Home | History | Annotate | Download | only in libutils
      1 /*
      2  * Copyright (C) 2007 The Android Open Source Project
      3  *
      4  * Licensed under the Apache License, Version 2.0 (the "License");
      5  * you may not use this file except in compliance with the License.
      6  * You may obtain a copy of the License at
      7  *
      8  *      http://www.apache.org/licenses/LICENSE-2.0
      9  *
     10  * Unless required by applicable law or agreed to in writing, software
     11  * distributed under the License is distributed on an "AS IS" BASIS,
     12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     13  * See the License for the specific language governing permissions and
     14  * limitations under the License.
     15  */
     16 
     17 // #define LOG_NDEBUG 0
     18 #define LOG_TAG "libutils.threads"
     19 
     20 #include <assert.h>
     21 #include <errno.h>
     22 #include <memory.h>
     23 #include <stdio.h>
     24 #include <stdlib.h>
     25 #include <unistd.h>
     26 
     27 #if !defined(_WIN32)
     28 # include <pthread.h>
     29 # include <sched.h>
     30 # include <sys/resource.h>
     31 #else
     32 # include <windows.h>
     33 # include <stdint.h>
     34 # include <process.h>
     35 # define HAVE_CREATETHREAD  // Cygwin, vs. HAVE__BEGINTHREADEX for MinGW
     36 #endif
     37 
     38 #if defined(__linux__)
     39 #include <sys/prctl.h>
     40 #endif
     41 
     42 #include <utils/threads.h>
     43 #include <utils/Log.h>
     44 
     45 #include <cutils/sched_policy.h>
     46 
     47 #ifdef HAVE_ANDROID_OS
     48 # define __android_unused
     49 #else
     50 # define __android_unused __attribute__((__unused__))
     51 #endif
     52 
     53 /*
     54  * ===========================================================================
     55  *      Thread wrappers
     56  * ===========================================================================
     57  */
     58 
     59 using namespace android;
     60 
     61 // ----------------------------------------------------------------------------
     62 #if !defined(_WIN32)
     63 // ----------------------------------------------------------------------------
     64 
     65 /*
     66  * Create and run a new thread.
     67  *
     68  * We create it "detached", so it cleans up after itself.
     69  */
     70 
     71 typedef void* (*android_pthread_entry)(void*);
     72 
     73 struct thread_data_t {
     74     thread_func_t   entryFunction;
     75     void*           userData;
     76     int             priority;
     77     char *          threadName;
     78 
     79     // we use this trampoline when we need to set the priority with
     80     // nice/setpriority, and name with prctl.
     81     static int trampoline(const thread_data_t* t) {
     82         thread_func_t f = t->entryFunction;
     83         void* u = t->userData;
     84         int prio = t->priority;
     85         char * name = t->threadName;
     86         delete t;
     87         setpriority(PRIO_PROCESS, 0, prio);
     88         if (prio >= ANDROID_PRIORITY_BACKGROUND) {
     89             set_sched_policy(0, SP_BACKGROUND);
     90         } else {
     91             set_sched_policy(0, SP_FOREGROUND);
     92         }
     93 
     94         if (name) {
     95             androidSetThreadName(name);
     96             free(name);
     97         }
     98         return f(u);
     99     }
    100 };
    101 
    102 void androidSetThreadName(const char* name) {
    103 #if defined(__linux__)
    104     // Mac OS doesn't have this, and we build libutil for the host too
    105     int hasAt = 0;
    106     int hasDot = 0;
    107     const char *s = name;
    108     while (*s) {
    109         if (*s == '.') hasDot = 1;
    110         else if (*s == '@') hasAt = 1;
    111         s++;
    112     }
    113     int len = s - name;
    114     if (len < 15 || hasAt || !hasDot) {
    115         s = name;
    116     } else {
    117         s = name + len - 15;
    118     }
    119     prctl(PR_SET_NAME, (unsigned long) s, 0, 0, 0);
    120 #endif
    121 }
    122 
    123 int androidCreateRawThreadEtc(android_thread_func_t entryFunction,
    124                                void *userData,
    125                                const char* threadName __android_unused,
    126                                int32_t threadPriority,
    127                                size_t threadStackSize,
    128                                android_thread_id_t *threadId)
    129 {
    130     pthread_attr_t attr;
    131     pthread_attr_init(&attr);
    132     pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
    133 
    134 #ifdef HAVE_ANDROID_OS  /* valgrind is rejecting RT-priority create reqs */
    135     if (threadPriority != PRIORITY_DEFAULT || threadName != NULL) {
    136         // Now that the pthread_t has a method to find the associated
    137         // android_thread_id_t (pid) from pthread_t, it would be possible to avoid
    138         // this trampoline in some cases as the parent could set the properties
    139         // for the child.  However, there would be a race condition because the
    140         // child becomes ready immediately, and it doesn't work for the name.
    141         // prctl(PR_SET_NAME) only works for self; prctl(PR_SET_THREAD_NAME) was
    142         // proposed but not yet accepted.
    143         thread_data_t* t = new thread_data_t;
    144         t->priority = threadPriority;
    145         t->threadName = threadName ? strdup(threadName) : NULL;
    146         t->entryFunction = entryFunction;
    147         t->userData = userData;
    148         entryFunction = (android_thread_func_t)&thread_data_t::trampoline;
    149         userData = t;
    150     }
    151 #endif
    152 
    153     if (threadStackSize) {
    154         pthread_attr_setstacksize(&attr, threadStackSize);
    155     }
    156 
    157     errno = 0;
    158     pthread_t thread;
    159     int result = pthread_create(&thread, &attr,
    160                     (android_pthread_entry)entryFunction, userData);
    161     pthread_attr_destroy(&attr);
    162     if (result != 0) {
    163         ALOGE("androidCreateRawThreadEtc failed (entry=%p, res=%d, errno=%d)\n"
    164              "(android threadPriority=%d)",
    165             entryFunction, result, errno, threadPriority);
    166         return 0;
    167     }
    168 
    169     // Note that *threadID is directly available to the parent only, as it is
    170     // assigned after the child starts.  Use memory barrier / lock if the child
    171     // or other threads also need access.
    172     if (threadId != NULL) {
    173         *threadId = (android_thread_id_t)thread; // XXX: this is not portable
    174     }
    175     return 1;
    176 }
    177 
    178 #ifdef HAVE_ANDROID_OS
    179 static pthread_t android_thread_id_t_to_pthread(android_thread_id_t thread)
    180 {
    181     return (pthread_t) thread;
    182 }
    183 #endif
    184 
    185 android_thread_id_t androidGetThreadId()
    186 {
    187     return (android_thread_id_t)pthread_self();
    188 }
    189 
    190 // ----------------------------------------------------------------------------
    191 #else // !defined(_WIN32)
    192 // ----------------------------------------------------------------------------
    193 
    194 /*
    195  * Trampoline to make us __stdcall-compliant.
    196  *
    197  * We're expected to delete "vDetails" when we're done.
    198  */
    199 struct threadDetails {
    200     int (*func)(void*);
    201     void* arg;
    202 };
    203 static __stdcall unsigned int threadIntermediary(void* vDetails)
    204 {
    205     struct threadDetails* pDetails = (struct threadDetails*) vDetails;
    206     int result;
    207 
    208     result = (*(pDetails->func))(pDetails->arg);
    209 
    210     delete pDetails;
    211 
    212     ALOG(LOG_VERBOSE, "thread", "thread exiting\n");
    213     return (unsigned int) result;
    214 }
    215 
    216 /*
    217  * Create and run a new thread.
    218  */
    219 static bool doCreateThread(android_thread_func_t fn, void* arg, android_thread_id_t *id)
    220 {
    221     HANDLE hThread;
    222     struct threadDetails* pDetails = new threadDetails; // must be on heap
    223     unsigned int thrdaddr;
    224 
    225     pDetails->func = fn;
    226     pDetails->arg = arg;
    227 
    228 #if defined(HAVE__BEGINTHREADEX)
    229     hThread = (HANDLE) _beginthreadex(NULL, 0, threadIntermediary, pDetails, 0,
    230                     &thrdaddr);
    231     if (hThread == 0)
    232 #elif defined(HAVE_CREATETHREAD)
    233     hThread = CreateThread(NULL, 0,
    234                     (LPTHREAD_START_ROUTINE) threadIntermediary,
    235                     (void*) pDetails, 0, (DWORD*) &thrdaddr);
    236     if (hThread == NULL)
    237 #endif
    238     {
    239         ALOG(LOG_WARN, "thread", "WARNING: thread create failed\n");
    240         return false;
    241     }
    242 
    243 #if defined(HAVE_CREATETHREAD)
    244     /* close the management handle */
    245     CloseHandle(hThread);
    246 #endif
    247 
    248     if (id != NULL) {
    249       	*id = (android_thread_id_t)thrdaddr;
    250     }
    251 
    252     return true;
    253 }
    254 
    255 int androidCreateRawThreadEtc(android_thread_func_t fn,
    256                                void *userData,
    257                                const char* /*threadName*/,
    258                                int32_t /*threadPriority*/,
    259                                size_t /*threadStackSize*/,
    260                                android_thread_id_t *threadId)
    261 {
    262     return doCreateThread(  fn, userData, threadId);
    263 }
    264 
    265 android_thread_id_t androidGetThreadId()
    266 {
    267     return (android_thread_id_t)GetCurrentThreadId();
    268 }
    269 
    270 // ----------------------------------------------------------------------------
    271 #endif // !defined(_WIN32)
    272 
    273 // ----------------------------------------------------------------------------
    274 
    275 int androidCreateThread(android_thread_func_t fn, void* arg)
    276 {
    277     return createThreadEtc(fn, arg);
    278 }
    279 
    280 int androidCreateThreadGetID(android_thread_func_t fn, void *arg, android_thread_id_t *id)
    281 {
    282     return createThreadEtc(fn, arg, "android:unnamed_thread",
    283                            PRIORITY_DEFAULT, 0, id);
    284 }
    285 
    286 static android_create_thread_fn gCreateThreadFn = androidCreateRawThreadEtc;
    287 
    288 int androidCreateThreadEtc(android_thread_func_t entryFunction,
    289                             void *userData,
    290                             const char* threadName,
    291                             int32_t threadPriority,
    292                             size_t threadStackSize,
    293                             android_thread_id_t *threadId)
    294 {
    295     return gCreateThreadFn(entryFunction, userData, threadName,
    296         threadPriority, threadStackSize, threadId);
    297 }
    298 
    299 void androidSetCreateThreadFunc(android_create_thread_fn func)
    300 {
    301     gCreateThreadFn = func;
    302 }
    303 
    304 #ifdef HAVE_ANDROID_OS
    305 int androidSetThreadPriority(pid_t tid, int pri)
    306 {
    307     int rc = 0;
    308 
    309 #if !defined(_WIN32)
    310     int lasterr = 0;
    311 
    312     if (pri >= ANDROID_PRIORITY_BACKGROUND) {
    313         rc = set_sched_policy(tid, SP_BACKGROUND);
    314     } else if (getpriority(PRIO_PROCESS, tid) >= ANDROID_PRIORITY_BACKGROUND) {
    315         rc = set_sched_policy(tid, SP_FOREGROUND);
    316     }
    317 
    318     if (rc) {
    319         lasterr = errno;
    320     }
    321 
    322     if (setpriority(PRIO_PROCESS, tid, pri) < 0) {
    323         rc = INVALID_OPERATION;
    324     } else {
    325         errno = lasterr;
    326     }
    327 #endif
    328 
    329     return rc;
    330 }
    331 
    332 int androidGetThreadPriority(pid_t tid) {
    333 #if !defined(_WIN32)
    334     return getpriority(PRIO_PROCESS, tid);
    335 #else
    336     return ANDROID_PRIORITY_NORMAL;
    337 #endif
    338 }
    339 
    340 #endif
    341 
    342 namespace android {
    343 
    344 /*
    345  * ===========================================================================
    346  *      Mutex class
    347  * ===========================================================================
    348  */
    349 
    350 #if !defined(_WIN32)
    351 // implemented as inlines in threads.h
    352 #else
    353 
    354 Mutex::Mutex()
    355 {
    356     HANDLE hMutex;
    357 
    358     assert(sizeof(hMutex) == sizeof(mState));
    359 
    360     hMutex = CreateMutex(NULL, FALSE, NULL);
    361     mState = (void*) hMutex;
    362 }
    363 
    364 Mutex::Mutex(const char* name)
    365 {
    366     // XXX: name not used for now
    367     HANDLE hMutex;
    368 
    369     assert(sizeof(hMutex) == sizeof(mState));
    370 
    371     hMutex = CreateMutex(NULL, FALSE, NULL);
    372     mState = (void*) hMutex;
    373 }
    374 
    375 Mutex::Mutex(int type, const char* name)
    376 {
    377     // XXX: type and name not used for now
    378     HANDLE hMutex;
    379 
    380     assert(sizeof(hMutex) == sizeof(mState));
    381 
    382     hMutex = CreateMutex(NULL, FALSE, NULL);
    383     mState = (void*) hMutex;
    384 }
    385 
    386 Mutex::~Mutex()
    387 {
    388     CloseHandle((HANDLE) mState);
    389 }
    390 
    391 status_t Mutex::lock()
    392 {
    393     DWORD dwWaitResult;
    394     dwWaitResult = WaitForSingleObject((HANDLE) mState, INFINITE);
    395     return dwWaitResult != WAIT_OBJECT_0 ? -1 : NO_ERROR;
    396 }
    397 
    398 void Mutex::unlock()
    399 {
    400     if (!ReleaseMutex((HANDLE) mState))
    401         ALOG(LOG_WARN, "thread", "WARNING: bad result from unlocking mutex\n");
    402 }
    403 
    404 status_t Mutex::tryLock()
    405 {
    406     DWORD dwWaitResult;
    407 
    408     dwWaitResult = WaitForSingleObject((HANDLE) mState, 0);
    409     if (dwWaitResult != WAIT_OBJECT_0 && dwWaitResult != WAIT_TIMEOUT)
    410         ALOG(LOG_WARN, "thread", "WARNING: bad result from try-locking mutex\n");
    411     return (dwWaitResult == WAIT_OBJECT_0) ? 0 : -1;
    412 }
    413 
    414 #endif // !defined(_WIN32)
    415 
    416 
    417 /*
    418  * ===========================================================================
    419  *      Condition class
    420  * ===========================================================================
    421  */
    422 
    423 #if !defined(_WIN32)
    424 // implemented as inlines in threads.h
    425 #else
    426 
    427 /*
    428  * Windows doesn't have a condition variable solution.  It's possible
    429  * to create one, but it's easy to get it wrong.  For a discussion, and
    430  * the origin of this implementation, see:
    431  *
    432  *  http://www.cs.wustl.edu/~schmidt/win32-cv-1.html
    433  *
    434  * The implementation shown on the page does NOT follow POSIX semantics.
    435  * As an optimization they require acquiring the external mutex before
    436  * calling signal() and broadcast(), whereas POSIX only requires grabbing
    437  * it before calling wait().  The implementation here has been un-optimized
    438  * to have the correct behavior.
    439  */
    440 typedef struct WinCondition {
    441     // Number of waiting threads.
    442     int                 waitersCount;
    443 
    444     // Serialize access to waitersCount.
    445     CRITICAL_SECTION    waitersCountLock;
    446 
    447     // Semaphore used to queue up threads waiting for the condition to
    448     // become signaled.
    449     HANDLE              sema;
    450 
    451     // An auto-reset event used by the broadcast/signal thread to wait
    452     // for all the waiting thread(s) to wake up and be released from
    453     // the semaphore.
    454     HANDLE              waitersDone;
    455 
    456     // This mutex wouldn't be necessary if we required that the caller
    457     // lock the external mutex before calling signal() and broadcast().
    458     // I'm trying to mimic pthread semantics though.
    459     HANDLE              internalMutex;
    460 
    461     // Keeps track of whether we were broadcasting or signaling.  This
    462     // allows us to optimize the code if we're just signaling.
    463     bool                wasBroadcast;
    464 
    465     status_t wait(WinCondition* condState, HANDLE hMutex, nsecs_t* abstime)
    466     {
    467         // Increment the wait count, avoiding race conditions.
    468         EnterCriticalSection(&condState->waitersCountLock);
    469         condState->waitersCount++;
    470         //printf("+++ wait: incr waitersCount to %d (tid=%ld)\n",
    471         //    condState->waitersCount, getThreadId());
    472         LeaveCriticalSection(&condState->waitersCountLock);
    473 
    474         DWORD timeout = INFINITE;
    475         if (abstime) {
    476             nsecs_t reltime = *abstime - systemTime();
    477             if (reltime < 0)
    478                 reltime = 0;
    479             timeout = reltime/1000000;
    480         }
    481 
    482         // Atomically release the external mutex and wait on the semaphore.
    483         DWORD res =
    484             SignalObjectAndWait(hMutex, condState->sema, timeout, FALSE);
    485 
    486         //printf("+++ wait: awake (tid=%ld)\n", getThreadId());
    487 
    488         // Reacquire lock to avoid race conditions.
    489         EnterCriticalSection(&condState->waitersCountLock);
    490 
    491         // No longer waiting.
    492         condState->waitersCount--;
    493 
    494         // Check to see if we're the last waiter after a broadcast.
    495         bool lastWaiter = (condState->wasBroadcast && condState->waitersCount == 0);
    496 
    497         //printf("+++ wait: lastWaiter=%d (wasBc=%d wc=%d)\n",
    498         //    lastWaiter, condState->wasBroadcast, condState->waitersCount);
    499 
    500         LeaveCriticalSection(&condState->waitersCountLock);
    501 
    502         // If we're the last waiter thread during this particular broadcast
    503         // then signal broadcast() that we're all awake.  It'll drop the
    504         // internal mutex.
    505         if (lastWaiter) {
    506             // Atomically signal the "waitersDone" event and wait until we
    507             // can acquire the internal mutex.  We want to do this in one step
    508             // because it ensures that everybody is in the mutex FIFO before
    509             // any thread has a chance to run.  Without it, another thread
    510             // could wake up, do work, and hop back in ahead of us.
    511             SignalObjectAndWait(condState->waitersDone, condState->internalMutex,
    512                 INFINITE, FALSE);
    513         } else {
    514             // Grab the internal mutex.
    515             WaitForSingleObject(condState->internalMutex, INFINITE);
    516         }
    517 
    518         // Release the internal and grab the external.
    519         ReleaseMutex(condState->internalMutex);
    520         WaitForSingleObject(hMutex, INFINITE);
    521 
    522         return res == WAIT_OBJECT_0 ? NO_ERROR : -1;
    523     }
    524 } WinCondition;
    525 
    526 /*
    527  * Constructor.  Set up the WinCondition stuff.
    528  */
    529 Condition::Condition()
    530 {
    531     WinCondition* condState = new WinCondition;
    532 
    533     condState->waitersCount = 0;
    534     condState->wasBroadcast = false;
    535     // semaphore: no security, initial value of 0
    536     condState->sema = CreateSemaphore(NULL, 0, 0x7fffffff, NULL);
    537     InitializeCriticalSection(&condState->waitersCountLock);
    538     // auto-reset event, not signaled initially
    539     condState->waitersDone = CreateEvent(NULL, FALSE, FALSE, NULL);
    540     // used so we don't have to lock external mutex on signal/broadcast
    541     condState->internalMutex = CreateMutex(NULL, FALSE, NULL);
    542 
    543     mState = condState;
    544 }
    545 
    546 /*
    547  * Destructor.  Free Windows resources as well as our allocated storage.
    548  */
    549 Condition::~Condition()
    550 {
    551     WinCondition* condState = (WinCondition*) mState;
    552     if (condState != NULL) {
    553         CloseHandle(condState->sema);
    554         CloseHandle(condState->waitersDone);
    555         delete condState;
    556     }
    557 }
    558 
    559 
    560 status_t Condition::wait(Mutex& mutex)
    561 {
    562     WinCondition* condState = (WinCondition*) mState;
    563     HANDLE hMutex = (HANDLE) mutex.mState;
    564 
    565     return ((WinCondition*)mState)->wait(condState, hMutex, NULL);
    566 }
    567 
    568 status_t Condition::waitRelative(Mutex& mutex, nsecs_t reltime)
    569 {
    570     WinCondition* condState = (WinCondition*) mState;
    571     HANDLE hMutex = (HANDLE) mutex.mState;
    572     nsecs_t absTime = systemTime()+reltime;
    573 
    574     return ((WinCondition*)mState)->wait(condState, hMutex, &absTime);
    575 }
    576 
    577 /*
    578  * Signal the condition variable, allowing one thread to continue.
    579  */
    580 void Condition::signal()
    581 {
    582     WinCondition* condState = (WinCondition*) mState;
    583 
    584     // Lock the internal mutex.  This ensures that we don't clash with
    585     // broadcast().
    586     WaitForSingleObject(condState->internalMutex, INFINITE);
    587 
    588     EnterCriticalSection(&condState->waitersCountLock);
    589     bool haveWaiters = (condState->waitersCount > 0);
    590     LeaveCriticalSection(&condState->waitersCountLock);
    591 
    592     // If no waiters, then this is a no-op.  Otherwise, knock the semaphore
    593     // down a notch.
    594     if (haveWaiters)
    595         ReleaseSemaphore(condState->sema, 1, 0);
    596 
    597     // Release internal mutex.
    598     ReleaseMutex(condState->internalMutex);
    599 }
    600 
    601 /*
    602  * Signal the condition variable, allowing all threads to continue.
    603  *
    604  * First we have to wake up all threads waiting on the semaphore, then
    605  * we wait until all of the threads have actually been woken before
    606  * releasing the internal mutex.  This ensures that all threads are woken.
    607  */
    608 void Condition::broadcast()
    609 {
    610     WinCondition* condState = (WinCondition*) mState;
    611 
    612     // Lock the internal mutex.  This keeps the guys we're waking up
    613     // from getting too far.
    614     WaitForSingleObject(condState->internalMutex, INFINITE);
    615 
    616     EnterCriticalSection(&condState->waitersCountLock);
    617     bool haveWaiters = false;
    618 
    619     if (condState->waitersCount > 0) {
    620         haveWaiters = true;
    621         condState->wasBroadcast = true;
    622     }
    623 
    624     if (haveWaiters) {
    625         // Wake up all the waiters.
    626         ReleaseSemaphore(condState->sema, condState->waitersCount, 0);
    627 
    628         LeaveCriticalSection(&condState->waitersCountLock);
    629 
    630         // Wait for all awakened threads to acquire the counting semaphore.
    631         // The last guy who was waiting sets this.
    632         WaitForSingleObject(condState->waitersDone, INFINITE);
    633 
    634         // Reset wasBroadcast.  (No crit section needed because nobody
    635         // else can wake up to poke at it.)
    636         condState->wasBroadcast = 0;
    637     } else {
    638         // nothing to do
    639         LeaveCriticalSection(&condState->waitersCountLock);
    640     }
    641 
    642     // Release internal mutex.
    643     ReleaseMutex(condState->internalMutex);
    644 }
    645 
    646 #endif // !defined(_WIN32)
    647 
    648 // ----------------------------------------------------------------------------
    649 
    650 /*
    651  * This is our thread object!
    652  */
    653 
    654 Thread::Thread(bool canCallJava)
    655     :   mCanCallJava(canCallJava),
    656         mThread(thread_id_t(-1)),
    657         mLock("Thread::mLock"),
    658         mStatus(NO_ERROR),
    659         mExitPending(false), mRunning(false)
    660 #ifdef HAVE_ANDROID_OS
    661         , mTid(-1)
    662 #endif
    663 {
    664 }
    665 
    666 Thread::~Thread()
    667 {
    668 }
    669 
    670 status_t Thread::readyToRun()
    671 {
    672     return NO_ERROR;
    673 }
    674 
    675 status_t Thread::run(const char* name, int32_t priority, size_t stack)
    676 {
    677     Mutex::Autolock _l(mLock);
    678 
    679     if (mRunning) {
    680         // thread already started
    681         return INVALID_OPERATION;
    682     }
    683 
    684     // reset status and exitPending to their default value, so we can
    685     // try again after an error happened (either below, or in readyToRun())
    686     mStatus = NO_ERROR;
    687     mExitPending = false;
    688     mThread = thread_id_t(-1);
    689 
    690     // hold a strong reference on ourself
    691     mHoldSelf = this;
    692 
    693     mRunning = true;
    694 
    695     bool res;
    696     if (mCanCallJava) {
    697         res = createThreadEtc(_threadLoop,
    698                 this, name, priority, stack, &mThread);
    699     } else {
    700         res = androidCreateRawThreadEtc(_threadLoop,
    701                 this, name, priority, stack, &mThread);
    702     }
    703 
    704     if (res == false) {
    705         mStatus = UNKNOWN_ERROR;   // something happened!
    706         mRunning = false;
    707         mThread = thread_id_t(-1);
    708         mHoldSelf.clear();  // "this" may have gone away after this.
    709 
    710         return UNKNOWN_ERROR;
    711     }
    712 
    713     // Do not refer to mStatus here: The thread is already running (may, in fact
    714     // already have exited with a valid mStatus result). The NO_ERROR indication
    715     // here merely indicates successfully starting the thread and does not
    716     // imply successful termination/execution.
    717     return NO_ERROR;
    718 
    719     // Exiting scope of mLock is a memory barrier and allows new thread to run
    720 }
    721 
    722 int Thread::_threadLoop(void* user)
    723 {
    724     Thread* const self = static_cast<Thread*>(user);
    725 
    726     sp<Thread> strong(self->mHoldSelf);
    727     wp<Thread> weak(strong);
    728     self->mHoldSelf.clear();
    729 
    730 #ifdef HAVE_ANDROID_OS
    731     // this is very useful for debugging with gdb
    732     self->mTid = gettid();
    733 #endif
    734 
    735     bool first = true;
    736 
    737     do {
    738         bool result;
    739         if (first) {
    740             first = false;
    741             self->mStatus = self->readyToRun();
    742             result = (self->mStatus == NO_ERROR);
    743 
    744             if (result && !self->exitPending()) {
    745                 // Binder threads (and maybe others) rely on threadLoop
    746                 // running at least once after a successful ::readyToRun()
    747                 // (unless, of course, the thread has already been asked to exit
    748                 // at that point).
    749                 // This is because threads are essentially used like this:
    750                 //   (new ThreadSubclass())->run();
    751                 // The caller therefore does not retain a strong reference to
    752                 // the thread and the thread would simply disappear after the
    753                 // successful ::readyToRun() call instead of entering the
    754                 // threadLoop at least once.
    755                 result = self->threadLoop();
    756             }
    757         } else {
    758             result = self->threadLoop();
    759         }
    760 
    761         // establish a scope for mLock
    762         {
    763         Mutex::Autolock _l(self->mLock);
    764         if (result == false || self->mExitPending) {
    765             self->mExitPending = true;
    766             self->mRunning = false;
    767             // clear thread ID so that requestExitAndWait() does not exit if
    768             // called by a new thread using the same thread ID as this one.
    769             self->mThread = thread_id_t(-1);
    770             // note that interested observers blocked in requestExitAndWait are
    771             // awoken by broadcast, but blocked on mLock until break exits scope
    772             self->mThreadExitedCondition.broadcast();
    773             break;
    774         }
    775         }
    776 
    777         // Release our strong reference, to let a chance to the thread
    778         // to die a peaceful death.
    779         strong.clear();
    780         // And immediately, re-acquire a strong reference for the next loop
    781         strong = weak.promote();
    782     } while(strong != 0);
    783 
    784     return 0;
    785 }
    786 
    787 void Thread::requestExit()
    788 {
    789     Mutex::Autolock _l(mLock);
    790     mExitPending = true;
    791 }
    792 
    793 status_t Thread::requestExitAndWait()
    794 {
    795     Mutex::Autolock _l(mLock);
    796     if (mThread == getThreadId()) {
    797         ALOGW(
    798         "Thread (this=%p): don't call waitForExit() from this "
    799         "Thread object's thread. It's a guaranteed deadlock!",
    800         this);
    801 
    802         return WOULD_BLOCK;
    803     }
    804 
    805     mExitPending = true;
    806 
    807     while (mRunning == true) {
    808         mThreadExitedCondition.wait(mLock);
    809     }
    810     // This next line is probably not needed any more, but is being left for
    811     // historical reference. Note that each interested party will clear flag.
    812     mExitPending = false;
    813 
    814     return mStatus;
    815 }
    816 
    817 status_t Thread::join()
    818 {
    819     Mutex::Autolock _l(mLock);
    820     if (mThread == getThreadId()) {
    821         ALOGW(
    822         "Thread (this=%p): don't call join() from this "
    823         "Thread object's thread. It's a guaranteed deadlock!",
    824         this);
    825 
    826         return WOULD_BLOCK;
    827     }
    828 
    829     while (mRunning == true) {
    830         mThreadExitedCondition.wait(mLock);
    831     }
    832 
    833     return mStatus;
    834 }
    835 
    836 bool Thread::isRunning() const {
    837     Mutex::Autolock _l(mLock);
    838     return mRunning;
    839 }
    840 
    841 #ifdef HAVE_ANDROID_OS
    842 pid_t Thread::getTid() const
    843 {
    844     // mTid is not defined until the child initializes it, and the caller may need it earlier
    845     Mutex::Autolock _l(mLock);
    846     pid_t tid;
    847     if (mRunning) {
    848         pthread_t pthread = android_thread_id_t_to_pthread(mThread);
    849         tid = pthread_gettid_np(pthread);
    850     } else {
    851         ALOGW("Thread (this=%p): getTid() is undefined before run()", this);
    852         tid = -1;
    853     }
    854     return tid;
    855 }
    856 #endif
    857 
    858 bool Thread::exitPending() const
    859 {
    860     Mutex::Autolock _l(mLock);
    861     return mExitPending;
    862 }
    863 
    864 
    865 
    866 };  // namespace android
    867