Lines Matching full:traversal
148 <item><p><emph>HyTime:</emph> Defines inline and out-of-line link structures and some semantic features, including traversal control and presentation of objects. <!--Changed from "placement of objects into a display or other space" -elm-->
163 <def><p>A symbolic representation of traversal behavior in links, especially the direction, context and timing of traversal.</p></def>
194 <def><p>A <termref def="dt-link">link</termref> whose <termref def="dt-traversal"> traversal</termref> can be initiated from more than one of its <termref def="dt-particip-resource"> participating resources</termref>. Note that being able to "go back" after following a one-directional link does not make the link multidirectional.</p></def>
198 <def><p>A <termref def="dt-link">link</termref> whose content does not serve as one of the link's <termref def="dt-particip-resource">participating resources </termref>. Such links presuppose a notion like <termref def="dt-xlg">extended link groups</termref>, which instruct application software where to look for links. Out-of-line links are generally required for supporting multidirectional <termref def="dt-traversal">traversal</termref> and for allowing read-only resources to have outgoing links.</p></def>
222 <label><termdef id="dt-traversal" term="Traversal">traversal</termdef></label>
223 <def><p>The action of using a <termref def="dt-link">link</termref>; that is, of accessing a <termref def="dt-resource">resource</termref>. Traversal may be initiated by a user action (for example, clicking on the displayed content of a <termref def="dt-linkel">linking element</termref>) or occur under program control.</p></def>
315 <p>XLink has several attributes associated with the variety of links it may represent. These attributes define four main concepts: locators, arcs, behaviors, and semantics. <emph>Locators</emph> define where the actual resource is located. <emph>Arcs</emph> define the traversal of links. Where does the link come from? Where does it go to? All this information can be stored in the arc attributes. <emph>Behaviors</emph> define how the link is activated, and what the application should do with the resource being linked to. <emph>Semantics</emph> define useful information that the application may use, and enables the link for such specalized targets as constricted devices and accessibility software.</p>
347 <p>The <code>simple</code> link is used to declare a link that approximates the functionality of the HTML <code>A</code> element. It has, however, a few added features to increase its value, including the potential declaration of semantics and behavior. The <code>locator</code> elements are used to define the resource being linked to. Some links may contain multiple locators, representing a choice of potential links to be traversed. The <code>arcs</code> are used to define the traversal semantics of the link. Finally, an <code>extended</code> linking element differs from a simple link in that it can connect any number of resources, not just one local resource (optionally) and one remote resource, and in that extended links are more often out-of-line than simple links.</p>
413 <p>Application software might be expected to provide traversal among all of a link's participating resources (subject to semantic constraints outside the scope of this specification) and to signal the fact that a given resource or sub-resource participates in one or more links when it is displayed (even though there is no markup at exactly that point to signal it).</p>
449 <p><termdef id="dt-arc" term="Arc">An <term>arc</term> is contained within an extended link for the purpose of defining traversal behavior.</termdef> More than one arc may be associated with a link. Otherwise, arc elements function exactly as the arc attributes might lead on to expect.</p>