
The table used for "synthesizing" the
distribution
is essentially a scaled,
6
translated, inverse to the cumulative
distribution
function.
8
Here's how to think about it: Let F() be the cumulative
distribution
9
function for a probability
distribution
X. We'll assume we've scaled
26
distribution
has the same approximate "shape" as X, simply by letting
28
To see this, it's enough to show that Y's cumulative
distribution
function,
41
II. How to create
distribution
tables (in theory)
45
pareto
distribution
is one example of this. In other cases, an
[
all
...]
/packages/inputmethods/LatinIME/native/jni/tests/dictionary/utils/
bloom_filter_test.cpp
38
// Use the uniform integer
distribution
[0, TEST_RANDOM_DATA_MAX].
39
std::uniform_int_distribution<int>
distribution
(0, TEST_RANDOM_DATA_MAX);
40
auto randomNumberGenerator = std::bind(
distribution
, std::mt19937());
55
// Use the uniform integer
distribution
[0, 1].
56
std::uniform_int_distribution<int>
distribution
(0, 1);
57
auto randomBitGenerator = std::bind(
distribution
, std::mt19937());
/prebuilts/tools/common/m2/repository/javax/inject/javax.inject/1/
javax.inject-1.pom
14
<
distribution
>repo</
distribution
>
/external/apache-commons-math/src/main/java/org/apache/commons/math/random/
EmpiricalDistribution.java
30
* empirical probability
distribution
</a> -- a probability
distribution
derived
32
* of the population
distribution
that the data come from.<p>
34
* <i>
distribution
digests</i>, that describe empirical distributions and
36
* <li>loading the
distribution
from a file of observed data values</li>
41
* <li>generating random values from the
distribution
</li>
46
* generated will follow the
distribution
of the values in the file.</p>
53
* Computes the empirical
distribution
from the provided
61
* Computes the empirical
distribution
from the input file.
69
* Computes the empirical
distribution
using data read from a URL
[
all
...]
/prebuilts/python/linux-x86/2.7.5/lib/python2.7/site-packages/setoolsgui/networkx/utils/
random_sequence.py
66
Return sample sequence of length n from a Pareto
distribution
.
73
Return sample sequence of length n from a power law
distribution
.
78
r"""Return a random value chosen from the Zipf
distribution
.
80
The return value is an integer drawn from the probability
distribution
90
Exponent value of the
distribution
99
Random value from Zipf
distribution
110
distribution
in uniformly bounded expected time dependent on
140
"""Return a sample sequence of length n from a Zipf
distribution
with
151
Return sample sequence of length n from a uniform
distribution
.
156
def cumulative_distribution(
distribution
)
[
all
...]
/external/clang/test/Index/Inputs/CommentXML/
valid-availability-attr-01.xml
5
<Availability
distribution
="OS X">
valid-availability-attr-02.xml
5
<Availability
distribution
="OS X">
/external/fio/examples/
zipf.fio
1
# Example job file for using a zipf
distribution
instead
/external/hyphenation-patterns/en-US/
NOTICE
2
% Copying and
distribution
of this file, with or without modification,
/external/iputils/
in6_flowlabel.h
1
/* The in6_flowlabel.h file in the iputils
distribution
exists to provide
Completed in 354 milliseconds
1
2
3
4
5
6
7
8
9
10
11
>>