Home | History | Annotate | Download | only in IterativeLinearSolvers

Lines Matching refs:Index

24   * \param ind The array of index for the elements in @p row
27 template <typename VectorV, typename VectorI, typename Index>
28 Index QuickSplit(VectorV &row, VectorI &ind, Index ncut)
33 Index mid;
34 Index n = row.size(); /* length of the vector */
35 Index first, last ;
45 for (Index j = first + 1; j <= last; j++) {
103 typedef typename FactorType::Index Index;
122 Index rows() const { return m_lu.rows(); }
124 Index cols() const { return m_lu.cols(); }
181 inline bool operator() (const Index& row, const Index& col, const Scalar&) const
196 PermutationMatrix<Dynamic,Dynamic,Index> m_P; // Fill-reducing permutation
197 PermutationMatrix<Dynamic,Dynamic,Index> m_Pinv; // Inverse permutation
225 SparseMatrix<Scalar,ColMajor, Index> mat1 = amat;
226 SparseMatrix<Scalar,ColMajor, Index> mat2 = amat.transpose();
230 SparseMatrix<Scalar,ColMajor, Index> AtA = mat2 + mat1;
232 internal::minimum_degree_ordering<Scalar, Index>(AtA, m_P); // Then compute the AMD ordering...
250 Index n = amat.cols(); // Size of the matrix
259 SparseMatrix<Scalar,RowMajor, Index> mat;
268 Index fill_in = static_cast<Index> (amat.nonZeros()*m_fillfactor)/n+1;
272 Index nnzL = fill_in/2;
273 Index nnzU = nnzL;
277 for (Index ii = 0; ii < n; ii++)
281 Index sizeu = 1; // number of nonzero elements in the upper part of the current row
282 Index sizel = 0; // number of nonzero elements in the lower part of the current row
291 Index k = j_it.index();
307 Index jpos = ii + sizeu;
326 Index jj = 0;
327 Index len = 0;
331 // we must select first the smallest column index among ju(jj:sizel)
332 Index k;
333 Index minrow = ju.segment(jj,sizel-jj).minCoeff(&k); // k is relative to the segment
338 Index j = ju(jj);
348 while (ki_it && ki_it.index() < minrow) ++ki_it;
364 Index j = ki_it.index();
365 Index jpos = jr(j);
368 Index newpos;
397 for(Index k = 0; k <sizeu; k++) jr(ju(ii+k)) = -1;
410 for(Index k = 0; k < len; k++)
422 for(Index k = 1; k < sizeu; k++)
438 for(Index k = ii + 1; k < ii + len; k++)