Lines Matching refs:Static
25 'customization': '\nBasic customization\n*******************\n\nobject.__new__(cls[, ...])\n\n Called to create a new instance of class *cls*. ``__new__()`` is a\n static
61 'specialnames': '\nSpecial method names\n********************\n\nA class can implement certain operations that are invoked by special\nsyntax (such as arithmetic operations or subscripting and slicing) by\ndefining methods with special names. This is Python\'s approach to\n*operator overloading*, allowing classes to define their own behavior\nwith respect to language operators. For instance, if a class defines\na method named ``__getitem__()``, and ``x`` is an instance of this\nclass, then ``x[i]`` is roughly equivalent to ``x.__getitem__(i)`` for\nold-style classes and ``type(x).__getitem__(x, i)`` for new-style\nclasses. Except where mentioned, attempts to execute an operation\nraise an exception when no appropriate method is defined (typically\n``AttributeError`` or ``TypeError``).\n\nWhen implementing a class that emulates any built-in type, it is\nimportant that the emulation only be implemented to the degree that it\nmakes sense for the object being modelled. For example, some\nsequences may work well with retrieval of individual elements, but\nextracting a slice may not make sense. (One example of this is the\n``NodeList`` interface in the W3C\'s Document Object Model.)\n\n\nBasic customization\n===================\n\nobject.__new__(cls[, ...])\n\n Called to create a new instance of class *cls*. ``__new__()`` is a\n static
67 ost of the attributes labelled "Writable" check the type of the\n assigned value.\n\n Changed in version 2.4: ``func_name`` is now writable.\n\n Function objects also support getting and setting arbitrary\n attributes, which can be used, for example, to attach metadata\n to functions. Regular attribute dot-notation is used to get and\n set such attributes. *Note that the current implementation only\n supports function attributes on user-defined functions. Function\n attributes on built-in functions may be supported in the\n future.*\n\n Additional information about a function\'s definition can be\n retrieved from its code object; see the description of internal\n types below.\n\n User-defined methods\n A user-defined method object combines a class, a class instance\n (or ``None``) and any callable object (normally a user-defined\n function).\n\n Special read-only attributes: ``im_self`` is the class instance\n object, ``im_func`` is the function object; ``im_class`` is the\n class of ``im_self`` for bound methods or the class that asked\n for the method for unbound methods; ``__doc__`` is the method\'s\n documentation (same as ``im_func.__doc__``); ``__name__`` is the\n method name (same as ``im_func.__name__``); ``__module__`` is\n the name of the module the method was defined in, or ``None`` if\n unavailable.\n\n Changed in version 2.2: ``im_self`` used to refer to the class\n that defined the method.\n\n Changed in version 2.6: For Python 3 forward-compatibility,\n ``im_func`` is also available as ``__func__``, and ``im_self``\n as ``__self__``.\n\n Methods also support accessing (but not setting) the arbitrary\n function attributes on the underlying function object.\n\n User-defined method objects may be created when getting an\n attribute of a class (perhaps via an instance of that class), if\n that attribute is a user-defined function object, an unbound\n user-defined method object, or a class method object. When the\n attribute is a user-defined method object, a new method object\n is only created if the class from which it is being retrieved is\n the same as, or a derived class of, the class stored in the\n original method object; otherwise, the original method object is\n used as it is.\n\n When a user-defined method object is created by retrieving a\n user-defined function object from a class, its ``im_self``\n attribute is ``None`` and the method object is said to be\n unbound. When one is created by retrieving a user-defined\n function object from a class via one of its instances, its\n ``im_self`` attribute is the instance, and the method object is\n said to be bound. In either case, the new method\'s ``im_class``\n attribute is the class from which the retrieval takes place, and\n its ``im_func`` attribute is the original function object.\n\n When a user-defined method object is created by retrieving\n another method object from a class or instance, the behaviour is\n the same as for a function object, except that the ``im_func``\n attribute of the new instance is not the original method object\n but its ``im_func`` attribute.\n\n When a user-defined method object is created by retrieving a\n class method object from a class or instance, its ``im_self``\n attribute is the class itself, and its ``im_func`` attribute is\n the function object underlying the class method.\n\n When an unbound user-defined method object is called, the\n underlying function (``im_func``) is called, with the\n restriction that the first argument must be an instance of the\n proper class (``im_class``) or of a derived class thereof.\n\n When a bound user-defined method object is called, the\n underlying function (``im_func``) is called, inserting the class\n instance (``im_self``) in front of the argument list. For\n instance, when ``C`` is a class which contains a definition for\n a function ``f()``, and ``x`` is an instance of ``C``, calling\n ``x.f(1)`` is equivalent to calling ``C.f(x, 1)``.\n\n When a user-defined method object is derived from a class method\n object, the "class instance" stored in ``im_self`` will actually\n be the class itself, so that calling either ``x.f(1)`` or\n ``C.f(1)`` is equivalent to calling ``f(C,1)`` where ``f`` is\n the underlying function.\n\n Note that the transformation from function object to (unbound or\n bound) method object happens each time the attribute is\n retrieved from the class or instance. In some cases, a fruitful\n optimization is to assign the attribute to a local variable and\n call that local variable. Also notice that this transformation\n only happens for user-defined functions; other callable objects\n (and all non-callable objects) are retrieved without\n transformation. It is also important to note that user-defined\n functions which are attributes of a class instance are not\n converted to bound methods; this *only* happens when the\n function is an attribute of the class.\n\n Generator functions\n A function or method which uses the ``yield`` statement (see\n section *The yield statement*) is called a *generator function*.\n Such a function, when called, always returns an iterator object\n which can be used to execute the body of the function: calling\n the iterator\'s ``next()`` method will cause the function to\n execute until it provides a value using the ``yield`` statement.\n When the function executes a ``return`` statement or falls off\n the end, a ``StopIteration`` exception is raised and the\n iterator will have reached the end of the set of values to be\n returned.\n\n Built-in functions\n A built-in function object is a wrapper around a C function.\n Examples of built-in functions are ``len()`` and ``math.sin()``\n (``math`` is a standard built-in module). The number and type of\n the arguments are determined by the C function. Special read-\n only attributes: ``__doc__`` is the function\'s documentation\n string, or ``None`` if unavailable; ``__name__`` is the\n function\'s name; ``__self__`` is set to ``None`` (but see the\n next item); ``__module__`` is the name of the module the\n function was defined in or ``None`` if unavailable.\n\n Built-in methods\n This is really a different disguise of a built-in function, this\n time containing an object passed to the C function as an\n implicit extra argument. An example of a built-in method is\n ``alist.append()``, assuming *alist* is a list object. In this\n case, the special read-only attribute ``__self__`` is set to the\n object denoted by *alist*.\n\n Class Types\n Class types, or "new-style classes," are callable. These\n objects normally act as factories for new instances of\n themselves, but variations are possible for class types that\n override ``__new__()``. The arguments of the call are passed to\n ``__new__()`` and, in the typical case, to ``__init__()`` to\n initialize the new instance.\n\n Classic Classes\n Class objects are described below. When a class object is\n called, a new class instance (also described below) is created\n and returned. This implies a call to the class\'s ``__init__()``\n method if it has one. Any arguments are passed on to the\n ``__init__()`` method. If there is no ``__init__()`` method,\n the class must be called without arguments.\n\n Class instances\n Class instances are described below. Class instances are\n callable only when the class has a ``__call__()`` method;\n ``x(arguments)`` is a shorthand for ``x.__call__(arguments)``.\n\nModules\n Modules are imported by the ``import`` statement (see section *The\n import statement*). A module object has a namespace implemented by\n a dictionary object (this is the dictionary referenced by the\n func_globals attribute of functions defined in the module).\n Attribute references are translated to lookups in this dictionary,\n e.g., ``m.x`` is equivalent to ``m.__dict__["x"]``. A module object\n does not contain the code object used to initialize the module\n (since it isn\'t needed once the initialization is done).\n\n Attribute assignment updates the module\'s namespace dictionary,\n e.g., ``m.x = 1`` is equivalent to ``m.__dict__["x"] = 1``.\n\n Special read-only attribute: ``__dict__`` is the module\'s namespace\n as a dictionary object.\n\n **CPython implementation detail:** Because of the way CPython\n clears module dictionaries, the module dictionary will be cleared\n when the module falls out of scope even if the dictionary still has\n live references. To avoid this, copy the dictionary or keep the\n module around while using its dictionary directly.\n\n Predefined (writable) attributes: ``__name__`` is the module\'s\n name; ``__doc__`` is the module\'s documentation string, or ``None``\n if unavailable; ``__file__`` is the pathname of the file from which\n the module was loaded, if it was loaded from a file. The\n ``__file__`` attribute is not present for C modules that are\n statically linked into the interpreter; for extension modules\n loaded dynamically from a shared library, it is the pathname of the\n shared library file.\n\nClasses\n Both class types (new-style classes) and class objects (old-\n style/classic classes) are typically created by class definitions\n (see section *Class definitions*). A class has a namespace\n implemented by a dictionary object. Class attribute references are\n translated to lookups in this dictionary, e.g., ``C.x`` is\n translated to ``C.__dict__["x"]`` (although for new-style classes\n in particular there are a number of hooks which allow for other\n means of locating attributes). When the attribute name is not found\n there, the attribute search continues in the base classes. For\n old-style classes, the search is depth-first, left-to-right in the\n order of occurrence in the base class list. New-style classes use\n the more complex C3 method resolution order which behaves correctly\n even in the presence of \'diamond\' inheritance structures where\n there are multiple inheritance paths leading back to a common\n ancestor. Additional details on the C3 MRO used by new-style\n classes can be found in the documentation accompanying the 2.3\n release at http://www.python.org/download/releases/2.3/mro/.\n\n When a class attribute reference (for class ``C``, say) would yield\n a user-defined function object or an unbound user-defined method\n object whose associated class is either ``C`` or one of its base\n classes, it is transformed into an unbound user-defined method\n object whose ``im_class`` attribute is ``C``. When it would yield a\n class method object, it is transformed into a bound user-defined\n method object whose ``im_self`` attribute is ``C``. When it would\n yield a static method object, it is transformed into the object\n wrapped by the static method object. See section *Implementing\n Descriptors* for another way in which attributes retrieved from a\n class may differ from those actually contained in its ``__dict__``\n (note that only new-style classes support descriptors).\n\n Class attribute assignments update the class\'s dictionary, never\n the dictionary of a base class.\n\n A class object can be called (see above) to yield a class instance\n (see below).\n\n Special attributes: ``__name__`` is the class name; ``__module__``\n is the module name in which the class was defined; ``__dict__`` is\n the dictionary containing the class\'s namespace; ``__bases__`` is a\n tuple (possibly empty or a singleton) containing the base classes,\n in the order of their occurrence in the base class list;\n ``__doc__`` is the class\'s documentation string, or None if\n undefined.\n\nClass instances\n A class instance is created by calling a class object (see above).\n A class instance has a namespace implemented as a dictionary which\n is the first place in which attribute references are searched.\n When an attribute is not found there, and the instance\'s class has\n an attribute by that name, the search continues with the class\n attributes. If a class attribute is found that is a user-defined\n function object or an unbound user-defined method object whose\n associated class is the class (call it ``C``) of the instance for\n which the attribute reference was initiated or one of its bases, it\n is transformed into a bound user-defined method object whose\n ``im_class`` attribute is ``C`` and whose ``im_self`` attribute is\n the instance. StaticStatic method objects\n Static method objects provide a way of defeating the\n transformation of function objects to method objects described\n above. A static method object is a wrapper around any other\n object, usually a user-defined method object. When a static\n method object is retrieved from a class or a class instance, the\n object actually returned is the wrapped object, which is not\n subject to any further transformation. Static method objects are\n not themselves callable, although the objects they wrap usually\n are. Static method objects are created by the built-in\n ``staticmethod()`` constructor.\n\n Class method objects\n A class method object, like a static method object, is a wrapper\n around another object that alters the way in which that object\n is retrieved from classes and class instances. The behaviour of\n class method objects upon such retrieval is described above,\n under "User-defined methods". Class method objects are created\n by the built-in ``classmethod()`` constructor.\n',