Home | History | Annotate | Download | only in payload_consumer
      1 //
      2 // Copyright (C) 2012 The Android Open Source Project
      3 //
      4 // Licensed under the Apache License, Version 2.0 (the "License");
      5 // you may not use this file except in compliance with the License.
      6 // You may obtain a copy of the License at
      7 //
      8 //      http://www.apache.org/licenses/LICENSE-2.0
      9 //
     10 // Unless required by applicable law or agreed to in writing, software
     11 // distributed under the License is distributed on an "AS IS" BASIS,
     12 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     13 // See the License for the specific language governing permissions and
     14 // limitations under the License.
     15 //
     16 
     17 #include "update_engine/payload_consumer/delta_performer.h"
     18 
     19 #include <endian.h>
     20 #include <errno.h>
     21 #include <linux/fs.h>
     22 
     23 #include <algorithm>
     24 #include <cstring>
     25 #include <memory>
     26 #include <string>
     27 #include <vector>
     28 
     29 #include <base/files/file_util.h>
     30 #include <base/format_macros.h>
     31 #include <base/strings/string_util.h>
     32 #include <base/strings/stringprintf.h>
     33 #include <brillo/data_encoding.h>
     34 #include <brillo/make_unique_ptr.h>
     35 #include <google/protobuf/repeated_field.h>
     36 
     37 #include "update_engine/common/constants.h"
     38 #include "update_engine/common/hardware_interface.h"
     39 #include "update_engine/common/prefs_interface.h"
     40 #include "update_engine/common/subprocess.h"
     41 #include "update_engine/common/terminator.h"
     42 #include "update_engine/payload_consumer/bzip_extent_writer.h"
     43 #include "update_engine/payload_consumer/download_action.h"
     44 #include "update_engine/payload_consumer/extent_writer.h"
     45 #if USE_MTD
     46 #include "update_engine/payload_consumer/mtd_file_descriptor.h"
     47 #endif
     48 #include "update_engine/payload_consumer/payload_constants.h"
     49 #include "update_engine/payload_consumer/payload_verifier.h"
     50 #include "update_engine/payload_consumer/xz_extent_writer.h"
     51 
     52 using google::protobuf::RepeatedPtrField;
     53 using std::min;
     54 using std::string;
     55 using std::vector;
     56 
     57 namespace chromeos_update_engine {
     58 
     59 const uint64_t DeltaPerformer::kDeltaVersionOffset = sizeof(kDeltaMagic);
     60 const uint64_t DeltaPerformer::kDeltaVersionSize = 8;
     61 const uint64_t DeltaPerformer::kDeltaManifestSizeOffset =
     62     kDeltaVersionOffset + kDeltaVersionSize;
     63 const uint64_t DeltaPerformer::kDeltaManifestSizeSize = 8;
     64 const uint64_t DeltaPerformer::kDeltaMetadataSignatureSizeSize = 4;
     65 const uint64_t DeltaPerformer::kMaxPayloadHeaderSize = 24;
     66 const uint64_t DeltaPerformer::kSupportedMajorPayloadVersion = 2;
     67 const uint32_t DeltaPerformer::kSupportedMinorPayloadVersion = 3;
     68 
     69 const unsigned DeltaPerformer::kProgressLogMaxChunks = 10;
     70 const unsigned DeltaPerformer::kProgressLogTimeoutSeconds = 30;
     71 const unsigned DeltaPerformer::kProgressDownloadWeight = 50;
     72 const unsigned DeltaPerformer::kProgressOperationsWeight = 50;
     73 
     74 namespace {
     75 const int kUpdateStateOperationInvalid = -1;
     76 const int kMaxResumedUpdateFailures = 10;
     77 #if USE_MTD
     78 const int kUbiVolumeAttachTimeout = 5 * 60;
     79 #endif
     80 
     81 FileDescriptorPtr CreateFileDescriptor(const char* path) {
     82   FileDescriptorPtr ret;
     83 #if USE_MTD
     84   if (strstr(path, "/dev/ubi") == path) {
     85     if (!UbiFileDescriptor::IsUbi(path)) {
     86       // The volume might not have been attached at boot time.
     87       int volume_no;
     88       if (utils::SplitPartitionName(path, nullptr, &volume_no)) {
     89         utils::TryAttachingUbiVolume(volume_no, kUbiVolumeAttachTimeout);
     90       }
     91     }
     92     if (UbiFileDescriptor::IsUbi(path)) {
     93       LOG(INFO) << path << " is a UBI device.";
     94       ret.reset(new UbiFileDescriptor);
     95     }
     96   } else if (MtdFileDescriptor::IsMtd(path)) {
     97     LOG(INFO) << path << " is an MTD device.";
     98     ret.reset(new MtdFileDescriptor);
     99   } else {
    100     LOG(INFO) << path << " is not an MTD nor a UBI device.";
    101 #endif
    102     ret.reset(new EintrSafeFileDescriptor);
    103 #if USE_MTD
    104   }
    105 #endif
    106   return ret;
    107 }
    108 
    109 // Opens path for read/write. On success returns an open FileDescriptor
    110 // and sets *err to 0. On failure, sets *err to errno and returns nullptr.
    111 FileDescriptorPtr OpenFile(const char* path, int mode, int* err) {
    112   // Try to mark the block device read-only based on the mode. Ignore any
    113   // failure since this won't work when passing regular files.
    114   utils::SetBlockDeviceReadOnly(path, (mode & O_ACCMODE) == O_RDONLY);
    115 
    116   FileDescriptorPtr fd = CreateFileDescriptor(path);
    117 #if USE_MTD
    118   // On NAND devices, we can either read, or write, but not both. So here we
    119   // use O_WRONLY.
    120   if (UbiFileDescriptor::IsUbi(path) || MtdFileDescriptor::IsMtd(path)) {
    121     mode = O_WRONLY;
    122   }
    123 #endif
    124   if (!fd->Open(path, mode, 000)) {
    125     *err = errno;
    126     PLOG(ERROR) << "Unable to open file " << path;
    127     return nullptr;
    128   }
    129   *err = 0;
    130   return fd;
    131 }
    132 }  // namespace
    133 
    134 
    135 // Computes the ratio of |part| and |total|, scaled to |norm|, using integer
    136 // arithmetic.
    137 static uint64_t IntRatio(uint64_t part, uint64_t total, uint64_t norm) {
    138   return part * norm / total;
    139 }
    140 
    141 void DeltaPerformer::LogProgress(const char* message_prefix) {
    142   // Format operations total count and percentage.
    143   string total_operations_str("?");
    144   string completed_percentage_str("");
    145   if (num_total_operations_) {
    146     total_operations_str = std::to_string(num_total_operations_);
    147     // Upcasting to 64-bit to avoid overflow, back to size_t for formatting.
    148     completed_percentage_str =
    149         base::StringPrintf(" (%" PRIu64 "%%)",
    150                            IntRatio(next_operation_num_, num_total_operations_,
    151                                     100));
    152   }
    153 
    154   // Format download total count and percentage.
    155   size_t payload_size = install_plan_->payload_size;
    156   string payload_size_str("?");
    157   string downloaded_percentage_str("");
    158   if (payload_size) {
    159     payload_size_str = std::to_string(payload_size);
    160     // Upcasting to 64-bit to avoid overflow, back to size_t for formatting.
    161     downloaded_percentage_str =
    162         base::StringPrintf(" (%" PRIu64 "%%)",
    163                            IntRatio(total_bytes_received_, payload_size, 100));
    164   }
    165 
    166   LOG(INFO) << (message_prefix ? message_prefix : "") << next_operation_num_
    167             << "/" << total_operations_str << " operations"
    168             << completed_percentage_str << ", " << total_bytes_received_
    169             << "/" << payload_size_str << " bytes downloaded"
    170             << downloaded_percentage_str << ", overall progress "
    171             << overall_progress_ << "%";
    172 }
    173 
    174 void DeltaPerformer::UpdateOverallProgress(bool force_log,
    175                                            const char* message_prefix) {
    176   // Compute our download and overall progress.
    177   unsigned new_overall_progress = 0;
    178   static_assert(kProgressDownloadWeight + kProgressOperationsWeight == 100,
    179                 "Progress weights don't add up");
    180   // Only consider download progress if its total size is known; otherwise
    181   // adjust the operations weight to compensate for the absence of download
    182   // progress. Also, make sure to cap the download portion at
    183   // kProgressDownloadWeight, in case we end up downloading more than we
    184   // initially expected (this indicates a problem, but could generally happen).
    185   // TODO(garnold) the correction of operations weight when we do not have the
    186   // total payload size, as well as the conditional guard below, should both be
    187   // eliminated once we ensure that the payload_size in the install plan is
    188   // always given and is non-zero. This currently isn't the case during unit
    189   // tests (see chromium-os:37969).
    190   size_t payload_size = install_plan_->payload_size;
    191   unsigned actual_operations_weight = kProgressOperationsWeight;
    192   if (payload_size)
    193     new_overall_progress += min(
    194         static_cast<unsigned>(IntRatio(total_bytes_received_, payload_size,
    195                                        kProgressDownloadWeight)),
    196         kProgressDownloadWeight);
    197   else
    198     actual_operations_weight += kProgressDownloadWeight;
    199 
    200   // Only add completed operations if their total number is known; we definitely
    201   // expect an update to have at least one operation, so the expectation is that
    202   // this will eventually reach |actual_operations_weight|.
    203   if (num_total_operations_)
    204     new_overall_progress += IntRatio(next_operation_num_, num_total_operations_,
    205                                      actual_operations_weight);
    206 
    207   // Progress ratio cannot recede, unless our assumptions about the total
    208   // payload size, total number of operations, or the monotonicity of progress
    209   // is breached.
    210   if (new_overall_progress < overall_progress_) {
    211     LOG(WARNING) << "progress counter receded from " << overall_progress_
    212                  << "% down to " << new_overall_progress << "%; this is a bug";
    213     force_log = true;
    214   }
    215   overall_progress_ = new_overall_progress;
    216 
    217   // Update chunk index, log as needed: if forced by called, or we completed a
    218   // progress chunk, or a timeout has expired.
    219   base::Time curr_time = base::Time::Now();
    220   unsigned curr_progress_chunk =
    221       overall_progress_ * kProgressLogMaxChunks / 100;
    222   if (force_log || curr_progress_chunk > last_progress_chunk_ ||
    223       curr_time > forced_progress_log_time_) {
    224     forced_progress_log_time_ = curr_time + forced_progress_log_wait_;
    225     LogProgress(message_prefix);
    226   }
    227   last_progress_chunk_ = curr_progress_chunk;
    228 }
    229 
    230 
    231 size_t DeltaPerformer::CopyDataToBuffer(const char** bytes_p, size_t* count_p,
    232                                         size_t max) {
    233   const size_t count = *count_p;
    234   if (!count)
    235     return 0;  // Special case shortcut.
    236   size_t read_len = min(count, max - buffer_.size());
    237   const char* bytes_start = *bytes_p;
    238   const char* bytes_end = bytes_start + read_len;
    239   buffer_.insert(buffer_.end(), bytes_start, bytes_end);
    240   *bytes_p = bytes_end;
    241   *count_p = count - read_len;
    242   return read_len;
    243 }
    244 
    245 
    246 bool DeltaPerformer::HandleOpResult(bool op_result, const char* op_type_name,
    247                                     ErrorCode* error) {
    248   if (op_result)
    249     return true;
    250 
    251   LOG(ERROR) << "Failed to perform " << op_type_name << " operation "
    252              << next_operation_num_;
    253   *error = ErrorCode::kDownloadOperationExecutionError;
    254   return false;
    255 }
    256 
    257 int DeltaPerformer::Close() {
    258   int err = -CloseCurrentPartition();
    259   LOG_IF(ERROR, !payload_hash_calculator_.Finalize() ||
    260                 !signed_hash_calculator_.Finalize())
    261       << "Unable to finalize the hash.";
    262   if (!buffer_.empty()) {
    263     LOG(INFO) << "Discarding " << buffer_.size() << " unused downloaded bytes";
    264     if (err >= 0)
    265       err = 1;
    266   }
    267   return -err;
    268 }
    269 
    270 int DeltaPerformer::CloseCurrentPartition() {
    271   int err = 0;
    272   if (source_fd_ && !source_fd_->Close()) {
    273     err = errno;
    274     PLOG(ERROR) << "Error closing source partition";
    275     if (!err)
    276       err = 1;
    277   }
    278   source_fd_.reset();
    279   source_path_.clear();
    280 
    281   if (target_fd_ && !target_fd_->Close()) {
    282     err = errno;
    283     PLOG(ERROR) << "Error closing target partition";
    284     if (!err)
    285       err = 1;
    286   }
    287   target_fd_.reset();
    288   target_path_.clear();
    289   return -err;
    290 }
    291 
    292 bool DeltaPerformer::OpenCurrentPartition() {
    293   if (current_partition_ >= partitions_.size())
    294     return false;
    295 
    296   const PartitionUpdate& partition = partitions_[current_partition_];
    297   // Open source fds if we have a delta payload with minor version >= 2.
    298   if (install_plan_->payload_type == InstallPayloadType::kDelta &&
    299       GetMinorVersion() != kInPlaceMinorPayloadVersion) {
    300     source_path_ = install_plan_->partitions[current_partition_].source_path;
    301     int err;
    302     source_fd_ = OpenFile(source_path_.c_str(), O_RDONLY, &err);
    303     if (!source_fd_) {
    304       LOG(ERROR) << "Unable to open source partition "
    305                  << partition.partition_name() << " on slot "
    306                  << BootControlInterface::SlotName(install_plan_->source_slot)
    307                  << ", file " << source_path_;
    308       return false;
    309     }
    310   }
    311 
    312   target_path_ = install_plan_->partitions[current_partition_].target_path;
    313   int err;
    314   target_fd_ = OpenFile(target_path_.c_str(), O_RDWR, &err);
    315   if (!target_fd_) {
    316     LOG(ERROR) << "Unable to open target partition "
    317                << partition.partition_name() << " on slot "
    318                << BootControlInterface::SlotName(install_plan_->target_slot)
    319                << ", file " << target_path_;
    320     return false;
    321   }
    322   return true;
    323 }
    324 
    325 namespace {
    326 
    327 void LogPartitionInfoHash(const PartitionInfo& info, const string& tag) {
    328   string sha256 = brillo::data_encoding::Base64Encode(info.hash());
    329   LOG(INFO) << "PartitionInfo " << tag << " sha256: " << sha256
    330             << " size: " << info.size();
    331 }
    332 
    333 void LogPartitionInfo(const vector<PartitionUpdate>& partitions) {
    334   for (const PartitionUpdate& partition : partitions) {
    335     LogPartitionInfoHash(partition.old_partition_info(),
    336                          "old " + partition.partition_name());
    337     LogPartitionInfoHash(partition.new_partition_info(),
    338                          "new " + partition.partition_name());
    339   }
    340 }
    341 
    342 }  // namespace
    343 
    344 bool DeltaPerformer::GetMetadataSignatureSizeOffset(
    345     uint64_t* out_offset) const {
    346   if (GetMajorVersion() == kBrilloMajorPayloadVersion) {
    347     *out_offset = kDeltaManifestSizeOffset + kDeltaManifestSizeSize;
    348     return true;
    349   }
    350   return false;
    351 }
    352 
    353 bool DeltaPerformer::GetManifestOffset(uint64_t* out_offset) const {
    354   // Actual manifest begins right after the manifest size field or
    355   // metadata signature size field if major version >= 2.
    356   if (major_payload_version_ == kChromeOSMajorPayloadVersion) {
    357     *out_offset = kDeltaManifestSizeOffset + kDeltaManifestSizeSize;
    358     return true;
    359   }
    360   if (major_payload_version_ == kBrilloMajorPayloadVersion) {
    361     *out_offset = kDeltaManifestSizeOffset + kDeltaManifestSizeSize +
    362                   kDeltaMetadataSignatureSizeSize;
    363     return true;
    364   }
    365   LOG(ERROR) << "Unknown major payload version: " << major_payload_version_;
    366   return false;
    367 }
    368 
    369 uint64_t DeltaPerformer::GetMetadataSize() const {
    370   return metadata_size_;
    371 }
    372 
    373 uint64_t DeltaPerformer::GetMajorVersion() const {
    374   return major_payload_version_;
    375 }
    376 
    377 uint32_t DeltaPerformer::GetMinorVersion() const {
    378   if (manifest_.has_minor_version()) {
    379     return manifest_.minor_version();
    380   } else {
    381     return install_plan_->payload_type == InstallPayloadType::kDelta
    382                ? kSupportedMinorPayloadVersion
    383                : kFullPayloadMinorVersion;
    384   }
    385 }
    386 
    387 bool DeltaPerformer::GetManifest(DeltaArchiveManifest* out_manifest_p) const {
    388   if (!manifest_parsed_)
    389     return false;
    390   *out_manifest_p = manifest_;
    391   return true;
    392 }
    393 
    394 bool DeltaPerformer::IsHeaderParsed() const {
    395   return metadata_size_ != 0;
    396 }
    397 
    398 DeltaPerformer::MetadataParseResult DeltaPerformer::ParsePayloadMetadata(
    399     const brillo::Blob& payload, ErrorCode* error) {
    400   *error = ErrorCode::kSuccess;
    401   uint64_t manifest_offset;
    402 
    403   if (!IsHeaderParsed()) {
    404     // Ensure we have data to cover the major payload version.
    405     if (payload.size() < kDeltaManifestSizeOffset)
    406       return kMetadataParseInsufficientData;
    407 
    408     // Validate the magic string.
    409     if (memcmp(payload.data(), kDeltaMagic, sizeof(kDeltaMagic)) != 0) {
    410       LOG(ERROR) << "Bad payload format -- invalid delta magic.";
    411       *error = ErrorCode::kDownloadInvalidMetadataMagicString;
    412       return kMetadataParseError;
    413     }
    414 
    415     // Extract the payload version from the metadata.
    416     static_assert(sizeof(major_payload_version_) == kDeltaVersionSize,
    417                   "Major payload version size mismatch");
    418     memcpy(&major_payload_version_,
    419            &payload[kDeltaVersionOffset],
    420            kDeltaVersionSize);
    421     // switch big endian to host
    422     major_payload_version_ = be64toh(major_payload_version_);
    423 
    424     if (major_payload_version_ != supported_major_version_ &&
    425         major_payload_version_ != kChromeOSMajorPayloadVersion) {
    426       LOG(ERROR) << "Bad payload format -- unsupported payload version: "
    427           << major_payload_version_;
    428       *error = ErrorCode::kUnsupportedMajorPayloadVersion;
    429       return kMetadataParseError;
    430     }
    431 
    432     // Get the manifest offset now that we have payload version.
    433     if (!GetManifestOffset(&manifest_offset)) {
    434       *error = ErrorCode::kUnsupportedMajorPayloadVersion;
    435       return kMetadataParseError;
    436     }
    437     // Check again with the manifest offset.
    438     if (payload.size() < manifest_offset)
    439       return kMetadataParseInsufficientData;
    440 
    441     // Next, parse the manifest size.
    442     static_assert(sizeof(manifest_size_) == kDeltaManifestSizeSize,
    443                   "manifest_size size mismatch");
    444     memcpy(&manifest_size_,
    445            &payload[kDeltaManifestSizeOffset],
    446            kDeltaManifestSizeSize);
    447     manifest_size_ = be64toh(manifest_size_);  // switch big endian to host
    448 
    449     if (GetMajorVersion() == kBrilloMajorPayloadVersion) {
    450       // Parse the metadata signature size.
    451       static_assert(sizeof(metadata_signature_size_) ==
    452                     kDeltaMetadataSignatureSizeSize,
    453                     "metadata_signature_size size mismatch");
    454       uint64_t metadata_signature_size_offset;
    455       if (!GetMetadataSignatureSizeOffset(&metadata_signature_size_offset)) {
    456         *error = ErrorCode::kError;
    457         return kMetadataParseError;
    458       }
    459       memcpy(&metadata_signature_size_,
    460              &payload[metadata_signature_size_offset],
    461              kDeltaMetadataSignatureSizeSize);
    462       metadata_signature_size_ = be32toh(metadata_signature_size_);
    463     }
    464 
    465     // If the metadata size is present in install plan, check for it immediately
    466     // even before waiting for that many number of bytes to be downloaded in the
    467     // payload. This will prevent any attack which relies on us downloading data
    468     // beyond the expected metadata size.
    469     metadata_size_ = manifest_offset + manifest_size_;
    470     if (install_plan_->hash_checks_mandatory) {
    471       if (install_plan_->metadata_size != metadata_size_) {
    472         LOG(ERROR) << "Mandatory metadata size in Omaha response ("
    473                    << install_plan_->metadata_size
    474                    << ") is missing/incorrect, actual = " << metadata_size_;
    475         *error = ErrorCode::kDownloadInvalidMetadataSize;
    476         return kMetadataParseError;
    477       }
    478     }
    479   }
    480 
    481   // Now that we have validated the metadata size, we should wait for the full
    482   // metadata and its signature (if exist) to be read in before we can parse it.
    483   if (payload.size() < metadata_size_ + metadata_signature_size_)
    484     return kMetadataParseInsufficientData;
    485 
    486   // Log whether we validated the size or simply trusting what's in the payload
    487   // here. This is logged here (after we received the full metadata data) so
    488   // that we just log once (instead of logging n times) if it takes n
    489   // DeltaPerformer::Write calls to download the full manifest.
    490   if (install_plan_->metadata_size == metadata_size_) {
    491     LOG(INFO) << "Manifest size in payload matches expected value from Omaha";
    492   } else {
    493     // For mandatory-cases, we'd have already returned a kMetadataParseError
    494     // above. We'll be here only for non-mandatory cases. Just send a UMA stat.
    495     LOG(WARNING) << "Ignoring missing/incorrect metadata size ("
    496                  << install_plan_->metadata_size
    497                  << ") in Omaha response as validation is not mandatory. "
    498                  << "Trusting metadata size in payload = " << metadata_size_;
    499   }
    500 
    501   // We have the full metadata in |payload|. Verify its integrity
    502   // and authenticity based on the information we have in Omaha response.
    503   *error = ValidateMetadataSignature(payload);
    504   if (*error != ErrorCode::kSuccess) {
    505     if (install_plan_->hash_checks_mandatory) {
    506       // The autoupdate_CatchBadSignatures test checks for this string
    507       // in log-files. Keep in sync.
    508       LOG(ERROR) << "Mandatory metadata signature validation failed";
    509       return kMetadataParseError;
    510     }
    511 
    512     // For non-mandatory cases, just send a UMA stat.
    513     LOG(WARNING) << "Ignoring metadata signature validation failures";
    514     *error = ErrorCode::kSuccess;
    515   }
    516 
    517   if (!GetManifestOffset(&manifest_offset)) {
    518     *error = ErrorCode::kUnsupportedMajorPayloadVersion;
    519     return kMetadataParseError;
    520   }
    521   // The payload metadata is deemed valid, it's safe to parse the protobuf.
    522   if (!manifest_.ParseFromArray(&payload[manifest_offset], manifest_size_)) {
    523     LOG(ERROR) << "Unable to parse manifest in update file.";
    524     *error = ErrorCode::kDownloadManifestParseError;
    525     return kMetadataParseError;
    526   }
    527 
    528   manifest_parsed_ = true;
    529   return kMetadataParseSuccess;
    530 }
    531 
    532 // Wrapper around write. Returns true if all requested bytes
    533 // were written, or false on any error, regardless of progress
    534 // and stores an action exit code in |error|.
    535 bool DeltaPerformer::Write(const void* bytes, size_t count, ErrorCode *error) {
    536   *error = ErrorCode::kSuccess;
    537 
    538   const char* c_bytes = reinterpret_cast<const char*>(bytes);
    539 
    540   // Update the total byte downloaded count and the progress logs.
    541   total_bytes_received_ += count;
    542   UpdateOverallProgress(false, "Completed ");
    543 
    544   while (!manifest_valid_) {
    545     // Read data up to the needed limit; this is either maximium payload header
    546     // size, or the full metadata size (once it becomes known).
    547     const bool do_read_header = !IsHeaderParsed();
    548     CopyDataToBuffer(&c_bytes, &count,
    549                      (do_read_header ? kMaxPayloadHeaderSize :
    550                       metadata_size_ + metadata_signature_size_));
    551 
    552     MetadataParseResult result = ParsePayloadMetadata(buffer_, error);
    553     if (result == kMetadataParseError)
    554       return false;
    555     if (result == kMetadataParseInsufficientData) {
    556       // If we just processed the header, make an attempt on the manifest.
    557       if (do_read_header && IsHeaderParsed())
    558         continue;
    559 
    560       return true;
    561     }
    562 
    563     // Checks the integrity of the payload manifest.
    564     if ((*error = ValidateManifest()) != ErrorCode::kSuccess)
    565       return false;
    566     manifest_valid_ = true;
    567 
    568     // Clear the download buffer.
    569     DiscardBuffer(false, metadata_size_);
    570 
    571     // This populates |partitions_| and the |install_plan.partitions| with the
    572     // list of partitions from the manifest.
    573     if (!ParseManifestPartitions(error))
    574       return false;
    575 
    576     num_total_operations_ = 0;
    577     for (const auto& partition : partitions_) {
    578       num_total_operations_ += partition.operations_size();
    579       acc_num_operations_.push_back(num_total_operations_);
    580     }
    581 
    582     LOG_IF(WARNING, !prefs_->SetInt64(kPrefsManifestMetadataSize,
    583                                       metadata_size_))
    584         << "Unable to save the manifest metadata size.";
    585     LOG_IF(WARNING, !prefs_->SetInt64(kPrefsManifestSignatureSize,
    586                                       metadata_signature_size_))
    587         << "Unable to save the manifest signature size.";
    588 
    589     if (!PrimeUpdateState()) {
    590       *error = ErrorCode::kDownloadStateInitializationError;
    591       LOG(ERROR) << "Unable to prime the update state.";
    592       return false;
    593     }
    594 
    595     if (!OpenCurrentPartition()) {
    596       *error = ErrorCode::kInstallDeviceOpenError;
    597       return false;
    598     }
    599 
    600     if (next_operation_num_ > 0)
    601       UpdateOverallProgress(true, "Resuming after ");
    602     LOG(INFO) << "Starting to apply update payload operations";
    603   }
    604 
    605   while (next_operation_num_ < num_total_operations_) {
    606     // Check if we should cancel the current attempt for any reason.
    607     // In this case, *error will have already been populated with the reason
    608     // why we're canceling.
    609     if (download_delegate_ && download_delegate_->ShouldCancel(error))
    610       return false;
    611 
    612     // We know there are more operations to perform because we didn't reach the
    613     // |num_total_operations_| limit yet.
    614     while (next_operation_num_ >= acc_num_operations_[current_partition_]) {
    615       CloseCurrentPartition();
    616       current_partition_++;
    617       if (!OpenCurrentPartition()) {
    618         *error = ErrorCode::kInstallDeviceOpenError;
    619         return false;
    620       }
    621     }
    622     const size_t partition_operation_num = next_operation_num_ - (
    623         current_partition_ ? acc_num_operations_[current_partition_ - 1] : 0);
    624 
    625     const InstallOperation& op =
    626         partitions_[current_partition_].operations(partition_operation_num);
    627 
    628     CopyDataToBuffer(&c_bytes, &count, op.data_length());
    629 
    630     // Check whether we received all of the next operation's data payload.
    631     if (!CanPerformInstallOperation(op))
    632       return true;
    633 
    634     // Validate the operation only if the metadata signature is present.
    635     // Otherwise, keep the old behavior. This serves as a knob to disable
    636     // the validation logic in case we find some regression after rollout.
    637     // NOTE: If hash checks are mandatory and if metadata_signature is empty,
    638     // we would have already failed in ParsePayloadMetadata method and thus not
    639     // even be here. So no need to handle that case again here.
    640     if (!install_plan_->metadata_signature.empty()) {
    641       // Note: Validate must be called only if CanPerformInstallOperation is
    642       // called. Otherwise, we might be failing operations before even if there
    643       // isn't sufficient data to compute the proper hash.
    644       *error = ValidateOperationHash(op);
    645       if (*error != ErrorCode::kSuccess) {
    646         if (install_plan_->hash_checks_mandatory) {
    647           LOG(ERROR) << "Mandatory operation hash check failed";
    648           return false;
    649         }
    650 
    651         // For non-mandatory cases, just send a UMA stat.
    652         LOG(WARNING) << "Ignoring operation validation errors";
    653         *error = ErrorCode::kSuccess;
    654       }
    655     }
    656 
    657     // Makes sure we unblock exit when this operation completes.
    658     ScopedTerminatorExitUnblocker exit_unblocker =
    659         ScopedTerminatorExitUnblocker();  // Avoids a compiler unused var bug.
    660 
    661     bool op_result;
    662     switch (op.type()) {
    663       case InstallOperation::REPLACE:
    664       case InstallOperation::REPLACE_BZ:
    665       case InstallOperation::REPLACE_XZ:
    666         op_result = PerformReplaceOperation(op);
    667         break;
    668       case InstallOperation::ZERO:
    669       case InstallOperation::DISCARD:
    670         op_result = PerformZeroOrDiscardOperation(op);
    671         break;
    672       case InstallOperation::MOVE:
    673         op_result = PerformMoveOperation(op);
    674         break;
    675       case InstallOperation::BSDIFF:
    676         op_result = PerformBsdiffOperation(op);
    677         break;
    678       case InstallOperation::SOURCE_COPY:
    679         op_result = PerformSourceCopyOperation(op);
    680         break;
    681       case InstallOperation::SOURCE_BSDIFF:
    682         op_result = PerformSourceBsdiffOperation(op);
    683         break;
    684       default:
    685        op_result = false;
    686     }
    687     if (!HandleOpResult(op_result, InstallOperationTypeName(op.type()), error))
    688       return false;
    689 
    690     next_operation_num_++;
    691     UpdateOverallProgress(false, "Completed ");
    692     CheckpointUpdateProgress();
    693   }
    694 
    695   // In major version 2, we don't add dummy operation to the payload.
    696   // If we already extracted the signature we should skip this step.
    697   if (major_payload_version_ == kBrilloMajorPayloadVersion &&
    698       manifest_.has_signatures_offset() && manifest_.has_signatures_size() &&
    699       signatures_message_data_.empty()) {
    700     if (manifest_.signatures_offset() != buffer_offset_) {
    701       LOG(ERROR) << "Payload signatures offset points to blob offset "
    702                  << manifest_.signatures_offset()
    703                  << " but signatures are expected at offset "
    704                  << buffer_offset_;
    705       *error = ErrorCode::kDownloadPayloadVerificationError;
    706       return false;
    707     }
    708     CopyDataToBuffer(&c_bytes, &count, manifest_.signatures_size());
    709     // Needs more data to cover entire signature.
    710     if (buffer_.size() < manifest_.signatures_size())
    711       return true;
    712     if (!ExtractSignatureMessage()) {
    713       LOG(ERROR) << "Extract payload signature failed.";
    714       *error = ErrorCode::kDownloadPayloadVerificationError;
    715       return false;
    716     }
    717     DiscardBuffer(true, 0);
    718     // Since we extracted the SignatureMessage we need to advance the
    719     // checkpoint, otherwise we would reload the signature and try to extract
    720     // it again.
    721     CheckpointUpdateProgress();
    722   }
    723 
    724   return true;
    725 }
    726 
    727 bool DeltaPerformer::IsManifestValid() {
    728   return manifest_valid_;
    729 }
    730 
    731 bool DeltaPerformer::ParseManifestPartitions(ErrorCode* error) {
    732   if (major_payload_version_ == kBrilloMajorPayloadVersion) {
    733     partitions_.clear();
    734     for (const PartitionUpdate& partition : manifest_.partitions()) {
    735       partitions_.push_back(partition);
    736     }
    737     manifest_.clear_partitions();
    738   } else if (major_payload_version_ == kChromeOSMajorPayloadVersion) {
    739     LOG(INFO) << "Converting update information from old format.";
    740     PartitionUpdate root_part;
    741     root_part.set_partition_name(kLegacyPartitionNameRoot);
    742 #ifdef __ANDROID__
    743     LOG(WARNING) << "Legacy payload major version provided to an Android "
    744                     "build. Assuming no post-install. Please use major version "
    745                     "2 or newer.";
    746     root_part.set_run_postinstall(false);
    747 #else
    748     root_part.set_run_postinstall(true);
    749 #endif  // __ANDROID__
    750     if (manifest_.has_old_rootfs_info()) {
    751       *root_part.mutable_old_partition_info() = manifest_.old_rootfs_info();
    752       manifest_.clear_old_rootfs_info();
    753     }
    754     if (manifest_.has_new_rootfs_info()) {
    755       *root_part.mutable_new_partition_info() = manifest_.new_rootfs_info();
    756       manifest_.clear_new_rootfs_info();
    757     }
    758     *root_part.mutable_operations() = manifest_.install_operations();
    759     manifest_.clear_install_operations();
    760     partitions_.push_back(std::move(root_part));
    761 
    762     PartitionUpdate kern_part;
    763     kern_part.set_partition_name(kLegacyPartitionNameKernel);
    764     kern_part.set_run_postinstall(false);
    765     if (manifest_.has_old_kernel_info()) {
    766       *kern_part.mutable_old_partition_info() = manifest_.old_kernel_info();
    767       manifest_.clear_old_kernel_info();
    768     }
    769     if (manifest_.has_new_kernel_info()) {
    770       *kern_part.mutable_new_partition_info() = manifest_.new_kernel_info();
    771       manifest_.clear_new_kernel_info();
    772     }
    773     *kern_part.mutable_operations() = manifest_.kernel_install_operations();
    774     manifest_.clear_kernel_install_operations();
    775     partitions_.push_back(std::move(kern_part));
    776   }
    777 
    778   // TODO(deymo): Remove this block of code once we switched to optional
    779   // source partition verification. This list of partitions in the InstallPlan
    780   // is initialized with the expected hashes in the payload major version 1,
    781   // so we need to check those now if already set. See b/23182225.
    782   if (!install_plan_->partitions.empty()) {
    783     if (!VerifySourcePartitions()) {
    784       *error = ErrorCode::kDownloadStateInitializationError;
    785       return false;
    786     }
    787   }
    788 
    789   // Fill in the InstallPlan::partitions based on the partitions from the
    790   // payload.
    791   install_plan_->partitions.clear();
    792   for (const auto& partition : partitions_) {
    793     InstallPlan::Partition install_part;
    794     install_part.name = partition.partition_name();
    795     install_part.run_postinstall =
    796         partition.has_run_postinstall() && partition.run_postinstall();
    797     if (install_part.run_postinstall) {
    798       install_part.postinstall_path =
    799           (partition.has_postinstall_path() ? partition.postinstall_path()
    800                                             : kPostinstallDefaultScript);
    801       install_part.filesystem_type = partition.filesystem_type();
    802     }
    803 
    804     if (partition.has_old_partition_info()) {
    805       const PartitionInfo& info = partition.old_partition_info();
    806       install_part.source_size = info.size();
    807       install_part.source_hash.assign(info.hash().begin(), info.hash().end());
    808     }
    809 
    810     if (!partition.has_new_partition_info()) {
    811       LOG(ERROR) << "Unable to get new partition hash info on partition "
    812                  << install_part.name << ".";
    813       *error = ErrorCode::kDownloadNewPartitionInfoError;
    814       return false;
    815     }
    816     const PartitionInfo& info = partition.new_partition_info();
    817     install_part.target_size = info.size();
    818     install_part.target_hash.assign(info.hash().begin(), info.hash().end());
    819 
    820     install_plan_->partitions.push_back(install_part);
    821   }
    822 
    823   if (!install_plan_->LoadPartitionsFromSlots(boot_control_)) {
    824     LOG(ERROR) << "Unable to determine all the partition devices.";
    825     *error = ErrorCode::kInstallDeviceOpenError;
    826     return false;
    827   }
    828   LogPartitionInfo(partitions_);
    829   return true;
    830 }
    831 
    832 bool DeltaPerformer::CanPerformInstallOperation(
    833     const chromeos_update_engine::InstallOperation& operation) {
    834   // If we don't have a data blob we can apply it right away.
    835   if (!operation.has_data_offset() && !operation.has_data_length())
    836     return true;
    837 
    838   // See if we have the entire data blob in the buffer
    839   if (operation.data_offset() < buffer_offset_) {
    840     LOG(ERROR) << "we threw away data it seems?";
    841     return false;
    842   }
    843 
    844   return (operation.data_offset() + operation.data_length() <=
    845           buffer_offset_ + buffer_.size());
    846 }
    847 
    848 bool DeltaPerformer::PerformReplaceOperation(
    849     const InstallOperation& operation) {
    850   CHECK(operation.type() == InstallOperation::REPLACE ||
    851         operation.type() == InstallOperation::REPLACE_BZ ||
    852         operation.type() == InstallOperation::REPLACE_XZ);
    853 
    854   // Since we delete data off the beginning of the buffer as we use it,
    855   // the data we need should be exactly at the beginning of the buffer.
    856   TEST_AND_RETURN_FALSE(buffer_offset_ == operation.data_offset());
    857   TEST_AND_RETURN_FALSE(buffer_.size() >= operation.data_length());
    858 
    859   // Extract the signature message if it's in this operation.
    860   if (ExtractSignatureMessageFromOperation(operation)) {
    861     // If this is dummy replace operation, we ignore it after extracting the
    862     // signature.
    863     DiscardBuffer(true, 0);
    864     return true;
    865   }
    866 
    867   // Setup the ExtentWriter stack based on the operation type.
    868   std::unique_ptr<ExtentWriter> writer =
    869     brillo::make_unique_ptr(new ZeroPadExtentWriter(
    870       brillo::make_unique_ptr(new DirectExtentWriter())));
    871 
    872   if (operation.type() == InstallOperation::REPLACE_BZ) {
    873     writer.reset(new BzipExtentWriter(std::move(writer)));
    874   } else if (operation.type() == InstallOperation::REPLACE_XZ) {
    875     writer.reset(new XzExtentWriter(std::move(writer)));
    876   }
    877 
    878   // Create a vector of extents to pass to the ExtentWriter.
    879   vector<Extent> extents;
    880   for (int i = 0; i < operation.dst_extents_size(); i++) {
    881     extents.push_back(operation.dst_extents(i));
    882   }
    883 
    884   TEST_AND_RETURN_FALSE(writer->Init(target_fd_, extents, block_size_));
    885   TEST_AND_RETURN_FALSE(writer->Write(buffer_.data(), operation.data_length()));
    886   TEST_AND_RETURN_FALSE(writer->End());
    887 
    888   // Update buffer
    889   DiscardBuffer(true, buffer_.size());
    890   return true;
    891 }
    892 
    893 bool DeltaPerformer::PerformZeroOrDiscardOperation(
    894     const InstallOperation& operation) {
    895   CHECK(operation.type() == InstallOperation::DISCARD ||
    896         operation.type() == InstallOperation::ZERO);
    897 
    898   // These operations have no blob.
    899   TEST_AND_RETURN_FALSE(!operation.has_data_offset());
    900   TEST_AND_RETURN_FALSE(!operation.has_data_length());
    901 
    902 #ifdef BLKZEROOUT
    903   bool attempt_ioctl = true;
    904   int request =
    905       (operation.type() == InstallOperation::ZERO ? BLKZEROOUT : BLKDISCARD);
    906 #else  // !defined(BLKZEROOUT)
    907   bool attempt_ioctl = false;
    908   int request = 0;
    909 #endif  // !defined(BLKZEROOUT)
    910 
    911   brillo::Blob zeros;
    912   for (int i = 0; i < operation.dst_extents_size(); i++) {
    913     Extent extent = operation.dst_extents(i);
    914     const uint64_t start = extent.start_block() * block_size_;
    915     const uint64_t length = extent.num_blocks() * block_size_;
    916     if (attempt_ioctl) {
    917       int result = 0;
    918       if (target_fd_->BlkIoctl(request, start, length, &result) && result == 0)
    919         continue;
    920       attempt_ioctl = false;
    921       zeros.resize(16 * block_size_);
    922     }
    923     // In case of failure, we fall back to writing 0 to the selected region.
    924     for (uint64_t offset = 0; offset < length; offset += zeros.size()) {
    925       uint64_t chunk_length = min(length - offset,
    926                                   static_cast<uint64_t>(zeros.size()));
    927       TEST_AND_RETURN_FALSE(
    928           utils::PWriteAll(target_fd_, zeros.data(), chunk_length, start + offset));
    929     }
    930   }
    931   return true;
    932 }
    933 
    934 bool DeltaPerformer::PerformMoveOperation(const InstallOperation& operation) {
    935   // Calculate buffer size. Note, this function doesn't do a sliding
    936   // window to copy in case the source and destination blocks overlap.
    937   // If we wanted to do a sliding window, we could program the server
    938   // to generate deltas that effectively did a sliding window.
    939 
    940   uint64_t blocks_to_read = 0;
    941   for (int i = 0; i < operation.src_extents_size(); i++)
    942     blocks_to_read += operation.src_extents(i).num_blocks();
    943 
    944   uint64_t blocks_to_write = 0;
    945   for (int i = 0; i < operation.dst_extents_size(); i++)
    946     blocks_to_write += operation.dst_extents(i).num_blocks();
    947 
    948   DCHECK_EQ(blocks_to_write, blocks_to_read);
    949   brillo::Blob buf(blocks_to_write * block_size_);
    950 
    951   // Read in bytes.
    952   ssize_t bytes_read = 0;
    953   for (int i = 0; i < operation.src_extents_size(); i++) {
    954     ssize_t bytes_read_this_iteration = 0;
    955     const Extent& extent = operation.src_extents(i);
    956     const size_t bytes = extent.num_blocks() * block_size_;
    957     TEST_AND_RETURN_FALSE(extent.start_block() != kSparseHole);
    958     TEST_AND_RETURN_FALSE(utils::PReadAll(target_fd_,
    959                                           &buf[bytes_read],
    960                                           bytes,
    961                                           extent.start_block() * block_size_,
    962                                           &bytes_read_this_iteration));
    963     TEST_AND_RETURN_FALSE(
    964         bytes_read_this_iteration == static_cast<ssize_t>(bytes));
    965     bytes_read += bytes_read_this_iteration;
    966   }
    967 
    968   // Write bytes out.
    969   ssize_t bytes_written = 0;
    970   for (int i = 0; i < operation.dst_extents_size(); i++) {
    971     const Extent& extent = operation.dst_extents(i);
    972     const size_t bytes = extent.num_blocks() * block_size_;
    973     TEST_AND_RETURN_FALSE(extent.start_block() != kSparseHole);
    974     TEST_AND_RETURN_FALSE(utils::PWriteAll(target_fd_,
    975                                            &buf[bytes_written],
    976                                            bytes,
    977                                            extent.start_block() * block_size_));
    978     bytes_written += bytes;
    979   }
    980   DCHECK_EQ(bytes_written, bytes_read);
    981   DCHECK_EQ(bytes_written, static_cast<ssize_t>(buf.size()));
    982   return true;
    983 }
    984 
    985 namespace {
    986 
    987 // Takes |extents| and fills an empty vector |blocks| with a block index for
    988 // each block in |extents|. For example, [(3, 2), (8, 1)] would give [3, 4, 8].
    989 void ExtentsToBlocks(const RepeatedPtrField<Extent>& extents,
    990                      vector<uint64_t>* blocks) {
    991   for (Extent ext : extents) {
    992     for (uint64_t j = 0; j < ext.num_blocks(); j++)
    993       blocks->push_back(ext.start_block() + j);
    994   }
    995 }
    996 
    997 // Takes |extents| and returns the number of blocks in those extents.
    998 uint64_t GetBlockCount(const RepeatedPtrField<Extent>& extents) {
    999   uint64_t sum = 0;
   1000   for (Extent ext : extents) {
   1001     sum += ext.num_blocks();
   1002   }
   1003   return sum;
   1004 }
   1005 
   1006 // Compare |calculated_hash| with source hash in |operation|, return false and
   1007 // dump hash if don't match.
   1008 bool ValidateSourceHash(const brillo::Blob& calculated_hash,
   1009                         const InstallOperation& operation) {
   1010   brillo::Blob expected_source_hash(operation.src_sha256_hash().begin(),
   1011                                     operation.src_sha256_hash().end());
   1012   if (calculated_hash != expected_source_hash) {
   1013     LOG(ERROR) << "Hash verification failed. Expected hash = ";
   1014     utils::HexDumpVector(expected_source_hash);
   1015     LOG(ERROR) << "Calculated hash = ";
   1016     utils::HexDumpVector(calculated_hash);
   1017     return false;
   1018   }
   1019   return true;
   1020 }
   1021 
   1022 }  // namespace
   1023 
   1024 bool DeltaPerformer::PerformSourceCopyOperation(
   1025     const InstallOperation& operation) {
   1026   if (operation.has_src_length())
   1027     TEST_AND_RETURN_FALSE(operation.src_length() % block_size_ == 0);
   1028   if (operation.has_dst_length())
   1029     TEST_AND_RETURN_FALSE(operation.dst_length() % block_size_ == 0);
   1030 
   1031   uint64_t blocks_to_read = GetBlockCount(operation.src_extents());
   1032   uint64_t blocks_to_write = GetBlockCount(operation.dst_extents());
   1033   TEST_AND_RETURN_FALSE(blocks_to_write ==  blocks_to_read);
   1034 
   1035   // Create vectors of all the individual src/dst blocks.
   1036   vector<uint64_t> src_blocks;
   1037   vector<uint64_t> dst_blocks;
   1038   ExtentsToBlocks(operation.src_extents(), &src_blocks);
   1039   ExtentsToBlocks(operation.dst_extents(), &dst_blocks);
   1040   DCHECK_EQ(src_blocks.size(), blocks_to_read);
   1041   DCHECK_EQ(src_blocks.size(), dst_blocks.size());
   1042 
   1043   brillo::Blob buf(block_size_);
   1044   ssize_t bytes_read = 0;
   1045   HashCalculator source_hasher;
   1046   // Read/write one block at a time.
   1047   for (uint64_t i = 0; i < blocks_to_read; i++) {
   1048     ssize_t bytes_read_this_iteration = 0;
   1049     uint64_t src_block = src_blocks[i];
   1050     uint64_t dst_block = dst_blocks[i];
   1051 
   1052     // Read in bytes.
   1053     TEST_AND_RETURN_FALSE(
   1054         utils::PReadAll(source_fd_,
   1055                         buf.data(),
   1056                         block_size_,
   1057                         src_block * block_size_,
   1058                         &bytes_read_this_iteration));
   1059 
   1060     // Write bytes out.
   1061     TEST_AND_RETURN_FALSE(
   1062         utils::PWriteAll(target_fd_,
   1063                          buf.data(),
   1064                          block_size_,
   1065                          dst_block * block_size_));
   1066 
   1067     bytes_read += bytes_read_this_iteration;
   1068     TEST_AND_RETURN_FALSE(bytes_read_this_iteration ==
   1069                           static_cast<ssize_t>(block_size_));
   1070 
   1071     if (operation.has_src_sha256_hash())
   1072       TEST_AND_RETURN_FALSE(source_hasher.Update(buf.data(), buf.size()));
   1073   }
   1074 
   1075   if (operation.has_src_sha256_hash()) {
   1076     TEST_AND_RETURN_FALSE(source_hasher.Finalize());
   1077     TEST_AND_RETURN_FALSE(
   1078         ValidateSourceHash(source_hasher.raw_hash(), operation));
   1079   }
   1080 
   1081   DCHECK_EQ(bytes_read, static_cast<ssize_t>(blocks_to_read * block_size_));
   1082   return true;
   1083 }
   1084 
   1085 bool DeltaPerformer::ExtentsToBsdiffPositionsString(
   1086     const RepeatedPtrField<Extent>& extents,
   1087     uint64_t block_size,
   1088     uint64_t full_length,
   1089     string* positions_string) {
   1090   string ret;
   1091   uint64_t length = 0;
   1092   for (int i = 0; i < extents.size(); i++) {
   1093     Extent extent = extents.Get(i);
   1094     int64_t start = extent.start_block() * block_size;
   1095     uint64_t this_length = min(full_length - length,
   1096                                extent.num_blocks() * block_size);
   1097     ret += base::StringPrintf("%" PRIi64 ":%" PRIu64 ",", start, this_length);
   1098     length += this_length;
   1099   }
   1100   TEST_AND_RETURN_FALSE(length == full_length);
   1101   if (!ret.empty())
   1102     ret.resize(ret.size() - 1);  // Strip trailing comma off
   1103   *positions_string = ret;
   1104   return true;
   1105 }
   1106 
   1107 bool DeltaPerformer::PerformBsdiffOperation(const InstallOperation& operation) {
   1108   // Since we delete data off the beginning of the buffer as we use it,
   1109   // the data we need should be exactly at the beginning of the buffer.
   1110   TEST_AND_RETURN_FALSE(buffer_offset_ == operation.data_offset());
   1111   TEST_AND_RETURN_FALSE(buffer_.size() >= operation.data_length());
   1112 
   1113   string input_positions;
   1114   TEST_AND_RETURN_FALSE(ExtentsToBsdiffPositionsString(operation.src_extents(),
   1115                                                        block_size_,
   1116                                                        operation.src_length(),
   1117                                                        &input_positions));
   1118   string output_positions;
   1119   TEST_AND_RETURN_FALSE(ExtentsToBsdiffPositionsString(operation.dst_extents(),
   1120                                                        block_size_,
   1121                                                        operation.dst_length(),
   1122                                                        &output_positions));
   1123 
   1124   string temp_filename;
   1125   TEST_AND_RETURN_FALSE(utils::MakeTempFile("au_patch.XXXXXX",
   1126                                             &temp_filename,
   1127                                             nullptr));
   1128   ScopedPathUnlinker path_unlinker(temp_filename);
   1129   {
   1130     int fd = open(temp_filename.c_str(), O_WRONLY | O_CREAT | O_TRUNC, 0644);
   1131     ScopedFdCloser fd_closer(&fd);
   1132     TEST_AND_RETURN_FALSE(
   1133         utils::WriteAll(fd, buffer_.data(), operation.data_length()));
   1134   }
   1135 
   1136   // Update the buffer to release the patch data memory as soon as the patch
   1137   // file is written out.
   1138   DiscardBuffer(true, buffer_.size());
   1139 
   1140   vector<string> cmd{kBspatchPath, target_path_, target_path_, temp_filename,
   1141                      input_positions, output_positions};
   1142 
   1143   int return_code = 0;
   1144   TEST_AND_RETURN_FALSE(
   1145       Subprocess::SynchronousExecFlags(cmd, Subprocess::kSearchPath,
   1146                                        &return_code, nullptr));
   1147   TEST_AND_RETURN_FALSE(return_code == 0);
   1148 
   1149   if (operation.dst_length() % block_size_) {
   1150     // Zero out rest of final block.
   1151     // TODO(adlr): build this into bspatch; it's more efficient that way.
   1152     const Extent& last_extent =
   1153         operation.dst_extents(operation.dst_extents_size() - 1);
   1154     const uint64_t end_byte =
   1155         (last_extent.start_block() + last_extent.num_blocks()) * block_size_;
   1156     const uint64_t begin_byte =
   1157         end_byte - (block_size_ - operation.dst_length() % block_size_);
   1158     brillo::Blob zeros(end_byte - begin_byte);
   1159     TEST_AND_RETURN_FALSE(
   1160         utils::PWriteAll(target_fd_, zeros.data(), end_byte - begin_byte, begin_byte));
   1161   }
   1162   return true;
   1163 }
   1164 
   1165 bool DeltaPerformer::PerformSourceBsdiffOperation(
   1166     const InstallOperation& operation) {
   1167   // Since we delete data off the beginning of the buffer as we use it,
   1168   // the data we need should be exactly at the beginning of the buffer.
   1169   TEST_AND_RETURN_FALSE(buffer_offset_ == operation.data_offset());
   1170   TEST_AND_RETURN_FALSE(buffer_.size() >= operation.data_length());
   1171   if (operation.has_src_length())
   1172     TEST_AND_RETURN_FALSE(operation.src_length() % block_size_ == 0);
   1173   if (operation.has_dst_length())
   1174     TEST_AND_RETURN_FALSE(operation.dst_length() % block_size_ == 0);
   1175 
   1176   if (operation.has_src_sha256_hash()) {
   1177     HashCalculator source_hasher;
   1178     const uint64_t kMaxBlocksToRead = 512;  // 2MB if block size is 4KB
   1179     brillo::Blob buf(kMaxBlocksToRead * block_size_);
   1180     for (const Extent& extent : operation.src_extents()) {
   1181       for (uint64_t i = 0; i < extent.num_blocks(); i += kMaxBlocksToRead) {
   1182         uint64_t blocks_to_read =
   1183             min(kMaxBlocksToRead, extent.num_blocks() - i);
   1184         ssize_t bytes_to_read = blocks_to_read * block_size_;
   1185         ssize_t bytes_read_this_iteration = 0;
   1186         TEST_AND_RETURN_FALSE(
   1187             utils::PReadAll(source_fd_, buf.data(), bytes_to_read,
   1188                             (extent.start_block() + i) * block_size_,
   1189                             &bytes_read_this_iteration));
   1190         TEST_AND_RETURN_FALSE(bytes_read_this_iteration == bytes_to_read);
   1191         TEST_AND_RETURN_FALSE(source_hasher.Update(buf.data(), bytes_to_read));
   1192       }
   1193     }
   1194     TEST_AND_RETURN_FALSE(source_hasher.Finalize());
   1195     TEST_AND_RETURN_FALSE(
   1196         ValidateSourceHash(source_hasher.raw_hash(), operation));
   1197   }
   1198 
   1199   string input_positions;
   1200   TEST_AND_RETURN_FALSE(ExtentsToBsdiffPositionsString(operation.src_extents(),
   1201                                                        block_size_,
   1202                                                        operation.src_length(),
   1203                                                        &input_positions));
   1204   string output_positions;
   1205   TEST_AND_RETURN_FALSE(ExtentsToBsdiffPositionsString(operation.dst_extents(),
   1206                                                        block_size_,
   1207                                                        operation.dst_length(),
   1208                                                        &output_positions));
   1209 
   1210   string temp_filename;
   1211   TEST_AND_RETURN_FALSE(utils::MakeTempFile("au_patch.XXXXXX",
   1212                                             &temp_filename,
   1213                                             nullptr));
   1214   ScopedPathUnlinker path_unlinker(temp_filename);
   1215   {
   1216     int fd = open(temp_filename.c_str(), O_WRONLY | O_CREAT | O_TRUNC, 0644);
   1217     ScopedFdCloser fd_closer(&fd);
   1218     TEST_AND_RETURN_FALSE(
   1219         utils::WriteAll(fd, buffer_.data(), operation.data_length()));
   1220   }
   1221 
   1222   // Update the buffer to release the patch data memory as soon as the patch
   1223   // file is written out.
   1224   DiscardBuffer(true, buffer_.size());
   1225 
   1226   vector<string> cmd{kBspatchPath, source_path_, target_path_, temp_filename,
   1227                      input_positions, output_positions};
   1228 
   1229   int return_code = 0;
   1230   TEST_AND_RETURN_FALSE(
   1231       Subprocess::SynchronousExecFlags(cmd, Subprocess::kSearchPath,
   1232                                        &return_code, nullptr));
   1233   TEST_AND_RETURN_FALSE(return_code == 0);
   1234   return true;
   1235 }
   1236 
   1237 bool DeltaPerformer::ExtractSignatureMessageFromOperation(
   1238     const InstallOperation& operation) {
   1239   if (operation.type() != InstallOperation::REPLACE ||
   1240       !manifest_.has_signatures_offset() ||
   1241       manifest_.signatures_offset() != operation.data_offset()) {
   1242     return false;
   1243   }
   1244   TEST_AND_RETURN_FALSE(manifest_.has_signatures_size() &&
   1245                         manifest_.signatures_size() == operation.data_length());
   1246   TEST_AND_RETURN_FALSE(ExtractSignatureMessage());
   1247   return true;
   1248 }
   1249 
   1250 bool DeltaPerformer::ExtractSignatureMessage() {
   1251   TEST_AND_RETURN_FALSE(signatures_message_data_.empty());
   1252   TEST_AND_RETURN_FALSE(buffer_offset_ == manifest_.signatures_offset());
   1253   TEST_AND_RETURN_FALSE(buffer_.size() >= manifest_.signatures_size());
   1254   signatures_message_data_.assign(
   1255       buffer_.begin(),
   1256       buffer_.begin() + manifest_.signatures_size());
   1257 
   1258   // Save the signature blob because if the update is interrupted after the
   1259   // download phase we don't go through this path anymore. Some alternatives to
   1260   // consider:
   1261   //
   1262   // 1. On resume, re-download the signature blob from the server and re-verify
   1263   // it.
   1264   //
   1265   // 2. Verify the signature as soon as it's received and don't checkpoint the
   1266   // blob and the signed sha-256 context.
   1267   LOG_IF(WARNING, !prefs_->SetString(kPrefsUpdateStateSignatureBlob,
   1268                                      string(signatures_message_data_.begin(),
   1269                                             signatures_message_data_.end())))
   1270       << "Unable to store the signature blob.";
   1271 
   1272   LOG(INFO) << "Extracted signature data of size "
   1273             << manifest_.signatures_size() << " at "
   1274             << manifest_.signatures_offset();
   1275   return true;
   1276 }
   1277 
   1278 bool DeltaPerformer::GetPublicKeyFromResponse(base::FilePath *out_tmp_key) {
   1279   if (hardware_->IsOfficialBuild() ||
   1280       utils::FileExists(public_key_path_.c_str()) ||
   1281       install_plan_->public_key_rsa.empty())
   1282     return false;
   1283 
   1284   if (!utils::DecodeAndStoreBase64String(install_plan_->public_key_rsa,
   1285                                          out_tmp_key))
   1286     return false;
   1287 
   1288   return true;
   1289 }
   1290 
   1291 ErrorCode DeltaPerformer::ValidateMetadataSignature(
   1292     const brillo::Blob& payload) {
   1293   if (payload.size() < metadata_size_ + metadata_signature_size_)
   1294     return ErrorCode::kDownloadMetadataSignatureError;
   1295 
   1296   brillo::Blob metadata_signature_blob, metadata_signature_protobuf_blob;
   1297   if (!install_plan_->metadata_signature.empty()) {
   1298     // Convert base64-encoded signature to raw bytes.
   1299     if (!brillo::data_encoding::Base64Decode(
   1300         install_plan_->metadata_signature, &metadata_signature_blob)) {
   1301       LOG(ERROR) << "Unable to decode base64 metadata signature: "
   1302                  << install_plan_->metadata_signature;
   1303       return ErrorCode::kDownloadMetadataSignatureError;
   1304     }
   1305   } else if (major_payload_version_ == kBrilloMajorPayloadVersion) {
   1306     metadata_signature_protobuf_blob.assign(payload.begin() + metadata_size_,
   1307                                             payload.begin() + metadata_size_ +
   1308                                             metadata_signature_size_);
   1309   }
   1310 
   1311   if (metadata_signature_blob.empty() &&
   1312       metadata_signature_protobuf_blob.empty()) {
   1313     if (install_plan_->hash_checks_mandatory) {
   1314       LOG(ERROR) << "Missing mandatory metadata signature in both Omaha "
   1315                  << "response and payload.";
   1316       return ErrorCode::kDownloadMetadataSignatureMissingError;
   1317     }
   1318 
   1319     LOG(WARNING) << "Cannot validate metadata as the signature is empty";
   1320     return ErrorCode::kSuccess;
   1321   }
   1322 
   1323   // See if we should use the public RSA key in the Omaha response.
   1324   base::FilePath path_to_public_key(public_key_path_);
   1325   base::FilePath tmp_key;
   1326   if (GetPublicKeyFromResponse(&tmp_key))
   1327     path_to_public_key = tmp_key;
   1328   ScopedPathUnlinker tmp_key_remover(tmp_key.value());
   1329   if (tmp_key.empty())
   1330     tmp_key_remover.set_should_remove(false);
   1331 
   1332   LOG(INFO) << "Verifying metadata hash signature using public key: "
   1333             << path_to_public_key.value();
   1334 
   1335   HashCalculator metadata_hasher;
   1336   metadata_hasher.Update(payload.data(), metadata_size_);
   1337   if (!metadata_hasher.Finalize()) {
   1338     LOG(ERROR) << "Unable to compute actual hash of manifest";
   1339     return ErrorCode::kDownloadMetadataSignatureVerificationError;
   1340   }
   1341 
   1342   brillo::Blob calculated_metadata_hash = metadata_hasher.raw_hash();
   1343   PayloadVerifier::PadRSA2048SHA256Hash(&calculated_metadata_hash);
   1344   if (calculated_metadata_hash.empty()) {
   1345     LOG(ERROR) << "Computed actual hash of metadata is empty.";
   1346     return ErrorCode::kDownloadMetadataSignatureVerificationError;
   1347   }
   1348 
   1349   if (!metadata_signature_blob.empty()) {
   1350     brillo::Blob expected_metadata_hash;
   1351     if (!PayloadVerifier::GetRawHashFromSignature(metadata_signature_blob,
   1352                                                   path_to_public_key.value(),
   1353                                                   &expected_metadata_hash)) {
   1354       LOG(ERROR) << "Unable to compute expected hash from metadata signature";
   1355       return ErrorCode::kDownloadMetadataSignatureError;
   1356     }
   1357     if (calculated_metadata_hash != expected_metadata_hash) {
   1358       LOG(ERROR) << "Manifest hash verification failed. Expected hash = ";
   1359       utils::HexDumpVector(expected_metadata_hash);
   1360       LOG(ERROR) << "Calculated hash = ";
   1361       utils::HexDumpVector(calculated_metadata_hash);
   1362       return ErrorCode::kDownloadMetadataSignatureMismatch;
   1363     }
   1364   } else {
   1365     if (!PayloadVerifier::VerifySignature(metadata_signature_protobuf_blob,
   1366                                           path_to_public_key.value(),
   1367                                           calculated_metadata_hash)) {
   1368       LOG(ERROR) << "Manifest hash verification failed.";
   1369       return ErrorCode::kDownloadMetadataSignatureMismatch;
   1370     }
   1371   }
   1372 
   1373   // The autoupdate_CatchBadSignatures test checks for this string in
   1374   // log-files. Keep in sync.
   1375   LOG(INFO) << "Metadata hash signature matches value in Omaha response.";
   1376   return ErrorCode::kSuccess;
   1377 }
   1378 
   1379 ErrorCode DeltaPerformer::ValidateManifest() {
   1380   // Perform assorted checks to sanity check the manifest, make sure it
   1381   // matches data from other sources, and that it is a supported version.
   1382 
   1383   bool has_old_fields =
   1384       (manifest_.has_old_kernel_info() || manifest_.has_old_rootfs_info());
   1385   for (const PartitionUpdate& partition : manifest_.partitions()) {
   1386     has_old_fields = has_old_fields || partition.has_old_partition_info();
   1387   }
   1388 
   1389   // The presence of an old partition hash is the sole indicator for a delta
   1390   // update.
   1391   InstallPayloadType actual_payload_type =
   1392       has_old_fields ? InstallPayloadType::kDelta : InstallPayloadType::kFull;
   1393 
   1394   if (install_plan_->payload_type == InstallPayloadType::kUnknown) {
   1395     LOG(INFO) << "Detected a '"
   1396               << InstallPayloadTypeToString(actual_payload_type)
   1397               << "' payload.";
   1398     install_plan_->payload_type = actual_payload_type;
   1399   } else if (install_plan_->payload_type != actual_payload_type) {
   1400     LOG(ERROR) << "InstallPlan expected a '"
   1401                << InstallPayloadTypeToString(install_plan_->payload_type)
   1402                << "' payload but the downloaded manifest contains a '"
   1403                << InstallPayloadTypeToString(actual_payload_type)
   1404                << "' payload.";
   1405     return ErrorCode::kPayloadMismatchedType;
   1406   }
   1407 
   1408   // Check that the minor version is compatible.
   1409   if (actual_payload_type == InstallPayloadType::kFull) {
   1410     if (manifest_.minor_version() != kFullPayloadMinorVersion) {
   1411       LOG(ERROR) << "Manifest contains minor version "
   1412                  << manifest_.minor_version()
   1413                  << ", but all full payloads should have version "
   1414                  << kFullPayloadMinorVersion << ".";
   1415       return ErrorCode::kUnsupportedMinorPayloadVersion;
   1416     }
   1417   } else {
   1418     if (manifest_.minor_version() != supported_minor_version_) {
   1419       LOG(ERROR) << "Manifest contains minor version "
   1420                  << manifest_.minor_version()
   1421                  << " not the supported "
   1422                  << supported_minor_version_;
   1423       return ErrorCode::kUnsupportedMinorPayloadVersion;
   1424     }
   1425   }
   1426 
   1427   if (major_payload_version_ != kChromeOSMajorPayloadVersion) {
   1428     if (manifest_.has_old_rootfs_info() ||
   1429         manifest_.has_new_rootfs_info() ||
   1430         manifest_.has_old_kernel_info() ||
   1431         manifest_.has_new_kernel_info() ||
   1432         manifest_.install_operations_size() != 0 ||
   1433         manifest_.kernel_install_operations_size() != 0) {
   1434       LOG(ERROR) << "Manifest contains deprecated field only supported in "
   1435                  << "major payload version 1, but the payload major version is "
   1436                  << major_payload_version_;
   1437       return ErrorCode::kPayloadMismatchedType;
   1438     }
   1439   }
   1440 
   1441   // TODO(garnold) we should be adding more and more manifest checks, such as
   1442   // partition boundaries etc (see chromium-os:37661).
   1443 
   1444   return ErrorCode::kSuccess;
   1445 }
   1446 
   1447 ErrorCode DeltaPerformer::ValidateOperationHash(
   1448     const InstallOperation& operation) {
   1449   if (!operation.data_sha256_hash().size()) {
   1450     if (!operation.data_length()) {
   1451       // Operations that do not have any data blob won't have any operation hash
   1452       // either. So, these operations are always considered validated since the
   1453       // metadata that contains all the non-data-blob portions of the operation
   1454       // has already been validated. This is true for both HTTP and HTTPS cases.
   1455       return ErrorCode::kSuccess;
   1456     }
   1457 
   1458     // No hash is present for an operation that has data blobs. This shouldn't
   1459     // happen normally for any client that has this code, because the
   1460     // corresponding update should have been produced with the operation
   1461     // hashes. So if it happens it means either we've turned operation hash
   1462     // generation off in DeltaDiffGenerator or it's a regression of some sort.
   1463     // One caveat though: The last operation is a dummy signature operation
   1464     // that doesn't have a hash at the time the manifest is created. So we
   1465     // should not complaint about that operation. This operation can be
   1466     // recognized by the fact that it's offset is mentioned in the manifest.
   1467     if (manifest_.signatures_offset() &&
   1468         manifest_.signatures_offset() == operation.data_offset()) {
   1469       LOG(INFO) << "Skipping hash verification for signature operation "
   1470                 << next_operation_num_ + 1;
   1471     } else {
   1472       if (install_plan_->hash_checks_mandatory) {
   1473         LOG(ERROR) << "Missing mandatory operation hash for operation "
   1474                    << next_operation_num_ + 1;
   1475         return ErrorCode::kDownloadOperationHashMissingError;
   1476       }
   1477 
   1478       LOG(WARNING) << "Cannot validate operation " << next_operation_num_ + 1
   1479                    << " as there's no operation hash in manifest";
   1480     }
   1481     return ErrorCode::kSuccess;
   1482   }
   1483 
   1484   brillo::Blob expected_op_hash;
   1485   expected_op_hash.assign(operation.data_sha256_hash().data(),
   1486                           (operation.data_sha256_hash().data() +
   1487                            operation.data_sha256_hash().size()));
   1488 
   1489   HashCalculator operation_hasher;
   1490   operation_hasher.Update(buffer_.data(), operation.data_length());
   1491   if (!operation_hasher.Finalize()) {
   1492     LOG(ERROR) << "Unable to compute actual hash of operation "
   1493                << next_operation_num_;
   1494     return ErrorCode::kDownloadOperationHashVerificationError;
   1495   }
   1496 
   1497   brillo::Blob calculated_op_hash = operation_hasher.raw_hash();
   1498   if (calculated_op_hash != expected_op_hash) {
   1499     LOG(ERROR) << "Hash verification failed for operation "
   1500                << next_operation_num_ << ". Expected hash = ";
   1501     utils::HexDumpVector(expected_op_hash);
   1502     LOG(ERROR) << "Calculated hash over " << operation.data_length()
   1503                << " bytes at offset: " << operation.data_offset() << " = ";
   1504     utils::HexDumpVector(calculated_op_hash);
   1505     return ErrorCode::kDownloadOperationHashMismatch;
   1506   }
   1507 
   1508   return ErrorCode::kSuccess;
   1509 }
   1510 
   1511 #define TEST_AND_RETURN_VAL(_retval, _condition)                \
   1512   do {                                                          \
   1513     if (!(_condition)) {                                        \
   1514       LOG(ERROR) << "VerifyPayload failure: " << #_condition;   \
   1515       return _retval;                                           \
   1516     }                                                           \
   1517   } while (0);
   1518 
   1519 ErrorCode DeltaPerformer::VerifyPayload(
   1520     const string& update_check_response_hash,
   1521     const uint64_t update_check_response_size) {
   1522 
   1523   // See if we should use the public RSA key in the Omaha response.
   1524   base::FilePath path_to_public_key(public_key_path_);
   1525   base::FilePath tmp_key;
   1526   if (GetPublicKeyFromResponse(&tmp_key))
   1527     path_to_public_key = tmp_key;
   1528   ScopedPathUnlinker tmp_key_remover(tmp_key.value());
   1529   if (tmp_key.empty())
   1530     tmp_key_remover.set_should_remove(false);
   1531 
   1532   LOG(INFO) << "Verifying payload using public key: "
   1533             << path_to_public_key.value();
   1534 
   1535   // Verifies the download size.
   1536   TEST_AND_RETURN_VAL(ErrorCode::kPayloadSizeMismatchError,
   1537                       update_check_response_size ==
   1538                       metadata_size_ + metadata_signature_size_ +
   1539                       buffer_offset_);
   1540 
   1541   // Verifies the payload hash.
   1542   const string& payload_hash_data = payload_hash_calculator_.hash();
   1543   TEST_AND_RETURN_VAL(ErrorCode::kDownloadPayloadVerificationError,
   1544                       !payload_hash_data.empty());
   1545   TEST_AND_RETURN_VAL(ErrorCode::kPayloadHashMismatchError,
   1546                       payload_hash_data == update_check_response_hash);
   1547 
   1548   // Verifies the signed payload hash.
   1549   if (!utils::FileExists(path_to_public_key.value().c_str())) {
   1550     LOG(WARNING) << "Not verifying signed delta payload -- missing public key.";
   1551     return ErrorCode::kSuccess;
   1552   }
   1553   TEST_AND_RETURN_VAL(ErrorCode::kSignedDeltaPayloadExpectedError,
   1554                       !signatures_message_data_.empty());
   1555   brillo::Blob hash_data = signed_hash_calculator_.raw_hash();
   1556   TEST_AND_RETURN_VAL(ErrorCode::kDownloadPayloadPubKeyVerificationError,
   1557                       PayloadVerifier::PadRSA2048SHA256Hash(&hash_data));
   1558   TEST_AND_RETURN_VAL(ErrorCode::kDownloadPayloadPubKeyVerificationError,
   1559                       !hash_data.empty());
   1560 
   1561   if (!PayloadVerifier::VerifySignature(
   1562       signatures_message_data_, path_to_public_key.value(), hash_data)) {
   1563     // The autoupdate_CatchBadSignatures test checks for this string
   1564     // in log-files. Keep in sync.
   1565     LOG(ERROR) << "Public key verification failed, thus update failed.";
   1566     return ErrorCode::kDownloadPayloadPubKeyVerificationError;
   1567   }
   1568 
   1569   LOG(INFO) << "Payload hash matches value in payload.";
   1570 
   1571   // At this point, we are guaranteed to have downloaded a full payload, i.e
   1572   // the one whose size matches the size mentioned in Omaha response. If any
   1573   // errors happen after this, it's likely a problem with the payload itself or
   1574   // the state of the system and not a problem with the URL or network.  So,
   1575   // indicate that to the download delegate so that AU can backoff
   1576   // appropriately.
   1577   if (download_delegate_)
   1578     download_delegate_->DownloadComplete();
   1579 
   1580   return ErrorCode::kSuccess;
   1581 }
   1582 
   1583 namespace {
   1584 void LogVerifyError(const string& type,
   1585                     const string& device,
   1586                     uint64_t size,
   1587                     const string& local_hash,
   1588                     const string& expected_hash) {
   1589   LOG(ERROR) << "This is a server-side error due to "
   1590              << "mismatched delta update image!";
   1591   LOG(ERROR) << "The delta I've been given contains a " << type << " delta "
   1592              << "update that must be applied over a " << type << " with "
   1593              << "a specific checksum, but the " << type << " we're starting "
   1594              << "with doesn't have that checksum! This means that "
   1595              << "the delta I've been given doesn't match my existing "
   1596              << "system. The " << type << " partition I have has hash: "
   1597              << local_hash << " but the update expected me to have "
   1598              << expected_hash << " .";
   1599   LOG(INFO) << "To get the checksum of the " << type << " partition run this"
   1600                "command: dd if=" << device << " bs=1M count=" << size
   1601             << " iflag=count_bytes 2>/dev/null | openssl dgst -sha256 -binary "
   1602                "| openssl base64";
   1603   LOG(INFO) << "To get the checksum of partitions in a bin file, "
   1604             << "run: .../src/scripts/sha256_partitions.sh .../file.bin";
   1605 }
   1606 
   1607 string StringForHashBytes(const void* bytes, size_t size) {
   1608   return brillo::data_encoding::Base64Encode(bytes, size);
   1609 }
   1610 }  // namespace
   1611 
   1612 bool DeltaPerformer::VerifySourcePartitions() {
   1613   LOG(INFO) << "Verifying source partitions.";
   1614   CHECK(manifest_valid_);
   1615   CHECK(install_plan_);
   1616   if (install_plan_->partitions.size() != partitions_.size()) {
   1617     DLOG(ERROR) << "The list of partitions in the InstallPlan doesn't match the "
   1618                    "list received in the payload. The InstallPlan has "
   1619                 << install_plan_->partitions.size()
   1620                 << " partitions while the payload has " << partitions_.size()
   1621                 << " partitions.";
   1622     return false;
   1623   }
   1624   for (size_t i = 0; i < partitions_.size(); ++i) {
   1625     if (partitions_[i].partition_name() != install_plan_->partitions[i].name) {
   1626       DLOG(ERROR) << "The InstallPlan's partition " << i << " is \""
   1627                   << install_plan_->partitions[i].name
   1628                   << "\" but the payload expects it to be \""
   1629                   << partitions_[i].partition_name()
   1630                   << "\". This is an error in the DeltaPerformer setup.";
   1631       return false;
   1632     }
   1633     if (!partitions_[i].has_old_partition_info())
   1634       continue;
   1635     const PartitionInfo& info = partitions_[i].old_partition_info();
   1636     const InstallPlan::Partition& plan_part = install_plan_->partitions[i];
   1637     bool valid =
   1638         !plan_part.source_hash.empty() &&
   1639         plan_part.source_hash.size() == info.hash().size() &&
   1640         memcmp(plan_part.source_hash.data(),
   1641                info.hash().data(),
   1642                plan_part.source_hash.size()) == 0;
   1643     if (!valid) {
   1644       LogVerifyError(partitions_[i].partition_name(),
   1645                      plan_part.source_path,
   1646                      info.hash().size(),
   1647                      StringForHashBytes(plan_part.source_hash.data(),
   1648                                         plan_part.source_hash.size()),
   1649                      StringForHashBytes(info.hash().data(),
   1650                                         info.hash().size()));
   1651       return false;
   1652     }
   1653   }
   1654   return true;
   1655 }
   1656 
   1657 void DeltaPerformer::DiscardBuffer(bool do_advance_offset,
   1658                                    size_t signed_hash_buffer_size) {
   1659   // Update the buffer offset.
   1660   if (do_advance_offset)
   1661     buffer_offset_ += buffer_.size();
   1662 
   1663   // Hash the content.
   1664   payload_hash_calculator_.Update(buffer_.data(), buffer_.size());
   1665   signed_hash_calculator_.Update(buffer_.data(), signed_hash_buffer_size);
   1666 
   1667   // Swap content with an empty vector to ensure that all memory is released.
   1668   brillo::Blob().swap(buffer_);
   1669 }
   1670 
   1671 bool DeltaPerformer::CanResumeUpdate(PrefsInterface* prefs,
   1672                                      string update_check_response_hash) {
   1673   int64_t next_operation = kUpdateStateOperationInvalid;
   1674   if (!(prefs->GetInt64(kPrefsUpdateStateNextOperation, &next_operation) &&
   1675         next_operation != kUpdateStateOperationInvalid &&
   1676         next_operation > 0))
   1677     return false;
   1678 
   1679   string interrupted_hash;
   1680   if (!(prefs->GetString(kPrefsUpdateCheckResponseHash, &interrupted_hash) &&
   1681         !interrupted_hash.empty() &&
   1682         interrupted_hash == update_check_response_hash))
   1683     return false;
   1684 
   1685   int64_t resumed_update_failures;
   1686   // Note that storing this value is optional, but if it is there it should not
   1687   // be more than the limit.
   1688   if (prefs->GetInt64(kPrefsResumedUpdateFailures, &resumed_update_failures) &&
   1689       resumed_update_failures > kMaxResumedUpdateFailures)
   1690     return false;
   1691 
   1692   // Sanity check the rest.
   1693   int64_t next_data_offset = -1;
   1694   if (!(prefs->GetInt64(kPrefsUpdateStateNextDataOffset, &next_data_offset) &&
   1695         next_data_offset >= 0))
   1696     return false;
   1697 
   1698   string sha256_context;
   1699   if (!(prefs->GetString(kPrefsUpdateStateSHA256Context, &sha256_context) &&
   1700         !sha256_context.empty()))
   1701     return false;
   1702 
   1703   int64_t manifest_metadata_size = 0;
   1704   if (!(prefs->GetInt64(kPrefsManifestMetadataSize, &manifest_metadata_size) &&
   1705         manifest_metadata_size > 0))
   1706     return false;
   1707 
   1708   int64_t manifest_signature_size = 0;
   1709   if (!(prefs->GetInt64(kPrefsManifestSignatureSize,
   1710                         &manifest_signature_size) &&
   1711         manifest_signature_size >= 0))
   1712     return false;
   1713 
   1714   return true;
   1715 }
   1716 
   1717 bool DeltaPerformer::ResetUpdateProgress(PrefsInterface* prefs, bool quick) {
   1718   TEST_AND_RETURN_FALSE(prefs->SetInt64(kPrefsUpdateStateNextOperation,
   1719                                         kUpdateStateOperationInvalid));
   1720   if (!quick) {
   1721     prefs->SetString(kPrefsUpdateCheckResponseHash, "");
   1722     prefs->SetInt64(kPrefsUpdateStateNextDataOffset, -1);
   1723     prefs->SetInt64(kPrefsUpdateStateNextDataLength, 0);
   1724     prefs->SetString(kPrefsUpdateStateSHA256Context, "");
   1725     prefs->SetString(kPrefsUpdateStateSignedSHA256Context, "");
   1726     prefs->SetString(kPrefsUpdateStateSignatureBlob, "");
   1727     prefs->SetInt64(kPrefsManifestMetadataSize, -1);
   1728     prefs->SetInt64(kPrefsManifestSignatureSize, -1);
   1729     prefs->SetInt64(kPrefsResumedUpdateFailures, 0);
   1730   }
   1731   return true;
   1732 }
   1733 
   1734 bool DeltaPerformer::CheckpointUpdateProgress() {
   1735   Terminator::set_exit_blocked(true);
   1736   if (last_updated_buffer_offset_ != buffer_offset_) {
   1737     // Resets the progress in case we die in the middle of the state update.
   1738     ResetUpdateProgress(prefs_, true);
   1739     TEST_AND_RETURN_FALSE(
   1740         prefs_->SetString(kPrefsUpdateStateSHA256Context,
   1741                           payload_hash_calculator_.GetContext()));
   1742     TEST_AND_RETURN_FALSE(
   1743         prefs_->SetString(kPrefsUpdateStateSignedSHA256Context,
   1744                           signed_hash_calculator_.GetContext()));
   1745     TEST_AND_RETURN_FALSE(prefs_->SetInt64(kPrefsUpdateStateNextDataOffset,
   1746                                            buffer_offset_));
   1747     last_updated_buffer_offset_ = buffer_offset_;
   1748 
   1749     if (next_operation_num_ < num_total_operations_) {
   1750       size_t partition_index = current_partition_;
   1751       while (next_operation_num_ >= acc_num_operations_[partition_index])
   1752         partition_index++;
   1753       const size_t partition_operation_num = next_operation_num_ - (
   1754           partition_index ? acc_num_operations_[partition_index - 1] : 0);
   1755       const InstallOperation& op =
   1756           partitions_[partition_index].operations(partition_operation_num);
   1757       TEST_AND_RETURN_FALSE(prefs_->SetInt64(kPrefsUpdateStateNextDataLength,
   1758                                              op.data_length()));
   1759     } else {
   1760       TEST_AND_RETURN_FALSE(prefs_->SetInt64(kPrefsUpdateStateNextDataLength,
   1761                                              0));
   1762     }
   1763   }
   1764   TEST_AND_RETURN_FALSE(prefs_->SetInt64(kPrefsUpdateStateNextOperation,
   1765                                          next_operation_num_));
   1766   return true;
   1767 }
   1768 
   1769 bool DeltaPerformer::PrimeUpdateState() {
   1770   CHECK(manifest_valid_);
   1771   block_size_ = manifest_.block_size();
   1772 
   1773   int64_t next_operation = kUpdateStateOperationInvalid;
   1774   if (!prefs_->GetInt64(kPrefsUpdateStateNextOperation, &next_operation) ||
   1775       next_operation == kUpdateStateOperationInvalid ||
   1776       next_operation <= 0) {
   1777     // Initiating a new update, no more state needs to be initialized.
   1778     return true;
   1779   }
   1780   next_operation_num_ = next_operation;
   1781 
   1782   // Resuming an update -- load the rest of the update state.
   1783   int64_t next_data_offset = -1;
   1784   TEST_AND_RETURN_FALSE(prefs_->GetInt64(kPrefsUpdateStateNextDataOffset,
   1785                                          &next_data_offset) &&
   1786                         next_data_offset >= 0);
   1787   buffer_offset_ = next_data_offset;
   1788 
   1789   // The signed hash context and the signature blob may be empty if the
   1790   // interrupted update didn't reach the signature.
   1791   string signed_hash_context;
   1792   if (prefs_->GetString(kPrefsUpdateStateSignedSHA256Context,
   1793                         &signed_hash_context)) {
   1794     TEST_AND_RETURN_FALSE(
   1795         signed_hash_calculator_.SetContext(signed_hash_context));
   1796   }
   1797 
   1798   string signature_blob;
   1799   if (prefs_->GetString(kPrefsUpdateStateSignatureBlob, &signature_blob)) {
   1800     signatures_message_data_.assign(signature_blob.begin(),
   1801                                     signature_blob.end());
   1802   }
   1803 
   1804   string hash_context;
   1805   TEST_AND_RETURN_FALSE(prefs_->GetString(kPrefsUpdateStateSHA256Context,
   1806                                           &hash_context) &&
   1807                         payload_hash_calculator_.SetContext(hash_context));
   1808 
   1809   int64_t manifest_metadata_size = 0;
   1810   TEST_AND_RETURN_FALSE(prefs_->GetInt64(kPrefsManifestMetadataSize,
   1811                                          &manifest_metadata_size) &&
   1812                         manifest_metadata_size > 0);
   1813   metadata_size_ = manifest_metadata_size;
   1814 
   1815   int64_t manifest_signature_size = 0;
   1816   TEST_AND_RETURN_FALSE(
   1817       prefs_->GetInt64(kPrefsManifestSignatureSize, &manifest_signature_size) &&
   1818       manifest_signature_size >= 0);
   1819   metadata_signature_size_ = manifest_signature_size;
   1820 
   1821   // Advance the download progress to reflect what doesn't need to be
   1822   // re-downloaded.
   1823   total_bytes_received_ += buffer_offset_;
   1824 
   1825   // Speculatively count the resume as a failure.
   1826   int64_t resumed_update_failures;
   1827   if (prefs_->GetInt64(kPrefsResumedUpdateFailures, &resumed_update_failures)) {
   1828     resumed_update_failures++;
   1829   } else {
   1830     resumed_update_failures = 1;
   1831   }
   1832   prefs_->SetInt64(kPrefsResumedUpdateFailures, resumed_update_failures);
   1833   return true;
   1834 }
   1835 
   1836 }  // namespace chromeos_update_engine
   1837