Home | History | Annotate | Download | only in pydoc_data

Lines Matching refs:assigns

3  'assignment': '\nAssignment statements\n*********************\n\nAssignment statements are used to (re)bind names to values and to\nmodify attributes or items of mutable objects:\n\n   assignment_stmt ::= (target_list "=")+ (expression_list | yield_expression)\n   target_list     ::= target ("," target)* [","]\n   target          ::= identifier\n              | "(" target_list ")"\n              | "[" target_list "]"\n              | attributeref\n              | subscription\n              | slicing\n\n(See section *Primaries* for the syntax definitions for the last three\nsymbols.)\n\nAn assignment statement evaluates the expression list (remember that\nthis can be a single expression or a comma-separated list, the latter\nyielding a tuple) and assigns the single resulting object to each of\nthe target lists, from left to right.\n\nAssignment is defined recursively depending on the form of the target\n(list). When a target is part of a mutable object (an attribute\nreference, subscription or slicing), the mutable object must\nultimately perform the assignment and decide about its validity, and\nmay raise an exception if the assignment is unacceptable.  The rules\nobserved by various types and the exceptions raised are given with the\ndefinition of the object types (see section *The standard type\nhierarchy*).\n\nAssignment of an object to a target list is recursively defined as\nfollows.\n\n* If the target list is a single target: The object is assigned to\n  that target.\n\n* If the target list is a comma-separated list of targets: The object\n  must be an iterable with the same number of items as there are\n  targets in the target list, and the items are assigned, from left to\n  right, to the corresponding targets.\n\nAssignment of an object to a single target is recursively defined as\nfollows.\n\n* If the target is an identifier (name):\n\n  * If the name does not occur in a ``global`` statement in the\n    current code block: the name is bound to the object in the current\n    local namespace.\n\n  * Otherwise: the name is bound to the object in the current global\n    namespace.\n\n  The name is rebound if it was already bound.  This may cause the\n  reference count for the object previously bound to the name to reach\n  zero, causing the object to be deallocated and its destructor (if it\n  has one) to be called.\n\n* If the target is a target list enclosed in parentheses or in square\n  brackets: The object must be an iterable with the same number of\n  items as there are targets in the target list, and its items are\n  assigned, from left to right, to the corresponding targets.\n\n* If the target is an attribute reference: The primary expression in\n  the reference is evaluated.  It should yield an object with\n  assignable attributes; if this is not the case, ``TypeError`` is\n  raised.  That object is then asked to assign the assigned object to\n  the given attribute; if it cannot perform the assignment, it raises\n  an exception (usually but not necessarily ``AttributeError``).\n\n  Note: If the object is a class instance and the attribute reference\n  occurs on both sides of the assignment operator, the RHS expression,\n  ``a.x`` can access either an instance attribute or (if no instance\n  attribute exists) a class attribute.  The LHS target ``a.x`` is\n  always set as an instance attribute, creating it if necessary.\n  Thus, the two occurrences of ``a.x`` do not necessarily refer to the\n  same attribute: if the RHS expression refers to a class attribute,\n  the LHS creates a new instance attribute as the target of the\n  assignment:\n\n     class Cls:\n         x = 3             # class variable\n     inst = Cls()\n     inst.x = inst.x + 1   # writes inst.x as 4 leaving Cls.x as 3\n\n  This description does not necessarily apply to descriptor\n  attributes, such as properties created with ``property()``.\n\n* If the target is a subscription: The primary expression in the\n  reference is evaluated.  It should yield either a mutable sequence\n  object (such as a list) or a mapping object (such as a dictionary).\n  Next, the subscript expression is evaluated.\n\n  If the primary is a mutable sequence object (such as a list), the\n  subscript must yield a plain integer.  If it is negative, the\n  sequence\'s length is added to it. The resulting value must be a\n  nonnegative integer less than the sequence\'s length, and the\n  sequence is asked to assign the assigned object to its item with\n  that index.  If the index is out of range, ``IndexError`` is raised\n  (assignment to a subscripted sequence cannot add new items to a\n  list).\n\n  If the primary is a mapping object (such as a dictionary), the\n  subscript must have a type compatible with the mapping\'s key type,\n  and the mapping is then asked to create a key/datum pair which maps\n  the subscript to the assigned object.  This can either replace an\n  existing key/value pair with the same key value, or insert a new\n  key/value pair (if no key with the same value existed).\n\n* If the target is a slicing: The primary expression in the reference\n  is evaluated.  It should yield a mutable sequence object (such as a\n  list).  The assigned object should be a sequence object of the same\n  type.  Next, the lower and upper bound expressions are evaluated,\n  insofar they are present; defaults are zero and the sequence\'s\n  length.  The bounds should evaluate to (small) integers.  If either\n  bound is negative, the sequence\'s length is added to it. The\n  resulting bounds are clipped to lie between zero and the sequence\'s\n  length, inclusive.  Finally, the sequence object is asked to replace\n  the slice with the items of the assigned sequence.  The length of\n  the slice may be different from the length of the assigned sequence,\n  thus changing the length of the target sequence, if the object\n  allows it.\n\n**CPython implementation detail:** In the current implementation, the\nsyntax for targets is taken to be the same as for expressions, and\ninvalid syntax is rejected during the code generation phase, causing\nless detailed error messages.\n\nWARNING: Although the definition of assignment implies that overlaps\nbetween the left-hand side and the right-hand side are \'safe\' (for\nexample ``a, b = b, a`` swaps two variables), overlaps *within* the\ncollection of assigned-to variables are not safe!  For instance, the\nfollowing program prints ``[0, 2]``:\n\n   x = [0, 1]\n   i = 0\n   i, x[i] = 1, 2\n   print x\n\n\nAugmented assignment statements\n===============================\n\nAugmented assignment is the combination, in a single statement, of a\nbinary operation and an assignment statement:\n\n   augmented_assignment_stmt ::= augtarget augop (expression_list | yield_expression)\n   augtarget                 ::= identifier | attributeref | subscription | slicing\n   augop                     ::= "+=" | "-=" | "*=" | "/=" | "//=" | "%=" | "**="\n             | ">>=" | "<<=" | "&=" | "^=" | "|="\n\n(See section *Primaries* for the syntax definitions for the last three\nsymbols.)\n\nAn augmented assignment evaluates the target (which, unlike normal\nassignment statements, cannot be an unpacking) and the expression\nlist, performs the binary operation specific to the type of assignment\non the two operands, and assigns the result to the original target.\nThe target is only evaluated once.\n\nAn augmented assignment expression like ``x += 1`` can be rewritten as\n``x = x + 1`` to achieve a similar, but not exactly equal effect. In\nthe augmented version, ``x`` is only evaluated once. Also, when\npossible, the actual operation is performed *in-place*, meaning that\nrather than creating a new object and assigning that to the target,\nthe old object is modified instead.\n\nWith the exception of assigning to tuples and multiple targets in a\nsingle statement, the assignment done by augmented assignment\nstatements is handled the same way as normal assignments. Similarly,\nwith the exception of the possible *in-place* behavior, the binary\noperation performed by augmented assignment is the same as the normal\nbinary operations.\n\nFor targets which are attribute references, the same *caveat about\nclass and instance attributes* applies as for regular assignments.\n',
8 'augassign': '\nAugmented assignment statements\n*******************************\n\nAugmented assignment is the combination, in a single statement, of a\nbinary operation and an assignment statement:\n\n augmented_assignment_stmt ::= augtarget augop (expression_list | yield_expression)\n augtarget ::= identifier | attributeref | subscription | slicing\n augop ::= "+=" | "-=" | "*=" | "/=" | "//=" | "%=" | "**="\n | ">>=" | "<<=" | "&=" | "^=" | "|="\n\n(See section *Primaries* for the syntax definitions for the last three\nsymbols.)\n\nAn augmented assignment evaluates the target (which, unlike normal\nassignment statements, cannot be an unpacking) and the expression\nlist, performs the binary operation specific to the type of assignment\non the two operands, and assigns the result to the original target.\nThe target is only evaluated once.\n\nAn augmented assignment expression like ``x += 1`` can be rewritten as\n``x = x + 1`` to achieve a similar, but not exactly equal effect. In\nthe augmented version, ``x`` is only evaluated once. Also, when\npossible, the actual operation is performed *in-place*, meaning that\nrather than creating a new object and assigning that to the target,\nthe old object is modified instead.\n\nWith the exception of assigning to tuples and multiple targets in a\nsingle statement, the assignment done by augmented assignment\nstatements is handled the same way as normal assignments. Similarly,\nwith the exception of the possible *in-place* behavior, the binary\noperation performed by augmented assignment is the same as the normal\nbinary operations.\n\nFor targets which are attribute references, the same *caveat about\nclass and instance attributes* applies as for regular assignments.\n',
21 assigns values to all parameters\nmentioned in the parameter list, either from position arguments, from\nkeyword arguments, or from default values. If the form\n"``*identifier``" is present, it is initialized to a tuple receiving\nany excess positional parameters, defaulting to the empty tuple. If\nthe form "``**identifier``" is present, it is initialized to a new\ndictionary receiving any excess keyword arguments, defaulting to a new\nempty dictionary.\n\nIt is also possible to create anonymous functions (functions not bound\nto a name), for immediate use in expressions. This uses lambda forms,\ndescribed in section *Lambdas*. Note that the lambda form is merely a\nshorthand for a simplified function definition; a function defined in\na "``def``" statement can be passed around or assigned to another name\njust like a function defined by a lambda form. The "``def``" form is\nactually more powerful since it allows the execution of multiple\nstatements.\n\n**Programmer\'s note:** Functions are first-class objects. A "``def``"\nform executed inside a function definition defines a local function\nthat can be returned or passed around. Free variables used in the\nnested function can access the local variables of the function\ncontaining the def. See section *Naming and binding* for details.\n\n\nClass definitions\n=================\n\nA class definition defines a class object (see section *The standard\ntype hierarchy*):\n\n classdef ::= "class" classname [inheritance] ":" suite\n inheritance ::= "(" [expression_list] ")"\n classname ::= identifier\n\nA class definition is an executable statement. It first evaluates the\ninheritance list, if present. Each item in the inheritance list\nshould evaluate to a class object or class type which allows\nsubclassing. The class\'s suite is then executed in a new execution\nframe (see section *Naming and binding*), using a newly created local\nnamespace and the original global namespace. (Usually, the suite\ncontains only function definitions.) When the class\'s suite finishes\nexecution, its execution frame is discarded but its local namespace is\nsaved. [4] A class object is then created using the inheritance list\nfor the base classes and the saved local namespace for the attribute\ndictionary. The class name is bound to this class object in the\noriginal local namespace.\n\n**Programmer\'s note:** Variables defined in the class definition are\nclass variables; they are shared by all instances. To create instance\nvariables, they can be set in a method with ``self.name = value``.\nBoth class and instance variables are accessible through the notation\n"``self.name``", and an instance variable hides a class variable with\nthe same name when accessed in this way. Class variables can be used\nas defaults for instance variables, but using mutable values there can\nlead to unexpected results. For *new-style class*es, descriptors can\nbe used to create instance variables with different implementation\ndetails.\n\nClass definitions, like function definitions, may be wrapped by one or\nmore *decorator* expressions. The evaluation rules for the decorator\nexpressions are the same as for functions. The result must be a class\nobject, which is then bound to the class name.\n\n-[ Footnotes ]-\n\n[1] The exception is propagated to the invocation stack unless there\n is a ``finally`` clause which happens to raise another exception.\n That new exception causes the old one to be lost.\n\n[2] Currently, control "flows off the end" except in the case of an\n exception or the execution of a ``return``, ``continue``, or\n ``break`` statement.\n\n[3] A string literal appearing as the first statement in the function\n body is transformed into the function\'s ``__doc__`` attribute and\n therefore the function\'s *docstring*.\n\n[4] A string literal appearing as the first statement in the class\n body is transformed into the namespace\'s ``__doc__`` item and\n therefore the class\'s *docstring*.\n',
37 'function': '\nFunction definitions\n********************\n\nA function definition defines a user-defined function object (see\nsection *The standard type hierarchy*):\n\n decorated ::= decorators (classdef | funcdef)\n decorators ::= decorator+\n decorator ::= "@" dotted_name ["(" [argument_list [","]] ")"] NEWLINE\n funcdef ::= "def" funcname "(" [parameter_list] ")" ":" suite\n dotted_name ::= identifier ("." identifier)*\n parameter_list ::= (defparameter ",")*\n ( "*" identifier ["," "**" identifier]\n | "**" identifier\n | defparameter [","] )\n defparameter ::= parameter ["=" expression]\n sublist ::= parameter ("," parameter)* [","]\n parameter ::= identifier | "(" sublist ")"\n funcname ::= identifier\n\nA function definition is an executable statement. Its execution binds\nthe function name in the current local namespace to a function object\n(a wrapper around the executable code for the function). This\nfunction object contains a reference to the current global namespace\nas the global namespace to be used when the function is called.\n\nThe function definition does not execute the function body; this gets\nexecuted only when the function is called. [3]\n\nA function definition may be wrapped by one or more *decorator*\nexpressions. Decorator expressions are evaluated when the function is\ndefined, in the scope that contains the function definition. The\nresult must be a callable, which is invoked with the function object\nas the only argument. The returned value is bound to the function name\ninstead of the function object. Multiple decorators are applied in\nnested fashion. For example, the following code:\n\n @f1(arg)\n @f2\n def func(): pass\n\nis equivalent to:\n\n def func(): pass\n func = f1(arg)(f2(func))\n\nWhen one or more top-level *parameters* have the form *parameter*\n``=`` *expression*, the function is said to have "default parameter\nvalues." For a parameter with a default value, the corresponding\n*argument* may be omitted from a call, in which case the parameter\'s\ndefault value is substituted. If a parameter has a default value, all\nfollowing parameters must also have a default value --- this is a\nsyntactic restriction that is not expressed by the grammar.\n\n**Default parameter values are evaluated when the function definition\nis executed.** This means that the expression is evaluated once, when\nthe function is defined, and that the same "pre-computed" value is\nused for each call. This is especially important to understand when a\ndefault parameter is a mutable object, such as a list or a dictionary:\nif the function modifies the object (e.g. by appending an item to a\nlist), the default value is in effect modified. This is generally not\nwhat was intended. A way around this is to use ``None`` as the\ndefault, and explicitly test for it in the body of the function, e.g.:\n\n def whats_on_the_telly(penguin=None):\n if penguin is None:\n penguin = []\n penguin.append("property of the zoo")\n return penguin\n\nFunction call semantics are described in more detail in section\n*Calls*. A function call always assigns values to all parameters\nmentioned in the parameter list, either from position arguments, from\nkeyword arguments, or from default values. If the form\n"``*identifier``" is present, it is initialized to a tuple receiving\nany excess positional parameters, defaulting to the empty tuple. If\nthe form "``**identifier``" is present, it is initialized to a new\ndictionary receiving any excess keyword arguments, defaulting to a new\nempty dictionary.\n\nIt is also possible to create anonymous functions (functions not bound\nto a name), for immediate use in expressions. This uses lambda forms,\ndescribed in section *Lambdas*. Note that the lambda form is merely a\nshorthand for a simplified function definition; a function defined in\na "``def``" statement can be passed around or assigned to another name\njust like a function defined by a lambda form. The "``def``" form is\nactually more powerful since it allows the execution of multiple\nstatements.\n\n**Programmer\'s note:** Functions are first-class objects. A "``def``"\nform executed inside a function definition defines a local function\nthat can be returned or passed around. Free variables used in the\nnested function can access the local variables of the function\ncontaining the def. See section *Naming and binding* for details.\n',
51 'objects': '\nObjects, values and types\n*************************\n\n*Objects* are Python\'s abstraction for data. All data in a Python\nprogram is represented by objects or by relations between objects. (In\na sense, and in conformance to Von Neumann\'s model of a "stored\nprogram computer," code is also represented by objects.)\n\nEvery object has an identity, a type and a value. An object\'s\n*identity* never changes once it has been created; you may think of it\nas the object\'s address in memory. The \'``is``\' operator compares the\nidentity of two objects; the ``id()`` function returns an integer\nrepresenting its identity (currently implemented as its address). An\nobject\'s *type* is also unchangeable. [1] An object\'s type determines\nthe operations that the object supports (e.g., "does it have a\nlength?") and also defines the possible values for objects of that\ntype. The ``type()`` function returns an object\'s type (which is an\nobject itself). The *value* of some objects can change. Objects\nwhose value can change are said to be *mutable*; objects whose value\nis unchangeable once they are created are called *immutable*. (The\nvalue of an immutable container object that contains a reference to a\nmutable object can change when the latter\'s value is changed; however\nthe container is still considered immutable, because the collection of\nobjects it contains cannot be changed. So, immutability is not\nstrictly the same as having an unchangeable value, it is more subtle.)\nAn object\'s mutability is determined by its type; for instance,\nnumbers, strings and tuples are immutable, while dictionaries and\nlists are mutable.\n\nObjects are never explicitly destroyed; however, when they become\nunreachable they may be garbage-collected. An implementation is\nallowed to postpone garbage collection or omit it altogether --- it is\na matter of implementation quality how garbage collection is\nimplemented, as long as no objects are collected that are still\nreachable.\n\n**CPython implementation detail:** CPython currently uses a reference-\ncounting scheme with (optional) delayed detection of cyclically linked\ngarbage, which collects most objects as soon as they become\nunreachable, but is not guaranteed to collect garbage containing\ncircular references. See the documentation of the ``gc`` module for\ninformation on controlling the collection of cyclic garbage. Other\nimplementations act differently and CPython may change. Do not depend\non immediate finalization of objects when they become unreachable (ex:\nalways close files).\n\nNote that the use of the implementation\'s tracing or debugging\nfacilities may keep objects alive that would normally be collectable.\nAlso note that catching an exception with a \'``try``...``except``\'\nstatement may keep objects alive.\n\nSome objects contain references to "external" resources such as open\nfiles or windows. It is understood that these resources are freed\nwhen the object is garbage-collected, but since garbage collection is\nnot guaranteed to happen, such objects also provide an explicit way to\nrelease the external resource, usually a ``close()`` method. Programs\nare strongly recommended to explicitly close such objects. The\n\'``try``...``finally``\' statement provides a convenient way to do\nthis.\n\nSome objects contain references to other objects; these are called\n*containers*. Examples of containers are tuples, lists and\ndictionaries. The references are part of a container\'s value. In\nmost cases, when we talk about the value of a container, we imply the\nvalues, not the identities of the contained objects; however, when we\ntalk about the mutability of a container, only the identities of the\nimmediately contained objects are implied. So, if an immutable\ncontainer (like a tuple) contains a reference to a mutable object, its\nvalue changes if that mutable object is changed.\n\nTypes affect almost all aspects of object behavior. Even the\nimportance of object identity is affected in some sense: for immutable\ntypes, operations that compute new values may actually return a\nreference to any existing object with the same type and value, while\nfor mutable objects this is not allowed. E.g., after ``a = 1; b =\n1``, ``a`` and ``b`` may or may not refer to the same object with the\nvalue one, depending on the implementation, but after ``c = []; d =\n[]``, ``c`` and ``d`` are guaranteed to refer to two different,\nunique, newly created empty lists. (Note that ``c = d = []`` assigns\nthe same object to both ``c`` and ``d``.)\n',