1 // 2 // Copyright (C) 2012 The Android Open Source Project 3 // 4 // Licensed under the Apache License, Version 2.0 (the "License"); 5 // you may not use this file except in compliance with the License. 6 // You may obtain a copy of the License at 7 // 8 // http://www.apache.org/licenses/LICENSE-2.0 9 // 10 // Unless required by applicable law or agreed to in writing, software 11 // distributed under the License is distributed on an "AS IS" BASIS, 12 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 13 // See the License for the specific language governing permissions and 14 // limitations under the License. 15 // 16 17 #include "update_engine/payload_consumer/delta_performer.h" 18 19 #include <endian.h> 20 #include <errno.h> 21 #include <linux/fs.h> 22 23 #include <algorithm> 24 #include <cstring> 25 #include <memory> 26 #include <string> 27 #include <vector> 28 29 #include <base/files/file_util.h> 30 #include <base/format_macros.h> 31 #include <base/strings/string_util.h> 32 #include <base/strings/stringprintf.h> 33 #include <brillo/data_encoding.h> 34 #include <brillo/make_unique_ptr.h> 35 #include <google/protobuf/repeated_field.h> 36 37 #include "update_engine/common/constants.h" 38 #include "update_engine/common/hardware_interface.h" 39 #include "update_engine/common/prefs_interface.h" 40 #include "update_engine/common/subprocess.h" 41 #include "update_engine/common/terminator.h" 42 #include "update_engine/payload_consumer/bzip_extent_writer.h" 43 #include "update_engine/payload_consumer/download_action.h" 44 #include "update_engine/payload_consumer/extent_writer.h" 45 #if USE_MTD 46 #include "update_engine/payload_consumer/mtd_file_descriptor.h" 47 #endif 48 #include "update_engine/payload_consumer/payload_constants.h" 49 #include "update_engine/payload_consumer/payload_verifier.h" 50 #include "update_engine/payload_consumer/xz_extent_writer.h" 51 52 using google::protobuf::RepeatedPtrField; 53 using std::min; 54 using std::string; 55 using std::vector; 56 57 namespace chromeos_update_engine { 58 59 const uint64_t DeltaPerformer::kDeltaVersionOffset = sizeof(kDeltaMagic); 60 const uint64_t DeltaPerformer::kDeltaVersionSize = 8; 61 const uint64_t DeltaPerformer::kDeltaManifestSizeOffset = 62 kDeltaVersionOffset + kDeltaVersionSize; 63 const uint64_t DeltaPerformer::kDeltaManifestSizeSize = 8; 64 const uint64_t DeltaPerformer::kDeltaMetadataSignatureSizeSize = 4; 65 const uint64_t DeltaPerformer::kMaxPayloadHeaderSize = 24; 66 const uint64_t DeltaPerformer::kSupportedMajorPayloadVersion = 2; 67 const uint32_t DeltaPerformer::kSupportedMinorPayloadVersion = 3; 68 69 const unsigned DeltaPerformer::kProgressLogMaxChunks = 10; 70 const unsigned DeltaPerformer::kProgressLogTimeoutSeconds = 30; 71 const unsigned DeltaPerformer::kProgressDownloadWeight = 50; 72 const unsigned DeltaPerformer::kProgressOperationsWeight = 50; 73 74 namespace { 75 const int kUpdateStateOperationInvalid = -1; 76 const int kMaxResumedUpdateFailures = 10; 77 #if USE_MTD 78 const int kUbiVolumeAttachTimeout = 5 * 60; 79 #endif 80 81 FileDescriptorPtr CreateFileDescriptor(const char* path) { 82 FileDescriptorPtr ret; 83 #if USE_MTD 84 if (strstr(path, "/dev/ubi") == path) { 85 if (!UbiFileDescriptor::IsUbi(path)) { 86 // The volume might not have been attached at boot time. 87 int volume_no; 88 if (utils::SplitPartitionName(path, nullptr, &volume_no)) { 89 utils::TryAttachingUbiVolume(volume_no, kUbiVolumeAttachTimeout); 90 } 91 } 92 if (UbiFileDescriptor::IsUbi(path)) { 93 LOG(INFO) << path << " is a UBI device."; 94 ret.reset(new UbiFileDescriptor); 95 } 96 } else if (MtdFileDescriptor::IsMtd(path)) { 97 LOG(INFO) << path << " is an MTD device."; 98 ret.reset(new MtdFileDescriptor); 99 } else { 100 LOG(INFO) << path << " is not an MTD nor a UBI device."; 101 #endif 102 ret.reset(new EintrSafeFileDescriptor); 103 #if USE_MTD 104 } 105 #endif 106 return ret; 107 } 108 109 // Opens path for read/write. On success returns an open FileDescriptor 110 // and sets *err to 0. On failure, sets *err to errno and returns nullptr. 111 FileDescriptorPtr OpenFile(const char* path, int mode, int* err) { 112 // Try to mark the block device read-only based on the mode. Ignore any 113 // failure since this won't work when passing regular files. 114 utils::SetBlockDeviceReadOnly(path, (mode & O_ACCMODE) == O_RDONLY); 115 116 FileDescriptorPtr fd = CreateFileDescriptor(path); 117 #if USE_MTD 118 // On NAND devices, we can either read, or write, but not both. So here we 119 // use O_WRONLY. 120 if (UbiFileDescriptor::IsUbi(path) || MtdFileDescriptor::IsMtd(path)) { 121 mode = O_WRONLY; 122 } 123 #endif 124 if (!fd->Open(path, mode, 000)) { 125 *err = errno; 126 PLOG(ERROR) << "Unable to open file " << path; 127 return nullptr; 128 } 129 *err = 0; 130 return fd; 131 } 132 } // namespace 133 134 135 // Computes the ratio of |part| and |total|, scaled to |norm|, using integer 136 // arithmetic. 137 static uint64_t IntRatio(uint64_t part, uint64_t total, uint64_t norm) { 138 return part * norm / total; 139 } 140 141 void DeltaPerformer::LogProgress(const char* message_prefix) { 142 // Format operations total count and percentage. 143 string total_operations_str("?"); 144 string completed_percentage_str(""); 145 if (num_total_operations_) { 146 total_operations_str = std::to_string(num_total_operations_); 147 // Upcasting to 64-bit to avoid overflow, back to size_t for formatting. 148 completed_percentage_str = 149 base::StringPrintf(" (%" PRIu64 "%%)", 150 IntRatio(next_operation_num_, num_total_operations_, 151 100)); 152 } 153 154 // Format download total count and percentage. 155 size_t payload_size = install_plan_->payload_size; 156 string payload_size_str("?"); 157 string downloaded_percentage_str(""); 158 if (payload_size) { 159 payload_size_str = std::to_string(payload_size); 160 // Upcasting to 64-bit to avoid overflow, back to size_t for formatting. 161 downloaded_percentage_str = 162 base::StringPrintf(" (%" PRIu64 "%%)", 163 IntRatio(total_bytes_received_, payload_size, 100)); 164 } 165 166 LOG(INFO) << (message_prefix ? message_prefix : "") << next_operation_num_ 167 << "/" << total_operations_str << " operations" 168 << completed_percentage_str << ", " << total_bytes_received_ 169 << "/" << payload_size_str << " bytes downloaded" 170 << downloaded_percentage_str << ", overall progress " 171 << overall_progress_ << "%"; 172 } 173 174 void DeltaPerformer::UpdateOverallProgress(bool force_log, 175 const char* message_prefix) { 176 // Compute our download and overall progress. 177 unsigned new_overall_progress = 0; 178 static_assert(kProgressDownloadWeight + kProgressOperationsWeight == 100, 179 "Progress weights don't add up"); 180 // Only consider download progress if its total size is known; otherwise 181 // adjust the operations weight to compensate for the absence of download 182 // progress. Also, make sure to cap the download portion at 183 // kProgressDownloadWeight, in case we end up downloading more than we 184 // initially expected (this indicates a problem, but could generally happen). 185 // TODO(garnold) the correction of operations weight when we do not have the 186 // total payload size, as well as the conditional guard below, should both be 187 // eliminated once we ensure that the payload_size in the install plan is 188 // always given and is non-zero. This currently isn't the case during unit 189 // tests (see chromium-os:37969). 190 size_t payload_size = install_plan_->payload_size; 191 unsigned actual_operations_weight = kProgressOperationsWeight; 192 if (payload_size) 193 new_overall_progress += min( 194 static_cast<unsigned>(IntRatio(total_bytes_received_, payload_size, 195 kProgressDownloadWeight)), 196 kProgressDownloadWeight); 197 else 198 actual_operations_weight += kProgressDownloadWeight; 199 200 // Only add completed operations if their total number is known; we definitely 201 // expect an update to have at least one operation, so the expectation is that 202 // this will eventually reach |actual_operations_weight|. 203 if (num_total_operations_) 204 new_overall_progress += IntRatio(next_operation_num_, num_total_operations_, 205 actual_operations_weight); 206 207 // Progress ratio cannot recede, unless our assumptions about the total 208 // payload size, total number of operations, or the monotonicity of progress 209 // is breached. 210 if (new_overall_progress < overall_progress_) { 211 LOG(WARNING) << "progress counter receded from " << overall_progress_ 212 << "% down to " << new_overall_progress << "%; this is a bug"; 213 force_log = true; 214 } 215 overall_progress_ = new_overall_progress; 216 217 // Update chunk index, log as needed: if forced by called, or we completed a 218 // progress chunk, or a timeout has expired. 219 base::Time curr_time = base::Time::Now(); 220 unsigned curr_progress_chunk = 221 overall_progress_ * kProgressLogMaxChunks / 100; 222 if (force_log || curr_progress_chunk > last_progress_chunk_ || 223 curr_time > forced_progress_log_time_) { 224 forced_progress_log_time_ = curr_time + forced_progress_log_wait_; 225 LogProgress(message_prefix); 226 } 227 last_progress_chunk_ = curr_progress_chunk; 228 } 229 230 231 size_t DeltaPerformer::CopyDataToBuffer(const char** bytes_p, size_t* count_p, 232 size_t max) { 233 const size_t count = *count_p; 234 if (!count) 235 return 0; // Special case shortcut. 236 size_t read_len = min(count, max - buffer_.size()); 237 const char* bytes_start = *bytes_p; 238 const char* bytes_end = bytes_start + read_len; 239 buffer_.insert(buffer_.end(), bytes_start, bytes_end); 240 *bytes_p = bytes_end; 241 *count_p = count - read_len; 242 return read_len; 243 } 244 245 246 bool DeltaPerformer::HandleOpResult(bool op_result, const char* op_type_name, 247 ErrorCode* error) { 248 if (op_result) 249 return true; 250 251 LOG(ERROR) << "Failed to perform " << op_type_name << " operation " 252 << next_operation_num_; 253 *error = ErrorCode::kDownloadOperationExecutionError; 254 return false; 255 } 256 257 int DeltaPerformer::Close() { 258 int err = -CloseCurrentPartition(); 259 LOG_IF(ERROR, !payload_hash_calculator_.Finalize() || 260 !signed_hash_calculator_.Finalize()) 261 << "Unable to finalize the hash."; 262 if (!buffer_.empty()) { 263 LOG(INFO) << "Discarding " << buffer_.size() << " unused downloaded bytes"; 264 if (err >= 0) 265 err = 1; 266 } 267 return -err; 268 } 269 270 int DeltaPerformer::CloseCurrentPartition() { 271 int err = 0; 272 if (source_fd_ && !source_fd_->Close()) { 273 err = errno; 274 PLOG(ERROR) << "Error closing source partition"; 275 if (!err) 276 err = 1; 277 } 278 source_fd_.reset(); 279 source_path_.clear(); 280 281 if (target_fd_ && !target_fd_->Close()) { 282 err = errno; 283 PLOG(ERROR) << "Error closing target partition"; 284 if (!err) 285 err = 1; 286 } 287 target_fd_.reset(); 288 target_path_.clear(); 289 return -err; 290 } 291 292 bool DeltaPerformer::OpenCurrentPartition() { 293 if (current_partition_ >= partitions_.size()) 294 return false; 295 296 const PartitionUpdate& partition = partitions_[current_partition_]; 297 // Open source fds if we have a delta payload with minor version >= 2. 298 if (install_plan_->payload_type == InstallPayloadType::kDelta && 299 GetMinorVersion() != kInPlaceMinorPayloadVersion) { 300 source_path_ = install_plan_->partitions[current_partition_].source_path; 301 int err; 302 source_fd_ = OpenFile(source_path_.c_str(), O_RDONLY, &err); 303 if (!source_fd_) { 304 LOG(ERROR) << "Unable to open source partition " 305 << partition.partition_name() << " on slot " 306 << BootControlInterface::SlotName(install_plan_->source_slot) 307 << ", file " << source_path_; 308 return false; 309 } 310 } 311 312 target_path_ = install_plan_->partitions[current_partition_].target_path; 313 int err; 314 target_fd_ = OpenFile(target_path_.c_str(), O_RDWR, &err); 315 if (!target_fd_) { 316 LOG(ERROR) << "Unable to open target partition " 317 << partition.partition_name() << " on slot " 318 << BootControlInterface::SlotName(install_plan_->target_slot) 319 << ", file " << target_path_; 320 return false; 321 } 322 return true; 323 } 324 325 namespace { 326 327 void LogPartitionInfoHash(const PartitionInfo& info, const string& tag) { 328 string sha256 = brillo::data_encoding::Base64Encode(info.hash()); 329 LOG(INFO) << "PartitionInfo " << tag << " sha256: " << sha256 330 << " size: " << info.size(); 331 } 332 333 void LogPartitionInfo(const vector<PartitionUpdate>& partitions) { 334 for (const PartitionUpdate& partition : partitions) { 335 LogPartitionInfoHash(partition.old_partition_info(), 336 "old " + partition.partition_name()); 337 LogPartitionInfoHash(partition.new_partition_info(), 338 "new " + partition.partition_name()); 339 } 340 } 341 342 } // namespace 343 344 bool DeltaPerformer::GetMetadataSignatureSizeOffset( 345 uint64_t* out_offset) const { 346 if (GetMajorVersion() == kBrilloMajorPayloadVersion) { 347 *out_offset = kDeltaManifestSizeOffset + kDeltaManifestSizeSize; 348 return true; 349 } 350 return false; 351 } 352 353 bool DeltaPerformer::GetManifestOffset(uint64_t* out_offset) const { 354 // Actual manifest begins right after the manifest size field or 355 // metadata signature size field if major version >= 2. 356 if (major_payload_version_ == kChromeOSMajorPayloadVersion) { 357 *out_offset = kDeltaManifestSizeOffset + kDeltaManifestSizeSize; 358 return true; 359 } 360 if (major_payload_version_ == kBrilloMajorPayloadVersion) { 361 *out_offset = kDeltaManifestSizeOffset + kDeltaManifestSizeSize + 362 kDeltaMetadataSignatureSizeSize; 363 return true; 364 } 365 LOG(ERROR) << "Unknown major payload version: " << major_payload_version_; 366 return false; 367 } 368 369 uint64_t DeltaPerformer::GetMetadataSize() const { 370 return metadata_size_; 371 } 372 373 uint64_t DeltaPerformer::GetMajorVersion() const { 374 return major_payload_version_; 375 } 376 377 uint32_t DeltaPerformer::GetMinorVersion() const { 378 if (manifest_.has_minor_version()) { 379 return manifest_.minor_version(); 380 } else { 381 return install_plan_->payload_type == InstallPayloadType::kDelta 382 ? kSupportedMinorPayloadVersion 383 : kFullPayloadMinorVersion; 384 } 385 } 386 387 bool DeltaPerformer::GetManifest(DeltaArchiveManifest* out_manifest_p) const { 388 if (!manifest_parsed_) 389 return false; 390 *out_manifest_p = manifest_; 391 return true; 392 } 393 394 bool DeltaPerformer::IsHeaderParsed() const { 395 return metadata_size_ != 0; 396 } 397 398 DeltaPerformer::MetadataParseResult DeltaPerformer::ParsePayloadMetadata( 399 const brillo::Blob& payload, ErrorCode* error) { 400 *error = ErrorCode::kSuccess; 401 uint64_t manifest_offset; 402 403 if (!IsHeaderParsed()) { 404 // Ensure we have data to cover the major payload version. 405 if (payload.size() < kDeltaManifestSizeOffset) 406 return kMetadataParseInsufficientData; 407 408 // Validate the magic string. 409 if (memcmp(payload.data(), kDeltaMagic, sizeof(kDeltaMagic)) != 0) { 410 LOG(ERROR) << "Bad payload format -- invalid delta magic."; 411 *error = ErrorCode::kDownloadInvalidMetadataMagicString; 412 return kMetadataParseError; 413 } 414 415 // Extract the payload version from the metadata. 416 static_assert(sizeof(major_payload_version_) == kDeltaVersionSize, 417 "Major payload version size mismatch"); 418 memcpy(&major_payload_version_, 419 &payload[kDeltaVersionOffset], 420 kDeltaVersionSize); 421 // switch big endian to host 422 major_payload_version_ = be64toh(major_payload_version_); 423 424 if (major_payload_version_ != supported_major_version_ && 425 major_payload_version_ != kChromeOSMajorPayloadVersion) { 426 LOG(ERROR) << "Bad payload format -- unsupported payload version: " 427 << major_payload_version_; 428 *error = ErrorCode::kUnsupportedMajorPayloadVersion; 429 return kMetadataParseError; 430 } 431 432 // Get the manifest offset now that we have payload version. 433 if (!GetManifestOffset(&manifest_offset)) { 434 *error = ErrorCode::kUnsupportedMajorPayloadVersion; 435 return kMetadataParseError; 436 } 437 // Check again with the manifest offset. 438 if (payload.size() < manifest_offset) 439 return kMetadataParseInsufficientData; 440 441 // Next, parse the manifest size. 442 static_assert(sizeof(manifest_size_) == kDeltaManifestSizeSize, 443 "manifest_size size mismatch"); 444 memcpy(&manifest_size_, 445 &payload[kDeltaManifestSizeOffset], 446 kDeltaManifestSizeSize); 447 manifest_size_ = be64toh(manifest_size_); // switch big endian to host 448 449 if (GetMajorVersion() == kBrilloMajorPayloadVersion) { 450 // Parse the metadata signature size. 451 static_assert(sizeof(metadata_signature_size_) == 452 kDeltaMetadataSignatureSizeSize, 453 "metadata_signature_size size mismatch"); 454 uint64_t metadata_signature_size_offset; 455 if (!GetMetadataSignatureSizeOffset(&metadata_signature_size_offset)) { 456 *error = ErrorCode::kError; 457 return kMetadataParseError; 458 } 459 memcpy(&metadata_signature_size_, 460 &payload[metadata_signature_size_offset], 461 kDeltaMetadataSignatureSizeSize); 462 metadata_signature_size_ = be32toh(metadata_signature_size_); 463 } 464 465 // If the metadata size is present in install plan, check for it immediately 466 // even before waiting for that many number of bytes to be downloaded in the 467 // payload. This will prevent any attack which relies on us downloading data 468 // beyond the expected metadata size. 469 metadata_size_ = manifest_offset + manifest_size_; 470 if (install_plan_->hash_checks_mandatory) { 471 if (install_plan_->metadata_size != metadata_size_) { 472 LOG(ERROR) << "Mandatory metadata size in Omaha response (" 473 << install_plan_->metadata_size 474 << ") is missing/incorrect, actual = " << metadata_size_; 475 *error = ErrorCode::kDownloadInvalidMetadataSize; 476 return kMetadataParseError; 477 } 478 } 479 } 480 481 // Now that we have validated the metadata size, we should wait for the full 482 // metadata and its signature (if exist) to be read in before we can parse it. 483 if (payload.size() < metadata_size_ + metadata_signature_size_) 484 return kMetadataParseInsufficientData; 485 486 // Log whether we validated the size or simply trusting what's in the payload 487 // here. This is logged here (after we received the full metadata data) so 488 // that we just log once (instead of logging n times) if it takes n 489 // DeltaPerformer::Write calls to download the full manifest. 490 if (install_plan_->metadata_size == metadata_size_) { 491 LOG(INFO) << "Manifest size in payload matches expected value from Omaha"; 492 } else { 493 // For mandatory-cases, we'd have already returned a kMetadataParseError 494 // above. We'll be here only for non-mandatory cases. Just send a UMA stat. 495 LOG(WARNING) << "Ignoring missing/incorrect metadata size (" 496 << install_plan_->metadata_size 497 << ") in Omaha response as validation is not mandatory. " 498 << "Trusting metadata size in payload = " << metadata_size_; 499 } 500 501 // We have the full metadata in |payload|. Verify its integrity 502 // and authenticity based on the information we have in Omaha response. 503 *error = ValidateMetadataSignature(payload); 504 if (*error != ErrorCode::kSuccess) { 505 if (install_plan_->hash_checks_mandatory) { 506 // The autoupdate_CatchBadSignatures test checks for this string 507 // in log-files. Keep in sync. 508 LOG(ERROR) << "Mandatory metadata signature validation failed"; 509 return kMetadataParseError; 510 } 511 512 // For non-mandatory cases, just send a UMA stat. 513 LOG(WARNING) << "Ignoring metadata signature validation failures"; 514 *error = ErrorCode::kSuccess; 515 } 516 517 if (!GetManifestOffset(&manifest_offset)) { 518 *error = ErrorCode::kUnsupportedMajorPayloadVersion; 519 return kMetadataParseError; 520 } 521 // The payload metadata is deemed valid, it's safe to parse the protobuf. 522 if (!manifest_.ParseFromArray(&payload[manifest_offset], manifest_size_)) { 523 LOG(ERROR) << "Unable to parse manifest in update file."; 524 *error = ErrorCode::kDownloadManifestParseError; 525 return kMetadataParseError; 526 } 527 528 manifest_parsed_ = true; 529 return kMetadataParseSuccess; 530 } 531 532 // Wrapper around write. Returns true if all requested bytes 533 // were written, or false on any error, regardless of progress 534 // and stores an action exit code in |error|. 535 bool DeltaPerformer::Write(const void* bytes, size_t count, ErrorCode *error) { 536 *error = ErrorCode::kSuccess; 537 538 const char* c_bytes = reinterpret_cast<const char*>(bytes); 539 540 // Update the total byte downloaded count and the progress logs. 541 total_bytes_received_ += count; 542 UpdateOverallProgress(false, "Completed "); 543 544 while (!manifest_valid_) { 545 // Read data up to the needed limit; this is either maximium payload header 546 // size, or the full metadata size (once it becomes known). 547 const bool do_read_header = !IsHeaderParsed(); 548 CopyDataToBuffer(&c_bytes, &count, 549 (do_read_header ? kMaxPayloadHeaderSize : 550 metadata_size_ + metadata_signature_size_)); 551 552 MetadataParseResult result = ParsePayloadMetadata(buffer_, error); 553 if (result == kMetadataParseError) 554 return false; 555 if (result == kMetadataParseInsufficientData) { 556 // If we just processed the header, make an attempt on the manifest. 557 if (do_read_header && IsHeaderParsed()) 558 continue; 559 560 return true; 561 } 562 563 // Checks the integrity of the payload manifest. 564 if ((*error = ValidateManifest()) != ErrorCode::kSuccess) 565 return false; 566 manifest_valid_ = true; 567 568 // Clear the download buffer. 569 DiscardBuffer(false, metadata_size_); 570 571 // This populates |partitions_| and the |install_plan.partitions| with the 572 // list of partitions from the manifest. 573 if (!ParseManifestPartitions(error)) 574 return false; 575 576 num_total_operations_ = 0; 577 for (const auto& partition : partitions_) { 578 num_total_operations_ += partition.operations_size(); 579 acc_num_operations_.push_back(num_total_operations_); 580 } 581 582 LOG_IF(WARNING, !prefs_->SetInt64(kPrefsManifestMetadataSize, 583 metadata_size_)) 584 << "Unable to save the manifest metadata size."; 585 LOG_IF(WARNING, !prefs_->SetInt64(kPrefsManifestSignatureSize, 586 metadata_signature_size_)) 587 << "Unable to save the manifest signature size."; 588 589 if (!PrimeUpdateState()) { 590 *error = ErrorCode::kDownloadStateInitializationError; 591 LOG(ERROR) << "Unable to prime the update state."; 592 return false; 593 } 594 595 if (!OpenCurrentPartition()) { 596 *error = ErrorCode::kInstallDeviceOpenError; 597 return false; 598 } 599 600 if (next_operation_num_ > 0) 601 UpdateOverallProgress(true, "Resuming after "); 602 LOG(INFO) << "Starting to apply update payload operations"; 603 } 604 605 while (next_operation_num_ < num_total_operations_) { 606 // Check if we should cancel the current attempt for any reason. 607 // In this case, *error will have already been populated with the reason 608 // why we're canceling. 609 if (download_delegate_ && download_delegate_->ShouldCancel(error)) 610 return false; 611 612 // We know there are more operations to perform because we didn't reach the 613 // |num_total_operations_| limit yet. 614 while (next_operation_num_ >= acc_num_operations_[current_partition_]) { 615 CloseCurrentPartition(); 616 current_partition_++; 617 if (!OpenCurrentPartition()) { 618 *error = ErrorCode::kInstallDeviceOpenError; 619 return false; 620 } 621 } 622 const size_t partition_operation_num = next_operation_num_ - ( 623 current_partition_ ? acc_num_operations_[current_partition_ - 1] : 0); 624 625 const InstallOperation& op = 626 partitions_[current_partition_].operations(partition_operation_num); 627 628 CopyDataToBuffer(&c_bytes, &count, op.data_length()); 629 630 // Check whether we received all of the next operation's data payload. 631 if (!CanPerformInstallOperation(op)) 632 return true; 633 634 // Validate the operation only if the metadata signature is present. 635 // Otherwise, keep the old behavior. This serves as a knob to disable 636 // the validation logic in case we find some regression after rollout. 637 // NOTE: If hash checks are mandatory and if metadata_signature is empty, 638 // we would have already failed in ParsePayloadMetadata method and thus not 639 // even be here. So no need to handle that case again here. 640 if (!install_plan_->metadata_signature.empty()) { 641 // Note: Validate must be called only if CanPerformInstallOperation is 642 // called. Otherwise, we might be failing operations before even if there 643 // isn't sufficient data to compute the proper hash. 644 *error = ValidateOperationHash(op); 645 if (*error != ErrorCode::kSuccess) { 646 if (install_plan_->hash_checks_mandatory) { 647 LOG(ERROR) << "Mandatory operation hash check failed"; 648 return false; 649 } 650 651 // For non-mandatory cases, just send a UMA stat. 652 LOG(WARNING) << "Ignoring operation validation errors"; 653 *error = ErrorCode::kSuccess; 654 } 655 } 656 657 // Makes sure we unblock exit when this operation completes. 658 ScopedTerminatorExitUnblocker exit_unblocker = 659 ScopedTerminatorExitUnblocker(); // Avoids a compiler unused var bug. 660 661 bool op_result; 662 switch (op.type()) { 663 case InstallOperation::REPLACE: 664 case InstallOperation::REPLACE_BZ: 665 case InstallOperation::REPLACE_XZ: 666 op_result = PerformReplaceOperation(op); 667 break; 668 case InstallOperation::ZERO: 669 case InstallOperation::DISCARD: 670 op_result = PerformZeroOrDiscardOperation(op); 671 break; 672 case InstallOperation::MOVE: 673 op_result = PerformMoveOperation(op); 674 break; 675 case InstallOperation::BSDIFF: 676 op_result = PerformBsdiffOperation(op); 677 break; 678 case InstallOperation::SOURCE_COPY: 679 op_result = PerformSourceCopyOperation(op); 680 break; 681 case InstallOperation::SOURCE_BSDIFF: 682 op_result = PerformSourceBsdiffOperation(op); 683 break; 684 default: 685 op_result = false; 686 } 687 if (!HandleOpResult(op_result, InstallOperationTypeName(op.type()), error)) 688 return false; 689 690 next_operation_num_++; 691 UpdateOverallProgress(false, "Completed "); 692 CheckpointUpdateProgress(); 693 } 694 695 // In major version 2, we don't add dummy operation to the payload. 696 // If we already extracted the signature we should skip this step. 697 if (major_payload_version_ == kBrilloMajorPayloadVersion && 698 manifest_.has_signatures_offset() && manifest_.has_signatures_size() && 699 signatures_message_data_.empty()) { 700 if (manifest_.signatures_offset() != buffer_offset_) { 701 LOG(ERROR) << "Payload signatures offset points to blob offset " 702 << manifest_.signatures_offset() 703 << " but signatures are expected at offset " 704 << buffer_offset_; 705 *error = ErrorCode::kDownloadPayloadVerificationError; 706 return false; 707 } 708 CopyDataToBuffer(&c_bytes, &count, manifest_.signatures_size()); 709 // Needs more data to cover entire signature. 710 if (buffer_.size() < manifest_.signatures_size()) 711 return true; 712 if (!ExtractSignatureMessage()) { 713 LOG(ERROR) << "Extract payload signature failed."; 714 *error = ErrorCode::kDownloadPayloadVerificationError; 715 return false; 716 } 717 DiscardBuffer(true, 0); 718 // Since we extracted the SignatureMessage we need to advance the 719 // checkpoint, otherwise we would reload the signature and try to extract 720 // it again. 721 CheckpointUpdateProgress(); 722 } 723 724 return true; 725 } 726 727 bool DeltaPerformer::IsManifestValid() { 728 return manifest_valid_; 729 } 730 731 bool DeltaPerformer::ParseManifestPartitions(ErrorCode* error) { 732 if (major_payload_version_ == kBrilloMajorPayloadVersion) { 733 partitions_.clear(); 734 for (const PartitionUpdate& partition : manifest_.partitions()) { 735 partitions_.push_back(partition); 736 } 737 manifest_.clear_partitions(); 738 } else if (major_payload_version_ == kChromeOSMajorPayloadVersion) { 739 LOG(INFO) << "Converting update information from old format."; 740 PartitionUpdate root_part; 741 root_part.set_partition_name(kLegacyPartitionNameRoot); 742 #ifdef __ANDROID__ 743 LOG(WARNING) << "Legacy payload major version provided to an Android " 744 "build. Assuming no post-install. Please use major version " 745 "2 or newer."; 746 root_part.set_run_postinstall(false); 747 #else 748 root_part.set_run_postinstall(true); 749 #endif // __ANDROID__ 750 if (manifest_.has_old_rootfs_info()) { 751 *root_part.mutable_old_partition_info() = manifest_.old_rootfs_info(); 752 manifest_.clear_old_rootfs_info(); 753 } 754 if (manifest_.has_new_rootfs_info()) { 755 *root_part.mutable_new_partition_info() = manifest_.new_rootfs_info(); 756 manifest_.clear_new_rootfs_info(); 757 } 758 *root_part.mutable_operations() = manifest_.install_operations(); 759 manifest_.clear_install_operations(); 760 partitions_.push_back(std::move(root_part)); 761 762 PartitionUpdate kern_part; 763 kern_part.set_partition_name(kLegacyPartitionNameKernel); 764 kern_part.set_run_postinstall(false); 765 if (manifest_.has_old_kernel_info()) { 766 *kern_part.mutable_old_partition_info() = manifest_.old_kernel_info(); 767 manifest_.clear_old_kernel_info(); 768 } 769 if (manifest_.has_new_kernel_info()) { 770 *kern_part.mutable_new_partition_info() = manifest_.new_kernel_info(); 771 manifest_.clear_new_kernel_info(); 772 } 773 *kern_part.mutable_operations() = manifest_.kernel_install_operations(); 774 manifest_.clear_kernel_install_operations(); 775 partitions_.push_back(std::move(kern_part)); 776 } 777 778 // TODO(deymo): Remove this block of code once we switched to optional 779 // source partition verification. This list of partitions in the InstallPlan 780 // is initialized with the expected hashes in the payload major version 1, 781 // so we need to check those now if already set. See b/23182225. 782 if (!install_plan_->partitions.empty()) { 783 if (!VerifySourcePartitions()) { 784 *error = ErrorCode::kDownloadStateInitializationError; 785 return false; 786 } 787 } 788 789 // Fill in the InstallPlan::partitions based on the partitions from the 790 // payload. 791 install_plan_->partitions.clear(); 792 for (const auto& partition : partitions_) { 793 InstallPlan::Partition install_part; 794 install_part.name = partition.partition_name(); 795 install_part.run_postinstall = 796 partition.has_run_postinstall() && partition.run_postinstall(); 797 if (install_part.run_postinstall) { 798 install_part.postinstall_path = 799 (partition.has_postinstall_path() ? partition.postinstall_path() 800 : kPostinstallDefaultScript); 801 install_part.filesystem_type = partition.filesystem_type(); 802 } 803 804 if (partition.has_old_partition_info()) { 805 const PartitionInfo& info = partition.old_partition_info(); 806 install_part.source_size = info.size(); 807 install_part.source_hash.assign(info.hash().begin(), info.hash().end()); 808 } 809 810 if (!partition.has_new_partition_info()) { 811 LOG(ERROR) << "Unable to get new partition hash info on partition " 812 << install_part.name << "."; 813 *error = ErrorCode::kDownloadNewPartitionInfoError; 814 return false; 815 } 816 const PartitionInfo& info = partition.new_partition_info(); 817 install_part.target_size = info.size(); 818 install_part.target_hash.assign(info.hash().begin(), info.hash().end()); 819 820 install_plan_->partitions.push_back(install_part); 821 } 822 823 if (!install_plan_->LoadPartitionsFromSlots(boot_control_)) { 824 LOG(ERROR) << "Unable to determine all the partition devices."; 825 *error = ErrorCode::kInstallDeviceOpenError; 826 return false; 827 } 828 LogPartitionInfo(partitions_); 829 return true; 830 } 831 832 bool DeltaPerformer::CanPerformInstallOperation( 833 const chromeos_update_engine::InstallOperation& operation) { 834 // If we don't have a data blob we can apply it right away. 835 if (!operation.has_data_offset() && !operation.has_data_length()) 836 return true; 837 838 // See if we have the entire data blob in the buffer 839 if (operation.data_offset() < buffer_offset_) { 840 LOG(ERROR) << "we threw away data it seems?"; 841 return false; 842 } 843 844 return (operation.data_offset() + operation.data_length() <= 845 buffer_offset_ + buffer_.size()); 846 } 847 848 bool DeltaPerformer::PerformReplaceOperation( 849 const InstallOperation& operation) { 850 CHECK(operation.type() == InstallOperation::REPLACE || 851 operation.type() == InstallOperation::REPLACE_BZ || 852 operation.type() == InstallOperation::REPLACE_XZ); 853 854 // Since we delete data off the beginning of the buffer as we use it, 855 // the data we need should be exactly at the beginning of the buffer. 856 TEST_AND_RETURN_FALSE(buffer_offset_ == operation.data_offset()); 857 TEST_AND_RETURN_FALSE(buffer_.size() >= operation.data_length()); 858 859 // Extract the signature message if it's in this operation. 860 if (ExtractSignatureMessageFromOperation(operation)) { 861 // If this is dummy replace operation, we ignore it after extracting the 862 // signature. 863 DiscardBuffer(true, 0); 864 return true; 865 } 866 867 // Setup the ExtentWriter stack based on the operation type. 868 std::unique_ptr<ExtentWriter> writer = 869 brillo::make_unique_ptr(new ZeroPadExtentWriter( 870 brillo::make_unique_ptr(new DirectExtentWriter()))); 871 872 if (operation.type() == InstallOperation::REPLACE_BZ) { 873 writer.reset(new BzipExtentWriter(std::move(writer))); 874 } else if (operation.type() == InstallOperation::REPLACE_XZ) { 875 writer.reset(new XzExtentWriter(std::move(writer))); 876 } 877 878 // Create a vector of extents to pass to the ExtentWriter. 879 vector<Extent> extents; 880 for (int i = 0; i < operation.dst_extents_size(); i++) { 881 extents.push_back(operation.dst_extents(i)); 882 } 883 884 TEST_AND_RETURN_FALSE(writer->Init(target_fd_, extents, block_size_)); 885 TEST_AND_RETURN_FALSE(writer->Write(buffer_.data(), operation.data_length())); 886 TEST_AND_RETURN_FALSE(writer->End()); 887 888 // Update buffer 889 DiscardBuffer(true, buffer_.size()); 890 return true; 891 } 892 893 bool DeltaPerformer::PerformZeroOrDiscardOperation( 894 const InstallOperation& operation) { 895 CHECK(operation.type() == InstallOperation::DISCARD || 896 operation.type() == InstallOperation::ZERO); 897 898 // These operations have no blob. 899 TEST_AND_RETURN_FALSE(!operation.has_data_offset()); 900 TEST_AND_RETURN_FALSE(!operation.has_data_length()); 901 902 #ifdef BLKZEROOUT 903 bool attempt_ioctl = true; 904 int request = 905 (operation.type() == InstallOperation::ZERO ? BLKZEROOUT : BLKDISCARD); 906 #else // !defined(BLKZEROOUT) 907 bool attempt_ioctl = false; 908 int request = 0; 909 #endif // !defined(BLKZEROOUT) 910 911 brillo::Blob zeros; 912 for (int i = 0; i < operation.dst_extents_size(); i++) { 913 Extent extent = operation.dst_extents(i); 914 const uint64_t start = extent.start_block() * block_size_; 915 const uint64_t length = extent.num_blocks() * block_size_; 916 if (attempt_ioctl) { 917 int result = 0; 918 if (target_fd_->BlkIoctl(request, start, length, &result) && result == 0) 919 continue; 920 attempt_ioctl = false; 921 zeros.resize(16 * block_size_); 922 } 923 // In case of failure, we fall back to writing 0 to the selected region. 924 for (uint64_t offset = 0; offset < length; offset += zeros.size()) { 925 uint64_t chunk_length = min(length - offset, 926 static_cast<uint64_t>(zeros.size())); 927 TEST_AND_RETURN_FALSE( 928 utils::PWriteAll(target_fd_, zeros.data(), chunk_length, start + offset)); 929 } 930 } 931 return true; 932 } 933 934 bool DeltaPerformer::PerformMoveOperation(const InstallOperation& operation) { 935 // Calculate buffer size. Note, this function doesn't do a sliding 936 // window to copy in case the source and destination blocks overlap. 937 // If we wanted to do a sliding window, we could program the server 938 // to generate deltas that effectively did a sliding window. 939 940 uint64_t blocks_to_read = 0; 941 for (int i = 0; i < operation.src_extents_size(); i++) 942 blocks_to_read += operation.src_extents(i).num_blocks(); 943 944 uint64_t blocks_to_write = 0; 945 for (int i = 0; i < operation.dst_extents_size(); i++) 946 blocks_to_write += operation.dst_extents(i).num_blocks(); 947 948 DCHECK_EQ(blocks_to_write, blocks_to_read); 949 brillo::Blob buf(blocks_to_write * block_size_); 950 951 // Read in bytes. 952 ssize_t bytes_read = 0; 953 for (int i = 0; i < operation.src_extents_size(); i++) { 954 ssize_t bytes_read_this_iteration = 0; 955 const Extent& extent = operation.src_extents(i); 956 const size_t bytes = extent.num_blocks() * block_size_; 957 TEST_AND_RETURN_FALSE(extent.start_block() != kSparseHole); 958 TEST_AND_RETURN_FALSE(utils::PReadAll(target_fd_, 959 &buf[bytes_read], 960 bytes, 961 extent.start_block() * block_size_, 962 &bytes_read_this_iteration)); 963 TEST_AND_RETURN_FALSE( 964 bytes_read_this_iteration == static_cast<ssize_t>(bytes)); 965 bytes_read += bytes_read_this_iteration; 966 } 967 968 // Write bytes out. 969 ssize_t bytes_written = 0; 970 for (int i = 0; i < operation.dst_extents_size(); i++) { 971 const Extent& extent = operation.dst_extents(i); 972 const size_t bytes = extent.num_blocks() * block_size_; 973 TEST_AND_RETURN_FALSE(extent.start_block() != kSparseHole); 974 TEST_AND_RETURN_FALSE(utils::PWriteAll(target_fd_, 975 &buf[bytes_written], 976 bytes, 977 extent.start_block() * block_size_)); 978 bytes_written += bytes; 979 } 980 DCHECK_EQ(bytes_written, bytes_read); 981 DCHECK_EQ(bytes_written, static_cast<ssize_t>(buf.size())); 982 return true; 983 } 984 985 namespace { 986 987 // Takes |extents| and fills an empty vector |blocks| with a block index for 988 // each block in |extents|. For example, [(3, 2), (8, 1)] would give [3, 4, 8]. 989 void ExtentsToBlocks(const RepeatedPtrField<Extent>& extents, 990 vector<uint64_t>* blocks) { 991 for (Extent ext : extents) { 992 for (uint64_t j = 0; j < ext.num_blocks(); j++) 993 blocks->push_back(ext.start_block() + j); 994 } 995 } 996 997 // Takes |extents| and returns the number of blocks in those extents. 998 uint64_t GetBlockCount(const RepeatedPtrField<Extent>& extents) { 999 uint64_t sum = 0; 1000 for (Extent ext : extents) { 1001 sum += ext.num_blocks(); 1002 } 1003 return sum; 1004 } 1005 1006 // Compare |calculated_hash| with source hash in |operation|, return false and 1007 // dump hash if don't match. 1008 bool ValidateSourceHash(const brillo::Blob& calculated_hash, 1009 const InstallOperation& operation) { 1010 brillo::Blob expected_source_hash(operation.src_sha256_hash().begin(), 1011 operation.src_sha256_hash().end()); 1012 if (calculated_hash != expected_source_hash) { 1013 LOG(ERROR) << "Hash verification failed. Expected hash = "; 1014 utils::HexDumpVector(expected_source_hash); 1015 LOG(ERROR) << "Calculated hash = "; 1016 utils::HexDumpVector(calculated_hash); 1017 return false; 1018 } 1019 return true; 1020 } 1021 1022 } // namespace 1023 1024 bool DeltaPerformer::PerformSourceCopyOperation( 1025 const InstallOperation& operation) { 1026 if (operation.has_src_length()) 1027 TEST_AND_RETURN_FALSE(operation.src_length() % block_size_ == 0); 1028 if (operation.has_dst_length()) 1029 TEST_AND_RETURN_FALSE(operation.dst_length() % block_size_ == 0); 1030 1031 uint64_t blocks_to_read = GetBlockCount(operation.src_extents()); 1032 uint64_t blocks_to_write = GetBlockCount(operation.dst_extents()); 1033 TEST_AND_RETURN_FALSE(blocks_to_write == blocks_to_read); 1034 1035 // Create vectors of all the individual src/dst blocks. 1036 vector<uint64_t> src_blocks; 1037 vector<uint64_t> dst_blocks; 1038 ExtentsToBlocks(operation.src_extents(), &src_blocks); 1039 ExtentsToBlocks(operation.dst_extents(), &dst_blocks); 1040 DCHECK_EQ(src_blocks.size(), blocks_to_read); 1041 DCHECK_EQ(src_blocks.size(), dst_blocks.size()); 1042 1043 brillo::Blob buf(block_size_); 1044 ssize_t bytes_read = 0; 1045 HashCalculator source_hasher; 1046 // Read/write one block at a time. 1047 for (uint64_t i = 0; i < blocks_to_read; i++) { 1048 ssize_t bytes_read_this_iteration = 0; 1049 uint64_t src_block = src_blocks[i]; 1050 uint64_t dst_block = dst_blocks[i]; 1051 1052 // Read in bytes. 1053 TEST_AND_RETURN_FALSE( 1054 utils::PReadAll(source_fd_, 1055 buf.data(), 1056 block_size_, 1057 src_block * block_size_, 1058 &bytes_read_this_iteration)); 1059 1060 // Write bytes out. 1061 TEST_AND_RETURN_FALSE( 1062 utils::PWriteAll(target_fd_, 1063 buf.data(), 1064 block_size_, 1065 dst_block * block_size_)); 1066 1067 bytes_read += bytes_read_this_iteration; 1068 TEST_AND_RETURN_FALSE(bytes_read_this_iteration == 1069 static_cast<ssize_t>(block_size_)); 1070 1071 if (operation.has_src_sha256_hash()) 1072 TEST_AND_RETURN_FALSE(source_hasher.Update(buf.data(), buf.size())); 1073 } 1074 1075 if (operation.has_src_sha256_hash()) { 1076 TEST_AND_RETURN_FALSE(source_hasher.Finalize()); 1077 TEST_AND_RETURN_FALSE( 1078 ValidateSourceHash(source_hasher.raw_hash(), operation)); 1079 } 1080 1081 DCHECK_EQ(bytes_read, static_cast<ssize_t>(blocks_to_read * block_size_)); 1082 return true; 1083 } 1084 1085 bool DeltaPerformer::ExtentsToBsdiffPositionsString( 1086 const RepeatedPtrField<Extent>& extents, 1087 uint64_t block_size, 1088 uint64_t full_length, 1089 string* positions_string) { 1090 string ret; 1091 uint64_t length = 0; 1092 for (int i = 0; i < extents.size(); i++) { 1093 Extent extent = extents.Get(i); 1094 int64_t start = extent.start_block() * block_size; 1095 uint64_t this_length = min(full_length - length, 1096 extent.num_blocks() * block_size); 1097 ret += base::StringPrintf("%" PRIi64 ":%" PRIu64 ",", start, this_length); 1098 length += this_length; 1099 } 1100 TEST_AND_RETURN_FALSE(length == full_length); 1101 if (!ret.empty()) 1102 ret.resize(ret.size() - 1); // Strip trailing comma off 1103 *positions_string = ret; 1104 return true; 1105 } 1106 1107 bool DeltaPerformer::PerformBsdiffOperation(const InstallOperation& operation) { 1108 // Since we delete data off the beginning of the buffer as we use it, 1109 // the data we need should be exactly at the beginning of the buffer. 1110 TEST_AND_RETURN_FALSE(buffer_offset_ == operation.data_offset()); 1111 TEST_AND_RETURN_FALSE(buffer_.size() >= operation.data_length()); 1112 1113 string input_positions; 1114 TEST_AND_RETURN_FALSE(ExtentsToBsdiffPositionsString(operation.src_extents(), 1115 block_size_, 1116 operation.src_length(), 1117 &input_positions)); 1118 string output_positions; 1119 TEST_AND_RETURN_FALSE(ExtentsToBsdiffPositionsString(operation.dst_extents(), 1120 block_size_, 1121 operation.dst_length(), 1122 &output_positions)); 1123 1124 string temp_filename; 1125 TEST_AND_RETURN_FALSE(utils::MakeTempFile("au_patch.XXXXXX", 1126 &temp_filename, 1127 nullptr)); 1128 ScopedPathUnlinker path_unlinker(temp_filename); 1129 { 1130 int fd = open(temp_filename.c_str(), O_WRONLY | O_CREAT | O_TRUNC, 0644); 1131 ScopedFdCloser fd_closer(&fd); 1132 TEST_AND_RETURN_FALSE( 1133 utils::WriteAll(fd, buffer_.data(), operation.data_length())); 1134 } 1135 1136 // Update the buffer to release the patch data memory as soon as the patch 1137 // file is written out. 1138 DiscardBuffer(true, buffer_.size()); 1139 1140 vector<string> cmd{kBspatchPath, target_path_, target_path_, temp_filename, 1141 input_positions, output_positions}; 1142 1143 int return_code = 0; 1144 TEST_AND_RETURN_FALSE( 1145 Subprocess::SynchronousExecFlags(cmd, Subprocess::kSearchPath, 1146 &return_code, nullptr)); 1147 TEST_AND_RETURN_FALSE(return_code == 0); 1148 1149 if (operation.dst_length() % block_size_) { 1150 // Zero out rest of final block. 1151 // TODO(adlr): build this into bspatch; it's more efficient that way. 1152 const Extent& last_extent = 1153 operation.dst_extents(operation.dst_extents_size() - 1); 1154 const uint64_t end_byte = 1155 (last_extent.start_block() + last_extent.num_blocks()) * block_size_; 1156 const uint64_t begin_byte = 1157 end_byte - (block_size_ - operation.dst_length() % block_size_); 1158 brillo::Blob zeros(end_byte - begin_byte); 1159 TEST_AND_RETURN_FALSE( 1160 utils::PWriteAll(target_fd_, zeros.data(), end_byte - begin_byte, begin_byte)); 1161 } 1162 return true; 1163 } 1164 1165 bool DeltaPerformer::PerformSourceBsdiffOperation( 1166 const InstallOperation& operation) { 1167 // Since we delete data off the beginning of the buffer as we use it, 1168 // the data we need should be exactly at the beginning of the buffer. 1169 TEST_AND_RETURN_FALSE(buffer_offset_ == operation.data_offset()); 1170 TEST_AND_RETURN_FALSE(buffer_.size() >= operation.data_length()); 1171 if (operation.has_src_length()) 1172 TEST_AND_RETURN_FALSE(operation.src_length() % block_size_ == 0); 1173 if (operation.has_dst_length()) 1174 TEST_AND_RETURN_FALSE(operation.dst_length() % block_size_ == 0); 1175 1176 if (operation.has_src_sha256_hash()) { 1177 HashCalculator source_hasher; 1178 const uint64_t kMaxBlocksToRead = 512; // 2MB if block size is 4KB 1179 brillo::Blob buf(kMaxBlocksToRead * block_size_); 1180 for (const Extent& extent : operation.src_extents()) { 1181 for (uint64_t i = 0; i < extent.num_blocks(); i += kMaxBlocksToRead) { 1182 uint64_t blocks_to_read = 1183 min(kMaxBlocksToRead, extent.num_blocks() - i); 1184 ssize_t bytes_to_read = blocks_to_read * block_size_; 1185 ssize_t bytes_read_this_iteration = 0; 1186 TEST_AND_RETURN_FALSE( 1187 utils::PReadAll(source_fd_, buf.data(), bytes_to_read, 1188 (extent.start_block() + i) * block_size_, 1189 &bytes_read_this_iteration)); 1190 TEST_AND_RETURN_FALSE(bytes_read_this_iteration == bytes_to_read); 1191 TEST_AND_RETURN_FALSE(source_hasher.Update(buf.data(), bytes_to_read)); 1192 } 1193 } 1194 TEST_AND_RETURN_FALSE(source_hasher.Finalize()); 1195 TEST_AND_RETURN_FALSE( 1196 ValidateSourceHash(source_hasher.raw_hash(), operation)); 1197 } 1198 1199 string input_positions; 1200 TEST_AND_RETURN_FALSE(ExtentsToBsdiffPositionsString(operation.src_extents(), 1201 block_size_, 1202 operation.src_length(), 1203 &input_positions)); 1204 string output_positions; 1205 TEST_AND_RETURN_FALSE(ExtentsToBsdiffPositionsString(operation.dst_extents(), 1206 block_size_, 1207 operation.dst_length(), 1208 &output_positions)); 1209 1210 string temp_filename; 1211 TEST_AND_RETURN_FALSE(utils::MakeTempFile("au_patch.XXXXXX", 1212 &temp_filename, 1213 nullptr)); 1214 ScopedPathUnlinker path_unlinker(temp_filename); 1215 { 1216 int fd = open(temp_filename.c_str(), O_WRONLY | O_CREAT | O_TRUNC, 0644); 1217 ScopedFdCloser fd_closer(&fd); 1218 TEST_AND_RETURN_FALSE( 1219 utils::WriteAll(fd, buffer_.data(), operation.data_length())); 1220 } 1221 1222 // Update the buffer to release the patch data memory as soon as the patch 1223 // file is written out. 1224 DiscardBuffer(true, buffer_.size()); 1225 1226 vector<string> cmd{kBspatchPath, source_path_, target_path_, temp_filename, 1227 input_positions, output_positions}; 1228 1229 int return_code = 0; 1230 TEST_AND_RETURN_FALSE( 1231 Subprocess::SynchronousExecFlags(cmd, Subprocess::kSearchPath, 1232 &return_code, nullptr)); 1233 TEST_AND_RETURN_FALSE(return_code == 0); 1234 return true; 1235 } 1236 1237 bool DeltaPerformer::ExtractSignatureMessageFromOperation( 1238 const InstallOperation& operation) { 1239 if (operation.type() != InstallOperation::REPLACE || 1240 !manifest_.has_signatures_offset() || 1241 manifest_.signatures_offset() != operation.data_offset()) { 1242 return false; 1243 } 1244 TEST_AND_RETURN_FALSE(manifest_.has_signatures_size() && 1245 manifest_.signatures_size() == operation.data_length()); 1246 TEST_AND_RETURN_FALSE(ExtractSignatureMessage()); 1247 return true; 1248 } 1249 1250 bool DeltaPerformer::ExtractSignatureMessage() { 1251 TEST_AND_RETURN_FALSE(signatures_message_data_.empty()); 1252 TEST_AND_RETURN_FALSE(buffer_offset_ == manifest_.signatures_offset()); 1253 TEST_AND_RETURN_FALSE(buffer_.size() >= manifest_.signatures_size()); 1254 signatures_message_data_.assign( 1255 buffer_.begin(), 1256 buffer_.begin() + manifest_.signatures_size()); 1257 1258 // Save the signature blob because if the update is interrupted after the 1259 // download phase we don't go through this path anymore. Some alternatives to 1260 // consider: 1261 // 1262 // 1. On resume, re-download the signature blob from the server and re-verify 1263 // it. 1264 // 1265 // 2. Verify the signature as soon as it's received and don't checkpoint the 1266 // blob and the signed sha-256 context. 1267 LOG_IF(WARNING, !prefs_->SetString(kPrefsUpdateStateSignatureBlob, 1268 string(signatures_message_data_.begin(), 1269 signatures_message_data_.end()))) 1270 << "Unable to store the signature blob."; 1271 1272 LOG(INFO) << "Extracted signature data of size " 1273 << manifest_.signatures_size() << " at " 1274 << manifest_.signatures_offset(); 1275 return true; 1276 } 1277 1278 bool DeltaPerformer::GetPublicKeyFromResponse(base::FilePath *out_tmp_key) { 1279 if (hardware_->IsOfficialBuild() || 1280 utils::FileExists(public_key_path_.c_str()) || 1281 install_plan_->public_key_rsa.empty()) 1282 return false; 1283 1284 if (!utils::DecodeAndStoreBase64String(install_plan_->public_key_rsa, 1285 out_tmp_key)) 1286 return false; 1287 1288 return true; 1289 } 1290 1291 ErrorCode DeltaPerformer::ValidateMetadataSignature( 1292 const brillo::Blob& payload) { 1293 if (payload.size() < metadata_size_ + metadata_signature_size_) 1294 return ErrorCode::kDownloadMetadataSignatureError; 1295 1296 brillo::Blob metadata_signature_blob, metadata_signature_protobuf_blob; 1297 if (!install_plan_->metadata_signature.empty()) { 1298 // Convert base64-encoded signature to raw bytes. 1299 if (!brillo::data_encoding::Base64Decode( 1300 install_plan_->metadata_signature, &metadata_signature_blob)) { 1301 LOG(ERROR) << "Unable to decode base64 metadata signature: " 1302 << install_plan_->metadata_signature; 1303 return ErrorCode::kDownloadMetadataSignatureError; 1304 } 1305 } else if (major_payload_version_ == kBrilloMajorPayloadVersion) { 1306 metadata_signature_protobuf_blob.assign(payload.begin() + metadata_size_, 1307 payload.begin() + metadata_size_ + 1308 metadata_signature_size_); 1309 } 1310 1311 if (metadata_signature_blob.empty() && 1312 metadata_signature_protobuf_blob.empty()) { 1313 if (install_plan_->hash_checks_mandatory) { 1314 LOG(ERROR) << "Missing mandatory metadata signature in both Omaha " 1315 << "response and payload."; 1316 return ErrorCode::kDownloadMetadataSignatureMissingError; 1317 } 1318 1319 LOG(WARNING) << "Cannot validate metadata as the signature is empty"; 1320 return ErrorCode::kSuccess; 1321 } 1322 1323 // See if we should use the public RSA key in the Omaha response. 1324 base::FilePath path_to_public_key(public_key_path_); 1325 base::FilePath tmp_key; 1326 if (GetPublicKeyFromResponse(&tmp_key)) 1327 path_to_public_key = tmp_key; 1328 ScopedPathUnlinker tmp_key_remover(tmp_key.value()); 1329 if (tmp_key.empty()) 1330 tmp_key_remover.set_should_remove(false); 1331 1332 LOG(INFO) << "Verifying metadata hash signature using public key: " 1333 << path_to_public_key.value(); 1334 1335 HashCalculator metadata_hasher; 1336 metadata_hasher.Update(payload.data(), metadata_size_); 1337 if (!metadata_hasher.Finalize()) { 1338 LOG(ERROR) << "Unable to compute actual hash of manifest"; 1339 return ErrorCode::kDownloadMetadataSignatureVerificationError; 1340 } 1341 1342 brillo::Blob calculated_metadata_hash = metadata_hasher.raw_hash(); 1343 PayloadVerifier::PadRSA2048SHA256Hash(&calculated_metadata_hash); 1344 if (calculated_metadata_hash.empty()) { 1345 LOG(ERROR) << "Computed actual hash of metadata is empty."; 1346 return ErrorCode::kDownloadMetadataSignatureVerificationError; 1347 } 1348 1349 if (!metadata_signature_blob.empty()) { 1350 brillo::Blob expected_metadata_hash; 1351 if (!PayloadVerifier::GetRawHashFromSignature(metadata_signature_blob, 1352 path_to_public_key.value(), 1353 &expected_metadata_hash)) { 1354 LOG(ERROR) << "Unable to compute expected hash from metadata signature"; 1355 return ErrorCode::kDownloadMetadataSignatureError; 1356 } 1357 if (calculated_metadata_hash != expected_metadata_hash) { 1358 LOG(ERROR) << "Manifest hash verification failed. Expected hash = "; 1359 utils::HexDumpVector(expected_metadata_hash); 1360 LOG(ERROR) << "Calculated hash = "; 1361 utils::HexDumpVector(calculated_metadata_hash); 1362 return ErrorCode::kDownloadMetadataSignatureMismatch; 1363 } 1364 } else { 1365 if (!PayloadVerifier::VerifySignature(metadata_signature_protobuf_blob, 1366 path_to_public_key.value(), 1367 calculated_metadata_hash)) { 1368 LOG(ERROR) << "Manifest hash verification failed."; 1369 return ErrorCode::kDownloadMetadataSignatureMismatch; 1370 } 1371 } 1372 1373 // The autoupdate_CatchBadSignatures test checks for this string in 1374 // log-files. Keep in sync. 1375 LOG(INFO) << "Metadata hash signature matches value in Omaha response."; 1376 return ErrorCode::kSuccess; 1377 } 1378 1379 ErrorCode DeltaPerformer::ValidateManifest() { 1380 // Perform assorted checks to sanity check the manifest, make sure it 1381 // matches data from other sources, and that it is a supported version. 1382 1383 bool has_old_fields = 1384 (manifest_.has_old_kernel_info() || manifest_.has_old_rootfs_info()); 1385 for (const PartitionUpdate& partition : manifest_.partitions()) { 1386 has_old_fields = has_old_fields || partition.has_old_partition_info(); 1387 } 1388 1389 // The presence of an old partition hash is the sole indicator for a delta 1390 // update. 1391 InstallPayloadType actual_payload_type = 1392 has_old_fields ? InstallPayloadType::kDelta : InstallPayloadType::kFull; 1393 1394 if (install_plan_->payload_type == InstallPayloadType::kUnknown) { 1395 LOG(INFO) << "Detected a '" 1396 << InstallPayloadTypeToString(actual_payload_type) 1397 << "' payload."; 1398 install_plan_->payload_type = actual_payload_type; 1399 } else if (install_plan_->payload_type != actual_payload_type) { 1400 LOG(ERROR) << "InstallPlan expected a '" 1401 << InstallPayloadTypeToString(install_plan_->payload_type) 1402 << "' payload but the downloaded manifest contains a '" 1403 << InstallPayloadTypeToString(actual_payload_type) 1404 << "' payload."; 1405 return ErrorCode::kPayloadMismatchedType; 1406 } 1407 1408 // Check that the minor version is compatible. 1409 if (actual_payload_type == InstallPayloadType::kFull) { 1410 if (manifest_.minor_version() != kFullPayloadMinorVersion) { 1411 LOG(ERROR) << "Manifest contains minor version " 1412 << manifest_.minor_version() 1413 << ", but all full payloads should have version " 1414 << kFullPayloadMinorVersion << "."; 1415 return ErrorCode::kUnsupportedMinorPayloadVersion; 1416 } 1417 } else { 1418 if (manifest_.minor_version() != supported_minor_version_) { 1419 LOG(ERROR) << "Manifest contains minor version " 1420 << manifest_.minor_version() 1421 << " not the supported " 1422 << supported_minor_version_; 1423 return ErrorCode::kUnsupportedMinorPayloadVersion; 1424 } 1425 } 1426 1427 if (major_payload_version_ != kChromeOSMajorPayloadVersion) { 1428 if (manifest_.has_old_rootfs_info() || 1429 manifest_.has_new_rootfs_info() || 1430 manifest_.has_old_kernel_info() || 1431 manifest_.has_new_kernel_info() || 1432 manifest_.install_operations_size() != 0 || 1433 manifest_.kernel_install_operations_size() != 0) { 1434 LOG(ERROR) << "Manifest contains deprecated field only supported in " 1435 << "major payload version 1, but the payload major version is " 1436 << major_payload_version_; 1437 return ErrorCode::kPayloadMismatchedType; 1438 } 1439 } 1440 1441 // TODO(garnold) we should be adding more and more manifest checks, such as 1442 // partition boundaries etc (see chromium-os:37661). 1443 1444 return ErrorCode::kSuccess; 1445 } 1446 1447 ErrorCode DeltaPerformer::ValidateOperationHash( 1448 const InstallOperation& operation) { 1449 if (!operation.data_sha256_hash().size()) { 1450 if (!operation.data_length()) { 1451 // Operations that do not have any data blob won't have any operation hash 1452 // either. So, these operations are always considered validated since the 1453 // metadata that contains all the non-data-blob portions of the operation 1454 // has already been validated. This is true for both HTTP and HTTPS cases. 1455 return ErrorCode::kSuccess; 1456 } 1457 1458 // No hash is present for an operation that has data blobs. This shouldn't 1459 // happen normally for any client that has this code, because the 1460 // corresponding update should have been produced with the operation 1461 // hashes. So if it happens it means either we've turned operation hash 1462 // generation off in DeltaDiffGenerator or it's a regression of some sort. 1463 // One caveat though: The last operation is a dummy signature operation 1464 // that doesn't have a hash at the time the manifest is created. So we 1465 // should not complaint about that operation. This operation can be 1466 // recognized by the fact that it's offset is mentioned in the manifest. 1467 if (manifest_.signatures_offset() && 1468 manifest_.signatures_offset() == operation.data_offset()) { 1469 LOG(INFO) << "Skipping hash verification for signature operation " 1470 << next_operation_num_ + 1; 1471 } else { 1472 if (install_plan_->hash_checks_mandatory) { 1473 LOG(ERROR) << "Missing mandatory operation hash for operation " 1474 << next_operation_num_ + 1; 1475 return ErrorCode::kDownloadOperationHashMissingError; 1476 } 1477 1478 LOG(WARNING) << "Cannot validate operation " << next_operation_num_ + 1 1479 << " as there's no operation hash in manifest"; 1480 } 1481 return ErrorCode::kSuccess; 1482 } 1483 1484 brillo::Blob expected_op_hash; 1485 expected_op_hash.assign(operation.data_sha256_hash().data(), 1486 (operation.data_sha256_hash().data() + 1487 operation.data_sha256_hash().size())); 1488 1489 HashCalculator operation_hasher; 1490 operation_hasher.Update(buffer_.data(), operation.data_length()); 1491 if (!operation_hasher.Finalize()) { 1492 LOG(ERROR) << "Unable to compute actual hash of operation " 1493 << next_operation_num_; 1494 return ErrorCode::kDownloadOperationHashVerificationError; 1495 } 1496 1497 brillo::Blob calculated_op_hash = operation_hasher.raw_hash(); 1498 if (calculated_op_hash != expected_op_hash) { 1499 LOG(ERROR) << "Hash verification failed for operation " 1500 << next_operation_num_ << ". Expected hash = "; 1501 utils::HexDumpVector(expected_op_hash); 1502 LOG(ERROR) << "Calculated hash over " << operation.data_length() 1503 << " bytes at offset: " << operation.data_offset() << " = "; 1504 utils::HexDumpVector(calculated_op_hash); 1505 return ErrorCode::kDownloadOperationHashMismatch; 1506 } 1507 1508 return ErrorCode::kSuccess; 1509 } 1510 1511 #define TEST_AND_RETURN_VAL(_retval, _condition) \ 1512 do { \ 1513 if (!(_condition)) { \ 1514 LOG(ERROR) << "VerifyPayload failure: " << #_condition; \ 1515 return _retval; \ 1516 } \ 1517 } while (0); 1518 1519 ErrorCode DeltaPerformer::VerifyPayload( 1520 const string& update_check_response_hash, 1521 const uint64_t update_check_response_size) { 1522 1523 // See if we should use the public RSA key in the Omaha response. 1524 base::FilePath path_to_public_key(public_key_path_); 1525 base::FilePath tmp_key; 1526 if (GetPublicKeyFromResponse(&tmp_key)) 1527 path_to_public_key = tmp_key; 1528 ScopedPathUnlinker tmp_key_remover(tmp_key.value()); 1529 if (tmp_key.empty()) 1530 tmp_key_remover.set_should_remove(false); 1531 1532 LOG(INFO) << "Verifying payload using public key: " 1533 << path_to_public_key.value(); 1534 1535 // Verifies the download size. 1536 TEST_AND_RETURN_VAL(ErrorCode::kPayloadSizeMismatchError, 1537 update_check_response_size == 1538 metadata_size_ + metadata_signature_size_ + 1539 buffer_offset_); 1540 1541 // Verifies the payload hash. 1542 const string& payload_hash_data = payload_hash_calculator_.hash(); 1543 TEST_AND_RETURN_VAL(ErrorCode::kDownloadPayloadVerificationError, 1544 !payload_hash_data.empty()); 1545 TEST_AND_RETURN_VAL(ErrorCode::kPayloadHashMismatchError, 1546 payload_hash_data == update_check_response_hash); 1547 1548 // Verifies the signed payload hash. 1549 if (!utils::FileExists(path_to_public_key.value().c_str())) { 1550 LOG(WARNING) << "Not verifying signed delta payload -- missing public key."; 1551 return ErrorCode::kSuccess; 1552 } 1553 TEST_AND_RETURN_VAL(ErrorCode::kSignedDeltaPayloadExpectedError, 1554 !signatures_message_data_.empty()); 1555 brillo::Blob hash_data = signed_hash_calculator_.raw_hash(); 1556 TEST_AND_RETURN_VAL(ErrorCode::kDownloadPayloadPubKeyVerificationError, 1557 PayloadVerifier::PadRSA2048SHA256Hash(&hash_data)); 1558 TEST_AND_RETURN_VAL(ErrorCode::kDownloadPayloadPubKeyVerificationError, 1559 !hash_data.empty()); 1560 1561 if (!PayloadVerifier::VerifySignature( 1562 signatures_message_data_, path_to_public_key.value(), hash_data)) { 1563 // The autoupdate_CatchBadSignatures test checks for this string 1564 // in log-files. Keep in sync. 1565 LOG(ERROR) << "Public key verification failed, thus update failed."; 1566 return ErrorCode::kDownloadPayloadPubKeyVerificationError; 1567 } 1568 1569 LOG(INFO) << "Payload hash matches value in payload."; 1570 1571 // At this point, we are guaranteed to have downloaded a full payload, i.e 1572 // the one whose size matches the size mentioned in Omaha response. If any 1573 // errors happen after this, it's likely a problem with the payload itself or 1574 // the state of the system and not a problem with the URL or network. So, 1575 // indicate that to the download delegate so that AU can backoff 1576 // appropriately. 1577 if (download_delegate_) 1578 download_delegate_->DownloadComplete(); 1579 1580 return ErrorCode::kSuccess; 1581 } 1582 1583 namespace { 1584 void LogVerifyError(const string& type, 1585 const string& device, 1586 uint64_t size, 1587 const string& local_hash, 1588 const string& expected_hash) { 1589 LOG(ERROR) << "This is a server-side error due to " 1590 << "mismatched delta update image!"; 1591 LOG(ERROR) << "The delta I've been given contains a " << type << " delta " 1592 << "update that must be applied over a " << type << " with " 1593 << "a specific checksum, but the " << type << " we're starting " 1594 << "with doesn't have that checksum! This means that " 1595 << "the delta I've been given doesn't match my existing " 1596 << "system. The " << type << " partition I have has hash: " 1597 << local_hash << " but the update expected me to have " 1598 << expected_hash << " ."; 1599 LOG(INFO) << "To get the checksum of the " << type << " partition run this" 1600 "command: dd if=" << device << " bs=1M count=" << size 1601 << " iflag=count_bytes 2>/dev/null | openssl dgst -sha256 -binary " 1602 "| openssl base64"; 1603 LOG(INFO) << "To get the checksum of partitions in a bin file, " 1604 << "run: .../src/scripts/sha256_partitions.sh .../file.bin"; 1605 } 1606 1607 string StringForHashBytes(const void* bytes, size_t size) { 1608 return brillo::data_encoding::Base64Encode(bytes, size); 1609 } 1610 } // namespace 1611 1612 bool DeltaPerformer::VerifySourcePartitions() { 1613 LOG(INFO) << "Verifying source partitions."; 1614 CHECK(manifest_valid_); 1615 CHECK(install_plan_); 1616 if (install_plan_->partitions.size() != partitions_.size()) { 1617 DLOG(ERROR) << "The list of partitions in the InstallPlan doesn't match the " 1618 "list received in the payload. The InstallPlan has " 1619 << install_plan_->partitions.size() 1620 << " partitions while the payload has " << partitions_.size() 1621 << " partitions."; 1622 return false; 1623 } 1624 for (size_t i = 0; i < partitions_.size(); ++i) { 1625 if (partitions_[i].partition_name() != install_plan_->partitions[i].name) { 1626 DLOG(ERROR) << "The InstallPlan's partition " << i << " is \"" 1627 << install_plan_->partitions[i].name 1628 << "\" but the payload expects it to be \"" 1629 << partitions_[i].partition_name() 1630 << "\". This is an error in the DeltaPerformer setup."; 1631 return false; 1632 } 1633 if (!partitions_[i].has_old_partition_info()) 1634 continue; 1635 const PartitionInfo& info = partitions_[i].old_partition_info(); 1636 const InstallPlan::Partition& plan_part = install_plan_->partitions[i]; 1637 bool valid = 1638 !plan_part.source_hash.empty() && 1639 plan_part.source_hash.size() == info.hash().size() && 1640 memcmp(plan_part.source_hash.data(), 1641 info.hash().data(), 1642 plan_part.source_hash.size()) == 0; 1643 if (!valid) { 1644 LogVerifyError(partitions_[i].partition_name(), 1645 plan_part.source_path, 1646 info.hash().size(), 1647 StringForHashBytes(plan_part.source_hash.data(), 1648 plan_part.source_hash.size()), 1649 StringForHashBytes(info.hash().data(), 1650 info.hash().size())); 1651 return false; 1652 } 1653 } 1654 return true; 1655 } 1656 1657 void DeltaPerformer::DiscardBuffer(bool do_advance_offset, 1658 size_t signed_hash_buffer_size) { 1659 // Update the buffer offset. 1660 if (do_advance_offset) 1661 buffer_offset_ += buffer_.size(); 1662 1663 // Hash the content. 1664 payload_hash_calculator_.Update(buffer_.data(), buffer_.size()); 1665 signed_hash_calculator_.Update(buffer_.data(), signed_hash_buffer_size); 1666 1667 // Swap content with an empty vector to ensure that all memory is released. 1668 brillo::Blob().swap(buffer_); 1669 } 1670 1671 bool DeltaPerformer::CanResumeUpdate(PrefsInterface* prefs, 1672 string update_check_response_hash) { 1673 int64_t next_operation = kUpdateStateOperationInvalid; 1674 if (!(prefs->GetInt64(kPrefsUpdateStateNextOperation, &next_operation) && 1675 next_operation != kUpdateStateOperationInvalid && 1676 next_operation > 0)) 1677 return false; 1678 1679 string interrupted_hash; 1680 if (!(prefs->GetString(kPrefsUpdateCheckResponseHash, &interrupted_hash) && 1681 !interrupted_hash.empty() && 1682 interrupted_hash == update_check_response_hash)) 1683 return false; 1684 1685 int64_t resumed_update_failures; 1686 // Note that storing this value is optional, but if it is there it should not 1687 // be more than the limit. 1688 if (prefs->GetInt64(kPrefsResumedUpdateFailures, &resumed_update_failures) && 1689 resumed_update_failures > kMaxResumedUpdateFailures) 1690 return false; 1691 1692 // Sanity check the rest. 1693 int64_t next_data_offset = -1; 1694 if (!(prefs->GetInt64(kPrefsUpdateStateNextDataOffset, &next_data_offset) && 1695 next_data_offset >= 0)) 1696 return false; 1697 1698 string sha256_context; 1699 if (!(prefs->GetString(kPrefsUpdateStateSHA256Context, &sha256_context) && 1700 !sha256_context.empty())) 1701 return false; 1702 1703 int64_t manifest_metadata_size = 0; 1704 if (!(prefs->GetInt64(kPrefsManifestMetadataSize, &manifest_metadata_size) && 1705 manifest_metadata_size > 0)) 1706 return false; 1707 1708 int64_t manifest_signature_size = 0; 1709 if (!(prefs->GetInt64(kPrefsManifestSignatureSize, 1710 &manifest_signature_size) && 1711 manifest_signature_size >= 0)) 1712 return false; 1713 1714 return true; 1715 } 1716 1717 bool DeltaPerformer::ResetUpdateProgress(PrefsInterface* prefs, bool quick) { 1718 TEST_AND_RETURN_FALSE(prefs->SetInt64(kPrefsUpdateStateNextOperation, 1719 kUpdateStateOperationInvalid)); 1720 if (!quick) { 1721 prefs->SetString(kPrefsUpdateCheckResponseHash, ""); 1722 prefs->SetInt64(kPrefsUpdateStateNextDataOffset, -1); 1723 prefs->SetInt64(kPrefsUpdateStateNextDataLength, 0); 1724 prefs->SetString(kPrefsUpdateStateSHA256Context, ""); 1725 prefs->SetString(kPrefsUpdateStateSignedSHA256Context, ""); 1726 prefs->SetString(kPrefsUpdateStateSignatureBlob, ""); 1727 prefs->SetInt64(kPrefsManifestMetadataSize, -1); 1728 prefs->SetInt64(kPrefsManifestSignatureSize, -1); 1729 prefs->SetInt64(kPrefsResumedUpdateFailures, 0); 1730 } 1731 return true; 1732 } 1733 1734 bool DeltaPerformer::CheckpointUpdateProgress() { 1735 Terminator::set_exit_blocked(true); 1736 if (last_updated_buffer_offset_ != buffer_offset_) { 1737 // Resets the progress in case we die in the middle of the state update. 1738 ResetUpdateProgress(prefs_, true); 1739 TEST_AND_RETURN_FALSE( 1740 prefs_->SetString(kPrefsUpdateStateSHA256Context, 1741 payload_hash_calculator_.GetContext())); 1742 TEST_AND_RETURN_FALSE( 1743 prefs_->SetString(kPrefsUpdateStateSignedSHA256Context, 1744 signed_hash_calculator_.GetContext())); 1745 TEST_AND_RETURN_FALSE(prefs_->SetInt64(kPrefsUpdateStateNextDataOffset, 1746 buffer_offset_)); 1747 last_updated_buffer_offset_ = buffer_offset_; 1748 1749 if (next_operation_num_ < num_total_operations_) { 1750 size_t partition_index = current_partition_; 1751 while (next_operation_num_ >= acc_num_operations_[partition_index]) 1752 partition_index++; 1753 const size_t partition_operation_num = next_operation_num_ - ( 1754 partition_index ? acc_num_operations_[partition_index - 1] : 0); 1755 const InstallOperation& op = 1756 partitions_[partition_index].operations(partition_operation_num); 1757 TEST_AND_RETURN_FALSE(prefs_->SetInt64(kPrefsUpdateStateNextDataLength, 1758 op.data_length())); 1759 } else { 1760 TEST_AND_RETURN_FALSE(prefs_->SetInt64(kPrefsUpdateStateNextDataLength, 1761 0)); 1762 } 1763 } 1764 TEST_AND_RETURN_FALSE(prefs_->SetInt64(kPrefsUpdateStateNextOperation, 1765 next_operation_num_)); 1766 return true; 1767 } 1768 1769 bool DeltaPerformer::PrimeUpdateState() { 1770 CHECK(manifest_valid_); 1771 block_size_ = manifest_.block_size(); 1772 1773 int64_t next_operation = kUpdateStateOperationInvalid; 1774 if (!prefs_->GetInt64(kPrefsUpdateStateNextOperation, &next_operation) || 1775 next_operation == kUpdateStateOperationInvalid || 1776 next_operation <= 0) { 1777 // Initiating a new update, no more state needs to be initialized. 1778 return true; 1779 } 1780 next_operation_num_ = next_operation; 1781 1782 // Resuming an update -- load the rest of the update state. 1783 int64_t next_data_offset = -1; 1784 TEST_AND_RETURN_FALSE(prefs_->GetInt64(kPrefsUpdateStateNextDataOffset, 1785 &next_data_offset) && 1786 next_data_offset >= 0); 1787 buffer_offset_ = next_data_offset; 1788 1789 // The signed hash context and the signature blob may be empty if the 1790 // interrupted update didn't reach the signature. 1791 string signed_hash_context; 1792 if (prefs_->GetString(kPrefsUpdateStateSignedSHA256Context, 1793 &signed_hash_context)) { 1794 TEST_AND_RETURN_FALSE( 1795 signed_hash_calculator_.SetContext(signed_hash_context)); 1796 } 1797 1798 string signature_blob; 1799 if (prefs_->GetString(kPrefsUpdateStateSignatureBlob, &signature_blob)) { 1800 signatures_message_data_.assign(signature_blob.begin(), 1801 signature_blob.end()); 1802 } 1803 1804 string hash_context; 1805 TEST_AND_RETURN_FALSE(prefs_->GetString(kPrefsUpdateStateSHA256Context, 1806 &hash_context) && 1807 payload_hash_calculator_.SetContext(hash_context)); 1808 1809 int64_t manifest_metadata_size = 0; 1810 TEST_AND_RETURN_FALSE(prefs_->GetInt64(kPrefsManifestMetadataSize, 1811 &manifest_metadata_size) && 1812 manifest_metadata_size > 0); 1813 metadata_size_ = manifest_metadata_size; 1814 1815 int64_t manifest_signature_size = 0; 1816 TEST_AND_RETURN_FALSE( 1817 prefs_->GetInt64(kPrefsManifestSignatureSize, &manifest_signature_size) && 1818 manifest_signature_size >= 0); 1819 metadata_signature_size_ = manifest_signature_size; 1820 1821 // Advance the download progress to reflect what doesn't need to be 1822 // re-downloaded. 1823 total_bytes_received_ += buffer_offset_; 1824 1825 // Speculatively count the resume as a failure. 1826 int64_t resumed_update_failures; 1827 if (prefs_->GetInt64(kPrefsResumedUpdateFailures, &resumed_update_failures)) { 1828 resumed_update_failures++; 1829 } else { 1830 resumed_update_failures = 1; 1831 } 1832 prefs_->SetInt64(kPrefsResumedUpdateFailures, resumed_update_failures); 1833 return true; 1834 } 1835 1836 } // namespace chromeos_update_engine 1837