Home | History | Annotate | Download | only in src

Lines Matching full:probs

121                OutputArray probs)
125 return doTrain(START_AUTO_STEP, logLikelihoods, labels, probs);
134 OutputArray probs)
144 return doTrain(START_E_STEP, logLikelihoods, labels, probs);
151 OutputArray probs)
157 return doTrain(START_M_STEP, logLikelihoods, labels, probs);
163 Mat samples = _inputs.getMat(), probs, probsrow;
180 probsrow = probs.row(i);
203 Mat probs;
209 probs = _probs.getMat();
212 return computeProbabilities(sample, !probs.empty() ? &probs : 0, ptype);
236 int nclusters, int covMatType, const Mat* probs, const Mat* means,
256 CV_Assert(!probs ||
257 (!probs->empty() &&
258 probs->rows == nsamples && probs->cols == nclusters &&
259 (probs->type() == CV_32FC1 || probs->type() == CV_64FC1)));
290 CV_Assert(probs);
302 static void preprocessProbability(Mat& probs)
304 max(probs, 0., probs);
306 const double uniformProbability = (double)(1./probs.cols);
307 for(int y = 0; y < probs.rows; y++)
309 Mat sampleProbs = probs.row(y);
334 // set probs
475 bool doTrain(int startStep, OutputArray logLikelihoods, OutputArray labels, OutputArray probs)
544 if(probs.needed())
545 trainProbs.copyTo(probs);
557 Vec2d computeProbabilities(const Mat& sample, Mat* probs, int ptype) const
617 if(probs)
618 L.convertTo(*probs, ptype, 1./expDiffSum);