1 //===--- SemaExprCXX.cpp - Semantic Analysis for Expressions --------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 /// 10 /// \file 11 /// \brief Implements semantic analysis for C++ expressions. 12 /// 13 //===----------------------------------------------------------------------===// 14 15 #include "clang/Sema/SemaInternal.h" 16 #include "TreeTransform.h" 17 #include "TypeLocBuilder.h" 18 #include "clang/AST/ASTContext.h" 19 #include "clang/AST/ASTLambda.h" 20 #include "clang/AST/CXXInheritance.h" 21 #include "clang/AST/CharUnits.h" 22 #include "clang/AST/DeclObjC.h" 23 #include "clang/AST/ExprCXX.h" 24 #include "clang/AST/ExprObjC.h" 25 #include "clang/AST/RecursiveASTVisitor.h" 26 #include "clang/AST/TypeLoc.h" 27 #include "clang/Basic/PartialDiagnostic.h" 28 #include "clang/Basic/TargetInfo.h" 29 #include "clang/Lex/Preprocessor.h" 30 #include "clang/Sema/DeclSpec.h" 31 #include "clang/Sema/Initialization.h" 32 #include "clang/Sema/Lookup.h" 33 #include "clang/Sema/ParsedTemplate.h" 34 #include "clang/Sema/Scope.h" 35 #include "clang/Sema/ScopeInfo.h" 36 #include "clang/Sema/SemaLambda.h" 37 #include "clang/Sema/TemplateDeduction.h" 38 #include "llvm/ADT/APInt.h" 39 #include "llvm/ADT/STLExtras.h" 40 #include "llvm/Support/ErrorHandling.h" 41 using namespace clang; 42 using namespace sema; 43 44 /// \brief Handle the result of the special case name lookup for inheriting 45 /// constructor declarations. 'NS::X::X' and 'NS::X<...>::X' are treated as 46 /// constructor names in member using declarations, even if 'X' is not the 47 /// name of the corresponding type. 48 ParsedType Sema::getInheritingConstructorName(CXXScopeSpec &SS, 49 SourceLocation NameLoc, 50 IdentifierInfo &Name) { 51 NestedNameSpecifier *NNS = SS.getScopeRep(); 52 53 // Convert the nested-name-specifier into a type. 54 QualType Type; 55 switch (NNS->getKind()) { 56 case NestedNameSpecifier::TypeSpec: 57 case NestedNameSpecifier::TypeSpecWithTemplate: 58 Type = QualType(NNS->getAsType(), 0); 59 break; 60 61 case NestedNameSpecifier::Identifier: 62 // Strip off the last layer of the nested-name-specifier and build a 63 // typename type for it. 64 assert(NNS->getAsIdentifier() == &Name && "not a constructor name"); 65 Type = Context.getDependentNameType(ETK_None, NNS->getPrefix(), 66 NNS->getAsIdentifier()); 67 break; 68 69 case NestedNameSpecifier::Global: 70 case NestedNameSpecifier::Super: 71 case NestedNameSpecifier::Namespace: 72 case NestedNameSpecifier::NamespaceAlias: 73 llvm_unreachable("Nested name specifier is not a type for inheriting ctor"); 74 } 75 76 // This reference to the type is located entirely at the location of the 77 // final identifier in the qualified-id. 78 return CreateParsedType(Type, 79 Context.getTrivialTypeSourceInfo(Type, NameLoc)); 80 } 81 82 ParsedType Sema::getDestructorName(SourceLocation TildeLoc, 83 IdentifierInfo &II, 84 SourceLocation NameLoc, 85 Scope *S, CXXScopeSpec &SS, 86 ParsedType ObjectTypePtr, 87 bool EnteringContext) { 88 // Determine where to perform name lookup. 89 90 // FIXME: This area of the standard is very messy, and the current 91 // wording is rather unclear about which scopes we search for the 92 // destructor name; see core issues 399 and 555. Issue 399 in 93 // particular shows where the current description of destructor name 94 // lookup is completely out of line with existing practice, e.g., 95 // this appears to be ill-formed: 96 // 97 // namespace N { 98 // template <typename T> struct S { 99 // ~S(); 100 // }; 101 // } 102 // 103 // void f(N::S<int>* s) { 104 // s->N::S<int>::~S(); 105 // } 106 // 107 // See also PR6358 and PR6359. 108 // For this reason, we're currently only doing the C++03 version of this 109 // code; the C++0x version has to wait until we get a proper spec. 110 QualType SearchType; 111 DeclContext *LookupCtx = nullptr; 112 bool isDependent = false; 113 bool LookInScope = false; 114 115 if (SS.isInvalid()) 116 return ParsedType(); 117 118 // If we have an object type, it's because we are in a 119 // pseudo-destructor-expression or a member access expression, and 120 // we know what type we're looking for. 121 if (ObjectTypePtr) 122 SearchType = GetTypeFromParser(ObjectTypePtr); 123 124 if (SS.isSet()) { 125 NestedNameSpecifier *NNS = SS.getScopeRep(); 126 127 bool AlreadySearched = false; 128 bool LookAtPrefix = true; 129 // C++11 [basic.lookup.qual]p6: 130 // If a pseudo-destructor-name (5.2.4) contains a nested-name-specifier, 131 // the type-names are looked up as types in the scope designated by the 132 // nested-name-specifier. Similarly, in a qualified-id of the form: 133 // 134 // nested-name-specifier[opt] class-name :: ~ class-name 135 // 136 // the second class-name is looked up in the same scope as the first. 137 // 138 // Here, we determine whether the code below is permitted to look at the 139 // prefix of the nested-name-specifier. 140 DeclContext *DC = computeDeclContext(SS, EnteringContext); 141 if (DC && DC->isFileContext()) { 142 AlreadySearched = true; 143 LookupCtx = DC; 144 isDependent = false; 145 } else if (DC && isa<CXXRecordDecl>(DC)) { 146 LookAtPrefix = false; 147 LookInScope = true; 148 } 149 150 // The second case from the C++03 rules quoted further above. 151 NestedNameSpecifier *Prefix = nullptr; 152 if (AlreadySearched) { 153 // Nothing left to do. 154 } else if (LookAtPrefix && (Prefix = NNS->getPrefix())) { 155 CXXScopeSpec PrefixSS; 156 PrefixSS.Adopt(NestedNameSpecifierLoc(Prefix, SS.location_data())); 157 LookupCtx = computeDeclContext(PrefixSS, EnteringContext); 158 isDependent = isDependentScopeSpecifier(PrefixSS); 159 } else if (ObjectTypePtr) { 160 LookupCtx = computeDeclContext(SearchType); 161 isDependent = SearchType->isDependentType(); 162 } else { 163 LookupCtx = computeDeclContext(SS, EnteringContext); 164 isDependent = LookupCtx && LookupCtx->isDependentContext(); 165 } 166 } else if (ObjectTypePtr) { 167 // C++ [basic.lookup.classref]p3: 168 // If the unqualified-id is ~type-name, the type-name is looked up 169 // in the context of the entire postfix-expression. If the type T 170 // of the object expression is of a class type C, the type-name is 171 // also looked up in the scope of class C. At least one of the 172 // lookups shall find a name that refers to (possibly 173 // cv-qualified) T. 174 LookupCtx = computeDeclContext(SearchType); 175 isDependent = SearchType->isDependentType(); 176 assert((isDependent || !SearchType->isIncompleteType()) && 177 "Caller should have completed object type"); 178 179 LookInScope = true; 180 } else { 181 // Perform lookup into the current scope (only). 182 LookInScope = true; 183 } 184 185 TypeDecl *NonMatchingTypeDecl = nullptr; 186 LookupResult Found(*this, &II, NameLoc, LookupOrdinaryName); 187 for (unsigned Step = 0; Step != 2; ++Step) { 188 // Look for the name first in the computed lookup context (if we 189 // have one) and, if that fails to find a match, in the scope (if 190 // we're allowed to look there). 191 Found.clear(); 192 if (Step == 0 && LookupCtx) 193 LookupQualifiedName(Found, LookupCtx); 194 else if (Step == 1 && LookInScope && S) 195 LookupName(Found, S); 196 else 197 continue; 198 199 // FIXME: Should we be suppressing ambiguities here? 200 if (Found.isAmbiguous()) 201 return ParsedType(); 202 203 if (TypeDecl *Type = Found.getAsSingle<TypeDecl>()) { 204 QualType T = Context.getTypeDeclType(Type); 205 MarkAnyDeclReferenced(Type->getLocation(), Type, /*OdrUse=*/false); 206 207 if (SearchType.isNull() || SearchType->isDependentType() || 208 Context.hasSameUnqualifiedType(T, SearchType)) { 209 // We found our type! 210 211 return CreateParsedType(T, 212 Context.getTrivialTypeSourceInfo(T, NameLoc)); 213 } 214 215 if (!SearchType.isNull()) 216 NonMatchingTypeDecl = Type; 217 } 218 219 // If the name that we found is a class template name, and it is 220 // the same name as the template name in the last part of the 221 // nested-name-specifier (if present) or the object type, then 222 // this is the destructor for that class. 223 // FIXME: This is a workaround until we get real drafting for core 224 // issue 399, for which there isn't even an obvious direction. 225 if (ClassTemplateDecl *Template = Found.getAsSingle<ClassTemplateDecl>()) { 226 QualType MemberOfType; 227 if (SS.isSet()) { 228 if (DeclContext *Ctx = computeDeclContext(SS, EnteringContext)) { 229 // Figure out the type of the context, if it has one. 230 if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx)) 231 MemberOfType = Context.getTypeDeclType(Record); 232 } 233 } 234 if (MemberOfType.isNull()) 235 MemberOfType = SearchType; 236 237 if (MemberOfType.isNull()) 238 continue; 239 240 // We're referring into a class template specialization. If the 241 // class template we found is the same as the template being 242 // specialized, we found what we are looking for. 243 if (const RecordType *Record = MemberOfType->getAs<RecordType>()) { 244 if (ClassTemplateSpecializationDecl *Spec 245 = dyn_cast<ClassTemplateSpecializationDecl>(Record->getDecl())) { 246 if (Spec->getSpecializedTemplate()->getCanonicalDecl() == 247 Template->getCanonicalDecl()) 248 return CreateParsedType( 249 MemberOfType, 250 Context.getTrivialTypeSourceInfo(MemberOfType, NameLoc)); 251 } 252 253 continue; 254 } 255 256 // We're referring to an unresolved class template 257 // specialization. Determine whether we class template we found 258 // is the same as the template being specialized or, if we don't 259 // know which template is being specialized, that it at least 260 // has the same name. 261 if (const TemplateSpecializationType *SpecType 262 = MemberOfType->getAs<TemplateSpecializationType>()) { 263 TemplateName SpecName = SpecType->getTemplateName(); 264 265 // The class template we found is the same template being 266 // specialized. 267 if (TemplateDecl *SpecTemplate = SpecName.getAsTemplateDecl()) { 268 if (SpecTemplate->getCanonicalDecl() == Template->getCanonicalDecl()) 269 return CreateParsedType( 270 MemberOfType, 271 Context.getTrivialTypeSourceInfo(MemberOfType, NameLoc)); 272 273 continue; 274 } 275 276 // The class template we found has the same name as the 277 // (dependent) template name being specialized. 278 if (DependentTemplateName *DepTemplate 279 = SpecName.getAsDependentTemplateName()) { 280 if (DepTemplate->isIdentifier() && 281 DepTemplate->getIdentifier() == Template->getIdentifier()) 282 return CreateParsedType( 283 MemberOfType, 284 Context.getTrivialTypeSourceInfo(MemberOfType, NameLoc)); 285 286 continue; 287 } 288 } 289 } 290 } 291 292 if (isDependent) { 293 // We didn't find our type, but that's okay: it's dependent 294 // anyway. 295 296 // FIXME: What if we have no nested-name-specifier? 297 QualType T = CheckTypenameType(ETK_None, SourceLocation(), 298 SS.getWithLocInContext(Context), 299 II, NameLoc); 300 return ParsedType::make(T); 301 } 302 303 if (NonMatchingTypeDecl) { 304 QualType T = Context.getTypeDeclType(NonMatchingTypeDecl); 305 Diag(NameLoc, diag::err_destructor_expr_type_mismatch) 306 << T << SearchType; 307 Diag(NonMatchingTypeDecl->getLocation(), diag::note_destructor_type_here) 308 << T; 309 } else if (ObjectTypePtr) 310 Diag(NameLoc, diag::err_ident_in_dtor_not_a_type) 311 << &II; 312 else { 313 SemaDiagnosticBuilder DtorDiag = Diag(NameLoc, 314 diag::err_destructor_class_name); 315 if (S) { 316 const DeclContext *Ctx = S->getEntity(); 317 if (const CXXRecordDecl *Class = dyn_cast_or_null<CXXRecordDecl>(Ctx)) 318 DtorDiag << FixItHint::CreateReplacement(SourceRange(NameLoc), 319 Class->getNameAsString()); 320 } 321 } 322 323 return ParsedType(); 324 } 325 326 ParsedType Sema::getDestructorType(const DeclSpec& DS, ParsedType ObjectType) { 327 if (DS.getTypeSpecType() == DeclSpec::TST_error || !ObjectType) 328 return ParsedType(); 329 assert(DS.getTypeSpecType() == DeclSpec::TST_decltype 330 && "only get destructor types from declspecs"); 331 QualType T = BuildDecltypeType(DS.getRepAsExpr(), DS.getTypeSpecTypeLoc()); 332 QualType SearchType = GetTypeFromParser(ObjectType); 333 if (SearchType->isDependentType() || Context.hasSameUnqualifiedType(SearchType, T)) { 334 return ParsedType::make(T); 335 } 336 337 Diag(DS.getTypeSpecTypeLoc(), diag::err_destructor_expr_type_mismatch) 338 << T << SearchType; 339 return ParsedType(); 340 } 341 342 bool Sema::checkLiteralOperatorId(const CXXScopeSpec &SS, 343 const UnqualifiedId &Name) { 344 assert(Name.getKind() == UnqualifiedId::IK_LiteralOperatorId); 345 346 if (!SS.isValid()) 347 return false; 348 349 switch (SS.getScopeRep()->getKind()) { 350 case NestedNameSpecifier::Identifier: 351 case NestedNameSpecifier::TypeSpec: 352 case NestedNameSpecifier::TypeSpecWithTemplate: 353 // Per C++11 [over.literal]p2, literal operators can only be declared at 354 // namespace scope. Therefore, this unqualified-id cannot name anything. 355 // Reject it early, because we have no AST representation for this in the 356 // case where the scope is dependent. 357 Diag(Name.getLocStart(), diag::err_literal_operator_id_outside_namespace) 358 << SS.getScopeRep(); 359 return true; 360 361 case NestedNameSpecifier::Global: 362 case NestedNameSpecifier::Super: 363 case NestedNameSpecifier::Namespace: 364 case NestedNameSpecifier::NamespaceAlias: 365 return false; 366 } 367 368 llvm_unreachable("unknown nested name specifier kind"); 369 } 370 371 /// \brief Build a C++ typeid expression with a type operand. 372 ExprResult Sema::BuildCXXTypeId(QualType TypeInfoType, 373 SourceLocation TypeidLoc, 374 TypeSourceInfo *Operand, 375 SourceLocation RParenLoc) { 376 // C++ [expr.typeid]p4: 377 // The top-level cv-qualifiers of the lvalue expression or the type-id 378 // that is the operand of typeid are always ignored. 379 // If the type of the type-id is a class type or a reference to a class 380 // type, the class shall be completely-defined. 381 Qualifiers Quals; 382 QualType T 383 = Context.getUnqualifiedArrayType(Operand->getType().getNonReferenceType(), 384 Quals); 385 if (T->getAs<RecordType>() && 386 RequireCompleteType(TypeidLoc, T, diag::err_incomplete_typeid)) 387 return ExprError(); 388 389 if (T->isVariablyModifiedType()) 390 return ExprError(Diag(TypeidLoc, diag::err_variably_modified_typeid) << T); 391 392 return new (Context) CXXTypeidExpr(TypeInfoType.withConst(), Operand, 393 SourceRange(TypeidLoc, RParenLoc)); 394 } 395 396 /// \brief Build a C++ typeid expression with an expression operand. 397 ExprResult Sema::BuildCXXTypeId(QualType TypeInfoType, 398 SourceLocation TypeidLoc, 399 Expr *E, 400 SourceLocation RParenLoc) { 401 bool WasEvaluated = false; 402 if (E && !E->isTypeDependent()) { 403 if (E->getType()->isPlaceholderType()) { 404 ExprResult result = CheckPlaceholderExpr(E); 405 if (result.isInvalid()) return ExprError(); 406 E = result.get(); 407 } 408 409 QualType T = E->getType(); 410 if (const RecordType *RecordT = T->getAs<RecordType>()) { 411 CXXRecordDecl *RecordD = cast<CXXRecordDecl>(RecordT->getDecl()); 412 // C++ [expr.typeid]p3: 413 // [...] If the type of the expression is a class type, the class 414 // shall be completely-defined. 415 if (RequireCompleteType(TypeidLoc, T, diag::err_incomplete_typeid)) 416 return ExprError(); 417 418 // C++ [expr.typeid]p3: 419 // When typeid is applied to an expression other than an glvalue of a 420 // polymorphic class type [...] [the] expression is an unevaluated 421 // operand. [...] 422 if (RecordD->isPolymorphic() && E->isGLValue()) { 423 // The subexpression is potentially evaluated; switch the context 424 // and recheck the subexpression. 425 ExprResult Result = TransformToPotentiallyEvaluated(E); 426 if (Result.isInvalid()) return ExprError(); 427 E = Result.get(); 428 429 // We require a vtable to query the type at run time. 430 MarkVTableUsed(TypeidLoc, RecordD); 431 WasEvaluated = true; 432 } 433 } 434 435 // C++ [expr.typeid]p4: 436 // [...] If the type of the type-id is a reference to a possibly 437 // cv-qualified type, the result of the typeid expression refers to a 438 // std::type_info object representing the cv-unqualified referenced 439 // type. 440 Qualifiers Quals; 441 QualType UnqualT = Context.getUnqualifiedArrayType(T, Quals); 442 if (!Context.hasSameType(T, UnqualT)) { 443 T = UnqualT; 444 E = ImpCastExprToType(E, UnqualT, CK_NoOp, E->getValueKind()).get(); 445 } 446 } 447 448 if (E->getType()->isVariablyModifiedType()) 449 return ExprError(Diag(TypeidLoc, diag::err_variably_modified_typeid) 450 << E->getType()); 451 else if (ActiveTemplateInstantiations.empty() && 452 E->HasSideEffects(Context, WasEvaluated)) { 453 // The expression operand for typeid is in an unevaluated expression 454 // context, so side effects could result in unintended consequences. 455 Diag(E->getExprLoc(), WasEvaluated 456 ? diag::warn_side_effects_typeid 457 : diag::warn_side_effects_unevaluated_context); 458 } 459 460 return new (Context) CXXTypeidExpr(TypeInfoType.withConst(), E, 461 SourceRange(TypeidLoc, RParenLoc)); 462 } 463 464 /// ActOnCXXTypeidOfType - Parse typeid( type-id ) or typeid (expression); 465 ExprResult 466 Sema::ActOnCXXTypeid(SourceLocation OpLoc, SourceLocation LParenLoc, 467 bool isType, void *TyOrExpr, SourceLocation RParenLoc) { 468 // Find the std::type_info type. 469 if (!getStdNamespace()) 470 return ExprError(Diag(OpLoc, diag::err_need_header_before_typeid)); 471 472 if (!CXXTypeInfoDecl) { 473 IdentifierInfo *TypeInfoII = &PP.getIdentifierTable().get("type_info"); 474 LookupResult R(*this, TypeInfoII, SourceLocation(), LookupTagName); 475 LookupQualifiedName(R, getStdNamespace()); 476 CXXTypeInfoDecl = R.getAsSingle<RecordDecl>(); 477 // Microsoft's typeinfo doesn't have type_info in std but in the global 478 // namespace if _HAS_EXCEPTIONS is defined to 0. See PR13153. 479 if (!CXXTypeInfoDecl && LangOpts.MSVCCompat) { 480 LookupQualifiedName(R, Context.getTranslationUnitDecl()); 481 CXXTypeInfoDecl = R.getAsSingle<RecordDecl>(); 482 } 483 if (!CXXTypeInfoDecl) 484 return ExprError(Diag(OpLoc, diag::err_need_header_before_typeid)); 485 } 486 487 if (!getLangOpts().RTTI) { 488 return ExprError(Diag(OpLoc, diag::err_no_typeid_with_fno_rtti)); 489 } 490 491 QualType TypeInfoType = Context.getTypeDeclType(CXXTypeInfoDecl); 492 493 if (isType) { 494 // The operand is a type; handle it as such. 495 TypeSourceInfo *TInfo = nullptr; 496 QualType T = GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrExpr), 497 &TInfo); 498 if (T.isNull()) 499 return ExprError(); 500 501 if (!TInfo) 502 TInfo = Context.getTrivialTypeSourceInfo(T, OpLoc); 503 504 return BuildCXXTypeId(TypeInfoType, OpLoc, TInfo, RParenLoc); 505 } 506 507 // The operand is an expression. 508 return BuildCXXTypeId(TypeInfoType, OpLoc, (Expr*)TyOrExpr, RParenLoc); 509 } 510 511 /// \brief Build a Microsoft __uuidof expression with a type operand. 512 ExprResult Sema::BuildCXXUuidof(QualType TypeInfoType, 513 SourceLocation TypeidLoc, 514 TypeSourceInfo *Operand, 515 SourceLocation RParenLoc) { 516 if (!Operand->getType()->isDependentType()) { 517 bool HasMultipleGUIDs = false; 518 if (!CXXUuidofExpr::GetUuidAttrOfType(Operand->getType(), 519 &HasMultipleGUIDs)) { 520 if (HasMultipleGUIDs) 521 return ExprError(Diag(TypeidLoc, diag::err_uuidof_with_multiple_guids)); 522 else 523 return ExprError(Diag(TypeidLoc, diag::err_uuidof_without_guid)); 524 } 525 } 526 527 return new (Context) CXXUuidofExpr(TypeInfoType.withConst(), Operand, 528 SourceRange(TypeidLoc, RParenLoc)); 529 } 530 531 /// \brief Build a Microsoft __uuidof expression with an expression operand. 532 ExprResult Sema::BuildCXXUuidof(QualType TypeInfoType, 533 SourceLocation TypeidLoc, 534 Expr *E, 535 SourceLocation RParenLoc) { 536 if (!E->getType()->isDependentType()) { 537 bool HasMultipleGUIDs = false; 538 if (!CXXUuidofExpr::GetUuidAttrOfType(E->getType(), &HasMultipleGUIDs) && 539 !E->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) { 540 if (HasMultipleGUIDs) 541 return ExprError(Diag(TypeidLoc, diag::err_uuidof_with_multiple_guids)); 542 else 543 return ExprError(Diag(TypeidLoc, diag::err_uuidof_without_guid)); 544 } 545 } 546 547 return new (Context) CXXUuidofExpr(TypeInfoType.withConst(), E, 548 SourceRange(TypeidLoc, RParenLoc)); 549 } 550 551 /// ActOnCXXUuidof - Parse __uuidof( type-id ) or __uuidof (expression); 552 ExprResult 553 Sema::ActOnCXXUuidof(SourceLocation OpLoc, SourceLocation LParenLoc, 554 bool isType, void *TyOrExpr, SourceLocation RParenLoc) { 555 // If MSVCGuidDecl has not been cached, do the lookup. 556 if (!MSVCGuidDecl) { 557 IdentifierInfo *GuidII = &PP.getIdentifierTable().get("_GUID"); 558 LookupResult R(*this, GuidII, SourceLocation(), LookupTagName); 559 LookupQualifiedName(R, Context.getTranslationUnitDecl()); 560 MSVCGuidDecl = R.getAsSingle<RecordDecl>(); 561 if (!MSVCGuidDecl) 562 return ExprError(Diag(OpLoc, diag::err_need_header_before_ms_uuidof)); 563 } 564 565 QualType GuidType = Context.getTypeDeclType(MSVCGuidDecl); 566 567 if (isType) { 568 // The operand is a type; handle it as such. 569 TypeSourceInfo *TInfo = nullptr; 570 QualType T = GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrExpr), 571 &TInfo); 572 if (T.isNull()) 573 return ExprError(); 574 575 if (!TInfo) 576 TInfo = Context.getTrivialTypeSourceInfo(T, OpLoc); 577 578 return BuildCXXUuidof(GuidType, OpLoc, TInfo, RParenLoc); 579 } 580 581 // The operand is an expression. 582 return BuildCXXUuidof(GuidType, OpLoc, (Expr*)TyOrExpr, RParenLoc); 583 } 584 585 /// ActOnCXXBoolLiteral - Parse {true,false} literals. 586 ExprResult 587 Sema::ActOnCXXBoolLiteral(SourceLocation OpLoc, tok::TokenKind Kind) { 588 assert((Kind == tok::kw_true || Kind == tok::kw_false) && 589 "Unknown C++ Boolean value!"); 590 return new (Context) 591 CXXBoolLiteralExpr(Kind == tok::kw_true, Context.BoolTy, OpLoc); 592 } 593 594 /// ActOnCXXNullPtrLiteral - Parse 'nullptr'. 595 ExprResult 596 Sema::ActOnCXXNullPtrLiteral(SourceLocation Loc) { 597 return new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc); 598 } 599 600 /// ActOnCXXThrow - Parse throw expressions. 601 ExprResult 602 Sema::ActOnCXXThrow(Scope *S, SourceLocation OpLoc, Expr *Ex) { 603 bool IsThrownVarInScope = false; 604 if (Ex) { 605 // C++0x [class.copymove]p31: 606 // When certain criteria are met, an implementation is allowed to omit the 607 // copy/move construction of a class object [...] 608 // 609 // - in a throw-expression, when the operand is the name of a 610 // non-volatile automatic object (other than a function or catch- 611 // clause parameter) whose scope does not extend beyond the end of the 612 // innermost enclosing try-block (if there is one), the copy/move 613 // operation from the operand to the exception object (15.1) can be 614 // omitted by constructing the automatic object directly into the 615 // exception object 616 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Ex->IgnoreParens())) 617 if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) { 618 if (Var->hasLocalStorage() && !Var->getType().isVolatileQualified()) { 619 for( ; S; S = S->getParent()) { 620 if (S->isDeclScope(Var)) { 621 IsThrownVarInScope = true; 622 break; 623 } 624 625 if (S->getFlags() & 626 (Scope::FnScope | Scope::ClassScope | Scope::BlockScope | 627 Scope::FunctionPrototypeScope | Scope::ObjCMethodScope | 628 Scope::TryScope)) 629 break; 630 } 631 } 632 } 633 } 634 635 return BuildCXXThrow(OpLoc, Ex, IsThrownVarInScope); 636 } 637 638 ExprResult Sema::BuildCXXThrow(SourceLocation OpLoc, Expr *Ex, 639 bool IsThrownVarInScope) { 640 // Don't report an error if 'throw' is used in system headers. 641 if (!getLangOpts().CXXExceptions && 642 !getSourceManager().isInSystemHeader(OpLoc)) 643 Diag(OpLoc, diag::err_exceptions_disabled) << "throw"; 644 645 if (getCurScope() && getCurScope()->isOpenMPSimdDirectiveScope()) 646 Diag(OpLoc, diag::err_omp_simd_region_cannot_use_stmt) << "throw"; 647 648 if (Ex && !Ex->isTypeDependent()) { 649 QualType ExceptionObjectTy = Context.getExceptionObjectType(Ex->getType()); 650 if (CheckCXXThrowOperand(OpLoc, ExceptionObjectTy, Ex)) 651 return ExprError(); 652 653 // Initialize the exception result. This implicitly weeds out 654 // abstract types or types with inaccessible copy constructors. 655 656 // C++0x [class.copymove]p31: 657 // When certain criteria are met, an implementation is allowed to omit the 658 // copy/move construction of a class object [...] 659 // 660 // - in a throw-expression, when the operand is the name of a 661 // non-volatile automatic object (other than a function or 662 // catch-clause 663 // parameter) whose scope does not extend beyond the end of the 664 // innermost enclosing try-block (if there is one), the copy/move 665 // operation from the operand to the exception object (15.1) can be 666 // omitted by constructing the automatic object directly into the 667 // exception object 668 const VarDecl *NRVOVariable = nullptr; 669 if (IsThrownVarInScope) 670 NRVOVariable = getCopyElisionCandidate(QualType(), Ex, false); 671 672 InitializedEntity Entity = InitializedEntity::InitializeException( 673 OpLoc, ExceptionObjectTy, 674 /*NRVO=*/NRVOVariable != nullptr); 675 ExprResult Res = PerformMoveOrCopyInitialization( 676 Entity, NRVOVariable, QualType(), Ex, IsThrownVarInScope); 677 if (Res.isInvalid()) 678 return ExprError(); 679 Ex = Res.get(); 680 } 681 682 return new (Context) 683 CXXThrowExpr(Ex, Context.VoidTy, OpLoc, IsThrownVarInScope); 684 } 685 686 static void 687 collectPublicBases(CXXRecordDecl *RD, 688 llvm::DenseMap<CXXRecordDecl *, unsigned> &SubobjectsSeen, 689 llvm::SmallPtrSetImpl<CXXRecordDecl *> &VBases, 690 llvm::SetVector<CXXRecordDecl *> &PublicSubobjectsSeen, 691 bool ParentIsPublic) { 692 for (const CXXBaseSpecifier &BS : RD->bases()) { 693 CXXRecordDecl *BaseDecl = BS.getType()->getAsCXXRecordDecl(); 694 bool NewSubobject; 695 // Virtual bases constitute the same subobject. Non-virtual bases are 696 // always distinct subobjects. 697 if (BS.isVirtual()) 698 NewSubobject = VBases.insert(BaseDecl).second; 699 else 700 NewSubobject = true; 701 702 if (NewSubobject) 703 ++SubobjectsSeen[BaseDecl]; 704 705 // Only add subobjects which have public access throughout the entire chain. 706 bool PublicPath = ParentIsPublic && BS.getAccessSpecifier() == AS_public; 707 if (PublicPath) 708 PublicSubobjectsSeen.insert(BaseDecl); 709 710 // Recurse on to each base subobject. 711 collectPublicBases(BaseDecl, SubobjectsSeen, VBases, PublicSubobjectsSeen, 712 PublicPath); 713 } 714 } 715 716 static void getUnambiguousPublicSubobjects( 717 CXXRecordDecl *RD, llvm::SmallVectorImpl<CXXRecordDecl *> &Objects) { 718 llvm::DenseMap<CXXRecordDecl *, unsigned> SubobjectsSeen; 719 llvm::SmallSet<CXXRecordDecl *, 2> VBases; 720 llvm::SetVector<CXXRecordDecl *> PublicSubobjectsSeen; 721 SubobjectsSeen[RD] = 1; 722 PublicSubobjectsSeen.insert(RD); 723 collectPublicBases(RD, SubobjectsSeen, VBases, PublicSubobjectsSeen, 724 /*ParentIsPublic=*/true); 725 726 for (CXXRecordDecl *PublicSubobject : PublicSubobjectsSeen) { 727 // Skip ambiguous objects. 728 if (SubobjectsSeen[PublicSubobject] > 1) 729 continue; 730 731 Objects.push_back(PublicSubobject); 732 } 733 } 734 735 /// CheckCXXThrowOperand - Validate the operand of a throw. 736 bool Sema::CheckCXXThrowOperand(SourceLocation ThrowLoc, 737 QualType ExceptionObjectTy, Expr *E) { 738 // If the type of the exception would be an incomplete type or a pointer 739 // to an incomplete type other than (cv) void the program is ill-formed. 740 QualType Ty = ExceptionObjectTy; 741 bool isPointer = false; 742 if (const PointerType* Ptr = Ty->getAs<PointerType>()) { 743 Ty = Ptr->getPointeeType(); 744 isPointer = true; 745 } 746 if (!isPointer || !Ty->isVoidType()) { 747 if (RequireCompleteType(ThrowLoc, Ty, 748 isPointer ? diag::err_throw_incomplete_ptr 749 : diag::err_throw_incomplete, 750 E->getSourceRange())) 751 return true; 752 753 if (RequireNonAbstractType(ThrowLoc, ExceptionObjectTy, 754 diag::err_throw_abstract_type, E)) 755 return true; 756 } 757 758 // If the exception has class type, we need additional handling. 759 CXXRecordDecl *RD = Ty->getAsCXXRecordDecl(); 760 if (!RD) 761 return false; 762 763 // If we are throwing a polymorphic class type or pointer thereof, 764 // exception handling will make use of the vtable. 765 MarkVTableUsed(ThrowLoc, RD); 766 767 // If a pointer is thrown, the referenced object will not be destroyed. 768 if (isPointer) 769 return false; 770 771 // If the class has a destructor, we must be able to call it. 772 if (!RD->hasIrrelevantDestructor()) { 773 if (CXXDestructorDecl *Destructor = LookupDestructor(RD)) { 774 MarkFunctionReferenced(E->getExprLoc(), Destructor); 775 CheckDestructorAccess(E->getExprLoc(), Destructor, 776 PDiag(diag::err_access_dtor_exception) << Ty); 777 if (DiagnoseUseOfDecl(Destructor, E->getExprLoc())) 778 return true; 779 } 780 } 781 782 // The MSVC ABI creates a list of all types which can catch the exception 783 // object. This list also references the appropriate copy constructor to call 784 // if the object is caught by value and has a non-trivial copy constructor. 785 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) { 786 // We are only interested in the public, unambiguous bases contained within 787 // the exception object. Bases which are ambiguous or otherwise 788 // inaccessible are not catchable types. 789 llvm::SmallVector<CXXRecordDecl *, 2> UnambiguousPublicSubobjects; 790 getUnambiguousPublicSubobjects(RD, UnambiguousPublicSubobjects); 791 792 for (CXXRecordDecl *Subobject : UnambiguousPublicSubobjects) { 793 // Attempt to lookup the copy constructor. Various pieces of machinery 794 // will spring into action, like template instantiation, which means this 795 // cannot be a simple walk of the class's decls. Instead, we must perform 796 // lookup and overload resolution. 797 CXXConstructorDecl *CD = LookupCopyingConstructor(Subobject, 0); 798 if (!CD) 799 continue; 800 801 // Mark the constructor referenced as it is used by this throw expression. 802 MarkFunctionReferenced(E->getExprLoc(), CD); 803 804 // Skip this copy constructor if it is trivial, we don't need to record it 805 // in the catchable type data. 806 if (CD->isTrivial()) 807 continue; 808 809 // The copy constructor is non-trivial, create a mapping from this class 810 // type to this constructor. 811 // N.B. The selection of copy constructor is not sensitive to this 812 // particular throw-site. Lookup will be performed at the catch-site to 813 // ensure that the copy constructor is, in fact, accessible (via 814 // friendship or any other means). 815 Context.addCopyConstructorForExceptionObject(Subobject, CD); 816 817 // We don't keep the instantiated default argument expressions around so 818 // we must rebuild them here. 819 for (unsigned I = 1, E = CD->getNumParams(); I != E; ++I) { 820 // Skip any default arguments that we've already instantiated. 821 if (Context.getDefaultArgExprForConstructor(CD, I)) 822 continue; 823 824 Expr *DefaultArg = 825 BuildCXXDefaultArgExpr(ThrowLoc, CD, CD->getParamDecl(I)).get(); 826 Context.addDefaultArgExprForConstructor(CD, I, DefaultArg); 827 } 828 } 829 } 830 831 return false; 832 } 833 834 QualType Sema::getCurrentThisType() { 835 DeclContext *DC = getFunctionLevelDeclContext(); 836 QualType ThisTy = CXXThisTypeOverride; 837 if (CXXMethodDecl *method = dyn_cast<CXXMethodDecl>(DC)) { 838 if (method && method->isInstance()) 839 ThisTy = method->getThisType(Context); 840 } 841 if (ThisTy.isNull()) { 842 if (isGenericLambdaCallOperatorSpecialization(CurContext) && 843 CurContext->getParent()->getParent()->isRecord()) { 844 // This is a generic lambda call operator that is being instantiated 845 // within a default initializer - so use the enclosing class as 'this'. 846 // There is no enclosing member function to retrieve the 'this' pointer 847 // from. 848 QualType ClassTy = Context.getTypeDeclType( 849 cast<CXXRecordDecl>(CurContext->getParent()->getParent())); 850 // There are no cv-qualifiers for 'this' within default initializers, 851 // per [expr.prim.general]p4. 852 return Context.getPointerType(ClassTy); 853 } 854 } 855 return ThisTy; 856 } 857 858 Sema::CXXThisScopeRAII::CXXThisScopeRAII(Sema &S, 859 Decl *ContextDecl, 860 unsigned CXXThisTypeQuals, 861 bool Enabled) 862 : S(S), OldCXXThisTypeOverride(S.CXXThisTypeOverride), Enabled(false) 863 { 864 if (!Enabled || !ContextDecl) 865 return; 866 867 CXXRecordDecl *Record = nullptr; 868 if (ClassTemplateDecl *Template = dyn_cast<ClassTemplateDecl>(ContextDecl)) 869 Record = Template->getTemplatedDecl(); 870 else 871 Record = cast<CXXRecordDecl>(ContextDecl); 872 873 S.CXXThisTypeOverride 874 = S.Context.getPointerType( 875 S.Context.getRecordType(Record).withCVRQualifiers(CXXThisTypeQuals)); 876 877 this->Enabled = true; 878 } 879 880 881 Sema::CXXThisScopeRAII::~CXXThisScopeRAII() { 882 if (Enabled) { 883 S.CXXThisTypeOverride = OldCXXThisTypeOverride; 884 } 885 } 886 887 static Expr *captureThis(ASTContext &Context, RecordDecl *RD, 888 QualType ThisTy, SourceLocation Loc) { 889 FieldDecl *Field 890 = FieldDecl::Create(Context, RD, Loc, Loc, nullptr, ThisTy, 891 Context.getTrivialTypeSourceInfo(ThisTy, Loc), 892 nullptr, false, ICIS_NoInit); 893 Field->setImplicit(true); 894 Field->setAccess(AS_private); 895 RD->addDecl(Field); 896 return new (Context) CXXThisExpr(Loc, ThisTy, /*isImplicit*/true); 897 } 898 899 bool Sema::CheckCXXThisCapture(SourceLocation Loc, bool Explicit, 900 bool BuildAndDiagnose, const unsigned *const FunctionScopeIndexToStopAt) { 901 // We don't need to capture this in an unevaluated context. 902 if (isUnevaluatedContext() && !Explicit) 903 return true; 904 905 const unsigned MaxFunctionScopesIndex = FunctionScopeIndexToStopAt ? 906 *FunctionScopeIndexToStopAt : FunctionScopes.size() - 1; 907 // Otherwise, check that we can capture 'this'. 908 unsigned NumClosures = 0; 909 for (unsigned idx = MaxFunctionScopesIndex; idx != 0; idx--) { 910 if (CapturingScopeInfo *CSI = 911 dyn_cast<CapturingScopeInfo>(FunctionScopes[idx])) { 912 if (CSI->CXXThisCaptureIndex != 0) { 913 // 'this' is already being captured; there isn't anything more to do. 914 break; 915 } 916 LambdaScopeInfo *LSI = dyn_cast<LambdaScopeInfo>(CSI); 917 if (LSI && isGenericLambdaCallOperatorSpecialization(LSI->CallOperator)) { 918 // This context can't implicitly capture 'this'; fail out. 919 if (BuildAndDiagnose) 920 Diag(Loc, diag::err_this_capture) << Explicit; 921 return true; 922 } 923 if (CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_LambdaByref || 924 CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_LambdaByval || 925 CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_Block || 926 CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_CapturedRegion || 927 Explicit) { 928 // This closure can capture 'this'; continue looking upwards. 929 NumClosures++; 930 Explicit = false; 931 continue; 932 } 933 // This context can't implicitly capture 'this'; fail out. 934 if (BuildAndDiagnose) 935 Diag(Loc, diag::err_this_capture) << Explicit; 936 return true; 937 } 938 break; 939 } 940 if (!BuildAndDiagnose) return false; 941 // Mark that we're implicitly capturing 'this' in all the scopes we skipped. 942 // FIXME: We need to delay this marking in PotentiallyPotentiallyEvaluated 943 // contexts. 944 for (unsigned idx = MaxFunctionScopesIndex; NumClosures; 945 --idx, --NumClosures) { 946 CapturingScopeInfo *CSI = cast<CapturingScopeInfo>(FunctionScopes[idx]); 947 Expr *ThisExpr = nullptr; 948 QualType ThisTy = getCurrentThisType(); 949 if (LambdaScopeInfo *LSI = dyn_cast<LambdaScopeInfo>(CSI)) 950 // For lambda expressions, build a field and an initializing expression. 951 ThisExpr = captureThis(Context, LSI->Lambda, ThisTy, Loc); 952 else if (CapturedRegionScopeInfo *RSI 953 = dyn_cast<CapturedRegionScopeInfo>(FunctionScopes[idx])) 954 ThisExpr = captureThis(Context, RSI->TheRecordDecl, ThisTy, Loc); 955 956 bool isNested = NumClosures > 1; 957 CSI->addThisCapture(isNested, Loc, ThisTy, ThisExpr); 958 } 959 return false; 960 } 961 962 ExprResult Sema::ActOnCXXThis(SourceLocation Loc) { 963 /// C++ 9.3.2: In the body of a non-static member function, the keyword this 964 /// is a non-lvalue expression whose value is the address of the object for 965 /// which the function is called. 966 967 QualType ThisTy = getCurrentThisType(); 968 if (ThisTy.isNull()) return Diag(Loc, diag::err_invalid_this_use); 969 970 CheckCXXThisCapture(Loc); 971 return new (Context) CXXThisExpr(Loc, ThisTy, /*isImplicit=*/false); 972 } 973 974 bool Sema::isThisOutsideMemberFunctionBody(QualType BaseType) { 975 // If we're outside the body of a member function, then we'll have a specified 976 // type for 'this'. 977 if (CXXThisTypeOverride.isNull()) 978 return false; 979 980 // Determine whether we're looking into a class that's currently being 981 // defined. 982 CXXRecordDecl *Class = BaseType->getAsCXXRecordDecl(); 983 return Class && Class->isBeingDefined(); 984 } 985 986 ExprResult 987 Sema::ActOnCXXTypeConstructExpr(ParsedType TypeRep, 988 SourceLocation LParenLoc, 989 MultiExprArg exprs, 990 SourceLocation RParenLoc) { 991 if (!TypeRep) 992 return ExprError(); 993 994 TypeSourceInfo *TInfo; 995 QualType Ty = GetTypeFromParser(TypeRep, &TInfo); 996 if (!TInfo) 997 TInfo = Context.getTrivialTypeSourceInfo(Ty, SourceLocation()); 998 999 return BuildCXXTypeConstructExpr(TInfo, LParenLoc, exprs, RParenLoc); 1000 } 1001 1002 /// ActOnCXXTypeConstructExpr - Parse construction of a specified type. 1003 /// Can be interpreted either as function-style casting ("int(x)") 1004 /// or class type construction ("ClassType(x,y,z)") 1005 /// or creation of a value-initialized type ("int()"). 1006 ExprResult 1007 Sema::BuildCXXTypeConstructExpr(TypeSourceInfo *TInfo, 1008 SourceLocation LParenLoc, 1009 MultiExprArg Exprs, 1010 SourceLocation RParenLoc) { 1011 QualType Ty = TInfo->getType(); 1012 SourceLocation TyBeginLoc = TInfo->getTypeLoc().getBeginLoc(); 1013 1014 if (Ty->isDependentType() || CallExpr::hasAnyTypeDependentArguments(Exprs)) { 1015 return CXXUnresolvedConstructExpr::Create(Context, TInfo, LParenLoc, Exprs, 1016 RParenLoc); 1017 } 1018 1019 bool ListInitialization = LParenLoc.isInvalid(); 1020 assert((!ListInitialization || (Exprs.size() == 1 && isa<InitListExpr>(Exprs[0]))) 1021 && "List initialization must have initializer list as expression."); 1022 SourceRange FullRange = SourceRange(TyBeginLoc, 1023 ListInitialization ? Exprs[0]->getSourceRange().getEnd() : RParenLoc); 1024 1025 // C++ [expr.type.conv]p1: 1026 // If the expression list is a single expression, the type conversion 1027 // expression is equivalent (in definedness, and if defined in meaning) to the 1028 // corresponding cast expression. 1029 if (Exprs.size() == 1 && !ListInitialization) { 1030 Expr *Arg = Exprs[0]; 1031 return BuildCXXFunctionalCastExpr(TInfo, LParenLoc, Arg, RParenLoc); 1032 } 1033 1034 // C++14 [expr.type.conv]p2: The expression T(), where T is a 1035 // simple-type-specifier or typename-specifier for a non-array complete 1036 // object type or the (possibly cv-qualified) void type, creates a prvalue 1037 // of the specified type, whose value is that produced by value-initializing 1038 // an object of type T. 1039 QualType ElemTy = Ty; 1040 if (Ty->isArrayType()) { 1041 if (!ListInitialization) 1042 return ExprError(Diag(TyBeginLoc, 1043 diag::err_value_init_for_array_type) << FullRange); 1044 ElemTy = Context.getBaseElementType(Ty); 1045 } 1046 1047 if (!ListInitialization && Ty->isFunctionType()) 1048 return ExprError(Diag(TyBeginLoc, diag::err_value_init_for_function_type) 1049 << FullRange); 1050 1051 if (!Ty->isVoidType() && 1052 RequireCompleteType(TyBeginLoc, ElemTy, 1053 diag::err_invalid_incomplete_type_use, FullRange)) 1054 return ExprError(); 1055 1056 if (RequireNonAbstractType(TyBeginLoc, Ty, 1057 diag::err_allocation_of_abstract_type)) 1058 return ExprError(); 1059 1060 InitializedEntity Entity = InitializedEntity::InitializeTemporary(TInfo); 1061 InitializationKind Kind = 1062 Exprs.size() ? ListInitialization 1063 ? InitializationKind::CreateDirectList(TyBeginLoc) 1064 : InitializationKind::CreateDirect(TyBeginLoc, LParenLoc, RParenLoc) 1065 : InitializationKind::CreateValue(TyBeginLoc, LParenLoc, RParenLoc); 1066 InitializationSequence InitSeq(*this, Entity, Kind, Exprs); 1067 ExprResult Result = InitSeq.Perform(*this, Entity, Kind, Exprs); 1068 1069 if (Result.isInvalid() || !ListInitialization) 1070 return Result; 1071 1072 Expr *Inner = Result.get(); 1073 if (CXXBindTemporaryExpr *BTE = dyn_cast_or_null<CXXBindTemporaryExpr>(Inner)) 1074 Inner = BTE->getSubExpr(); 1075 if (!isa<CXXTemporaryObjectExpr>(Inner)) { 1076 // If we created a CXXTemporaryObjectExpr, that node also represents the 1077 // functional cast. Otherwise, create an explicit cast to represent 1078 // the syntactic form of a functional-style cast that was used here. 1079 // 1080 // FIXME: Creating a CXXFunctionalCastExpr around a CXXConstructExpr 1081 // would give a more consistent AST representation than using a 1082 // CXXTemporaryObjectExpr. It's also weird that the functional cast 1083 // is sometimes handled by initialization and sometimes not. 1084 QualType ResultType = Result.get()->getType(); 1085 Result = CXXFunctionalCastExpr::Create( 1086 Context, ResultType, Expr::getValueKindForType(TInfo->getType()), TInfo, 1087 CK_NoOp, Result.get(), /*Path=*/nullptr, LParenLoc, RParenLoc); 1088 } 1089 1090 return Result; 1091 } 1092 1093 /// doesUsualArrayDeleteWantSize - Answers whether the usual 1094 /// operator delete[] for the given type has a size_t parameter. 1095 static bool doesUsualArrayDeleteWantSize(Sema &S, SourceLocation loc, 1096 QualType allocType) { 1097 const RecordType *record = 1098 allocType->getBaseElementTypeUnsafe()->getAs<RecordType>(); 1099 if (!record) return false; 1100 1101 // Try to find an operator delete[] in class scope. 1102 1103 DeclarationName deleteName = 1104 S.Context.DeclarationNames.getCXXOperatorName(OO_Array_Delete); 1105 LookupResult ops(S, deleteName, loc, Sema::LookupOrdinaryName); 1106 S.LookupQualifiedName(ops, record->getDecl()); 1107 1108 // We're just doing this for information. 1109 ops.suppressDiagnostics(); 1110 1111 // Very likely: there's no operator delete[]. 1112 if (ops.empty()) return false; 1113 1114 // If it's ambiguous, it should be illegal to call operator delete[] 1115 // on this thing, so it doesn't matter if we allocate extra space or not. 1116 if (ops.isAmbiguous()) return false; 1117 1118 LookupResult::Filter filter = ops.makeFilter(); 1119 while (filter.hasNext()) { 1120 NamedDecl *del = filter.next()->getUnderlyingDecl(); 1121 1122 // C++0x [basic.stc.dynamic.deallocation]p2: 1123 // A template instance is never a usual deallocation function, 1124 // regardless of its signature. 1125 if (isa<FunctionTemplateDecl>(del)) { 1126 filter.erase(); 1127 continue; 1128 } 1129 1130 // C++0x [basic.stc.dynamic.deallocation]p2: 1131 // If class T does not declare [an operator delete[] with one 1132 // parameter] but does declare a member deallocation function 1133 // named operator delete[] with exactly two parameters, the 1134 // second of which has type std::size_t, then this function 1135 // is a usual deallocation function. 1136 if (!cast<CXXMethodDecl>(del)->isUsualDeallocationFunction()) { 1137 filter.erase(); 1138 continue; 1139 } 1140 } 1141 filter.done(); 1142 1143 if (!ops.isSingleResult()) return false; 1144 1145 const FunctionDecl *del = cast<FunctionDecl>(ops.getFoundDecl()); 1146 return (del->getNumParams() == 2); 1147 } 1148 1149 /// \brief Parsed a C++ 'new' expression (C++ 5.3.4). 1150 /// 1151 /// E.g.: 1152 /// @code new (memory) int[size][4] @endcode 1153 /// or 1154 /// @code ::new Foo(23, "hello") @endcode 1155 /// 1156 /// \param StartLoc The first location of the expression. 1157 /// \param UseGlobal True if 'new' was prefixed with '::'. 1158 /// \param PlacementLParen Opening paren of the placement arguments. 1159 /// \param PlacementArgs Placement new arguments. 1160 /// \param PlacementRParen Closing paren of the placement arguments. 1161 /// \param TypeIdParens If the type is in parens, the source range. 1162 /// \param D The type to be allocated, as well as array dimensions. 1163 /// \param Initializer The initializing expression or initializer-list, or null 1164 /// if there is none. 1165 ExprResult 1166 Sema::ActOnCXXNew(SourceLocation StartLoc, bool UseGlobal, 1167 SourceLocation PlacementLParen, MultiExprArg PlacementArgs, 1168 SourceLocation PlacementRParen, SourceRange TypeIdParens, 1169 Declarator &D, Expr *Initializer) { 1170 bool TypeContainsAuto = D.getDeclSpec().containsPlaceholderType(); 1171 1172 Expr *ArraySize = nullptr; 1173 // If the specified type is an array, unwrap it and save the expression. 1174 if (D.getNumTypeObjects() > 0 && 1175 D.getTypeObject(0).Kind == DeclaratorChunk::Array) { 1176 DeclaratorChunk &Chunk = D.getTypeObject(0); 1177 if (TypeContainsAuto) 1178 return ExprError(Diag(Chunk.Loc, diag::err_new_array_of_auto) 1179 << D.getSourceRange()); 1180 if (Chunk.Arr.hasStatic) 1181 return ExprError(Diag(Chunk.Loc, diag::err_static_illegal_in_new) 1182 << D.getSourceRange()); 1183 if (!Chunk.Arr.NumElts) 1184 return ExprError(Diag(Chunk.Loc, diag::err_array_new_needs_size) 1185 << D.getSourceRange()); 1186 1187 ArraySize = static_cast<Expr*>(Chunk.Arr.NumElts); 1188 D.DropFirstTypeObject(); 1189 } 1190 1191 // Every dimension shall be of constant size. 1192 if (ArraySize) { 1193 for (unsigned I = 0, N = D.getNumTypeObjects(); I < N; ++I) { 1194 if (D.getTypeObject(I).Kind != DeclaratorChunk::Array) 1195 break; 1196 1197 DeclaratorChunk::ArrayTypeInfo &Array = D.getTypeObject(I).Arr; 1198 if (Expr *NumElts = (Expr *)Array.NumElts) { 1199 if (!NumElts->isTypeDependent() && !NumElts->isValueDependent()) { 1200 if (getLangOpts().CPlusPlus14) { 1201 // C++1y [expr.new]p6: Every constant-expression in a noptr-new-declarator 1202 // shall be a converted constant expression (5.19) of type std::size_t 1203 // and shall evaluate to a strictly positive value. 1204 unsigned IntWidth = Context.getTargetInfo().getIntWidth(); 1205 assert(IntWidth && "Builtin type of size 0?"); 1206 llvm::APSInt Value(IntWidth); 1207 Array.NumElts 1208 = CheckConvertedConstantExpression(NumElts, Context.getSizeType(), Value, 1209 CCEK_NewExpr) 1210 .get(); 1211 } else { 1212 Array.NumElts 1213 = VerifyIntegerConstantExpression(NumElts, nullptr, 1214 diag::err_new_array_nonconst) 1215 .get(); 1216 } 1217 if (!Array.NumElts) 1218 return ExprError(); 1219 } 1220 } 1221 } 1222 } 1223 1224 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, /*Scope=*/nullptr); 1225 QualType AllocType = TInfo->getType(); 1226 if (D.isInvalidType()) 1227 return ExprError(); 1228 1229 SourceRange DirectInitRange; 1230 if (ParenListExpr *List = dyn_cast_or_null<ParenListExpr>(Initializer)) 1231 DirectInitRange = List->getSourceRange(); 1232 1233 return BuildCXXNew(SourceRange(StartLoc, D.getLocEnd()), UseGlobal, 1234 PlacementLParen, 1235 PlacementArgs, 1236 PlacementRParen, 1237 TypeIdParens, 1238 AllocType, 1239 TInfo, 1240 ArraySize, 1241 DirectInitRange, 1242 Initializer, 1243 TypeContainsAuto); 1244 } 1245 1246 static bool isLegalArrayNewInitializer(CXXNewExpr::InitializationStyle Style, 1247 Expr *Init) { 1248 if (!Init) 1249 return true; 1250 if (ParenListExpr *PLE = dyn_cast<ParenListExpr>(Init)) 1251 return PLE->getNumExprs() == 0; 1252 if (isa<ImplicitValueInitExpr>(Init)) 1253 return true; 1254 else if (CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Init)) 1255 return !CCE->isListInitialization() && 1256 CCE->getConstructor()->isDefaultConstructor(); 1257 else if (Style == CXXNewExpr::ListInit) { 1258 assert(isa<InitListExpr>(Init) && 1259 "Shouldn't create list CXXConstructExprs for arrays."); 1260 return true; 1261 } 1262 return false; 1263 } 1264 1265 ExprResult 1266 Sema::BuildCXXNew(SourceRange Range, bool UseGlobal, 1267 SourceLocation PlacementLParen, 1268 MultiExprArg PlacementArgs, 1269 SourceLocation PlacementRParen, 1270 SourceRange TypeIdParens, 1271 QualType AllocType, 1272 TypeSourceInfo *AllocTypeInfo, 1273 Expr *ArraySize, 1274 SourceRange DirectInitRange, 1275 Expr *Initializer, 1276 bool TypeMayContainAuto) { 1277 SourceRange TypeRange = AllocTypeInfo->getTypeLoc().getSourceRange(); 1278 SourceLocation StartLoc = Range.getBegin(); 1279 1280 CXXNewExpr::InitializationStyle initStyle; 1281 if (DirectInitRange.isValid()) { 1282 assert(Initializer && "Have parens but no initializer."); 1283 initStyle = CXXNewExpr::CallInit; 1284 } else if (Initializer && isa<InitListExpr>(Initializer)) 1285 initStyle = CXXNewExpr::ListInit; 1286 else { 1287 assert((!Initializer || isa<ImplicitValueInitExpr>(Initializer) || 1288 isa<CXXConstructExpr>(Initializer)) && 1289 "Initializer expression that cannot have been implicitly created."); 1290 initStyle = CXXNewExpr::NoInit; 1291 } 1292 1293 Expr **Inits = &Initializer; 1294 unsigned NumInits = Initializer ? 1 : 0; 1295 if (ParenListExpr *List = dyn_cast_or_null<ParenListExpr>(Initializer)) { 1296 assert(initStyle == CXXNewExpr::CallInit && "paren init for non-call init"); 1297 Inits = List->getExprs(); 1298 NumInits = List->getNumExprs(); 1299 } 1300 1301 // C++11 [dcl.spec.auto]p6. Deduce the type which 'auto' stands in for. 1302 if (TypeMayContainAuto && AllocType->isUndeducedType()) { 1303 if (initStyle == CXXNewExpr::NoInit || NumInits == 0) 1304 return ExprError(Diag(StartLoc, diag::err_auto_new_requires_ctor_arg) 1305 << AllocType << TypeRange); 1306 if (initStyle == CXXNewExpr::ListInit || 1307 (NumInits == 1 && isa<InitListExpr>(Inits[0]))) 1308 return ExprError(Diag(Inits[0]->getLocStart(), 1309 diag::err_auto_new_list_init) 1310 << AllocType << TypeRange); 1311 if (NumInits > 1) { 1312 Expr *FirstBad = Inits[1]; 1313 return ExprError(Diag(FirstBad->getLocStart(), 1314 diag::err_auto_new_ctor_multiple_expressions) 1315 << AllocType << TypeRange); 1316 } 1317 Expr *Deduce = Inits[0]; 1318 QualType DeducedType; 1319 if (DeduceAutoType(AllocTypeInfo, Deduce, DeducedType) == DAR_Failed) 1320 return ExprError(Diag(StartLoc, diag::err_auto_new_deduction_failure) 1321 << AllocType << Deduce->getType() 1322 << TypeRange << Deduce->getSourceRange()); 1323 if (DeducedType.isNull()) 1324 return ExprError(); 1325 AllocType = DeducedType; 1326 } 1327 1328 // Per C++0x [expr.new]p5, the type being constructed may be a 1329 // typedef of an array type. 1330 if (!ArraySize) { 1331 if (const ConstantArrayType *Array 1332 = Context.getAsConstantArrayType(AllocType)) { 1333 ArraySize = IntegerLiteral::Create(Context, Array->getSize(), 1334 Context.getSizeType(), 1335 TypeRange.getEnd()); 1336 AllocType = Array->getElementType(); 1337 } 1338 } 1339 1340 if (CheckAllocatedType(AllocType, TypeRange.getBegin(), TypeRange)) 1341 return ExprError(); 1342 1343 if (initStyle == CXXNewExpr::ListInit && 1344 isStdInitializerList(AllocType, nullptr)) { 1345 Diag(AllocTypeInfo->getTypeLoc().getBeginLoc(), 1346 diag::warn_dangling_std_initializer_list) 1347 << /*at end of FE*/0 << Inits[0]->getSourceRange(); 1348 } 1349 1350 // In ARC, infer 'retaining' for the allocated 1351 if (getLangOpts().ObjCAutoRefCount && 1352 AllocType.getObjCLifetime() == Qualifiers::OCL_None && 1353 AllocType->isObjCLifetimeType()) { 1354 AllocType = Context.getLifetimeQualifiedType(AllocType, 1355 AllocType->getObjCARCImplicitLifetime()); 1356 } 1357 1358 QualType ResultType = Context.getPointerType(AllocType); 1359 1360 if (ArraySize && ArraySize->getType()->isNonOverloadPlaceholderType()) { 1361 ExprResult result = CheckPlaceholderExpr(ArraySize); 1362 if (result.isInvalid()) return ExprError(); 1363 ArraySize = result.get(); 1364 } 1365 // C++98 5.3.4p6: "The expression in a direct-new-declarator shall have 1366 // integral or enumeration type with a non-negative value." 1367 // C++11 [expr.new]p6: The expression [...] shall be of integral or unscoped 1368 // enumeration type, or a class type for which a single non-explicit 1369 // conversion function to integral or unscoped enumeration type exists. 1370 // C++1y [expr.new]p6: The expression [...] is implicitly converted to 1371 // std::size_t. 1372 if (ArraySize && !ArraySize->isTypeDependent()) { 1373 ExprResult ConvertedSize; 1374 if (getLangOpts().CPlusPlus14) { 1375 assert(Context.getTargetInfo().getIntWidth() && "Builtin type of size 0?"); 1376 1377 ConvertedSize = PerformImplicitConversion(ArraySize, Context.getSizeType(), 1378 AA_Converting); 1379 1380 if (!ConvertedSize.isInvalid() && 1381 ArraySize->getType()->getAs<RecordType>()) 1382 // Diagnose the compatibility of this conversion. 1383 Diag(StartLoc, diag::warn_cxx98_compat_array_size_conversion) 1384 << ArraySize->getType() << 0 << "'size_t'"; 1385 } else { 1386 class SizeConvertDiagnoser : public ICEConvertDiagnoser { 1387 protected: 1388 Expr *ArraySize; 1389 1390 public: 1391 SizeConvertDiagnoser(Expr *ArraySize) 1392 : ICEConvertDiagnoser(/*AllowScopedEnumerations*/false, false, false), 1393 ArraySize(ArraySize) {} 1394 1395 SemaDiagnosticBuilder diagnoseNotInt(Sema &S, SourceLocation Loc, 1396 QualType T) override { 1397 return S.Diag(Loc, diag::err_array_size_not_integral) 1398 << S.getLangOpts().CPlusPlus11 << T; 1399 } 1400 1401 SemaDiagnosticBuilder diagnoseIncomplete( 1402 Sema &S, SourceLocation Loc, QualType T) override { 1403 return S.Diag(Loc, diag::err_array_size_incomplete_type) 1404 << T << ArraySize->getSourceRange(); 1405 } 1406 1407 SemaDiagnosticBuilder diagnoseExplicitConv( 1408 Sema &S, SourceLocation Loc, QualType T, QualType ConvTy) override { 1409 return S.Diag(Loc, diag::err_array_size_explicit_conversion) << T << ConvTy; 1410 } 1411 1412 SemaDiagnosticBuilder noteExplicitConv( 1413 Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override { 1414 return S.Diag(Conv->getLocation(), diag::note_array_size_conversion) 1415 << ConvTy->isEnumeralType() << ConvTy; 1416 } 1417 1418 SemaDiagnosticBuilder diagnoseAmbiguous( 1419 Sema &S, SourceLocation Loc, QualType T) override { 1420 return S.Diag(Loc, diag::err_array_size_ambiguous_conversion) << T; 1421 } 1422 1423 SemaDiagnosticBuilder noteAmbiguous( 1424 Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override { 1425 return S.Diag(Conv->getLocation(), diag::note_array_size_conversion) 1426 << ConvTy->isEnumeralType() << ConvTy; 1427 } 1428 1429 SemaDiagnosticBuilder diagnoseConversion(Sema &S, SourceLocation Loc, 1430 QualType T, 1431 QualType ConvTy) override { 1432 return S.Diag(Loc, 1433 S.getLangOpts().CPlusPlus11 1434 ? diag::warn_cxx98_compat_array_size_conversion 1435 : diag::ext_array_size_conversion) 1436 << T << ConvTy->isEnumeralType() << ConvTy; 1437 } 1438 } SizeDiagnoser(ArraySize); 1439 1440 ConvertedSize = PerformContextualImplicitConversion(StartLoc, ArraySize, 1441 SizeDiagnoser); 1442 } 1443 if (ConvertedSize.isInvalid()) 1444 return ExprError(); 1445 1446 ArraySize = ConvertedSize.get(); 1447 QualType SizeType = ArraySize->getType(); 1448 1449 if (!SizeType->isIntegralOrUnscopedEnumerationType()) 1450 return ExprError(); 1451 1452 // C++98 [expr.new]p7: 1453 // The expression in a direct-new-declarator shall have integral type 1454 // with a non-negative value. 1455 // 1456 // Let's see if this is a constant < 0. If so, we reject it out of 1457 // hand. Otherwise, if it's not a constant, we must have an unparenthesized 1458 // array type. 1459 // 1460 // Note: such a construct has well-defined semantics in C++11: it throws 1461 // std::bad_array_new_length. 1462 if (!ArraySize->isValueDependent()) { 1463 llvm::APSInt Value; 1464 // We've already performed any required implicit conversion to integer or 1465 // unscoped enumeration type. 1466 if (ArraySize->isIntegerConstantExpr(Value, Context)) { 1467 if (Value < llvm::APSInt( 1468 llvm::APInt::getNullValue(Value.getBitWidth()), 1469 Value.isUnsigned())) { 1470 if (getLangOpts().CPlusPlus11) 1471 Diag(ArraySize->getLocStart(), 1472 diag::warn_typecheck_negative_array_new_size) 1473 << ArraySize->getSourceRange(); 1474 else 1475 return ExprError(Diag(ArraySize->getLocStart(), 1476 diag::err_typecheck_negative_array_size) 1477 << ArraySize->getSourceRange()); 1478 } else if (!AllocType->isDependentType()) { 1479 unsigned ActiveSizeBits = 1480 ConstantArrayType::getNumAddressingBits(Context, AllocType, Value); 1481 if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) { 1482 if (getLangOpts().CPlusPlus11) 1483 Diag(ArraySize->getLocStart(), 1484 diag::warn_array_new_too_large) 1485 << Value.toString(10) 1486 << ArraySize->getSourceRange(); 1487 else 1488 return ExprError(Diag(ArraySize->getLocStart(), 1489 diag::err_array_too_large) 1490 << Value.toString(10) 1491 << ArraySize->getSourceRange()); 1492 } 1493 } 1494 } else if (TypeIdParens.isValid()) { 1495 // Can't have dynamic array size when the type-id is in parentheses. 1496 Diag(ArraySize->getLocStart(), diag::ext_new_paren_array_nonconst) 1497 << ArraySize->getSourceRange() 1498 << FixItHint::CreateRemoval(TypeIdParens.getBegin()) 1499 << FixItHint::CreateRemoval(TypeIdParens.getEnd()); 1500 1501 TypeIdParens = SourceRange(); 1502 } 1503 } 1504 1505 // Note that we do *not* convert the argument in any way. It can 1506 // be signed, larger than size_t, whatever. 1507 } 1508 1509 FunctionDecl *OperatorNew = nullptr; 1510 FunctionDecl *OperatorDelete = nullptr; 1511 1512 if (!AllocType->isDependentType() && 1513 !Expr::hasAnyTypeDependentArguments(PlacementArgs) && 1514 FindAllocationFunctions(StartLoc, 1515 SourceRange(PlacementLParen, PlacementRParen), 1516 UseGlobal, AllocType, ArraySize, PlacementArgs, 1517 OperatorNew, OperatorDelete)) 1518 return ExprError(); 1519 1520 // If this is an array allocation, compute whether the usual array 1521 // deallocation function for the type has a size_t parameter. 1522 bool UsualArrayDeleteWantsSize = false; 1523 if (ArraySize && !AllocType->isDependentType()) 1524 UsualArrayDeleteWantsSize 1525 = doesUsualArrayDeleteWantSize(*this, StartLoc, AllocType); 1526 1527 SmallVector<Expr *, 8> AllPlaceArgs; 1528 if (OperatorNew) { 1529 const FunctionProtoType *Proto = 1530 OperatorNew->getType()->getAs<FunctionProtoType>(); 1531 VariadicCallType CallType = Proto->isVariadic() ? VariadicFunction 1532 : VariadicDoesNotApply; 1533 1534 // We've already converted the placement args, just fill in any default 1535 // arguments. Skip the first parameter because we don't have a corresponding 1536 // argument. 1537 if (GatherArgumentsForCall(PlacementLParen, OperatorNew, Proto, 1, 1538 PlacementArgs, AllPlaceArgs, CallType)) 1539 return ExprError(); 1540 1541 if (!AllPlaceArgs.empty()) 1542 PlacementArgs = AllPlaceArgs; 1543 1544 // FIXME: This is wrong: PlacementArgs misses out the first (size) argument. 1545 DiagnoseSentinelCalls(OperatorNew, PlacementLParen, PlacementArgs); 1546 1547 // FIXME: Missing call to CheckFunctionCall or equivalent 1548 } 1549 1550 // Warn if the type is over-aligned and is being allocated by global operator 1551 // new. 1552 if (PlacementArgs.empty() && OperatorNew && 1553 (OperatorNew->isImplicit() || 1554 getSourceManager().isInSystemHeader(OperatorNew->getLocStart()))) { 1555 if (unsigned Align = Context.getPreferredTypeAlign(AllocType.getTypePtr())){ 1556 unsigned SuitableAlign = Context.getTargetInfo().getSuitableAlign(); 1557 if (Align > SuitableAlign) 1558 Diag(StartLoc, diag::warn_overaligned_type) 1559 << AllocType 1560 << unsigned(Align / Context.getCharWidth()) 1561 << unsigned(SuitableAlign / Context.getCharWidth()); 1562 } 1563 } 1564 1565 QualType InitType = AllocType; 1566 // Array 'new' can't have any initializers except empty parentheses. 1567 // Initializer lists are also allowed, in C++11. Rely on the parser for the 1568 // dialect distinction. 1569 if (ResultType->isArrayType() || ArraySize) { 1570 if (!isLegalArrayNewInitializer(initStyle, Initializer)) { 1571 SourceRange InitRange(Inits[0]->getLocStart(), 1572 Inits[NumInits - 1]->getLocEnd()); 1573 Diag(StartLoc, diag::err_new_array_init_args) << InitRange; 1574 return ExprError(); 1575 } 1576 if (InitListExpr *ILE = dyn_cast_or_null<InitListExpr>(Initializer)) { 1577 // We do the initialization typechecking against the array type 1578 // corresponding to the number of initializers + 1 (to also check 1579 // default-initialization). 1580 unsigned NumElements = ILE->getNumInits() + 1; 1581 InitType = Context.getConstantArrayType(AllocType, 1582 llvm::APInt(Context.getTypeSize(Context.getSizeType()), NumElements), 1583 ArrayType::Normal, 0); 1584 } 1585 } 1586 1587 // If we can perform the initialization, and we've not already done so, 1588 // do it now. 1589 if (!AllocType->isDependentType() && 1590 !Expr::hasAnyTypeDependentArguments( 1591 llvm::makeArrayRef(Inits, NumInits))) { 1592 // C++11 [expr.new]p15: 1593 // A new-expression that creates an object of type T initializes that 1594 // object as follows: 1595 InitializationKind Kind 1596 // - If the new-initializer is omitted, the object is default- 1597 // initialized (8.5); if no initialization is performed, 1598 // the object has indeterminate value 1599 = initStyle == CXXNewExpr::NoInit 1600 ? InitializationKind::CreateDefault(TypeRange.getBegin()) 1601 // - Otherwise, the new-initializer is interpreted according to the 1602 // initialization rules of 8.5 for direct-initialization. 1603 : initStyle == CXXNewExpr::ListInit 1604 ? InitializationKind::CreateDirectList(TypeRange.getBegin()) 1605 : InitializationKind::CreateDirect(TypeRange.getBegin(), 1606 DirectInitRange.getBegin(), 1607 DirectInitRange.getEnd()); 1608 1609 InitializedEntity Entity 1610 = InitializedEntity::InitializeNew(StartLoc, InitType); 1611 InitializationSequence InitSeq(*this, Entity, Kind, MultiExprArg(Inits, NumInits)); 1612 ExprResult FullInit = InitSeq.Perform(*this, Entity, Kind, 1613 MultiExprArg(Inits, NumInits)); 1614 if (FullInit.isInvalid()) 1615 return ExprError(); 1616 1617 // FullInit is our initializer; strip off CXXBindTemporaryExprs, because 1618 // we don't want the initialized object to be destructed. 1619 if (CXXBindTemporaryExpr *Binder = 1620 dyn_cast_or_null<CXXBindTemporaryExpr>(FullInit.get())) 1621 FullInit = Binder->getSubExpr(); 1622 1623 Initializer = FullInit.get(); 1624 } 1625 1626 // Mark the new and delete operators as referenced. 1627 if (OperatorNew) { 1628 if (DiagnoseUseOfDecl(OperatorNew, StartLoc)) 1629 return ExprError(); 1630 MarkFunctionReferenced(StartLoc, OperatorNew); 1631 } 1632 if (OperatorDelete) { 1633 if (DiagnoseUseOfDecl(OperatorDelete, StartLoc)) 1634 return ExprError(); 1635 MarkFunctionReferenced(StartLoc, OperatorDelete); 1636 } 1637 1638 // C++0x [expr.new]p17: 1639 // If the new expression creates an array of objects of class type, 1640 // access and ambiguity control are done for the destructor. 1641 QualType BaseAllocType = Context.getBaseElementType(AllocType); 1642 if (ArraySize && !BaseAllocType->isDependentType()) { 1643 if (const RecordType *BaseRecordType = BaseAllocType->getAs<RecordType>()) { 1644 if (CXXDestructorDecl *dtor = LookupDestructor( 1645 cast<CXXRecordDecl>(BaseRecordType->getDecl()))) { 1646 MarkFunctionReferenced(StartLoc, dtor); 1647 CheckDestructorAccess(StartLoc, dtor, 1648 PDiag(diag::err_access_dtor) 1649 << BaseAllocType); 1650 if (DiagnoseUseOfDecl(dtor, StartLoc)) 1651 return ExprError(); 1652 } 1653 } 1654 } 1655 1656 return new (Context) 1657 CXXNewExpr(Context, UseGlobal, OperatorNew, OperatorDelete, 1658 UsualArrayDeleteWantsSize, PlacementArgs, TypeIdParens, 1659 ArraySize, initStyle, Initializer, ResultType, AllocTypeInfo, 1660 Range, DirectInitRange); 1661 } 1662 1663 /// \brief Checks that a type is suitable as the allocated type 1664 /// in a new-expression. 1665 bool Sema::CheckAllocatedType(QualType AllocType, SourceLocation Loc, 1666 SourceRange R) { 1667 // C++ 5.3.4p1: "[The] type shall be a complete object type, but not an 1668 // abstract class type or array thereof. 1669 if (AllocType->isFunctionType()) 1670 return Diag(Loc, diag::err_bad_new_type) 1671 << AllocType << 0 << R; 1672 else if (AllocType->isReferenceType()) 1673 return Diag(Loc, diag::err_bad_new_type) 1674 << AllocType << 1 << R; 1675 else if (!AllocType->isDependentType() && 1676 RequireCompleteType(Loc, AllocType, diag::err_new_incomplete_type,R)) 1677 return true; 1678 else if (RequireNonAbstractType(Loc, AllocType, 1679 diag::err_allocation_of_abstract_type)) 1680 return true; 1681 else if (AllocType->isVariablyModifiedType()) 1682 return Diag(Loc, diag::err_variably_modified_new_type) 1683 << AllocType; 1684 else if (unsigned AddressSpace = AllocType.getAddressSpace()) 1685 return Diag(Loc, diag::err_address_space_qualified_new) 1686 << AllocType.getUnqualifiedType() << AddressSpace; 1687 else if (getLangOpts().ObjCAutoRefCount) { 1688 if (const ArrayType *AT = Context.getAsArrayType(AllocType)) { 1689 QualType BaseAllocType = Context.getBaseElementType(AT); 1690 if (BaseAllocType.getObjCLifetime() == Qualifiers::OCL_None && 1691 BaseAllocType->isObjCLifetimeType()) 1692 return Diag(Loc, diag::err_arc_new_array_without_ownership) 1693 << BaseAllocType; 1694 } 1695 } 1696 1697 return false; 1698 } 1699 1700 /// \brief Determine whether the given function is a non-placement 1701 /// deallocation function. 1702 static bool isNonPlacementDeallocationFunction(Sema &S, FunctionDecl *FD) { 1703 if (FD->isInvalidDecl()) 1704 return false; 1705 1706 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FD)) 1707 return Method->isUsualDeallocationFunction(); 1708 1709 if (FD->getOverloadedOperator() != OO_Delete && 1710 FD->getOverloadedOperator() != OO_Array_Delete) 1711 return false; 1712 1713 if (FD->getNumParams() == 1) 1714 return true; 1715 1716 return S.getLangOpts().SizedDeallocation && FD->getNumParams() == 2 && 1717 S.Context.hasSameUnqualifiedType(FD->getParamDecl(1)->getType(), 1718 S.Context.getSizeType()); 1719 } 1720 1721 /// FindAllocationFunctions - Finds the overloads of operator new and delete 1722 /// that are appropriate for the allocation. 1723 bool Sema::FindAllocationFunctions(SourceLocation StartLoc, SourceRange Range, 1724 bool UseGlobal, QualType AllocType, 1725 bool IsArray, MultiExprArg PlaceArgs, 1726 FunctionDecl *&OperatorNew, 1727 FunctionDecl *&OperatorDelete) { 1728 // --- Choosing an allocation function --- 1729 // C++ 5.3.4p8 - 14 & 18 1730 // 1) If UseGlobal is true, only look in the global scope. Else, also look 1731 // in the scope of the allocated class. 1732 // 2) If an array size is given, look for operator new[], else look for 1733 // operator new. 1734 // 3) The first argument is always size_t. Append the arguments from the 1735 // placement form. 1736 1737 SmallVector<Expr*, 8> AllocArgs(1 + PlaceArgs.size()); 1738 // We don't care about the actual value of this argument. 1739 // FIXME: Should the Sema create the expression and embed it in the syntax 1740 // tree? Or should the consumer just recalculate the value? 1741 IntegerLiteral Size(Context, llvm::APInt::getNullValue( 1742 Context.getTargetInfo().getPointerWidth(0)), 1743 Context.getSizeType(), 1744 SourceLocation()); 1745 AllocArgs[0] = &Size; 1746 std::copy(PlaceArgs.begin(), PlaceArgs.end(), AllocArgs.begin() + 1); 1747 1748 // C++ [expr.new]p8: 1749 // If the allocated type is a non-array type, the allocation 1750 // function's name is operator new and the deallocation function's 1751 // name is operator delete. If the allocated type is an array 1752 // type, the allocation function's name is operator new[] and the 1753 // deallocation function's name is operator delete[]. 1754 DeclarationName NewName = Context.DeclarationNames.getCXXOperatorName( 1755 IsArray ? OO_Array_New : OO_New); 1756 DeclarationName DeleteName = Context.DeclarationNames.getCXXOperatorName( 1757 IsArray ? OO_Array_Delete : OO_Delete); 1758 1759 QualType AllocElemType = Context.getBaseElementType(AllocType); 1760 1761 if (AllocElemType->isRecordType() && !UseGlobal) { 1762 CXXRecordDecl *Record 1763 = cast<CXXRecordDecl>(AllocElemType->getAs<RecordType>()->getDecl()); 1764 if (FindAllocationOverload(StartLoc, Range, NewName, AllocArgs, Record, 1765 /*AllowMissing=*/true, OperatorNew)) 1766 return true; 1767 } 1768 1769 if (!OperatorNew) { 1770 // Didn't find a member overload. Look for a global one. 1771 DeclareGlobalNewDelete(); 1772 DeclContext *TUDecl = Context.getTranslationUnitDecl(); 1773 bool FallbackEnabled = IsArray && Context.getLangOpts().MSVCCompat; 1774 if (FindAllocationOverload(StartLoc, Range, NewName, AllocArgs, TUDecl, 1775 /*AllowMissing=*/FallbackEnabled, OperatorNew, 1776 /*Diagnose=*/!FallbackEnabled)) { 1777 if (!FallbackEnabled) 1778 return true; 1779 1780 // MSVC will fall back on trying to find a matching global operator new 1781 // if operator new[] cannot be found. Also, MSVC will leak by not 1782 // generating a call to operator delete or operator delete[], but we 1783 // will not replicate that bug. 1784 NewName = Context.DeclarationNames.getCXXOperatorName(OO_New); 1785 DeleteName = Context.DeclarationNames.getCXXOperatorName(OO_Delete); 1786 if (FindAllocationOverload(StartLoc, Range, NewName, AllocArgs, TUDecl, 1787 /*AllowMissing=*/false, OperatorNew)) 1788 return true; 1789 } 1790 } 1791 1792 // We don't need an operator delete if we're running under 1793 // -fno-exceptions. 1794 if (!getLangOpts().Exceptions) { 1795 OperatorDelete = nullptr; 1796 return false; 1797 } 1798 1799 // C++ [expr.new]p19: 1800 // 1801 // If the new-expression begins with a unary :: operator, the 1802 // deallocation function's name is looked up in the global 1803 // scope. Otherwise, if the allocated type is a class type T or an 1804 // array thereof, the deallocation function's name is looked up in 1805 // the scope of T. If this lookup fails to find the name, or if 1806 // the allocated type is not a class type or array thereof, the 1807 // deallocation function's name is looked up in the global scope. 1808 LookupResult FoundDelete(*this, DeleteName, StartLoc, LookupOrdinaryName); 1809 if (AllocElemType->isRecordType() && !UseGlobal) { 1810 CXXRecordDecl *RD 1811 = cast<CXXRecordDecl>(AllocElemType->getAs<RecordType>()->getDecl()); 1812 LookupQualifiedName(FoundDelete, RD); 1813 } 1814 if (FoundDelete.isAmbiguous()) 1815 return true; // FIXME: clean up expressions? 1816 1817 if (FoundDelete.empty()) { 1818 DeclareGlobalNewDelete(); 1819 LookupQualifiedName(FoundDelete, Context.getTranslationUnitDecl()); 1820 } 1821 1822 FoundDelete.suppressDiagnostics(); 1823 1824 SmallVector<std::pair<DeclAccessPair,FunctionDecl*>, 2> Matches; 1825 1826 // Whether we're looking for a placement operator delete is dictated 1827 // by whether we selected a placement operator new, not by whether 1828 // we had explicit placement arguments. This matters for things like 1829 // struct A { void *operator new(size_t, int = 0); ... }; 1830 // A *a = new A() 1831 bool isPlacementNew = (!PlaceArgs.empty() || OperatorNew->param_size() != 1); 1832 1833 if (isPlacementNew) { 1834 // C++ [expr.new]p20: 1835 // A declaration of a placement deallocation function matches the 1836 // declaration of a placement allocation function if it has the 1837 // same number of parameters and, after parameter transformations 1838 // (8.3.5), all parameter types except the first are 1839 // identical. [...] 1840 // 1841 // To perform this comparison, we compute the function type that 1842 // the deallocation function should have, and use that type both 1843 // for template argument deduction and for comparison purposes. 1844 // 1845 // FIXME: this comparison should ignore CC and the like. 1846 QualType ExpectedFunctionType; 1847 { 1848 const FunctionProtoType *Proto 1849 = OperatorNew->getType()->getAs<FunctionProtoType>(); 1850 1851 SmallVector<QualType, 4> ArgTypes; 1852 ArgTypes.push_back(Context.VoidPtrTy); 1853 for (unsigned I = 1, N = Proto->getNumParams(); I < N; ++I) 1854 ArgTypes.push_back(Proto->getParamType(I)); 1855 1856 FunctionProtoType::ExtProtoInfo EPI; 1857 EPI.Variadic = Proto->isVariadic(); 1858 1859 ExpectedFunctionType 1860 = Context.getFunctionType(Context.VoidTy, ArgTypes, EPI); 1861 } 1862 1863 for (LookupResult::iterator D = FoundDelete.begin(), 1864 DEnd = FoundDelete.end(); 1865 D != DEnd; ++D) { 1866 FunctionDecl *Fn = nullptr; 1867 if (FunctionTemplateDecl *FnTmpl 1868 = dyn_cast<FunctionTemplateDecl>((*D)->getUnderlyingDecl())) { 1869 // Perform template argument deduction to try to match the 1870 // expected function type. 1871 TemplateDeductionInfo Info(StartLoc); 1872 if (DeduceTemplateArguments(FnTmpl, nullptr, ExpectedFunctionType, Fn, 1873 Info)) 1874 continue; 1875 } else 1876 Fn = cast<FunctionDecl>((*D)->getUnderlyingDecl()); 1877 1878 if (Context.hasSameType(Fn->getType(), ExpectedFunctionType)) 1879 Matches.push_back(std::make_pair(D.getPair(), Fn)); 1880 } 1881 } else { 1882 // C++ [expr.new]p20: 1883 // [...] Any non-placement deallocation function matches a 1884 // non-placement allocation function. [...] 1885 for (LookupResult::iterator D = FoundDelete.begin(), 1886 DEnd = FoundDelete.end(); 1887 D != DEnd; ++D) { 1888 if (FunctionDecl *Fn = dyn_cast<FunctionDecl>((*D)->getUnderlyingDecl())) 1889 if (isNonPlacementDeallocationFunction(*this, Fn)) 1890 Matches.push_back(std::make_pair(D.getPair(), Fn)); 1891 } 1892 1893 // C++1y [expr.new]p22: 1894 // For a non-placement allocation function, the normal deallocation 1895 // function lookup is used 1896 // C++1y [expr.delete]p?: 1897 // If [...] deallocation function lookup finds both a usual deallocation 1898 // function with only a pointer parameter and a usual deallocation 1899 // function with both a pointer parameter and a size parameter, then the 1900 // selected deallocation function shall be the one with two parameters. 1901 // Otherwise, the selected deallocation function shall be the function 1902 // with one parameter. 1903 if (getLangOpts().SizedDeallocation && Matches.size() == 2) { 1904 if (Matches[0].second->getNumParams() == 1) 1905 Matches.erase(Matches.begin()); 1906 else 1907 Matches.erase(Matches.begin() + 1); 1908 assert(Matches[0].second->getNumParams() == 2 && 1909 "found an unexpected usual deallocation function"); 1910 } 1911 } 1912 1913 // C++ [expr.new]p20: 1914 // [...] If the lookup finds a single matching deallocation 1915 // function, that function will be called; otherwise, no 1916 // deallocation function will be called. 1917 if (Matches.size() == 1) { 1918 OperatorDelete = Matches[0].second; 1919 1920 // C++0x [expr.new]p20: 1921 // If the lookup finds the two-parameter form of a usual 1922 // deallocation function (3.7.4.2) and that function, considered 1923 // as a placement deallocation function, would have been 1924 // selected as a match for the allocation function, the program 1925 // is ill-formed. 1926 if (!PlaceArgs.empty() && getLangOpts().CPlusPlus11 && 1927 isNonPlacementDeallocationFunction(*this, OperatorDelete)) { 1928 Diag(StartLoc, diag::err_placement_new_non_placement_delete) 1929 << SourceRange(PlaceArgs.front()->getLocStart(), 1930 PlaceArgs.back()->getLocEnd()); 1931 if (!OperatorDelete->isImplicit()) 1932 Diag(OperatorDelete->getLocation(), diag::note_previous_decl) 1933 << DeleteName; 1934 } else { 1935 CheckAllocationAccess(StartLoc, Range, FoundDelete.getNamingClass(), 1936 Matches[0].first); 1937 } 1938 } 1939 1940 return false; 1941 } 1942 1943 /// \brief Find an fitting overload for the allocation function 1944 /// in the specified scope. 1945 /// 1946 /// \param StartLoc The location of the 'new' token. 1947 /// \param Range The range of the placement arguments. 1948 /// \param Name The name of the function ('operator new' or 'operator new[]'). 1949 /// \param Args The placement arguments specified. 1950 /// \param Ctx The scope in which we should search; either a class scope or the 1951 /// translation unit. 1952 /// \param AllowMissing If \c true, report an error if we can't find any 1953 /// allocation functions. Otherwise, succeed but don't fill in \p 1954 /// Operator. 1955 /// \param Operator Filled in with the found allocation function. Unchanged if 1956 /// no allocation function was found. 1957 /// \param Diagnose If \c true, issue errors if the allocation function is not 1958 /// usable. 1959 bool Sema::FindAllocationOverload(SourceLocation StartLoc, SourceRange Range, 1960 DeclarationName Name, MultiExprArg Args, 1961 DeclContext *Ctx, 1962 bool AllowMissing, FunctionDecl *&Operator, 1963 bool Diagnose) { 1964 LookupResult R(*this, Name, StartLoc, LookupOrdinaryName); 1965 LookupQualifiedName(R, Ctx); 1966 if (R.empty()) { 1967 if (AllowMissing || !Diagnose) 1968 return false; 1969 return Diag(StartLoc, diag::err_ovl_no_viable_function_in_call) 1970 << Name << Range; 1971 } 1972 1973 if (R.isAmbiguous()) 1974 return true; 1975 1976 R.suppressDiagnostics(); 1977 1978 OverloadCandidateSet Candidates(StartLoc, OverloadCandidateSet::CSK_Normal); 1979 for (LookupResult::iterator Alloc = R.begin(), AllocEnd = R.end(); 1980 Alloc != AllocEnd; ++Alloc) { 1981 // Even member operator new/delete are implicitly treated as 1982 // static, so don't use AddMemberCandidate. 1983 NamedDecl *D = (*Alloc)->getUnderlyingDecl(); 1984 1985 if (FunctionTemplateDecl *FnTemplate = dyn_cast<FunctionTemplateDecl>(D)) { 1986 AddTemplateOverloadCandidate(FnTemplate, Alloc.getPair(), 1987 /*ExplicitTemplateArgs=*/nullptr, 1988 Args, Candidates, 1989 /*SuppressUserConversions=*/false); 1990 continue; 1991 } 1992 1993 FunctionDecl *Fn = cast<FunctionDecl>(D); 1994 AddOverloadCandidate(Fn, Alloc.getPair(), Args, Candidates, 1995 /*SuppressUserConversions=*/false); 1996 } 1997 1998 // Do the resolution. 1999 OverloadCandidateSet::iterator Best; 2000 switch (Candidates.BestViableFunction(*this, StartLoc, Best)) { 2001 case OR_Success: { 2002 // Got one! 2003 FunctionDecl *FnDecl = Best->Function; 2004 if (CheckAllocationAccess(StartLoc, Range, R.getNamingClass(), 2005 Best->FoundDecl, Diagnose) == AR_inaccessible) 2006 return true; 2007 2008 Operator = FnDecl; 2009 return false; 2010 } 2011 2012 case OR_No_Viable_Function: 2013 if (Diagnose) { 2014 Diag(StartLoc, diag::err_ovl_no_viable_function_in_call) 2015 << Name << Range; 2016 Candidates.NoteCandidates(*this, OCD_AllCandidates, Args); 2017 } 2018 return true; 2019 2020 case OR_Ambiguous: 2021 if (Diagnose) { 2022 Diag(StartLoc, diag::err_ovl_ambiguous_call) 2023 << Name << Range; 2024 Candidates.NoteCandidates(*this, OCD_ViableCandidates, Args); 2025 } 2026 return true; 2027 2028 case OR_Deleted: { 2029 if (Diagnose) { 2030 Diag(StartLoc, diag::err_ovl_deleted_call) 2031 << Best->Function->isDeleted() 2032 << Name 2033 << getDeletedOrUnavailableSuffix(Best->Function) 2034 << Range; 2035 Candidates.NoteCandidates(*this, OCD_AllCandidates, Args); 2036 } 2037 return true; 2038 } 2039 } 2040 llvm_unreachable("Unreachable, bad result from BestViableFunction"); 2041 } 2042 2043 2044 /// DeclareGlobalNewDelete - Declare the global forms of operator new and 2045 /// delete. These are: 2046 /// @code 2047 /// // C++03: 2048 /// void* operator new(std::size_t) throw(std::bad_alloc); 2049 /// void* operator new[](std::size_t) throw(std::bad_alloc); 2050 /// void operator delete(void *) throw(); 2051 /// void operator delete[](void *) throw(); 2052 /// // C++11: 2053 /// void* operator new(std::size_t); 2054 /// void* operator new[](std::size_t); 2055 /// void operator delete(void *) noexcept; 2056 /// void operator delete[](void *) noexcept; 2057 /// // C++1y: 2058 /// void* operator new(std::size_t); 2059 /// void* operator new[](std::size_t); 2060 /// void operator delete(void *) noexcept; 2061 /// void operator delete[](void *) noexcept; 2062 /// void operator delete(void *, std::size_t) noexcept; 2063 /// void operator delete[](void *, std::size_t) noexcept; 2064 /// @endcode 2065 /// Note that the placement and nothrow forms of new are *not* implicitly 2066 /// declared. Their use requires including \<new\>. 2067 void Sema::DeclareGlobalNewDelete() { 2068 if (GlobalNewDeleteDeclared) 2069 return; 2070 2071 // C++ [basic.std.dynamic]p2: 2072 // [...] The following allocation and deallocation functions (18.4) are 2073 // implicitly declared in global scope in each translation unit of a 2074 // program 2075 // 2076 // C++03: 2077 // void* operator new(std::size_t) throw(std::bad_alloc); 2078 // void* operator new[](std::size_t) throw(std::bad_alloc); 2079 // void operator delete(void*) throw(); 2080 // void operator delete[](void*) throw(); 2081 // C++11: 2082 // void* operator new(std::size_t); 2083 // void* operator new[](std::size_t); 2084 // void operator delete(void*) noexcept; 2085 // void operator delete[](void*) noexcept; 2086 // C++1y: 2087 // void* operator new(std::size_t); 2088 // void* operator new[](std::size_t); 2089 // void operator delete(void*) noexcept; 2090 // void operator delete[](void*) noexcept; 2091 // void operator delete(void*, std::size_t) noexcept; 2092 // void operator delete[](void*, std::size_t) noexcept; 2093 // 2094 // These implicit declarations introduce only the function names operator 2095 // new, operator new[], operator delete, operator delete[]. 2096 // 2097 // Here, we need to refer to std::bad_alloc, so we will implicitly declare 2098 // "std" or "bad_alloc" as necessary to form the exception specification. 2099 // However, we do not make these implicit declarations visible to name 2100 // lookup. 2101 if (!StdBadAlloc && !getLangOpts().CPlusPlus11) { 2102 // The "std::bad_alloc" class has not yet been declared, so build it 2103 // implicitly. 2104 StdBadAlloc = CXXRecordDecl::Create(Context, TTK_Class, 2105 getOrCreateStdNamespace(), 2106 SourceLocation(), SourceLocation(), 2107 &PP.getIdentifierTable().get("bad_alloc"), 2108 nullptr); 2109 getStdBadAlloc()->setImplicit(true); 2110 } 2111 2112 GlobalNewDeleteDeclared = true; 2113 2114 QualType VoidPtr = Context.getPointerType(Context.VoidTy); 2115 QualType SizeT = Context.getSizeType(); 2116 bool AssumeSaneOperatorNew = getLangOpts().AssumeSaneOperatorNew; 2117 2118 DeclareGlobalAllocationFunction( 2119 Context.DeclarationNames.getCXXOperatorName(OO_New), 2120 VoidPtr, SizeT, QualType(), AssumeSaneOperatorNew); 2121 DeclareGlobalAllocationFunction( 2122 Context.DeclarationNames.getCXXOperatorName(OO_Array_New), 2123 VoidPtr, SizeT, QualType(), AssumeSaneOperatorNew); 2124 DeclareGlobalAllocationFunction( 2125 Context.DeclarationNames.getCXXOperatorName(OO_Delete), 2126 Context.VoidTy, VoidPtr); 2127 DeclareGlobalAllocationFunction( 2128 Context.DeclarationNames.getCXXOperatorName(OO_Array_Delete), 2129 Context.VoidTy, VoidPtr); 2130 if (getLangOpts().SizedDeallocation) { 2131 DeclareGlobalAllocationFunction( 2132 Context.DeclarationNames.getCXXOperatorName(OO_Delete), 2133 Context.VoidTy, VoidPtr, Context.getSizeType()); 2134 DeclareGlobalAllocationFunction( 2135 Context.DeclarationNames.getCXXOperatorName(OO_Array_Delete), 2136 Context.VoidTy, VoidPtr, Context.getSizeType()); 2137 } 2138 } 2139 2140 /// DeclareGlobalAllocationFunction - Declares a single implicit global 2141 /// allocation function if it doesn't already exist. 2142 void Sema::DeclareGlobalAllocationFunction(DeclarationName Name, 2143 QualType Return, 2144 QualType Param1, QualType Param2, 2145 bool AddRestrictAttr) { 2146 DeclContext *GlobalCtx = Context.getTranslationUnitDecl(); 2147 unsigned NumParams = Param2.isNull() ? 1 : 2; 2148 2149 // Check if this function is already declared. 2150 DeclContext::lookup_result R = GlobalCtx->lookup(Name); 2151 for (DeclContext::lookup_iterator Alloc = R.begin(), AllocEnd = R.end(); 2152 Alloc != AllocEnd; ++Alloc) { 2153 // Only look at non-template functions, as it is the predefined, 2154 // non-templated allocation function we are trying to declare here. 2155 if (FunctionDecl *Func = dyn_cast<FunctionDecl>(*Alloc)) { 2156 if (Func->getNumParams() == NumParams) { 2157 QualType InitialParam1Type = 2158 Context.getCanonicalType(Func->getParamDecl(0) 2159 ->getType().getUnqualifiedType()); 2160 QualType InitialParam2Type = 2161 NumParams == 2 2162 ? Context.getCanonicalType(Func->getParamDecl(1) 2163 ->getType().getUnqualifiedType()) 2164 : QualType(); 2165 // FIXME: Do we need to check for default arguments here? 2166 if (InitialParam1Type == Param1 && 2167 (NumParams == 1 || InitialParam2Type == Param2)) { 2168 if (AddRestrictAttr && !Func->hasAttr<RestrictAttr>()) 2169 Func->addAttr(RestrictAttr::CreateImplicit( 2170 Context, RestrictAttr::GNU_malloc)); 2171 // Make the function visible to name lookup, even if we found it in 2172 // an unimported module. It either is an implicitly-declared global 2173 // allocation function, or is suppressing that function. 2174 Func->setHidden(false); 2175 return; 2176 } 2177 } 2178 } 2179 } 2180 2181 FunctionProtoType::ExtProtoInfo EPI; 2182 2183 QualType BadAllocType; 2184 bool HasBadAllocExceptionSpec 2185 = (Name.getCXXOverloadedOperator() == OO_New || 2186 Name.getCXXOverloadedOperator() == OO_Array_New); 2187 if (HasBadAllocExceptionSpec) { 2188 if (!getLangOpts().CPlusPlus11) { 2189 BadAllocType = Context.getTypeDeclType(getStdBadAlloc()); 2190 assert(StdBadAlloc && "Must have std::bad_alloc declared"); 2191 EPI.ExceptionSpec.Type = EST_Dynamic; 2192 EPI.ExceptionSpec.Exceptions = llvm::makeArrayRef(BadAllocType); 2193 } 2194 } else { 2195 EPI.ExceptionSpec = 2196 getLangOpts().CPlusPlus11 ? EST_BasicNoexcept : EST_DynamicNone; 2197 } 2198 2199 QualType Params[] = { Param1, Param2 }; 2200 2201 QualType FnType = Context.getFunctionType( 2202 Return, llvm::makeArrayRef(Params, NumParams), EPI); 2203 FunctionDecl *Alloc = 2204 FunctionDecl::Create(Context, GlobalCtx, SourceLocation(), 2205 SourceLocation(), Name, 2206 FnType, /*TInfo=*/nullptr, SC_None, false, true); 2207 Alloc->setImplicit(); 2208 2209 // Implicit sized deallocation functions always have default visibility. 2210 Alloc->addAttr(VisibilityAttr::CreateImplicit(Context, 2211 VisibilityAttr::Default)); 2212 2213 if (AddRestrictAttr) 2214 Alloc->addAttr( 2215 RestrictAttr::CreateImplicit(Context, RestrictAttr::GNU_malloc)); 2216 2217 ParmVarDecl *ParamDecls[2]; 2218 for (unsigned I = 0; I != NumParams; ++I) { 2219 ParamDecls[I] = ParmVarDecl::Create(Context, Alloc, SourceLocation(), 2220 SourceLocation(), nullptr, 2221 Params[I], /*TInfo=*/nullptr, 2222 SC_None, nullptr); 2223 ParamDecls[I]->setImplicit(); 2224 } 2225 Alloc->setParams(llvm::makeArrayRef(ParamDecls, NumParams)); 2226 2227 Context.getTranslationUnitDecl()->addDecl(Alloc); 2228 IdResolver.tryAddTopLevelDecl(Alloc, Name); 2229 } 2230 2231 FunctionDecl *Sema::FindUsualDeallocationFunction(SourceLocation StartLoc, 2232 bool CanProvideSize, 2233 DeclarationName Name) { 2234 DeclareGlobalNewDelete(); 2235 2236 LookupResult FoundDelete(*this, Name, StartLoc, LookupOrdinaryName); 2237 LookupQualifiedName(FoundDelete, Context.getTranslationUnitDecl()); 2238 2239 // C++ [expr.new]p20: 2240 // [...] Any non-placement deallocation function matches a 2241 // non-placement allocation function. [...] 2242 llvm::SmallVector<FunctionDecl*, 2> Matches; 2243 for (LookupResult::iterator D = FoundDelete.begin(), 2244 DEnd = FoundDelete.end(); 2245 D != DEnd; ++D) { 2246 if (FunctionDecl *Fn = dyn_cast<FunctionDecl>(*D)) 2247 if (isNonPlacementDeallocationFunction(*this, Fn)) 2248 Matches.push_back(Fn); 2249 } 2250 2251 // C++1y [expr.delete]p?: 2252 // If the type is complete and deallocation function lookup finds both a 2253 // usual deallocation function with only a pointer parameter and a usual 2254 // deallocation function with both a pointer parameter and a size 2255 // parameter, then the selected deallocation function shall be the one 2256 // with two parameters. Otherwise, the selected deallocation function 2257 // shall be the function with one parameter. 2258 if (getLangOpts().SizedDeallocation && Matches.size() == 2) { 2259 unsigned NumArgs = CanProvideSize ? 2 : 1; 2260 if (Matches[0]->getNumParams() != NumArgs) 2261 Matches.erase(Matches.begin()); 2262 else 2263 Matches.erase(Matches.begin() + 1); 2264 assert(Matches[0]->getNumParams() == NumArgs && 2265 "found an unexpected usual deallocation function"); 2266 } 2267 2268 if (getLangOpts().CUDA && getLangOpts().CUDATargetOverloads) 2269 EraseUnwantedCUDAMatches(dyn_cast<FunctionDecl>(CurContext), Matches); 2270 2271 assert(Matches.size() == 1 && 2272 "unexpectedly have multiple usual deallocation functions"); 2273 return Matches.front(); 2274 } 2275 2276 bool Sema::FindDeallocationFunction(SourceLocation StartLoc, CXXRecordDecl *RD, 2277 DeclarationName Name, 2278 FunctionDecl* &Operator, bool Diagnose) { 2279 LookupResult Found(*this, Name, StartLoc, LookupOrdinaryName); 2280 // Try to find operator delete/operator delete[] in class scope. 2281 LookupQualifiedName(Found, RD); 2282 2283 if (Found.isAmbiguous()) 2284 return true; 2285 2286 Found.suppressDiagnostics(); 2287 2288 SmallVector<DeclAccessPair,4> Matches; 2289 for (LookupResult::iterator F = Found.begin(), FEnd = Found.end(); 2290 F != FEnd; ++F) { 2291 NamedDecl *ND = (*F)->getUnderlyingDecl(); 2292 2293 // Ignore template operator delete members from the check for a usual 2294 // deallocation function. 2295 if (isa<FunctionTemplateDecl>(ND)) 2296 continue; 2297 2298 if (cast<CXXMethodDecl>(ND)->isUsualDeallocationFunction()) 2299 Matches.push_back(F.getPair()); 2300 } 2301 2302 if (getLangOpts().CUDA && getLangOpts().CUDATargetOverloads) 2303 EraseUnwantedCUDAMatches(dyn_cast<FunctionDecl>(CurContext), Matches); 2304 2305 // There's exactly one suitable operator; pick it. 2306 if (Matches.size() == 1) { 2307 Operator = cast<CXXMethodDecl>(Matches[0]->getUnderlyingDecl()); 2308 2309 if (Operator->isDeleted()) { 2310 if (Diagnose) { 2311 Diag(StartLoc, diag::err_deleted_function_use); 2312 NoteDeletedFunction(Operator); 2313 } 2314 return true; 2315 } 2316 2317 if (CheckAllocationAccess(StartLoc, SourceRange(), Found.getNamingClass(), 2318 Matches[0], Diagnose) == AR_inaccessible) 2319 return true; 2320 2321 return false; 2322 2323 // We found multiple suitable operators; complain about the ambiguity. 2324 } else if (!Matches.empty()) { 2325 if (Diagnose) { 2326 Diag(StartLoc, diag::err_ambiguous_suitable_delete_member_function_found) 2327 << Name << RD; 2328 2329 for (SmallVectorImpl<DeclAccessPair>::iterator 2330 F = Matches.begin(), FEnd = Matches.end(); F != FEnd; ++F) 2331 Diag((*F)->getUnderlyingDecl()->getLocation(), 2332 diag::note_member_declared_here) << Name; 2333 } 2334 return true; 2335 } 2336 2337 // We did find operator delete/operator delete[] declarations, but 2338 // none of them were suitable. 2339 if (!Found.empty()) { 2340 if (Diagnose) { 2341 Diag(StartLoc, diag::err_no_suitable_delete_member_function_found) 2342 << Name << RD; 2343 2344 for (LookupResult::iterator F = Found.begin(), FEnd = Found.end(); 2345 F != FEnd; ++F) 2346 Diag((*F)->getUnderlyingDecl()->getLocation(), 2347 diag::note_member_declared_here) << Name; 2348 } 2349 return true; 2350 } 2351 2352 Operator = nullptr; 2353 return false; 2354 } 2355 2356 namespace { 2357 /// \brief Checks whether delete-expression, and new-expression used for 2358 /// initializing deletee have the same array form. 2359 class MismatchingNewDeleteDetector { 2360 public: 2361 enum MismatchResult { 2362 /// Indicates that there is no mismatch or a mismatch cannot be proven. 2363 NoMismatch, 2364 /// Indicates that variable is initialized with mismatching form of \a new. 2365 VarInitMismatches, 2366 /// Indicates that member is initialized with mismatching form of \a new. 2367 MemberInitMismatches, 2368 /// Indicates that 1 or more constructors' definitions could not been 2369 /// analyzed, and they will be checked again at the end of translation unit. 2370 AnalyzeLater 2371 }; 2372 2373 /// \param EndOfTU True, if this is the final analysis at the end of 2374 /// translation unit. False, if this is the initial analysis at the point 2375 /// delete-expression was encountered. 2376 explicit MismatchingNewDeleteDetector(bool EndOfTU) 2377 : IsArrayForm(false), Field(nullptr), EndOfTU(EndOfTU), 2378 HasUndefinedConstructors(false) {} 2379 2380 /// \brief Checks whether pointee of a delete-expression is initialized with 2381 /// matching form of new-expression. 2382 /// 2383 /// If return value is \c VarInitMismatches or \c MemberInitMismatches at the 2384 /// point where delete-expression is encountered, then a warning will be 2385 /// issued immediately. If return value is \c AnalyzeLater at the point where 2386 /// delete-expression is seen, then member will be analyzed at the end of 2387 /// translation unit. \c AnalyzeLater is returned iff at least one constructor 2388 /// couldn't be analyzed. If at least one constructor initializes the member 2389 /// with matching type of new, the return value is \c NoMismatch. 2390 MismatchResult analyzeDeleteExpr(const CXXDeleteExpr *DE); 2391 /// \brief Analyzes a class member. 2392 /// \param Field Class member to analyze. 2393 /// \param DeleteWasArrayForm Array form-ness of the delete-expression used 2394 /// for deleting the \p Field. 2395 MismatchResult analyzeField(FieldDecl *Field, bool DeleteWasArrayForm); 2396 /// List of mismatching new-expressions used for initialization of the pointee 2397 llvm::SmallVector<const CXXNewExpr *, 4> NewExprs; 2398 /// Indicates whether delete-expression was in array form. 2399 bool IsArrayForm; 2400 FieldDecl *Field; 2401 2402 private: 2403 const bool EndOfTU; 2404 /// \brief Indicates that there is at least one constructor without body. 2405 bool HasUndefinedConstructors; 2406 /// \brief Returns \c CXXNewExpr from given initialization expression. 2407 /// \param E Expression used for initializing pointee in delete-expression. 2408 /// E can be a single-element \c InitListExpr consisting of new-expression. 2409 const CXXNewExpr *getNewExprFromInitListOrExpr(const Expr *E); 2410 /// \brief Returns whether member is initialized with mismatching form of 2411 /// \c new either by the member initializer or in-class initialization. 2412 /// 2413 /// If bodies of all constructors are not visible at the end of translation 2414 /// unit or at least one constructor initializes member with the matching 2415 /// form of \c new, mismatch cannot be proven, and this function will return 2416 /// \c NoMismatch. 2417 MismatchResult analyzeMemberExpr(const MemberExpr *ME); 2418 /// \brief Returns whether variable is initialized with mismatching form of 2419 /// \c new. 2420 /// 2421 /// If variable is initialized with matching form of \c new or variable is not 2422 /// initialized with a \c new expression, this function will return true. 2423 /// If variable is initialized with mismatching form of \c new, returns false. 2424 /// \param D Variable to analyze. 2425 bool hasMatchingVarInit(const DeclRefExpr *D); 2426 /// \brief Checks whether the constructor initializes pointee with mismatching 2427 /// form of \c new. 2428 /// 2429 /// Returns true, if member is initialized with matching form of \c new in 2430 /// member initializer list. Returns false, if member is initialized with the 2431 /// matching form of \c new in this constructor's initializer or given 2432 /// constructor isn't defined at the point where delete-expression is seen, or 2433 /// member isn't initialized by the constructor. 2434 bool hasMatchingNewInCtor(const CXXConstructorDecl *CD); 2435 /// \brief Checks whether member is initialized with matching form of 2436 /// \c new in member initializer list. 2437 bool hasMatchingNewInCtorInit(const CXXCtorInitializer *CI); 2438 /// Checks whether member is initialized with mismatching form of \c new by 2439 /// in-class initializer. 2440 MismatchResult analyzeInClassInitializer(); 2441 }; 2442 } 2443 2444 MismatchingNewDeleteDetector::MismatchResult 2445 MismatchingNewDeleteDetector::analyzeDeleteExpr(const CXXDeleteExpr *DE) { 2446 NewExprs.clear(); 2447 assert(DE && "Expected delete-expression"); 2448 IsArrayForm = DE->isArrayForm(); 2449 const Expr *E = DE->getArgument()->IgnoreParenImpCasts(); 2450 if (const MemberExpr *ME = dyn_cast<const MemberExpr>(E)) { 2451 return analyzeMemberExpr(ME); 2452 } else if (const DeclRefExpr *D = dyn_cast<const DeclRefExpr>(E)) { 2453 if (!hasMatchingVarInit(D)) 2454 return VarInitMismatches; 2455 } 2456 return NoMismatch; 2457 } 2458 2459 const CXXNewExpr * 2460 MismatchingNewDeleteDetector::getNewExprFromInitListOrExpr(const Expr *E) { 2461 assert(E != nullptr && "Expected a valid initializer expression"); 2462 E = E->IgnoreParenImpCasts(); 2463 if (const InitListExpr *ILE = dyn_cast<const InitListExpr>(E)) { 2464 if (ILE->getNumInits() == 1) 2465 E = dyn_cast<const CXXNewExpr>(ILE->getInit(0)->IgnoreParenImpCasts()); 2466 } 2467 2468 return dyn_cast_or_null<const CXXNewExpr>(E); 2469 } 2470 2471 bool MismatchingNewDeleteDetector::hasMatchingNewInCtorInit( 2472 const CXXCtorInitializer *CI) { 2473 const CXXNewExpr *NE = nullptr; 2474 if (Field == CI->getMember() && 2475 (NE = getNewExprFromInitListOrExpr(CI->getInit()))) { 2476 if (NE->isArray() == IsArrayForm) 2477 return true; 2478 else 2479 NewExprs.push_back(NE); 2480 } 2481 return false; 2482 } 2483 2484 bool MismatchingNewDeleteDetector::hasMatchingNewInCtor( 2485 const CXXConstructorDecl *CD) { 2486 if (CD->isImplicit()) 2487 return false; 2488 const FunctionDecl *Definition = CD; 2489 if (!CD->isThisDeclarationADefinition() && !CD->isDefined(Definition)) { 2490 HasUndefinedConstructors = true; 2491 return EndOfTU; 2492 } 2493 for (const auto *CI : cast<const CXXConstructorDecl>(Definition)->inits()) { 2494 if (hasMatchingNewInCtorInit(CI)) 2495 return true; 2496 } 2497 return false; 2498 } 2499 2500 MismatchingNewDeleteDetector::MismatchResult 2501 MismatchingNewDeleteDetector::analyzeInClassInitializer() { 2502 assert(Field != nullptr && "This should be called only for members"); 2503 const Expr *InitExpr = Field->getInClassInitializer(); 2504 if (!InitExpr) 2505 return EndOfTU ? NoMismatch : AnalyzeLater; 2506 if (const CXXNewExpr *NE = getNewExprFromInitListOrExpr(InitExpr)) { 2507 if (NE->isArray() != IsArrayForm) { 2508 NewExprs.push_back(NE); 2509 return MemberInitMismatches; 2510 } 2511 } 2512 return NoMismatch; 2513 } 2514 2515 MismatchingNewDeleteDetector::MismatchResult 2516 MismatchingNewDeleteDetector::analyzeField(FieldDecl *Field, 2517 bool DeleteWasArrayForm) { 2518 assert(Field != nullptr && "Analysis requires a valid class member."); 2519 this->Field = Field; 2520 IsArrayForm = DeleteWasArrayForm; 2521 const CXXRecordDecl *RD = cast<const CXXRecordDecl>(Field->getParent()); 2522 for (const auto *CD : RD->ctors()) { 2523 if (hasMatchingNewInCtor(CD)) 2524 return NoMismatch; 2525 } 2526 if (HasUndefinedConstructors) 2527 return EndOfTU ? NoMismatch : AnalyzeLater; 2528 if (!NewExprs.empty()) 2529 return MemberInitMismatches; 2530 return Field->hasInClassInitializer() ? analyzeInClassInitializer() 2531 : NoMismatch; 2532 } 2533 2534 MismatchingNewDeleteDetector::MismatchResult 2535 MismatchingNewDeleteDetector::analyzeMemberExpr(const MemberExpr *ME) { 2536 assert(ME != nullptr && "Expected a member expression"); 2537 if (FieldDecl *F = dyn_cast<FieldDecl>(ME->getMemberDecl())) 2538 return analyzeField(F, IsArrayForm); 2539 return NoMismatch; 2540 } 2541 2542 bool MismatchingNewDeleteDetector::hasMatchingVarInit(const DeclRefExpr *D) { 2543 const CXXNewExpr *NE = nullptr; 2544 if (const VarDecl *VD = dyn_cast<const VarDecl>(D->getDecl())) { 2545 if (VD->hasInit() && (NE = getNewExprFromInitListOrExpr(VD->getInit())) && 2546 NE->isArray() != IsArrayForm) { 2547 NewExprs.push_back(NE); 2548 } 2549 } 2550 return NewExprs.empty(); 2551 } 2552 2553 static void 2554 DiagnoseMismatchedNewDelete(Sema &SemaRef, SourceLocation DeleteLoc, 2555 const MismatchingNewDeleteDetector &Detector) { 2556 SourceLocation EndOfDelete = SemaRef.getLocForEndOfToken(DeleteLoc); 2557 FixItHint H; 2558 if (!Detector.IsArrayForm) 2559 H = FixItHint::CreateInsertion(EndOfDelete, "[]"); 2560 else { 2561 SourceLocation RSquare = Lexer::findLocationAfterToken( 2562 DeleteLoc, tok::l_square, SemaRef.getSourceManager(), 2563 SemaRef.getLangOpts(), true); 2564 if (RSquare.isValid()) 2565 H = FixItHint::CreateRemoval(SourceRange(EndOfDelete, RSquare)); 2566 } 2567 SemaRef.Diag(DeleteLoc, diag::warn_mismatched_delete_new) 2568 << Detector.IsArrayForm << H; 2569 2570 for (const auto *NE : Detector.NewExprs) 2571 SemaRef.Diag(NE->getExprLoc(), diag::note_allocated_here) 2572 << Detector.IsArrayForm; 2573 } 2574 2575 void Sema::AnalyzeDeleteExprMismatch(const CXXDeleteExpr *DE) { 2576 if (Diags.isIgnored(diag::warn_mismatched_delete_new, SourceLocation())) 2577 return; 2578 MismatchingNewDeleteDetector Detector(/*EndOfTU=*/false); 2579 switch (Detector.analyzeDeleteExpr(DE)) { 2580 case MismatchingNewDeleteDetector::VarInitMismatches: 2581 case MismatchingNewDeleteDetector::MemberInitMismatches: { 2582 DiagnoseMismatchedNewDelete(*this, DE->getLocStart(), Detector); 2583 break; 2584 } 2585 case MismatchingNewDeleteDetector::AnalyzeLater: { 2586 DeleteExprs[Detector.Field].push_back( 2587 std::make_pair(DE->getLocStart(), DE->isArrayForm())); 2588 break; 2589 } 2590 case MismatchingNewDeleteDetector::NoMismatch: 2591 break; 2592 } 2593 } 2594 2595 void Sema::AnalyzeDeleteExprMismatch(FieldDecl *Field, SourceLocation DeleteLoc, 2596 bool DeleteWasArrayForm) { 2597 MismatchingNewDeleteDetector Detector(/*EndOfTU=*/true); 2598 switch (Detector.analyzeField(Field, DeleteWasArrayForm)) { 2599 case MismatchingNewDeleteDetector::VarInitMismatches: 2600 llvm_unreachable("This analysis should have been done for class members."); 2601 case MismatchingNewDeleteDetector::AnalyzeLater: 2602 llvm_unreachable("Analysis cannot be postponed any point beyond end of " 2603 "translation unit."); 2604 case MismatchingNewDeleteDetector::MemberInitMismatches: 2605 DiagnoseMismatchedNewDelete(*this, DeleteLoc, Detector); 2606 break; 2607 case MismatchingNewDeleteDetector::NoMismatch: 2608 break; 2609 } 2610 } 2611 2612 /// ActOnCXXDelete - Parsed a C++ 'delete' expression (C++ 5.3.5), as in: 2613 /// @code ::delete ptr; @endcode 2614 /// or 2615 /// @code delete [] ptr; @endcode 2616 ExprResult 2617 Sema::ActOnCXXDelete(SourceLocation StartLoc, bool UseGlobal, 2618 bool ArrayForm, Expr *ExE) { 2619 // C++ [expr.delete]p1: 2620 // The operand shall have a pointer type, or a class type having a single 2621 // non-explicit conversion function to a pointer type. The result has type 2622 // void. 2623 // 2624 // DR599 amends "pointer type" to "pointer to object type" in both cases. 2625 2626 ExprResult Ex = ExE; 2627 FunctionDecl *OperatorDelete = nullptr; 2628 bool ArrayFormAsWritten = ArrayForm; 2629 bool UsualArrayDeleteWantsSize = false; 2630 2631 if (!Ex.get()->isTypeDependent()) { 2632 // Perform lvalue-to-rvalue cast, if needed. 2633 Ex = DefaultLvalueConversion(Ex.get()); 2634 if (Ex.isInvalid()) 2635 return ExprError(); 2636 2637 QualType Type = Ex.get()->getType(); 2638 2639 class DeleteConverter : public ContextualImplicitConverter { 2640 public: 2641 DeleteConverter() : ContextualImplicitConverter(false, true) {} 2642 2643 bool match(QualType ConvType) override { 2644 // FIXME: If we have an operator T* and an operator void*, we must pick 2645 // the operator T*. 2646 if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>()) 2647 if (ConvPtrType->getPointeeType()->isIncompleteOrObjectType()) 2648 return true; 2649 return false; 2650 } 2651 2652 SemaDiagnosticBuilder diagnoseNoMatch(Sema &S, SourceLocation Loc, 2653 QualType T) override { 2654 return S.Diag(Loc, diag::err_delete_operand) << T; 2655 } 2656 2657 SemaDiagnosticBuilder diagnoseIncomplete(Sema &S, SourceLocation Loc, 2658 QualType T) override { 2659 return S.Diag(Loc, diag::err_delete_incomplete_class_type) << T; 2660 } 2661 2662 SemaDiagnosticBuilder diagnoseExplicitConv(Sema &S, SourceLocation Loc, 2663 QualType T, 2664 QualType ConvTy) override { 2665 return S.Diag(Loc, diag::err_delete_explicit_conversion) << T << ConvTy; 2666 } 2667 2668 SemaDiagnosticBuilder noteExplicitConv(Sema &S, CXXConversionDecl *Conv, 2669 QualType ConvTy) override { 2670 return S.Diag(Conv->getLocation(), diag::note_delete_conversion) 2671 << ConvTy; 2672 } 2673 2674 SemaDiagnosticBuilder diagnoseAmbiguous(Sema &S, SourceLocation Loc, 2675 QualType T) override { 2676 return S.Diag(Loc, diag::err_ambiguous_delete_operand) << T; 2677 } 2678 2679 SemaDiagnosticBuilder noteAmbiguous(Sema &S, CXXConversionDecl *Conv, 2680 QualType ConvTy) override { 2681 return S.Diag(Conv->getLocation(), diag::note_delete_conversion) 2682 << ConvTy; 2683 } 2684 2685 SemaDiagnosticBuilder diagnoseConversion(Sema &S, SourceLocation Loc, 2686 QualType T, 2687 QualType ConvTy) override { 2688 llvm_unreachable("conversion functions are permitted"); 2689 } 2690 } Converter; 2691 2692 Ex = PerformContextualImplicitConversion(StartLoc, Ex.get(), Converter); 2693 if (Ex.isInvalid()) 2694 return ExprError(); 2695 Type = Ex.get()->getType(); 2696 if (!Converter.match(Type)) 2697 // FIXME: PerformContextualImplicitConversion should return ExprError 2698 // itself in this case. 2699 return ExprError(); 2700 2701 QualType Pointee = Type->getAs<PointerType>()->getPointeeType(); 2702 QualType PointeeElem = Context.getBaseElementType(Pointee); 2703 2704 if (unsigned AddressSpace = Pointee.getAddressSpace()) 2705 return Diag(Ex.get()->getLocStart(), 2706 diag::err_address_space_qualified_delete) 2707 << Pointee.getUnqualifiedType() << AddressSpace; 2708 2709 CXXRecordDecl *PointeeRD = nullptr; 2710 if (Pointee->isVoidType() && !isSFINAEContext()) { 2711 // The C++ standard bans deleting a pointer to a non-object type, which 2712 // effectively bans deletion of "void*". However, most compilers support 2713 // this, so we treat it as a warning unless we're in a SFINAE context. 2714 Diag(StartLoc, diag::ext_delete_void_ptr_operand) 2715 << Type << Ex.get()->getSourceRange(); 2716 } else if (Pointee->isFunctionType() || Pointee->isVoidType()) { 2717 return ExprError(Diag(StartLoc, diag::err_delete_operand) 2718 << Type << Ex.get()->getSourceRange()); 2719 } else if (!Pointee->isDependentType()) { 2720 // FIXME: This can result in errors if the definition was imported from a 2721 // module but is hidden. 2722 if (!RequireCompleteType(StartLoc, Pointee, 2723 diag::warn_delete_incomplete, Ex.get())) { 2724 if (const RecordType *RT = PointeeElem->getAs<RecordType>()) 2725 PointeeRD = cast<CXXRecordDecl>(RT->getDecl()); 2726 } 2727 } 2728 2729 if (Pointee->isArrayType() && !ArrayForm) { 2730 Diag(StartLoc, diag::warn_delete_array_type) 2731 << Type << Ex.get()->getSourceRange() 2732 << FixItHint::CreateInsertion(getLocForEndOfToken(StartLoc), "[]"); 2733 ArrayForm = true; 2734 } 2735 2736 DeclarationName DeleteName = Context.DeclarationNames.getCXXOperatorName( 2737 ArrayForm ? OO_Array_Delete : OO_Delete); 2738 2739 if (PointeeRD) { 2740 if (!UseGlobal && 2741 FindDeallocationFunction(StartLoc, PointeeRD, DeleteName, 2742 OperatorDelete)) 2743 return ExprError(); 2744 2745 // If we're allocating an array of records, check whether the 2746 // usual operator delete[] has a size_t parameter. 2747 if (ArrayForm) { 2748 // If the user specifically asked to use the global allocator, 2749 // we'll need to do the lookup into the class. 2750 if (UseGlobal) 2751 UsualArrayDeleteWantsSize = 2752 doesUsualArrayDeleteWantSize(*this, StartLoc, PointeeElem); 2753 2754 // Otherwise, the usual operator delete[] should be the 2755 // function we just found. 2756 else if (OperatorDelete && isa<CXXMethodDecl>(OperatorDelete)) 2757 UsualArrayDeleteWantsSize = (OperatorDelete->getNumParams() == 2); 2758 } 2759 2760 if (!PointeeRD->hasIrrelevantDestructor()) 2761 if (CXXDestructorDecl *Dtor = LookupDestructor(PointeeRD)) { 2762 MarkFunctionReferenced(StartLoc, 2763 const_cast<CXXDestructorDecl*>(Dtor)); 2764 if (DiagnoseUseOfDecl(Dtor, StartLoc)) 2765 return ExprError(); 2766 } 2767 2768 // C++ [expr.delete]p3: 2769 // In the first alternative (delete object), if the static type of the 2770 // object to be deleted is different from its dynamic type, the static 2771 // type shall be a base class of the dynamic type of the object to be 2772 // deleted and the static type shall have a virtual destructor or the 2773 // behavior is undefined. 2774 // 2775 // Note: a final class cannot be derived from, no issue there 2776 if (PointeeRD->isPolymorphic() && !PointeeRD->hasAttr<FinalAttr>()) { 2777 CXXDestructorDecl *dtor = PointeeRD->getDestructor(); 2778 if (dtor && !dtor->isVirtual()) { 2779 if (PointeeRD->isAbstract()) { 2780 // If the class is abstract, we warn by default, because we're 2781 // sure the code has undefined behavior. 2782 Diag(StartLoc, diag::warn_delete_abstract_non_virtual_dtor) 2783 << PointeeElem; 2784 } else if (!ArrayForm) { 2785 // Otherwise, if this is not an array delete, it's a bit suspect, 2786 // but not necessarily wrong. 2787 Diag(StartLoc, diag::warn_delete_non_virtual_dtor) << PointeeElem; 2788 } 2789 } 2790 } 2791 2792 } 2793 2794 if (!OperatorDelete) 2795 // Look for a global declaration. 2796 OperatorDelete = FindUsualDeallocationFunction( 2797 StartLoc, isCompleteType(StartLoc, Pointee) && 2798 (!ArrayForm || UsualArrayDeleteWantsSize || 2799 Pointee.isDestructedType()), 2800 DeleteName); 2801 2802 MarkFunctionReferenced(StartLoc, OperatorDelete); 2803 2804 // Check access and ambiguity of operator delete and destructor. 2805 if (PointeeRD) { 2806 if (CXXDestructorDecl *Dtor = LookupDestructor(PointeeRD)) { 2807 CheckDestructorAccess(Ex.get()->getExprLoc(), Dtor, 2808 PDiag(diag::err_access_dtor) << PointeeElem); 2809 } 2810 } 2811 } 2812 2813 CXXDeleteExpr *Result = new (Context) CXXDeleteExpr( 2814 Context.VoidTy, UseGlobal, ArrayForm, ArrayFormAsWritten, 2815 UsualArrayDeleteWantsSize, OperatorDelete, Ex.get(), StartLoc); 2816 AnalyzeDeleteExprMismatch(Result); 2817 return Result; 2818 } 2819 2820 /// \brief Check the use of the given variable as a C++ condition in an if, 2821 /// while, do-while, or switch statement. 2822 ExprResult Sema::CheckConditionVariable(VarDecl *ConditionVar, 2823 SourceLocation StmtLoc, 2824 bool ConvertToBoolean) { 2825 if (ConditionVar->isInvalidDecl()) 2826 return ExprError(); 2827 2828 QualType T = ConditionVar->getType(); 2829 2830 // C++ [stmt.select]p2: 2831 // The declarator shall not specify a function or an array. 2832 if (T->isFunctionType()) 2833 return ExprError(Diag(ConditionVar->getLocation(), 2834 diag::err_invalid_use_of_function_type) 2835 << ConditionVar->getSourceRange()); 2836 else if (T->isArrayType()) 2837 return ExprError(Diag(ConditionVar->getLocation(), 2838 diag::err_invalid_use_of_array_type) 2839 << ConditionVar->getSourceRange()); 2840 2841 ExprResult Condition = DeclRefExpr::Create( 2842 Context, NestedNameSpecifierLoc(), SourceLocation(), ConditionVar, 2843 /*enclosing*/ false, ConditionVar->getLocation(), 2844 ConditionVar->getType().getNonReferenceType(), VK_LValue); 2845 2846 MarkDeclRefReferenced(cast<DeclRefExpr>(Condition.get())); 2847 2848 if (ConvertToBoolean) { 2849 Condition = CheckBooleanCondition(Condition.get(), StmtLoc); 2850 if (Condition.isInvalid()) 2851 return ExprError(); 2852 } 2853 2854 return Condition; 2855 } 2856 2857 /// CheckCXXBooleanCondition - Returns true if a conversion to bool is invalid. 2858 ExprResult Sema::CheckCXXBooleanCondition(Expr *CondExpr) { 2859 // C++ 6.4p4: 2860 // The value of a condition that is an initialized declaration in a statement 2861 // other than a switch statement is the value of the declared variable 2862 // implicitly converted to type bool. If that conversion is ill-formed, the 2863 // program is ill-formed. 2864 // The value of a condition that is an expression is the value of the 2865 // expression, implicitly converted to bool. 2866 // 2867 return PerformContextuallyConvertToBool(CondExpr); 2868 } 2869 2870 /// Helper function to determine whether this is the (deprecated) C++ 2871 /// conversion from a string literal to a pointer to non-const char or 2872 /// non-const wchar_t (for narrow and wide string literals, 2873 /// respectively). 2874 bool 2875 Sema::IsStringLiteralToNonConstPointerConversion(Expr *From, QualType ToType) { 2876 // Look inside the implicit cast, if it exists. 2877 if (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(From)) 2878 From = Cast->getSubExpr(); 2879 2880 // A string literal (2.13.4) that is not a wide string literal can 2881 // be converted to an rvalue of type "pointer to char"; a wide 2882 // string literal can be converted to an rvalue of type "pointer 2883 // to wchar_t" (C++ 4.2p2). 2884 if (StringLiteral *StrLit = dyn_cast<StringLiteral>(From->IgnoreParens())) 2885 if (const PointerType *ToPtrType = ToType->getAs<PointerType>()) 2886 if (const BuiltinType *ToPointeeType 2887 = ToPtrType->getPointeeType()->getAs<BuiltinType>()) { 2888 // This conversion is considered only when there is an 2889 // explicit appropriate pointer target type (C++ 4.2p2). 2890 if (!ToPtrType->getPointeeType().hasQualifiers()) { 2891 switch (StrLit->getKind()) { 2892 case StringLiteral::UTF8: 2893 case StringLiteral::UTF16: 2894 case StringLiteral::UTF32: 2895 // We don't allow UTF literals to be implicitly converted 2896 break; 2897 case StringLiteral::Ascii: 2898 return (ToPointeeType->getKind() == BuiltinType::Char_U || 2899 ToPointeeType->getKind() == BuiltinType::Char_S); 2900 case StringLiteral::Wide: 2901 return ToPointeeType->isWideCharType(); 2902 } 2903 } 2904 } 2905 2906 return false; 2907 } 2908 2909 static ExprResult BuildCXXCastArgument(Sema &S, 2910 SourceLocation CastLoc, 2911 QualType Ty, 2912 CastKind Kind, 2913 CXXMethodDecl *Method, 2914 DeclAccessPair FoundDecl, 2915 bool HadMultipleCandidates, 2916 Expr *From) { 2917 switch (Kind) { 2918 default: llvm_unreachable("Unhandled cast kind!"); 2919 case CK_ConstructorConversion: { 2920 CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(Method); 2921 SmallVector<Expr*, 8> ConstructorArgs; 2922 2923 if (S.RequireNonAbstractType(CastLoc, Ty, 2924 diag::err_allocation_of_abstract_type)) 2925 return ExprError(); 2926 2927 if (S.CompleteConstructorCall(Constructor, From, CastLoc, ConstructorArgs)) 2928 return ExprError(); 2929 2930 S.CheckConstructorAccess(CastLoc, Constructor, 2931 InitializedEntity::InitializeTemporary(Ty), 2932 Constructor->getAccess()); 2933 if (S.DiagnoseUseOfDecl(Method, CastLoc)) 2934 return ExprError(); 2935 2936 ExprResult Result = S.BuildCXXConstructExpr( 2937 CastLoc, Ty, cast<CXXConstructorDecl>(Method), 2938 ConstructorArgs, HadMultipleCandidates, 2939 /*ListInit*/ false, /*StdInitListInit*/ false, /*ZeroInit*/ false, 2940 CXXConstructExpr::CK_Complete, SourceRange()); 2941 if (Result.isInvalid()) 2942 return ExprError(); 2943 2944 return S.MaybeBindToTemporary(Result.getAs<Expr>()); 2945 } 2946 2947 case CK_UserDefinedConversion: { 2948 assert(!From->getType()->isPointerType() && "Arg can't have pointer type!"); 2949 2950 S.CheckMemberOperatorAccess(CastLoc, From, /*arg*/ nullptr, FoundDecl); 2951 if (S.DiagnoseUseOfDecl(Method, CastLoc)) 2952 return ExprError(); 2953 2954 // Create an implicit call expr that calls it. 2955 CXXConversionDecl *Conv = cast<CXXConversionDecl>(Method); 2956 ExprResult Result = S.BuildCXXMemberCallExpr(From, FoundDecl, Conv, 2957 HadMultipleCandidates); 2958 if (Result.isInvalid()) 2959 return ExprError(); 2960 // Record usage of conversion in an implicit cast. 2961 Result = ImplicitCastExpr::Create(S.Context, Result.get()->getType(), 2962 CK_UserDefinedConversion, Result.get(), 2963 nullptr, Result.get()->getValueKind()); 2964 2965 return S.MaybeBindToTemporary(Result.get()); 2966 } 2967 } 2968 } 2969 2970 /// PerformImplicitConversion - Perform an implicit conversion of the 2971 /// expression From to the type ToType using the pre-computed implicit 2972 /// conversion sequence ICS. Returns the converted 2973 /// expression. Action is the kind of conversion we're performing, 2974 /// used in the error message. 2975 ExprResult 2976 Sema::PerformImplicitConversion(Expr *From, QualType ToType, 2977 const ImplicitConversionSequence &ICS, 2978 AssignmentAction Action, 2979 CheckedConversionKind CCK) { 2980 switch (ICS.getKind()) { 2981 case ImplicitConversionSequence::StandardConversion: { 2982 ExprResult Res = PerformImplicitConversion(From, ToType, ICS.Standard, 2983 Action, CCK); 2984 if (Res.isInvalid()) 2985 return ExprError(); 2986 From = Res.get(); 2987 break; 2988 } 2989 2990 case ImplicitConversionSequence::UserDefinedConversion: { 2991 2992 FunctionDecl *FD = ICS.UserDefined.ConversionFunction; 2993 CastKind CastKind; 2994 QualType BeforeToType; 2995 assert(FD && "no conversion function for user-defined conversion seq"); 2996 if (const CXXConversionDecl *Conv = dyn_cast<CXXConversionDecl>(FD)) { 2997 CastKind = CK_UserDefinedConversion; 2998 2999 // If the user-defined conversion is specified by a conversion function, 3000 // the initial standard conversion sequence converts the source type to 3001 // the implicit object parameter of the conversion function. 3002 BeforeToType = Context.getTagDeclType(Conv->getParent()); 3003 } else { 3004 const CXXConstructorDecl *Ctor = cast<CXXConstructorDecl>(FD); 3005 CastKind = CK_ConstructorConversion; 3006 // Do no conversion if dealing with ... for the first conversion. 3007 if (!ICS.UserDefined.EllipsisConversion) { 3008 // If the user-defined conversion is specified by a constructor, the 3009 // initial standard conversion sequence converts the source type to 3010 // the type required by the argument of the constructor 3011 BeforeToType = Ctor->getParamDecl(0)->getType().getNonReferenceType(); 3012 } 3013 } 3014 // Watch out for ellipsis conversion. 3015 if (!ICS.UserDefined.EllipsisConversion) { 3016 ExprResult Res = 3017 PerformImplicitConversion(From, BeforeToType, 3018 ICS.UserDefined.Before, AA_Converting, 3019 CCK); 3020 if (Res.isInvalid()) 3021 return ExprError(); 3022 From = Res.get(); 3023 } 3024 3025 ExprResult CastArg 3026 = BuildCXXCastArgument(*this, 3027 From->getLocStart(), 3028 ToType.getNonReferenceType(), 3029 CastKind, cast<CXXMethodDecl>(FD), 3030 ICS.UserDefined.FoundConversionFunction, 3031 ICS.UserDefined.HadMultipleCandidates, 3032 From); 3033 3034 if (CastArg.isInvalid()) 3035 return ExprError(); 3036 3037 From = CastArg.get(); 3038 3039 return PerformImplicitConversion(From, ToType, ICS.UserDefined.After, 3040 AA_Converting, CCK); 3041 } 3042 3043 case ImplicitConversionSequence::AmbiguousConversion: 3044 ICS.DiagnoseAmbiguousConversion(*this, From->getExprLoc(), 3045 PDiag(diag::err_typecheck_ambiguous_condition) 3046 << From->getSourceRange()); 3047 return ExprError(); 3048 3049 case ImplicitConversionSequence::EllipsisConversion: 3050 llvm_unreachable("Cannot perform an ellipsis conversion"); 3051 3052 case ImplicitConversionSequence::BadConversion: 3053 return ExprError(); 3054 } 3055 3056 // Everything went well. 3057 return From; 3058 } 3059 3060 /// PerformImplicitConversion - Perform an implicit conversion of the 3061 /// expression From to the type ToType by following the standard 3062 /// conversion sequence SCS. Returns the converted 3063 /// expression. Flavor is the context in which we're performing this 3064 /// conversion, for use in error messages. 3065 ExprResult 3066 Sema::PerformImplicitConversion(Expr *From, QualType ToType, 3067 const StandardConversionSequence& SCS, 3068 AssignmentAction Action, 3069 CheckedConversionKind CCK) { 3070 bool CStyle = (CCK == CCK_CStyleCast || CCK == CCK_FunctionalCast); 3071 3072 // Overall FIXME: we are recomputing too many types here and doing far too 3073 // much extra work. What this means is that we need to keep track of more 3074 // information that is computed when we try the implicit conversion initially, 3075 // so that we don't need to recompute anything here. 3076 QualType FromType = From->getType(); 3077 3078 if (SCS.CopyConstructor) { 3079 // FIXME: When can ToType be a reference type? 3080 assert(!ToType->isReferenceType()); 3081 if (SCS.Second == ICK_Derived_To_Base) { 3082 SmallVector<Expr*, 8> ConstructorArgs; 3083 if (CompleteConstructorCall(cast<CXXConstructorDecl>(SCS.CopyConstructor), 3084 From, /*FIXME:ConstructLoc*/SourceLocation(), 3085 ConstructorArgs)) 3086 return ExprError(); 3087 return BuildCXXConstructExpr( 3088 /*FIXME:ConstructLoc*/ SourceLocation(), ToType, SCS.CopyConstructor, 3089 ConstructorArgs, /*HadMultipleCandidates*/ false, 3090 /*ListInit*/ false, /*StdInitListInit*/ false, /*ZeroInit*/ false, 3091 CXXConstructExpr::CK_Complete, SourceRange()); 3092 } 3093 return BuildCXXConstructExpr( 3094 /*FIXME:ConstructLoc*/ SourceLocation(), ToType, SCS.CopyConstructor, 3095 From, /*HadMultipleCandidates*/ false, 3096 /*ListInit*/ false, /*StdInitListInit*/ false, /*ZeroInit*/ false, 3097 CXXConstructExpr::CK_Complete, SourceRange()); 3098 } 3099 3100 // Resolve overloaded function references. 3101 if (Context.hasSameType(FromType, Context.OverloadTy)) { 3102 DeclAccessPair Found; 3103 FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(From, ToType, 3104 true, Found); 3105 if (!Fn) 3106 return ExprError(); 3107 3108 if (DiagnoseUseOfDecl(Fn, From->getLocStart())) 3109 return ExprError(); 3110 3111 From = FixOverloadedFunctionReference(From, Found, Fn); 3112 FromType = From->getType(); 3113 } 3114 3115 // If we're converting to an atomic type, first convert to the corresponding 3116 // non-atomic type. 3117 QualType ToAtomicType; 3118 if (const AtomicType *ToAtomic = ToType->getAs<AtomicType>()) { 3119 ToAtomicType = ToType; 3120 ToType = ToAtomic->getValueType(); 3121 } 3122 3123 QualType InitialFromType = FromType; 3124 // Perform the first implicit conversion. 3125 switch (SCS.First) { 3126 case ICK_Identity: 3127 if (const AtomicType *FromAtomic = FromType->getAs<AtomicType>()) { 3128 FromType = FromAtomic->getValueType().getUnqualifiedType(); 3129 From = ImplicitCastExpr::Create(Context, FromType, CK_AtomicToNonAtomic, 3130 From, /*BasePath=*/nullptr, VK_RValue); 3131 } 3132 break; 3133 3134 case ICK_Lvalue_To_Rvalue: { 3135 assert(From->getObjectKind() != OK_ObjCProperty); 3136 ExprResult FromRes = DefaultLvalueConversion(From); 3137 assert(!FromRes.isInvalid() && "Can't perform deduced conversion?!"); 3138 From = FromRes.get(); 3139 FromType = From->getType(); 3140 break; 3141 } 3142 3143 case ICK_Array_To_Pointer: 3144 FromType = Context.getArrayDecayedType(FromType); 3145 From = ImpCastExprToType(From, FromType, CK_ArrayToPointerDecay, 3146 VK_RValue, /*BasePath=*/nullptr, CCK).get(); 3147 break; 3148 3149 case ICK_Function_To_Pointer: 3150 FromType = Context.getPointerType(FromType); 3151 From = ImpCastExprToType(From, FromType, CK_FunctionToPointerDecay, 3152 VK_RValue, /*BasePath=*/nullptr, CCK).get(); 3153 break; 3154 3155 default: 3156 llvm_unreachable("Improper first standard conversion"); 3157 } 3158 3159 // Perform the second implicit conversion 3160 switch (SCS.Second) { 3161 case ICK_Identity: 3162 // C++ [except.spec]p5: 3163 // [For] assignment to and initialization of pointers to functions, 3164 // pointers to member functions, and references to functions: the 3165 // target entity shall allow at least the exceptions allowed by the 3166 // source value in the assignment or initialization. 3167 switch (Action) { 3168 case AA_Assigning: 3169 case AA_Initializing: 3170 // Note, function argument passing and returning are initialization. 3171 case AA_Passing: 3172 case AA_Returning: 3173 case AA_Sending: 3174 case AA_Passing_CFAudited: 3175 if (CheckExceptionSpecCompatibility(From, ToType)) 3176 return ExprError(); 3177 break; 3178 3179 case AA_Casting: 3180 case AA_Converting: 3181 // Casts and implicit conversions are not initialization, so are not 3182 // checked for exception specification mismatches. 3183 break; 3184 } 3185 // Nothing else to do. 3186 break; 3187 3188 case ICK_NoReturn_Adjustment: 3189 // If both sides are functions (or pointers/references to them), there could 3190 // be incompatible exception declarations. 3191 if (CheckExceptionSpecCompatibility(From, ToType)) 3192 return ExprError(); 3193 3194 From = ImpCastExprToType(From, ToType, CK_NoOp, 3195 VK_RValue, /*BasePath=*/nullptr, CCK).get(); 3196 break; 3197 3198 case ICK_Integral_Promotion: 3199 case ICK_Integral_Conversion: 3200 if (ToType->isBooleanType()) { 3201 assert(FromType->castAs<EnumType>()->getDecl()->isFixed() && 3202 SCS.Second == ICK_Integral_Promotion && 3203 "only enums with fixed underlying type can promote to bool"); 3204 From = ImpCastExprToType(From, ToType, CK_IntegralToBoolean, 3205 VK_RValue, /*BasePath=*/nullptr, CCK).get(); 3206 } else { 3207 From = ImpCastExprToType(From, ToType, CK_IntegralCast, 3208 VK_RValue, /*BasePath=*/nullptr, CCK).get(); 3209 } 3210 break; 3211 3212 case ICK_Floating_Promotion: 3213 case ICK_Floating_Conversion: 3214 From = ImpCastExprToType(From, ToType, CK_FloatingCast, 3215 VK_RValue, /*BasePath=*/nullptr, CCK).get(); 3216 break; 3217 3218 case ICK_Complex_Promotion: 3219 case ICK_Complex_Conversion: { 3220 QualType FromEl = From->getType()->getAs<ComplexType>()->getElementType(); 3221 QualType ToEl = ToType->getAs<ComplexType>()->getElementType(); 3222 CastKind CK; 3223 if (FromEl->isRealFloatingType()) { 3224 if (ToEl->isRealFloatingType()) 3225 CK = CK_FloatingComplexCast; 3226 else 3227 CK = CK_FloatingComplexToIntegralComplex; 3228 } else if (ToEl->isRealFloatingType()) { 3229 CK = CK_IntegralComplexToFloatingComplex; 3230 } else { 3231 CK = CK_IntegralComplexCast; 3232 } 3233 From = ImpCastExprToType(From, ToType, CK, 3234 VK_RValue, /*BasePath=*/nullptr, CCK).get(); 3235 break; 3236 } 3237 3238 case ICK_Floating_Integral: 3239 if (ToType->isRealFloatingType()) 3240 From = ImpCastExprToType(From, ToType, CK_IntegralToFloating, 3241 VK_RValue, /*BasePath=*/nullptr, CCK).get(); 3242 else 3243 From = ImpCastExprToType(From, ToType, CK_FloatingToIntegral, 3244 VK_RValue, /*BasePath=*/nullptr, CCK).get(); 3245 break; 3246 3247 case ICK_Compatible_Conversion: 3248 From = ImpCastExprToType(From, ToType, CK_NoOp, 3249 VK_RValue, /*BasePath=*/nullptr, CCK).get(); 3250 break; 3251 3252 case ICK_Writeback_Conversion: 3253 case ICK_Pointer_Conversion: { 3254 if (SCS.IncompatibleObjC && Action != AA_Casting) { 3255 // Diagnose incompatible Objective-C conversions 3256 if (Action == AA_Initializing || Action == AA_Assigning) 3257 Diag(From->getLocStart(), 3258 diag::ext_typecheck_convert_incompatible_pointer) 3259 << ToType << From->getType() << Action 3260 << From->getSourceRange() << 0; 3261 else 3262 Diag(From->getLocStart(), 3263 diag::ext_typecheck_convert_incompatible_pointer) 3264 << From->getType() << ToType << Action 3265 << From->getSourceRange() << 0; 3266 3267 if (From->getType()->isObjCObjectPointerType() && 3268 ToType->isObjCObjectPointerType()) 3269 EmitRelatedResultTypeNote(From); 3270 } 3271 else if (getLangOpts().ObjCAutoRefCount && 3272 !CheckObjCARCUnavailableWeakConversion(ToType, 3273 From->getType())) { 3274 if (Action == AA_Initializing) 3275 Diag(From->getLocStart(), 3276 diag::err_arc_weak_unavailable_assign); 3277 else 3278 Diag(From->getLocStart(), 3279 diag::err_arc_convesion_of_weak_unavailable) 3280 << (Action == AA_Casting) << From->getType() << ToType 3281 << From->getSourceRange(); 3282 } 3283 3284 CastKind Kind = CK_Invalid; 3285 CXXCastPath BasePath; 3286 if (CheckPointerConversion(From, ToType, Kind, BasePath, CStyle)) 3287 return ExprError(); 3288 3289 // Make sure we extend blocks if necessary. 3290 // FIXME: doing this here is really ugly. 3291 if (Kind == CK_BlockPointerToObjCPointerCast) { 3292 ExprResult E = From; 3293 (void) PrepareCastToObjCObjectPointer(E); 3294 From = E.get(); 3295 } 3296 if (getLangOpts().ObjCAutoRefCount) 3297 CheckObjCARCConversion(SourceRange(), ToType, From, CCK); 3298 From = ImpCastExprToType(From, ToType, Kind, VK_RValue, &BasePath, CCK) 3299 .get(); 3300 break; 3301 } 3302 3303 case ICK_Pointer_Member: { 3304 CastKind Kind = CK_Invalid; 3305 CXXCastPath BasePath; 3306 if (CheckMemberPointerConversion(From, ToType, Kind, BasePath, CStyle)) 3307 return ExprError(); 3308 if (CheckExceptionSpecCompatibility(From, ToType)) 3309 return ExprError(); 3310 3311 // We may not have been able to figure out what this member pointer resolved 3312 // to up until this exact point. Attempt to lock-in it's inheritance model. 3313 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) { 3314 (void)isCompleteType(From->getExprLoc(), From->getType()); 3315 (void)isCompleteType(From->getExprLoc(), ToType); 3316 } 3317 3318 From = ImpCastExprToType(From, ToType, Kind, VK_RValue, &BasePath, CCK) 3319 .get(); 3320 break; 3321 } 3322 3323 case ICK_Boolean_Conversion: 3324 // Perform half-to-boolean conversion via float. 3325 if (From->getType()->isHalfType()) { 3326 From = ImpCastExprToType(From, Context.FloatTy, CK_FloatingCast).get(); 3327 FromType = Context.FloatTy; 3328 } 3329 3330 From = ImpCastExprToType(From, Context.BoolTy, 3331 ScalarTypeToBooleanCastKind(FromType), 3332 VK_RValue, /*BasePath=*/nullptr, CCK).get(); 3333 break; 3334 3335 case ICK_Derived_To_Base: { 3336 CXXCastPath BasePath; 3337 if (CheckDerivedToBaseConversion(From->getType(), 3338 ToType.getNonReferenceType(), 3339 From->getLocStart(), 3340 From->getSourceRange(), 3341 &BasePath, 3342 CStyle)) 3343 return ExprError(); 3344 3345 From = ImpCastExprToType(From, ToType.getNonReferenceType(), 3346 CK_DerivedToBase, From->getValueKind(), 3347 &BasePath, CCK).get(); 3348 break; 3349 } 3350 3351 case ICK_Vector_Conversion: 3352 From = ImpCastExprToType(From, ToType, CK_BitCast, 3353 VK_RValue, /*BasePath=*/nullptr, CCK).get(); 3354 break; 3355 3356 case ICK_Vector_Splat: 3357 // Vector splat from any arithmetic type to a vector. 3358 // Cast to the element type. 3359 { 3360 QualType elType = ToType->getAs<ExtVectorType>()->getElementType(); 3361 if (elType != From->getType()) { 3362 ExprResult E = From; 3363 From = ImpCastExprToType(From, elType, 3364 PrepareScalarCast(E, elType)).get(); 3365 } 3366 From = ImpCastExprToType(From, ToType, CK_VectorSplat, 3367 VK_RValue, /*BasePath=*/nullptr, CCK).get(); 3368 } 3369 break; 3370 3371 case ICK_Complex_Real: 3372 // Case 1. x -> _Complex y 3373 if (const ComplexType *ToComplex = ToType->getAs<ComplexType>()) { 3374 QualType ElType = ToComplex->getElementType(); 3375 bool isFloatingComplex = ElType->isRealFloatingType(); 3376 3377 // x -> y 3378 if (Context.hasSameUnqualifiedType(ElType, From->getType())) { 3379 // do nothing 3380 } else if (From->getType()->isRealFloatingType()) { 3381 From = ImpCastExprToType(From, ElType, 3382 isFloatingComplex ? CK_FloatingCast : CK_FloatingToIntegral).get(); 3383 } else { 3384 assert(From->getType()->isIntegerType()); 3385 From = ImpCastExprToType(From, ElType, 3386 isFloatingComplex ? CK_IntegralToFloating : CK_IntegralCast).get(); 3387 } 3388 // y -> _Complex y 3389 From = ImpCastExprToType(From, ToType, 3390 isFloatingComplex ? CK_FloatingRealToComplex 3391 : CK_IntegralRealToComplex).get(); 3392 3393 // Case 2. _Complex x -> y 3394 } else { 3395 const ComplexType *FromComplex = From->getType()->getAs<ComplexType>(); 3396 assert(FromComplex); 3397 3398 QualType ElType = FromComplex->getElementType(); 3399 bool isFloatingComplex = ElType->isRealFloatingType(); 3400 3401 // _Complex x -> x 3402 From = ImpCastExprToType(From, ElType, 3403 isFloatingComplex ? CK_FloatingComplexToReal 3404 : CK_IntegralComplexToReal, 3405 VK_RValue, /*BasePath=*/nullptr, CCK).get(); 3406 3407 // x -> y 3408 if (Context.hasSameUnqualifiedType(ElType, ToType)) { 3409 // do nothing 3410 } else if (ToType->isRealFloatingType()) { 3411 From = ImpCastExprToType(From, ToType, 3412 isFloatingComplex ? CK_FloatingCast : CK_IntegralToFloating, 3413 VK_RValue, /*BasePath=*/nullptr, CCK).get(); 3414 } else { 3415 assert(ToType->isIntegerType()); 3416 From = ImpCastExprToType(From, ToType, 3417 isFloatingComplex ? CK_FloatingToIntegral : CK_IntegralCast, 3418 VK_RValue, /*BasePath=*/nullptr, CCK).get(); 3419 } 3420 } 3421 break; 3422 3423 case ICK_Block_Pointer_Conversion: { 3424 From = ImpCastExprToType(From, ToType.getUnqualifiedType(), CK_BitCast, 3425 VK_RValue, /*BasePath=*/nullptr, CCK).get(); 3426 break; 3427 } 3428 3429 case ICK_TransparentUnionConversion: { 3430 ExprResult FromRes = From; 3431 Sema::AssignConvertType ConvTy = 3432 CheckTransparentUnionArgumentConstraints(ToType, FromRes); 3433 if (FromRes.isInvalid()) 3434 return ExprError(); 3435 From = FromRes.get(); 3436 assert ((ConvTy == Sema::Compatible) && 3437 "Improper transparent union conversion"); 3438 (void)ConvTy; 3439 break; 3440 } 3441 3442 case ICK_Zero_Event_Conversion: 3443 From = ImpCastExprToType(From, ToType, 3444 CK_ZeroToOCLEvent, 3445 From->getValueKind()).get(); 3446 break; 3447 3448 case ICK_Lvalue_To_Rvalue: 3449 case ICK_Array_To_Pointer: 3450 case ICK_Function_To_Pointer: 3451 case ICK_Qualification: 3452 case ICK_Num_Conversion_Kinds: 3453 case ICK_C_Only_Conversion: 3454 llvm_unreachable("Improper second standard conversion"); 3455 } 3456 3457 switch (SCS.Third) { 3458 case ICK_Identity: 3459 // Nothing to do. 3460 break; 3461 3462 case ICK_Qualification: { 3463 // The qualification keeps the category of the inner expression, unless the 3464 // target type isn't a reference. 3465 ExprValueKind VK = ToType->isReferenceType() ? 3466 From->getValueKind() : VK_RValue; 3467 From = ImpCastExprToType(From, ToType.getNonLValueExprType(Context), 3468 CK_NoOp, VK, /*BasePath=*/nullptr, CCK).get(); 3469 3470 if (SCS.DeprecatedStringLiteralToCharPtr && 3471 !getLangOpts().WritableStrings) { 3472 Diag(From->getLocStart(), getLangOpts().CPlusPlus11 3473 ? diag::ext_deprecated_string_literal_conversion 3474 : diag::warn_deprecated_string_literal_conversion) 3475 << ToType.getNonReferenceType(); 3476 } 3477 3478 break; 3479 } 3480 3481 default: 3482 llvm_unreachable("Improper third standard conversion"); 3483 } 3484 3485 // If this conversion sequence involved a scalar -> atomic conversion, perform 3486 // that conversion now. 3487 if (!ToAtomicType.isNull()) { 3488 assert(Context.hasSameType( 3489 ToAtomicType->castAs<AtomicType>()->getValueType(), From->getType())); 3490 From = ImpCastExprToType(From, ToAtomicType, CK_NonAtomicToAtomic, 3491 VK_RValue, nullptr, CCK).get(); 3492 } 3493 3494 // If this conversion sequence succeeded and involved implicitly converting a 3495 // _Nullable type to a _Nonnull one, complain. 3496 if (CCK == CCK_ImplicitConversion) 3497 diagnoseNullableToNonnullConversion(ToType, InitialFromType, 3498 From->getLocStart()); 3499 3500 return From; 3501 } 3502 3503 /// \brief Check the completeness of a type in a unary type trait. 3504 /// 3505 /// If the particular type trait requires a complete type, tries to complete 3506 /// it. If completing the type fails, a diagnostic is emitted and false 3507 /// returned. If completing the type succeeds or no completion was required, 3508 /// returns true. 3509 static bool CheckUnaryTypeTraitTypeCompleteness(Sema &S, TypeTrait UTT, 3510 SourceLocation Loc, 3511 QualType ArgTy) { 3512 // C++0x [meta.unary.prop]p3: 3513 // For all of the class templates X declared in this Clause, instantiating 3514 // that template with a template argument that is a class template 3515 // specialization may result in the implicit instantiation of the template 3516 // argument if and only if the semantics of X require that the argument 3517 // must be a complete type. 3518 // We apply this rule to all the type trait expressions used to implement 3519 // these class templates. We also try to follow any GCC documented behavior 3520 // in these expressions to ensure portability of standard libraries. 3521 switch (UTT) { 3522 default: llvm_unreachable("not a UTT"); 3523 // is_complete_type somewhat obviously cannot require a complete type. 3524 case UTT_IsCompleteType: 3525 // Fall-through 3526 3527 // These traits are modeled on the type predicates in C++0x 3528 // [meta.unary.cat] and [meta.unary.comp]. They are not specified as 3529 // requiring a complete type, as whether or not they return true cannot be 3530 // impacted by the completeness of the type. 3531 case UTT_IsVoid: 3532 case UTT_IsIntegral: 3533 case UTT_IsFloatingPoint: 3534 case UTT_IsArray: 3535 case UTT_IsPointer: 3536 case UTT_IsLvalueReference: 3537 case UTT_IsRvalueReference: 3538 case UTT_IsMemberFunctionPointer: 3539 case UTT_IsMemberObjectPointer: 3540 case UTT_IsEnum: 3541 case UTT_IsUnion: 3542 case UTT_IsClass: 3543 case UTT_IsFunction: 3544 case UTT_IsReference: 3545 case UTT_IsArithmetic: 3546 case UTT_IsFundamental: 3547 case UTT_IsObject: 3548 case UTT_IsScalar: 3549 case UTT_IsCompound: 3550 case UTT_IsMemberPointer: 3551 // Fall-through 3552 3553 // These traits are modeled on type predicates in C++0x [meta.unary.prop] 3554 // which requires some of its traits to have the complete type. However, 3555 // the completeness of the type cannot impact these traits' semantics, and 3556 // so they don't require it. This matches the comments on these traits in 3557 // Table 49. 3558 case UTT_IsConst: 3559 case UTT_IsVolatile: 3560 case UTT_IsSigned: 3561 case UTT_IsUnsigned: 3562 3563 // This type trait always returns false, checking the type is moot. 3564 case UTT_IsInterfaceClass: 3565 return true; 3566 3567 // C++14 [meta.unary.prop]: 3568 // If T is a non-union class type, T shall be a complete type. 3569 case UTT_IsEmpty: 3570 case UTT_IsPolymorphic: 3571 case UTT_IsAbstract: 3572 if (const auto *RD = ArgTy->getAsCXXRecordDecl()) 3573 if (!RD->isUnion()) 3574 return !S.RequireCompleteType( 3575 Loc, ArgTy, diag::err_incomplete_type_used_in_type_trait_expr); 3576 return true; 3577 3578 // C++14 [meta.unary.prop]: 3579 // If T is a class type, T shall be a complete type. 3580 case UTT_IsFinal: 3581 case UTT_IsSealed: 3582 if (ArgTy->getAsCXXRecordDecl()) 3583 return !S.RequireCompleteType( 3584 Loc, ArgTy, diag::err_incomplete_type_used_in_type_trait_expr); 3585 return true; 3586 3587 // C++0x [meta.unary.prop] Table 49 requires the following traits to be 3588 // applied to a complete type. 3589 case UTT_IsTrivial: 3590 case UTT_IsTriviallyCopyable: 3591 case UTT_IsStandardLayout: 3592 case UTT_IsPOD: 3593 case UTT_IsLiteral: 3594 3595 case UTT_IsDestructible: 3596 case UTT_IsNothrowDestructible: 3597 // Fall-through 3598 3599 // These trait expressions are designed to help implement predicates in 3600 // [meta.unary.prop] despite not being named the same. They are specified 3601 // by both GCC and the Embarcadero C++ compiler, and require the complete 3602 // type due to the overarching C++0x type predicates being implemented 3603 // requiring the complete type. 3604 case UTT_HasNothrowAssign: 3605 case UTT_HasNothrowMoveAssign: 3606 case UTT_HasNothrowConstructor: 3607 case UTT_HasNothrowCopy: 3608 case UTT_HasTrivialAssign: 3609 case UTT_HasTrivialMoveAssign: 3610 case UTT_HasTrivialDefaultConstructor: 3611 case UTT_HasTrivialMoveConstructor: 3612 case UTT_HasTrivialCopy: 3613 case UTT_HasTrivialDestructor: 3614 case UTT_HasVirtualDestructor: 3615 // Arrays of unknown bound are expressly allowed. 3616 QualType ElTy = ArgTy; 3617 if (ArgTy->isIncompleteArrayType()) 3618 ElTy = S.Context.getAsArrayType(ArgTy)->getElementType(); 3619 3620 // The void type is expressly allowed. 3621 if (ElTy->isVoidType()) 3622 return true; 3623 3624 return !S.RequireCompleteType( 3625 Loc, ElTy, diag::err_incomplete_type_used_in_type_trait_expr); 3626 } 3627 } 3628 3629 static bool HasNoThrowOperator(const RecordType *RT, OverloadedOperatorKind Op, 3630 Sema &Self, SourceLocation KeyLoc, ASTContext &C, 3631 bool (CXXRecordDecl::*HasTrivial)() const, 3632 bool (CXXRecordDecl::*HasNonTrivial)() const, 3633 bool (CXXMethodDecl::*IsDesiredOp)() const) 3634 { 3635 CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl()); 3636 if ((RD->*HasTrivial)() && !(RD->*HasNonTrivial)()) 3637 return true; 3638 3639 DeclarationName Name = C.DeclarationNames.getCXXOperatorName(Op); 3640 DeclarationNameInfo NameInfo(Name, KeyLoc); 3641 LookupResult Res(Self, NameInfo, Sema::LookupOrdinaryName); 3642 if (Self.LookupQualifiedName(Res, RD)) { 3643 bool FoundOperator = false; 3644 Res.suppressDiagnostics(); 3645 for (LookupResult::iterator Op = Res.begin(), OpEnd = Res.end(); 3646 Op != OpEnd; ++Op) { 3647 if (isa<FunctionTemplateDecl>(*Op)) 3648 continue; 3649 3650 CXXMethodDecl *Operator = cast<CXXMethodDecl>(*Op); 3651 if((Operator->*IsDesiredOp)()) { 3652 FoundOperator = true; 3653 const FunctionProtoType *CPT = 3654 Operator->getType()->getAs<FunctionProtoType>(); 3655 CPT = Self.ResolveExceptionSpec(KeyLoc, CPT); 3656 if (!CPT || !CPT->isNothrow(C)) 3657 return false; 3658 } 3659 } 3660 return FoundOperator; 3661 } 3662 return false; 3663 } 3664 3665 static bool EvaluateUnaryTypeTrait(Sema &Self, TypeTrait UTT, 3666 SourceLocation KeyLoc, QualType T) { 3667 assert(!T->isDependentType() && "Cannot evaluate traits of dependent type"); 3668 3669 ASTContext &C = Self.Context; 3670 switch(UTT) { 3671 default: llvm_unreachable("not a UTT"); 3672 // Type trait expressions corresponding to the primary type category 3673 // predicates in C++0x [meta.unary.cat]. 3674 case UTT_IsVoid: 3675 return T->isVoidType(); 3676 case UTT_IsIntegral: 3677 return T->isIntegralType(C); 3678 case UTT_IsFloatingPoint: 3679 return T->isFloatingType(); 3680 case UTT_IsArray: 3681 return T->isArrayType(); 3682 case UTT_IsPointer: 3683 return T->isPointerType(); 3684 case UTT_IsLvalueReference: 3685 return T->isLValueReferenceType(); 3686 case UTT_IsRvalueReference: 3687 return T->isRValueReferenceType(); 3688 case UTT_IsMemberFunctionPointer: 3689 return T->isMemberFunctionPointerType(); 3690 case UTT_IsMemberObjectPointer: 3691 return T->isMemberDataPointerType(); 3692 case UTT_IsEnum: 3693 return T->isEnumeralType(); 3694 case UTT_IsUnion: 3695 return T->isUnionType(); 3696 case UTT_IsClass: 3697 return T->isClassType() || T->isStructureType() || T->isInterfaceType(); 3698 case UTT_IsFunction: 3699 return T->isFunctionType(); 3700 3701 // Type trait expressions which correspond to the convenient composition 3702 // predicates in C++0x [meta.unary.comp]. 3703 case UTT_IsReference: 3704 return T->isReferenceType(); 3705 case UTT_IsArithmetic: 3706 return T->isArithmeticType() && !T->isEnumeralType(); 3707 case UTT_IsFundamental: 3708 return T->isFundamentalType(); 3709 case UTT_IsObject: 3710 return T->isObjectType(); 3711 case UTT_IsScalar: 3712 // Note: semantic analysis depends on Objective-C lifetime types to be 3713 // considered scalar types. However, such types do not actually behave 3714 // like scalar types at run time (since they may require retain/release 3715 // operations), so we report them as non-scalar. 3716 if (T->isObjCLifetimeType()) { 3717 switch (T.getObjCLifetime()) { 3718 case Qualifiers::OCL_None: 3719 case Qualifiers::OCL_ExplicitNone: 3720 return true; 3721 3722 case Qualifiers::OCL_Strong: 3723 case Qualifiers::OCL_Weak: 3724 case Qualifiers::OCL_Autoreleasing: 3725 return false; 3726 } 3727 } 3728 3729 return T->isScalarType(); 3730 case UTT_IsCompound: 3731 return T->isCompoundType(); 3732 case UTT_IsMemberPointer: 3733 return T->isMemberPointerType(); 3734 3735 // Type trait expressions which correspond to the type property predicates 3736 // in C++0x [meta.unary.prop]. 3737 case UTT_IsConst: 3738 return T.isConstQualified(); 3739 case UTT_IsVolatile: 3740 return T.isVolatileQualified(); 3741 case UTT_IsTrivial: 3742 return T.isTrivialType(C); 3743 case UTT_IsTriviallyCopyable: 3744 return T.isTriviallyCopyableType(C); 3745 case UTT_IsStandardLayout: 3746 return T->isStandardLayoutType(); 3747 case UTT_IsPOD: 3748 return T.isPODType(C); 3749 case UTT_IsLiteral: 3750 return T->isLiteralType(C); 3751 case UTT_IsEmpty: 3752 if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl()) 3753 return !RD->isUnion() && RD->isEmpty(); 3754 return false; 3755 case UTT_IsPolymorphic: 3756 if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl()) 3757 return !RD->isUnion() && RD->isPolymorphic(); 3758 return false; 3759 case UTT_IsAbstract: 3760 if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl()) 3761 return !RD->isUnion() && RD->isAbstract(); 3762 return false; 3763 // __is_interface_class only returns true when CL is invoked in /CLR mode and 3764 // even then only when it is used with the 'interface struct ...' syntax 3765 // Clang doesn't support /CLR which makes this type trait moot. 3766 case UTT_IsInterfaceClass: 3767 return false; 3768 case UTT_IsFinal: 3769 case UTT_IsSealed: 3770 if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl()) 3771 return RD->hasAttr<FinalAttr>(); 3772 return false; 3773 case UTT_IsSigned: 3774 return T->isSignedIntegerType(); 3775 case UTT_IsUnsigned: 3776 return T->isUnsignedIntegerType(); 3777 3778 // Type trait expressions which query classes regarding their construction, 3779 // destruction, and copying. Rather than being based directly on the 3780 // related type predicates in the standard, they are specified by both 3781 // GCC[1] and the Embarcadero C++ compiler[2], and Clang implements those 3782 // specifications. 3783 // 3784 // 1: http://gcc.gnu/.org/onlinedocs/gcc/Type-Traits.html 3785 // 2: http://docwiki.embarcadero.com/RADStudio/XE/en/Type_Trait_Functions_(C%2B%2B0x)_Index 3786 // 3787 // Note that these builtins do not behave as documented in g++: if a class 3788 // has both a trivial and a non-trivial special member of a particular kind, 3789 // they return false! For now, we emulate this behavior. 3790 // FIXME: This appears to be a g++ bug: more complex cases reveal that it 3791 // does not correctly compute triviality in the presence of multiple special 3792 // members of the same kind. Revisit this once the g++ bug is fixed. 3793 case UTT_HasTrivialDefaultConstructor: 3794 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html: 3795 // If __is_pod (type) is true then the trait is true, else if type is 3796 // a cv class or union type (or array thereof) with a trivial default 3797 // constructor ([class.ctor]) then the trait is true, else it is false. 3798 if (T.isPODType(C)) 3799 return true; 3800 if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl()) 3801 return RD->hasTrivialDefaultConstructor() && 3802 !RD->hasNonTrivialDefaultConstructor(); 3803 return false; 3804 case UTT_HasTrivialMoveConstructor: 3805 // This trait is implemented by MSVC 2012 and needed to parse the 3806 // standard library headers. Specifically this is used as the logic 3807 // behind std::is_trivially_move_constructible (20.9.4.3). 3808 if (T.isPODType(C)) 3809 return true; 3810 if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl()) 3811 return RD->hasTrivialMoveConstructor() && !RD->hasNonTrivialMoveConstructor(); 3812 return false; 3813 case UTT_HasTrivialCopy: 3814 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html: 3815 // If __is_pod (type) is true or type is a reference type then 3816 // the trait is true, else if type is a cv class or union type 3817 // with a trivial copy constructor ([class.copy]) then the trait 3818 // is true, else it is false. 3819 if (T.isPODType(C) || T->isReferenceType()) 3820 return true; 3821 if (CXXRecordDecl *RD = T->getAsCXXRecordDecl()) 3822 return RD->hasTrivialCopyConstructor() && 3823 !RD->hasNonTrivialCopyConstructor(); 3824 return false; 3825 case UTT_HasTrivialMoveAssign: 3826 // This trait is implemented by MSVC 2012 and needed to parse the 3827 // standard library headers. Specifically it is used as the logic 3828 // behind std::is_trivially_move_assignable (20.9.4.3) 3829 if (T.isPODType(C)) 3830 return true; 3831 if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl()) 3832 return RD->hasTrivialMoveAssignment() && !RD->hasNonTrivialMoveAssignment(); 3833 return false; 3834 case UTT_HasTrivialAssign: 3835 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html: 3836 // If type is const qualified or is a reference type then the 3837 // trait is false. Otherwise if __is_pod (type) is true then the 3838 // trait is true, else if type is a cv class or union type with 3839 // a trivial copy assignment ([class.copy]) then the trait is 3840 // true, else it is false. 3841 // Note: the const and reference restrictions are interesting, 3842 // given that const and reference members don't prevent a class 3843 // from having a trivial copy assignment operator (but do cause 3844 // errors if the copy assignment operator is actually used, q.v. 3845 // [class.copy]p12). 3846 3847 if (T.isConstQualified()) 3848 return false; 3849 if (T.isPODType(C)) 3850 return true; 3851 if (CXXRecordDecl *RD = T->getAsCXXRecordDecl()) 3852 return RD->hasTrivialCopyAssignment() && 3853 !RD->hasNonTrivialCopyAssignment(); 3854 return false; 3855 case UTT_IsDestructible: 3856 case UTT_IsNothrowDestructible: 3857 // C++14 [meta.unary.prop]: 3858 // For reference types, is_destructible<T>::value is true. 3859 if (T->isReferenceType()) 3860 return true; 3861 3862 // Objective-C++ ARC: autorelease types don't require destruction. 3863 if (T->isObjCLifetimeType() && 3864 T.getObjCLifetime() == Qualifiers::OCL_Autoreleasing) 3865 return true; 3866 3867 // C++14 [meta.unary.prop]: 3868 // For incomplete types and function types, is_destructible<T>::value is 3869 // false. 3870 if (T->isIncompleteType() || T->isFunctionType()) 3871 return false; 3872 3873 // C++14 [meta.unary.prop]: 3874 // For object types and given U equal to remove_all_extents_t<T>, if the 3875 // expression std::declval<U&>().~U() is well-formed when treated as an 3876 // unevaluated operand (Clause 5), then is_destructible<T>::value is true 3877 if (auto *RD = C.getBaseElementType(T)->getAsCXXRecordDecl()) { 3878 CXXDestructorDecl *Destructor = Self.LookupDestructor(RD); 3879 if (!Destructor) 3880 return false; 3881 // C++14 [dcl.fct.def.delete]p2: 3882 // A program that refers to a deleted function implicitly or 3883 // explicitly, other than to declare it, is ill-formed. 3884 if (Destructor->isDeleted()) 3885 return false; 3886 if (C.getLangOpts().AccessControl && Destructor->getAccess() != AS_public) 3887 return false; 3888 if (UTT == UTT_IsNothrowDestructible) { 3889 const FunctionProtoType *CPT = 3890 Destructor->getType()->getAs<FunctionProtoType>(); 3891 CPT = Self.ResolveExceptionSpec(KeyLoc, CPT); 3892 if (!CPT || !CPT->isNothrow(C)) 3893 return false; 3894 } 3895 } 3896 return true; 3897 3898 case UTT_HasTrivialDestructor: 3899 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html 3900 // If __is_pod (type) is true or type is a reference type 3901 // then the trait is true, else if type is a cv class or union 3902 // type (or array thereof) with a trivial destructor 3903 // ([class.dtor]) then the trait is true, else it is 3904 // false. 3905 if (T.isPODType(C) || T->isReferenceType()) 3906 return true; 3907 3908 // Objective-C++ ARC: autorelease types don't require destruction. 3909 if (T->isObjCLifetimeType() && 3910 T.getObjCLifetime() == Qualifiers::OCL_Autoreleasing) 3911 return true; 3912 3913 if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl()) 3914 return RD->hasTrivialDestructor(); 3915 return false; 3916 // TODO: Propagate nothrowness for implicitly declared special members. 3917 case UTT_HasNothrowAssign: 3918 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html: 3919 // If type is const qualified or is a reference type then the 3920 // trait is false. Otherwise if __has_trivial_assign (type) 3921 // is true then the trait is true, else if type is a cv class 3922 // or union type with copy assignment operators that are known 3923 // not to throw an exception then the trait is true, else it is 3924 // false. 3925 if (C.getBaseElementType(T).isConstQualified()) 3926 return false; 3927 if (T->isReferenceType()) 3928 return false; 3929 if (T.isPODType(C) || T->isObjCLifetimeType()) 3930 return true; 3931 3932 if (const RecordType *RT = T->getAs<RecordType>()) 3933 return HasNoThrowOperator(RT, OO_Equal, Self, KeyLoc, C, 3934 &CXXRecordDecl::hasTrivialCopyAssignment, 3935 &CXXRecordDecl::hasNonTrivialCopyAssignment, 3936 &CXXMethodDecl::isCopyAssignmentOperator); 3937 return false; 3938 case UTT_HasNothrowMoveAssign: 3939 // This trait is implemented by MSVC 2012 and needed to parse the 3940 // standard library headers. Specifically this is used as the logic 3941 // behind std::is_nothrow_move_assignable (20.9.4.3). 3942 if (T.isPODType(C)) 3943 return true; 3944 3945 if (const RecordType *RT = C.getBaseElementType(T)->getAs<RecordType>()) 3946 return HasNoThrowOperator(RT, OO_Equal, Self, KeyLoc, C, 3947 &CXXRecordDecl::hasTrivialMoveAssignment, 3948 &CXXRecordDecl::hasNonTrivialMoveAssignment, 3949 &CXXMethodDecl::isMoveAssignmentOperator); 3950 return false; 3951 case UTT_HasNothrowCopy: 3952 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html: 3953 // If __has_trivial_copy (type) is true then the trait is true, else 3954 // if type is a cv class or union type with copy constructors that are 3955 // known not to throw an exception then the trait is true, else it is 3956 // false. 3957 if (T.isPODType(C) || T->isReferenceType() || T->isObjCLifetimeType()) 3958 return true; 3959 if (CXXRecordDecl *RD = T->getAsCXXRecordDecl()) { 3960 if (RD->hasTrivialCopyConstructor() && 3961 !RD->hasNonTrivialCopyConstructor()) 3962 return true; 3963 3964 bool FoundConstructor = false; 3965 unsigned FoundTQs; 3966 for (const auto *ND : Self.LookupConstructors(RD)) { 3967 // A template constructor is never a copy constructor. 3968 // FIXME: However, it may actually be selected at the actual overload 3969 // resolution point. 3970 if (isa<FunctionTemplateDecl>(ND)) 3971 continue; 3972 const CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(ND); 3973 if (Constructor->isCopyConstructor(FoundTQs)) { 3974 FoundConstructor = true; 3975 const FunctionProtoType *CPT 3976 = Constructor->getType()->getAs<FunctionProtoType>(); 3977 CPT = Self.ResolveExceptionSpec(KeyLoc, CPT); 3978 if (!CPT) 3979 return false; 3980 // TODO: check whether evaluating default arguments can throw. 3981 // For now, we'll be conservative and assume that they can throw. 3982 if (!CPT->isNothrow(C) || CPT->getNumParams() > 1) 3983 return false; 3984 } 3985 } 3986 3987 return FoundConstructor; 3988 } 3989 return false; 3990 case UTT_HasNothrowConstructor: 3991 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html 3992 // If __has_trivial_constructor (type) is true then the trait is 3993 // true, else if type is a cv class or union type (or array 3994 // thereof) with a default constructor that is known not to 3995 // throw an exception then the trait is true, else it is false. 3996 if (T.isPODType(C) || T->isObjCLifetimeType()) 3997 return true; 3998 if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl()) { 3999 if (RD->hasTrivialDefaultConstructor() && 4000 !RD->hasNonTrivialDefaultConstructor()) 4001 return true; 4002 4003 bool FoundConstructor = false; 4004 for (const auto *ND : Self.LookupConstructors(RD)) { 4005 // FIXME: In C++0x, a constructor template can be a default constructor. 4006 if (isa<FunctionTemplateDecl>(ND)) 4007 continue; 4008 const CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(ND); 4009 if (Constructor->isDefaultConstructor()) { 4010 FoundConstructor = true; 4011 const FunctionProtoType *CPT 4012 = Constructor->getType()->getAs<FunctionProtoType>(); 4013 CPT = Self.ResolveExceptionSpec(KeyLoc, CPT); 4014 if (!CPT) 4015 return false; 4016 // FIXME: check whether evaluating default arguments can throw. 4017 // For now, we'll be conservative and assume that they can throw. 4018 if (!CPT->isNothrow(C) || CPT->getNumParams() > 0) 4019 return false; 4020 } 4021 } 4022 return FoundConstructor; 4023 } 4024 return false; 4025 case UTT_HasVirtualDestructor: 4026 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html: 4027 // If type is a class type with a virtual destructor ([class.dtor]) 4028 // then the trait is true, else it is false. 4029 if (CXXRecordDecl *RD = T->getAsCXXRecordDecl()) 4030 if (CXXDestructorDecl *Destructor = Self.LookupDestructor(RD)) 4031 return Destructor->isVirtual(); 4032 return false; 4033 4034 // These type trait expressions are modeled on the specifications for the 4035 // Embarcadero C++0x type trait functions: 4036 // http://docwiki.embarcadero.com/RADStudio/XE/en/Type_Trait_Functions_(C%2B%2B0x)_Index 4037 case UTT_IsCompleteType: 4038 // http://docwiki.embarcadero.com/RADStudio/XE/en/Is_complete_type_(typename_T_): 4039 // Returns True if and only if T is a complete type at the point of the 4040 // function call. 4041 return !T->isIncompleteType(); 4042 } 4043 } 4044 4045 /// \brief Determine whether T has a non-trivial Objective-C lifetime in 4046 /// ARC mode. 4047 static bool hasNontrivialObjCLifetime(QualType T) { 4048 switch (T.getObjCLifetime()) { 4049 case Qualifiers::OCL_ExplicitNone: 4050 return false; 4051 4052 case Qualifiers::OCL_Strong: 4053 case Qualifiers::OCL_Weak: 4054 case Qualifiers::OCL_Autoreleasing: 4055 return true; 4056 4057 case Qualifiers::OCL_None: 4058 return T->isObjCLifetimeType(); 4059 } 4060 4061 llvm_unreachable("Unknown ObjC lifetime qualifier"); 4062 } 4063 4064 static bool EvaluateBinaryTypeTrait(Sema &Self, TypeTrait BTT, QualType LhsT, 4065 QualType RhsT, SourceLocation KeyLoc); 4066 4067 static bool evaluateTypeTrait(Sema &S, TypeTrait Kind, SourceLocation KWLoc, 4068 ArrayRef<TypeSourceInfo *> Args, 4069 SourceLocation RParenLoc) { 4070 if (Kind <= UTT_Last) 4071 return EvaluateUnaryTypeTrait(S, Kind, KWLoc, Args[0]->getType()); 4072 4073 if (Kind <= BTT_Last) 4074 return EvaluateBinaryTypeTrait(S, Kind, Args[0]->getType(), 4075 Args[1]->getType(), RParenLoc); 4076 4077 switch (Kind) { 4078 case clang::TT_IsConstructible: 4079 case clang::TT_IsNothrowConstructible: 4080 case clang::TT_IsTriviallyConstructible: { 4081 // C++11 [meta.unary.prop]: 4082 // is_trivially_constructible is defined as: 4083 // 4084 // is_constructible<T, Args...>::value is true and the variable 4085 // definition for is_constructible, as defined below, is known to call 4086 // no operation that is not trivial. 4087 // 4088 // The predicate condition for a template specialization 4089 // is_constructible<T, Args...> shall be satisfied if and only if the 4090 // following variable definition would be well-formed for some invented 4091 // variable t: 4092 // 4093 // T t(create<Args>()...); 4094 assert(!Args.empty()); 4095 4096 // Precondition: T and all types in the parameter pack Args shall be 4097 // complete types, (possibly cv-qualified) void, or arrays of 4098 // unknown bound. 4099 for (const auto *TSI : Args) { 4100 QualType ArgTy = TSI->getType(); 4101 if (ArgTy->isVoidType() || ArgTy->isIncompleteArrayType()) 4102 continue; 4103 4104 if (S.RequireCompleteType(KWLoc, ArgTy, 4105 diag::err_incomplete_type_used_in_type_trait_expr)) 4106 return false; 4107 } 4108 4109 // Make sure the first argument is not incomplete nor a function type. 4110 QualType T = Args[0]->getType(); 4111 if (T->isIncompleteType() || T->isFunctionType()) 4112 return false; 4113 4114 // Make sure the first argument is not an abstract type. 4115 CXXRecordDecl *RD = T->getAsCXXRecordDecl(); 4116 if (RD && RD->isAbstract()) 4117 return false; 4118 4119 SmallVector<OpaqueValueExpr, 2> OpaqueArgExprs; 4120 SmallVector<Expr *, 2> ArgExprs; 4121 ArgExprs.reserve(Args.size() - 1); 4122 for (unsigned I = 1, N = Args.size(); I != N; ++I) { 4123 QualType ArgTy = Args[I]->getType(); 4124 if (ArgTy->isObjectType() || ArgTy->isFunctionType()) 4125 ArgTy = S.Context.getRValueReferenceType(ArgTy); 4126 OpaqueArgExprs.push_back( 4127 OpaqueValueExpr(Args[I]->getTypeLoc().getLocStart(), 4128 ArgTy.getNonLValueExprType(S.Context), 4129 Expr::getValueKindForType(ArgTy))); 4130 } 4131 for (Expr &E : OpaqueArgExprs) 4132 ArgExprs.push_back(&E); 4133 4134 // Perform the initialization in an unevaluated context within a SFINAE 4135 // trap at translation unit scope. 4136 EnterExpressionEvaluationContext Unevaluated(S, Sema::Unevaluated); 4137 Sema::SFINAETrap SFINAE(S, /*AccessCheckingSFINAE=*/true); 4138 Sema::ContextRAII TUContext(S, S.Context.getTranslationUnitDecl()); 4139 InitializedEntity To(InitializedEntity::InitializeTemporary(Args[0])); 4140 InitializationKind InitKind(InitializationKind::CreateDirect(KWLoc, KWLoc, 4141 RParenLoc)); 4142 InitializationSequence Init(S, To, InitKind, ArgExprs); 4143 if (Init.Failed()) 4144 return false; 4145 4146 ExprResult Result = Init.Perform(S, To, InitKind, ArgExprs); 4147 if (Result.isInvalid() || SFINAE.hasErrorOccurred()) 4148 return false; 4149 4150 if (Kind == clang::TT_IsConstructible) 4151 return true; 4152 4153 if (Kind == clang::TT_IsNothrowConstructible) 4154 return S.canThrow(Result.get()) == CT_Cannot; 4155 4156 if (Kind == clang::TT_IsTriviallyConstructible) { 4157 // Under Objective-C ARC, if the destination has non-trivial Objective-C 4158 // lifetime, this is a non-trivial construction. 4159 if (S.getLangOpts().ObjCAutoRefCount && 4160 hasNontrivialObjCLifetime(T.getNonReferenceType())) 4161 return false; 4162 4163 // The initialization succeeded; now make sure there are no non-trivial 4164 // calls. 4165 return !Result.get()->hasNonTrivialCall(S.Context); 4166 } 4167 4168 llvm_unreachable("unhandled type trait"); 4169 return false; 4170 } 4171 default: llvm_unreachable("not a TT"); 4172 } 4173 4174 return false; 4175 } 4176 4177 ExprResult Sema::BuildTypeTrait(TypeTrait Kind, SourceLocation KWLoc, 4178 ArrayRef<TypeSourceInfo *> Args, 4179 SourceLocation RParenLoc) { 4180 QualType ResultType = Context.getLogicalOperationType(); 4181 4182 if (Kind <= UTT_Last && !CheckUnaryTypeTraitTypeCompleteness( 4183 *this, Kind, KWLoc, Args[0]->getType())) 4184 return ExprError(); 4185 4186 bool Dependent = false; 4187 for (unsigned I = 0, N = Args.size(); I != N; ++I) { 4188 if (Args[I]->getType()->isDependentType()) { 4189 Dependent = true; 4190 break; 4191 } 4192 } 4193 4194 bool Result = false; 4195 if (!Dependent) 4196 Result = evaluateTypeTrait(*this, Kind, KWLoc, Args, RParenLoc); 4197 4198 return TypeTraitExpr::Create(Context, ResultType, KWLoc, Kind, Args, 4199 RParenLoc, Result); 4200 } 4201 4202 ExprResult Sema::ActOnTypeTrait(TypeTrait Kind, SourceLocation KWLoc, 4203 ArrayRef<ParsedType> Args, 4204 SourceLocation RParenLoc) { 4205 SmallVector<TypeSourceInfo *, 4> ConvertedArgs; 4206 ConvertedArgs.reserve(Args.size()); 4207 4208 for (unsigned I = 0, N = Args.size(); I != N; ++I) { 4209 TypeSourceInfo *TInfo; 4210 QualType T = GetTypeFromParser(Args[I], &TInfo); 4211 if (!TInfo) 4212 TInfo = Context.getTrivialTypeSourceInfo(T, KWLoc); 4213 4214 ConvertedArgs.push_back(TInfo); 4215 } 4216 4217 return BuildTypeTrait(Kind, KWLoc, ConvertedArgs, RParenLoc); 4218 } 4219 4220 static bool EvaluateBinaryTypeTrait(Sema &Self, TypeTrait BTT, QualType LhsT, 4221 QualType RhsT, SourceLocation KeyLoc) { 4222 assert(!LhsT->isDependentType() && !RhsT->isDependentType() && 4223 "Cannot evaluate traits of dependent types"); 4224 4225 switch(BTT) { 4226 case BTT_IsBaseOf: { 4227 // C++0x [meta.rel]p2 4228 // Base is a base class of Derived without regard to cv-qualifiers or 4229 // Base and Derived are not unions and name the same class type without 4230 // regard to cv-qualifiers. 4231 4232 const RecordType *lhsRecord = LhsT->getAs<RecordType>(); 4233 if (!lhsRecord) return false; 4234 4235 const RecordType *rhsRecord = RhsT->getAs<RecordType>(); 4236 if (!rhsRecord) return false; 4237 4238 assert(Self.Context.hasSameUnqualifiedType(LhsT, RhsT) 4239 == (lhsRecord == rhsRecord)); 4240 4241 if (lhsRecord == rhsRecord) 4242 return !lhsRecord->getDecl()->isUnion(); 4243 4244 // C++0x [meta.rel]p2: 4245 // If Base and Derived are class types and are different types 4246 // (ignoring possible cv-qualifiers) then Derived shall be a 4247 // complete type. 4248 if (Self.RequireCompleteType(KeyLoc, RhsT, 4249 diag::err_incomplete_type_used_in_type_trait_expr)) 4250 return false; 4251 4252 return cast<CXXRecordDecl>(rhsRecord->getDecl()) 4253 ->isDerivedFrom(cast<CXXRecordDecl>(lhsRecord->getDecl())); 4254 } 4255 case BTT_IsSame: 4256 return Self.Context.hasSameType(LhsT, RhsT); 4257 case BTT_TypeCompatible: 4258 return Self.Context.typesAreCompatible(LhsT.getUnqualifiedType(), 4259 RhsT.getUnqualifiedType()); 4260 case BTT_IsConvertible: 4261 case BTT_IsConvertibleTo: { 4262 // C++0x [meta.rel]p4: 4263 // Given the following function prototype: 4264 // 4265 // template <class T> 4266 // typename add_rvalue_reference<T>::type create(); 4267 // 4268 // the predicate condition for a template specialization 4269 // is_convertible<From, To> shall be satisfied if and only if 4270 // the return expression in the following code would be 4271 // well-formed, including any implicit conversions to the return 4272 // type of the function: 4273 // 4274 // To test() { 4275 // return create<From>(); 4276 // } 4277 // 4278 // Access checking is performed as if in a context unrelated to To and 4279 // From. Only the validity of the immediate context of the expression 4280 // of the return-statement (including conversions to the return type) 4281 // is considered. 4282 // 4283 // We model the initialization as a copy-initialization of a temporary 4284 // of the appropriate type, which for this expression is identical to the 4285 // return statement (since NRVO doesn't apply). 4286 4287 // Functions aren't allowed to return function or array types. 4288 if (RhsT->isFunctionType() || RhsT->isArrayType()) 4289 return false; 4290 4291 // A return statement in a void function must have void type. 4292 if (RhsT->isVoidType()) 4293 return LhsT->isVoidType(); 4294 4295 // A function definition requires a complete, non-abstract return type. 4296 if (!Self.isCompleteType(KeyLoc, RhsT) || Self.isAbstractType(KeyLoc, RhsT)) 4297 return false; 4298 4299 // Compute the result of add_rvalue_reference. 4300 if (LhsT->isObjectType() || LhsT->isFunctionType()) 4301 LhsT = Self.Context.getRValueReferenceType(LhsT); 4302 4303 // Build a fake source and destination for initialization. 4304 InitializedEntity To(InitializedEntity::InitializeTemporary(RhsT)); 4305 OpaqueValueExpr From(KeyLoc, LhsT.getNonLValueExprType(Self.Context), 4306 Expr::getValueKindForType(LhsT)); 4307 Expr *FromPtr = &From; 4308 InitializationKind Kind(InitializationKind::CreateCopy(KeyLoc, 4309 SourceLocation())); 4310 4311 // Perform the initialization in an unevaluated context within a SFINAE 4312 // trap at translation unit scope. 4313 EnterExpressionEvaluationContext Unevaluated(Self, Sema::Unevaluated); 4314 Sema::SFINAETrap SFINAE(Self, /*AccessCheckingSFINAE=*/true); 4315 Sema::ContextRAII TUContext(Self, Self.Context.getTranslationUnitDecl()); 4316 InitializationSequence Init(Self, To, Kind, FromPtr); 4317 if (Init.Failed()) 4318 return false; 4319 4320 ExprResult Result = Init.Perform(Self, To, Kind, FromPtr); 4321 return !Result.isInvalid() && !SFINAE.hasErrorOccurred(); 4322 } 4323 4324 case BTT_IsNothrowAssignable: 4325 case BTT_IsTriviallyAssignable: { 4326 // C++11 [meta.unary.prop]p3: 4327 // is_trivially_assignable is defined as: 4328 // is_assignable<T, U>::value is true and the assignment, as defined by 4329 // is_assignable, is known to call no operation that is not trivial 4330 // 4331 // is_assignable is defined as: 4332 // The expression declval<T>() = declval<U>() is well-formed when 4333 // treated as an unevaluated operand (Clause 5). 4334 // 4335 // For both, T and U shall be complete types, (possibly cv-qualified) 4336 // void, or arrays of unknown bound. 4337 if (!LhsT->isVoidType() && !LhsT->isIncompleteArrayType() && 4338 Self.RequireCompleteType(KeyLoc, LhsT, 4339 diag::err_incomplete_type_used_in_type_trait_expr)) 4340 return false; 4341 if (!RhsT->isVoidType() && !RhsT->isIncompleteArrayType() && 4342 Self.RequireCompleteType(KeyLoc, RhsT, 4343 diag::err_incomplete_type_used_in_type_trait_expr)) 4344 return false; 4345 4346 // cv void is never assignable. 4347 if (LhsT->isVoidType() || RhsT->isVoidType()) 4348 return false; 4349 4350 // Build expressions that emulate the effect of declval<T>() and 4351 // declval<U>(). 4352 if (LhsT->isObjectType() || LhsT->isFunctionType()) 4353 LhsT = Self.Context.getRValueReferenceType(LhsT); 4354 if (RhsT->isObjectType() || RhsT->isFunctionType()) 4355 RhsT = Self.Context.getRValueReferenceType(RhsT); 4356 OpaqueValueExpr Lhs(KeyLoc, LhsT.getNonLValueExprType(Self.Context), 4357 Expr::getValueKindForType(LhsT)); 4358 OpaqueValueExpr Rhs(KeyLoc, RhsT.getNonLValueExprType(Self.Context), 4359 Expr::getValueKindForType(RhsT)); 4360 4361 // Attempt the assignment in an unevaluated context within a SFINAE 4362 // trap at translation unit scope. 4363 EnterExpressionEvaluationContext Unevaluated(Self, Sema::Unevaluated); 4364 Sema::SFINAETrap SFINAE(Self, /*AccessCheckingSFINAE=*/true); 4365 Sema::ContextRAII TUContext(Self, Self.Context.getTranslationUnitDecl()); 4366 ExprResult Result = Self.BuildBinOp(/*S=*/nullptr, KeyLoc, BO_Assign, &Lhs, 4367 &Rhs); 4368 if (Result.isInvalid() || SFINAE.hasErrorOccurred()) 4369 return false; 4370 4371 if (BTT == BTT_IsNothrowAssignable) 4372 return Self.canThrow(Result.get()) == CT_Cannot; 4373 4374 if (BTT == BTT_IsTriviallyAssignable) { 4375 // Under Objective-C ARC, if the destination has non-trivial Objective-C 4376 // lifetime, this is a non-trivial assignment. 4377 if (Self.getLangOpts().ObjCAutoRefCount && 4378 hasNontrivialObjCLifetime(LhsT.getNonReferenceType())) 4379 return false; 4380 4381 return !Result.get()->hasNonTrivialCall(Self.Context); 4382 } 4383 4384 llvm_unreachable("unhandled type trait"); 4385 return false; 4386 } 4387 default: llvm_unreachable("not a BTT"); 4388 } 4389 llvm_unreachable("Unknown type trait or not implemented"); 4390 } 4391 4392 ExprResult Sema::ActOnArrayTypeTrait(ArrayTypeTrait ATT, 4393 SourceLocation KWLoc, 4394 ParsedType Ty, 4395 Expr* DimExpr, 4396 SourceLocation RParen) { 4397 TypeSourceInfo *TSInfo; 4398 QualType T = GetTypeFromParser(Ty, &TSInfo); 4399 if (!TSInfo) 4400 TSInfo = Context.getTrivialTypeSourceInfo(T); 4401 4402 return BuildArrayTypeTrait(ATT, KWLoc, TSInfo, DimExpr, RParen); 4403 } 4404 4405 static uint64_t EvaluateArrayTypeTrait(Sema &Self, ArrayTypeTrait ATT, 4406 QualType T, Expr *DimExpr, 4407 SourceLocation KeyLoc) { 4408 assert(!T->isDependentType() && "Cannot evaluate traits of dependent type"); 4409 4410 switch(ATT) { 4411 case ATT_ArrayRank: 4412 if (T->isArrayType()) { 4413 unsigned Dim = 0; 4414 while (const ArrayType *AT = Self.Context.getAsArrayType(T)) { 4415 ++Dim; 4416 T = AT->getElementType(); 4417 } 4418 return Dim; 4419 } 4420 return 0; 4421 4422 case ATT_ArrayExtent: { 4423 llvm::APSInt Value; 4424 uint64_t Dim; 4425 if (Self.VerifyIntegerConstantExpression(DimExpr, &Value, 4426 diag::err_dimension_expr_not_constant_integer, 4427 false).isInvalid()) 4428 return 0; 4429 if (Value.isSigned() && Value.isNegative()) { 4430 Self.Diag(KeyLoc, diag::err_dimension_expr_not_constant_integer) 4431 << DimExpr->getSourceRange(); 4432 return 0; 4433 } 4434 Dim = Value.getLimitedValue(); 4435 4436 if (T->isArrayType()) { 4437 unsigned D = 0; 4438 bool Matched = false; 4439 while (const ArrayType *AT = Self.Context.getAsArrayType(T)) { 4440 if (Dim == D) { 4441 Matched = true; 4442 break; 4443 } 4444 ++D; 4445 T = AT->getElementType(); 4446 } 4447 4448 if (Matched && T->isArrayType()) { 4449 if (const ConstantArrayType *CAT = Self.Context.getAsConstantArrayType(T)) 4450 return CAT->getSize().getLimitedValue(); 4451 } 4452 } 4453 return 0; 4454 } 4455 } 4456 llvm_unreachable("Unknown type trait or not implemented"); 4457 } 4458 4459 ExprResult Sema::BuildArrayTypeTrait(ArrayTypeTrait ATT, 4460 SourceLocation KWLoc, 4461 TypeSourceInfo *TSInfo, 4462 Expr* DimExpr, 4463 SourceLocation RParen) { 4464 QualType T = TSInfo->getType(); 4465 4466 // FIXME: This should likely be tracked as an APInt to remove any host 4467 // assumptions about the width of size_t on the target. 4468 uint64_t Value = 0; 4469 if (!T->isDependentType()) 4470 Value = EvaluateArrayTypeTrait(*this, ATT, T, DimExpr, KWLoc); 4471 4472 // While the specification for these traits from the Embarcadero C++ 4473 // compiler's documentation says the return type is 'unsigned int', Clang 4474 // returns 'size_t'. On Windows, the primary platform for the Embarcadero 4475 // compiler, there is no difference. On several other platforms this is an 4476 // important distinction. 4477 return new (Context) ArrayTypeTraitExpr(KWLoc, ATT, TSInfo, Value, DimExpr, 4478 RParen, Context.getSizeType()); 4479 } 4480 4481 ExprResult Sema::ActOnExpressionTrait(ExpressionTrait ET, 4482 SourceLocation KWLoc, 4483 Expr *Queried, 4484 SourceLocation RParen) { 4485 // If error parsing the expression, ignore. 4486 if (!Queried) 4487 return ExprError(); 4488 4489 ExprResult Result = BuildExpressionTrait(ET, KWLoc, Queried, RParen); 4490 4491 return Result; 4492 } 4493 4494 static bool EvaluateExpressionTrait(ExpressionTrait ET, Expr *E) { 4495 switch (ET) { 4496 case ET_IsLValueExpr: return E->isLValue(); 4497 case ET_IsRValueExpr: return E->isRValue(); 4498 } 4499 llvm_unreachable("Expression trait not covered by switch"); 4500 } 4501 4502 ExprResult Sema::BuildExpressionTrait(ExpressionTrait ET, 4503 SourceLocation KWLoc, 4504 Expr *Queried, 4505 SourceLocation RParen) { 4506 if (Queried->isTypeDependent()) { 4507 // Delay type-checking for type-dependent expressions. 4508 } else if (Queried->getType()->isPlaceholderType()) { 4509 ExprResult PE = CheckPlaceholderExpr(Queried); 4510 if (PE.isInvalid()) return ExprError(); 4511 return BuildExpressionTrait(ET, KWLoc, PE.get(), RParen); 4512 } 4513 4514 bool Value = EvaluateExpressionTrait(ET, Queried); 4515 4516 return new (Context) 4517 ExpressionTraitExpr(KWLoc, ET, Queried, Value, RParen, Context.BoolTy); 4518 } 4519 4520 QualType Sema::CheckPointerToMemberOperands(ExprResult &LHS, ExprResult &RHS, 4521 ExprValueKind &VK, 4522 SourceLocation Loc, 4523 bool isIndirect) { 4524 assert(!LHS.get()->getType()->isPlaceholderType() && 4525 !RHS.get()->getType()->isPlaceholderType() && 4526 "placeholders should have been weeded out by now"); 4527 4528 // The LHS undergoes lvalue conversions if this is ->*. 4529 if (isIndirect) { 4530 LHS = DefaultLvalueConversion(LHS.get()); 4531 if (LHS.isInvalid()) return QualType(); 4532 } 4533 4534 // The RHS always undergoes lvalue conversions. 4535 RHS = DefaultLvalueConversion(RHS.get()); 4536 if (RHS.isInvalid()) return QualType(); 4537 4538 const char *OpSpelling = isIndirect ? "->*" : ".*"; 4539 // C++ 5.5p2 4540 // The binary operator .* [p3: ->*] binds its second operand, which shall 4541 // be of type "pointer to member of T" (where T is a completely-defined 4542 // class type) [...] 4543 QualType RHSType = RHS.get()->getType(); 4544 const MemberPointerType *MemPtr = RHSType->getAs<MemberPointerType>(); 4545 if (!MemPtr) { 4546 Diag(Loc, diag::err_bad_memptr_rhs) 4547 << OpSpelling << RHSType << RHS.get()->getSourceRange(); 4548 return QualType(); 4549 } 4550 4551 QualType Class(MemPtr->getClass(), 0); 4552 4553 // Note: C++ [expr.mptr.oper]p2-3 says that the class type into which the 4554 // member pointer points must be completely-defined. However, there is no 4555 // reason for this semantic distinction, and the rule is not enforced by 4556 // other compilers. Therefore, we do not check this property, as it is 4557 // likely to be considered a defect. 4558 4559 // C++ 5.5p2 4560 // [...] to its first operand, which shall be of class T or of a class of 4561 // which T is an unambiguous and accessible base class. [p3: a pointer to 4562 // such a class] 4563 QualType LHSType = LHS.get()->getType(); 4564 if (isIndirect) { 4565 if (const PointerType *Ptr = LHSType->getAs<PointerType>()) 4566 LHSType = Ptr->getPointeeType(); 4567 else { 4568 Diag(Loc, diag::err_bad_memptr_lhs) 4569 << OpSpelling << 1 << LHSType 4570 << FixItHint::CreateReplacement(SourceRange(Loc), ".*"); 4571 return QualType(); 4572 } 4573 } 4574 4575 if (!Context.hasSameUnqualifiedType(Class, LHSType)) { 4576 // If we want to check the hierarchy, we need a complete type. 4577 if (RequireCompleteType(Loc, LHSType, diag::err_bad_memptr_lhs, 4578 OpSpelling, (int)isIndirect)) { 4579 return QualType(); 4580 } 4581 4582 if (!IsDerivedFrom(Loc, LHSType, Class)) { 4583 Diag(Loc, diag::err_bad_memptr_lhs) << OpSpelling 4584 << (int)isIndirect << LHS.get()->getType(); 4585 return QualType(); 4586 } 4587 4588 CXXCastPath BasePath; 4589 if (CheckDerivedToBaseConversion(LHSType, Class, Loc, 4590 SourceRange(LHS.get()->getLocStart(), 4591 RHS.get()->getLocEnd()), 4592 &BasePath)) 4593 return QualType(); 4594 4595 // Cast LHS to type of use. 4596 QualType UseType = isIndirect ? Context.getPointerType(Class) : Class; 4597 ExprValueKind VK = isIndirect ? VK_RValue : LHS.get()->getValueKind(); 4598 LHS = ImpCastExprToType(LHS.get(), UseType, CK_DerivedToBase, VK, 4599 &BasePath); 4600 } 4601 4602 if (isa<CXXScalarValueInitExpr>(RHS.get()->IgnoreParens())) { 4603 // Diagnose use of pointer-to-member type which when used as 4604 // the functional cast in a pointer-to-member expression. 4605 Diag(Loc, diag::err_pointer_to_member_type) << isIndirect; 4606 return QualType(); 4607 } 4608 4609 // C++ 5.5p2 4610 // The result is an object or a function of the type specified by the 4611 // second operand. 4612 // The cv qualifiers are the union of those in the pointer and the left side, 4613 // in accordance with 5.5p5 and 5.2.5. 4614 QualType Result = MemPtr->getPointeeType(); 4615 Result = Context.getCVRQualifiedType(Result, LHSType.getCVRQualifiers()); 4616 4617 // C++0x [expr.mptr.oper]p6: 4618 // In a .* expression whose object expression is an rvalue, the program is 4619 // ill-formed if the second operand is a pointer to member function with 4620 // ref-qualifier &. In a ->* expression or in a .* expression whose object 4621 // expression is an lvalue, the program is ill-formed if the second operand 4622 // is a pointer to member function with ref-qualifier &&. 4623 if (const FunctionProtoType *Proto = Result->getAs<FunctionProtoType>()) { 4624 switch (Proto->getRefQualifier()) { 4625 case RQ_None: 4626 // Do nothing 4627 break; 4628 4629 case RQ_LValue: 4630 if (!isIndirect && !LHS.get()->Classify(Context).isLValue()) 4631 Diag(Loc, diag::err_pointer_to_member_oper_value_classify) 4632 << RHSType << 1 << LHS.get()->getSourceRange(); 4633 break; 4634 4635 case RQ_RValue: 4636 if (isIndirect || !LHS.get()->Classify(Context).isRValue()) 4637 Diag(Loc, diag::err_pointer_to_member_oper_value_classify) 4638 << RHSType << 0 << LHS.get()->getSourceRange(); 4639 break; 4640 } 4641 } 4642 4643 // C++ [expr.mptr.oper]p6: 4644 // The result of a .* expression whose second operand is a pointer 4645 // to a data member is of the same value category as its 4646 // first operand. The result of a .* expression whose second 4647 // operand is a pointer to a member function is a prvalue. The 4648 // result of an ->* expression is an lvalue if its second operand 4649 // is a pointer to data member and a prvalue otherwise. 4650 if (Result->isFunctionType()) { 4651 VK = VK_RValue; 4652 return Context.BoundMemberTy; 4653 } else if (isIndirect) { 4654 VK = VK_LValue; 4655 } else { 4656 VK = LHS.get()->getValueKind(); 4657 } 4658 4659 return Result; 4660 } 4661 4662 /// \brief Try to convert a type to another according to C++0x 5.16p3. 4663 /// 4664 /// This is part of the parameter validation for the ? operator. If either 4665 /// value operand is a class type, the two operands are attempted to be 4666 /// converted to each other. This function does the conversion in one direction. 4667 /// It returns true if the program is ill-formed and has already been diagnosed 4668 /// as such. 4669 static bool TryClassUnification(Sema &Self, Expr *From, Expr *To, 4670 SourceLocation QuestionLoc, 4671 bool &HaveConversion, 4672 QualType &ToType) { 4673 HaveConversion = false; 4674 ToType = To->getType(); 4675 4676 InitializationKind Kind = InitializationKind::CreateCopy(To->getLocStart(), 4677 SourceLocation()); 4678 // C++0x 5.16p3 4679 // The process for determining whether an operand expression E1 of type T1 4680 // can be converted to match an operand expression E2 of type T2 is defined 4681 // as follows: 4682 // -- If E2 is an lvalue: 4683 bool ToIsLvalue = To->isLValue(); 4684 if (ToIsLvalue) { 4685 // E1 can be converted to match E2 if E1 can be implicitly converted to 4686 // type "lvalue reference to T2", subject to the constraint that in the 4687 // conversion the reference must bind directly to E1. 4688 QualType T = Self.Context.getLValueReferenceType(ToType); 4689 InitializedEntity Entity = InitializedEntity::InitializeTemporary(T); 4690 4691 InitializationSequence InitSeq(Self, Entity, Kind, From); 4692 if (InitSeq.isDirectReferenceBinding()) { 4693 ToType = T; 4694 HaveConversion = true; 4695 return false; 4696 } 4697 4698 if (InitSeq.isAmbiguous()) 4699 return InitSeq.Diagnose(Self, Entity, Kind, From); 4700 } 4701 4702 // -- If E2 is an rvalue, or if the conversion above cannot be done: 4703 // -- if E1 and E2 have class type, and the underlying class types are 4704 // the same or one is a base class of the other: 4705 QualType FTy = From->getType(); 4706 QualType TTy = To->getType(); 4707 const RecordType *FRec = FTy->getAs<RecordType>(); 4708 const RecordType *TRec = TTy->getAs<RecordType>(); 4709 bool FDerivedFromT = FRec && TRec && FRec != TRec && 4710 Self.IsDerivedFrom(QuestionLoc, FTy, TTy); 4711 if (FRec && TRec && (FRec == TRec || FDerivedFromT || 4712 Self.IsDerivedFrom(QuestionLoc, TTy, FTy))) { 4713 // E1 can be converted to match E2 if the class of T2 is the 4714 // same type as, or a base class of, the class of T1, and 4715 // [cv2 > cv1]. 4716 if (FRec == TRec || FDerivedFromT) { 4717 if (TTy.isAtLeastAsQualifiedAs(FTy)) { 4718 InitializedEntity Entity = InitializedEntity::InitializeTemporary(TTy); 4719 InitializationSequence InitSeq(Self, Entity, Kind, From); 4720 if (InitSeq) { 4721 HaveConversion = true; 4722 return false; 4723 } 4724 4725 if (InitSeq.isAmbiguous()) 4726 return InitSeq.Diagnose(Self, Entity, Kind, From); 4727 } 4728 } 4729 4730 return false; 4731 } 4732 4733 // -- Otherwise: E1 can be converted to match E2 if E1 can be 4734 // implicitly converted to the type that expression E2 would have 4735 // if E2 were converted to an rvalue (or the type it has, if E2 is 4736 // an rvalue). 4737 // 4738 // This actually refers very narrowly to the lvalue-to-rvalue conversion, not 4739 // to the array-to-pointer or function-to-pointer conversions. 4740 if (!TTy->getAs<TagType>()) 4741 TTy = TTy.getUnqualifiedType(); 4742 4743 InitializedEntity Entity = InitializedEntity::InitializeTemporary(TTy); 4744 InitializationSequence InitSeq(Self, Entity, Kind, From); 4745 HaveConversion = !InitSeq.Failed(); 4746 ToType = TTy; 4747 if (InitSeq.isAmbiguous()) 4748 return InitSeq.Diagnose(Self, Entity, Kind, From); 4749 4750 return false; 4751 } 4752 4753 /// \brief Try to find a common type for two according to C++0x 5.16p5. 4754 /// 4755 /// This is part of the parameter validation for the ? operator. If either 4756 /// value operand is a class type, overload resolution is used to find a 4757 /// conversion to a common type. 4758 static bool FindConditionalOverload(Sema &Self, ExprResult &LHS, ExprResult &RHS, 4759 SourceLocation QuestionLoc) { 4760 Expr *Args[2] = { LHS.get(), RHS.get() }; 4761 OverloadCandidateSet CandidateSet(QuestionLoc, 4762 OverloadCandidateSet::CSK_Operator); 4763 Self.AddBuiltinOperatorCandidates(OO_Conditional, QuestionLoc, Args, 4764 CandidateSet); 4765 4766 OverloadCandidateSet::iterator Best; 4767 switch (CandidateSet.BestViableFunction(Self, QuestionLoc, Best)) { 4768 case OR_Success: { 4769 // We found a match. Perform the conversions on the arguments and move on. 4770 ExprResult LHSRes = 4771 Self.PerformImplicitConversion(LHS.get(), Best->BuiltinTypes.ParamTypes[0], 4772 Best->Conversions[0], Sema::AA_Converting); 4773 if (LHSRes.isInvalid()) 4774 break; 4775 LHS = LHSRes; 4776 4777 ExprResult RHSRes = 4778 Self.PerformImplicitConversion(RHS.get(), Best->BuiltinTypes.ParamTypes[1], 4779 Best->Conversions[1], Sema::AA_Converting); 4780 if (RHSRes.isInvalid()) 4781 break; 4782 RHS = RHSRes; 4783 if (Best->Function) 4784 Self.MarkFunctionReferenced(QuestionLoc, Best->Function); 4785 return false; 4786 } 4787 4788 case OR_No_Viable_Function: 4789 4790 // Emit a better diagnostic if one of the expressions is a null pointer 4791 // constant and the other is a pointer type. In this case, the user most 4792 // likely forgot to take the address of the other expression. 4793 if (Self.DiagnoseConditionalForNull(LHS.get(), RHS.get(), QuestionLoc)) 4794 return true; 4795 4796 Self.Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands) 4797 << LHS.get()->getType() << RHS.get()->getType() 4798 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange(); 4799 return true; 4800 4801 case OR_Ambiguous: 4802 Self.Diag(QuestionLoc, diag::err_conditional_ambiguous_ovl) 4803 << LHS.get()->getType() << RHS.get()->getType() 4804 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange(); 4805 // FIXME: Print the possible common types by printing the return types of 4806 // the viable candidates. 4807 break; 4808 4809 case OR_Deleted: 4810 llvm_unreachable("Conditional operator has only built-in overloads"); 4811 } 4812 return true; 4813 } 4814 4815 /// \brief Perform an "extended" implicit conversion as returned by 4816 /// TryClassUnification. 4817 static bool ConvertForConditional(Sema &Self, ExprResult &E, QualType T) { 4818 InitializedEntity Entity = InitializedEntity::InitializeTemporary(T); 4819 InitializationKind Kind = InitializationKind::CreateCopy(E.get()->getLocStart(), 4820 SourceLocation()); 4821 Expr *Arg = E.get(); 4822 InitializationSequence InitSeq(Self, Entity, Kind, Arg); 4823 ExprResult Result = InitSeq.Perform(Self, Entity, Kind, Arg); 4824 if (Result.isInvalid()) 4825 return true; 4826 4827 E = Result; 4828 return false; 4829 } 4830 4831 /// \brief Check the operands of ?: under C++ semantics. 4832 /// 4833 /// See C++ [expr.cond]. Note that LHS is never null, even for the GNU x ?: y 4834 /// extension. In this case, LHS == Cond. (But they're not aliases.) 4835 QualType Sema::CXXCheckConditionalOperands(ExprResult &Cond, ExprResult &LHS, 4836 ExprResult &RHS, ExprValueKind &VK, 4837 ExprObjectKind &OK, 4838 SourceLocation QuestionLoc) { 4839 // FIXME: Handle C99's complex types, vector types, block pointers and Obj-C++ 4840 // interface pointers. 4841 4842 // C++11 [expr.cond]p1 4843 // The first expression is contextually converted to bool. 4844 if (!Cond.get()->isTypeDependent()) { 4845 ExprResult CondRes = CheckCXXBooleanCondition(Cond.get()); 4846 if (CondRes.isInvalid()) 4847 return QualType(); 4848 Cond = CondRes; 4849 } 4850 4851 // Assume r-value. 4852 VK = VK_RValue; 4853 OK = OK_Ordinary; 4854 4855 // Either of the arguments dependent? 4856 if (LHS.get()->isTypeDependent() || RHS.get()->isTypeDependent()) 4857 return Context.DependentTy; 4858 4859 // C++11 [expr.cond]p2 4860 // If either the second or the third operand has type (cv) void, ... 4861 QualType LTy = LHS.get()->getType(); 4862 QualType RTy = RHS.get()->getType(); 4863 bool LVoid = LTy->isVoidType(); 4864 bool RVoid = RTy->isVoidType(); 4865 if (LVoid || RVoid) { 4866 // ... one of the following shall hold: 4867 // -- The second or the third operand (but not both) is a (possibly 4868 // parenthesized) throw-expression; the result is of the type 4869 // and value category of the other. 4870 bool LThrow = isa<CXXThrowExpr>(LHS.get()->IgnoreParenImpCasts()); 4871 bool RThrow = isa<CXXThrowExpr>(RHS.get()->IgnoreParenImpCasts()); 4872 if (LThrow != RThrow) { 4873 Expr *NonThrow = LThrow ? RHS.get() : LHS.get(); 4874 VK = NonThrow->getValueKind(); 4875 // DR (no number yet): the result is a bit-field if the 4876 // non-throw-expression operand is a bit-field. 4877 OK = NonThrow->getObjectKind(); 4878 return NonThrow->getType(); 4879 } 4880 4881 // -- Both the second and third operands have type void; the result is of 4882 // type void and is a prvalue. 4883 if (LVoid && RVoid) 4884 return Context.VoidTy; 4885 4886 // Neither holds, error. 4887 Diag(QuestionLoc, diag::err_conditional_void_nonvoid) 4888 << (LVoid ? RTy : LTy) << (LVoid ? 0 : 1) 4889 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange(); 4890 return QualType(); 4891 } 4892 4893 // Neither is void. 4894 4895 // C++11 [expr.cond]p3 4896 // Otherwise, if the second and third operand have different types, and 4897 // either has (cv) class type [...] an attempt is made to convert each of 4898 // those operands to the type of the other. 4899 if (!Context.hasSameType(LTy, RTy) && 4900 (LTy->isRecordType() || RTy->isRecordType())) { 4901 // These return true if a single direction is already ambiguous. 4902 QualType L2RType, R2LType; 4903 bool HaveL2R, HaveR2L; 4904 if (TryClassUnification(*this, LHS.get(), RHS.get(), QuestionLoc, HaveL2R, L2RType)) 4905 return QualType(); 4906 if (TryClassUnification(*this, RHS.get(), LHS.get(), QuestionLoc, HaveR2L, R2LType)) 4907 return QualType(); 4908 4909 // If both can be converted, [...] the program is ill-formed. 4910 if (HaveL2R && HaveR2L) { 4911 Diag(QuestionLoc, diag::err_conditional_ambiguous) 4912 << LTy << RTy << LHS.get()->getSourceRange() << RHS.get()->getSourceRange(); 4913 return QualType(); 4914 } 4915 4916 // If exactly one conversion is possible, that conversion is applied to 4917 // the chosen operand and the converted operands are used in place of the 4918 // original operands for the remainder of this section. 4919 if (HaveL2R) { 4920 if (ConvertForConditional(*this, LHS, L2RType) || LHS.isInvalid()) 4921 return QualType(); 4922 LTy = LHS.get()->getType(); 4923 } else if (HaveR2L) { 4924 if (ConvertForConditional(*this, RHS, R2LType) || RHS.isInvalid()) 4925 return QualType(); 4926 RTy = RHS.get()->getType(); 4927 } 4928 } 4929 4930 // C++11 [expr.cond]p3 4931 // if both are glvalues of the same value category and the same type except 4932 // for cv-qualification, an attempt is made to convert each of those 4933 // operands to the type of the other. 4934 ExprValueKind LVK = LHS.get()->getValueKind(); 4935 ExprValueKind RVK = RHS.get()->getValueKind(); 4936 if (!Context.hasSameType(LTy, RTy) && 4937 Context.hasSameUnqualifiedType(LTy, RTy) && 4938 LVK == RVK && LVK != VK_RValue) { 4939 // Since the unqualified types are reference-related and we require the 4940 // result to be as if a reference bound directly, the only conversion 4941 // we can perform is to add cv-qualifiers. 4942 Qualifiers LCVR = Qualifiers::fromCVRMask(LTy.getCVRQualifiers()); 4943 Qualifiers RCVR = Qualifiers::fromCVRMask(RTy.getCVRQualifiers()); 4944 if (RCVR.isStrictSupersetOf(LCVR)) { 4945 LHS = ImpCastExprToType(LHS.get(), RTy, CK_NoOp, LVK); 4946 LTy = LHS.get()->getType(); 4947 } 4948 else if (LCVR.isStrictSupersetOf(RCVR)) { 4949 RHS = ImpCastExprToType(RHS.get(), LTy, CK_NoOp, RVK); 4950 RTy = RHS.get()->getType(); 4951 } 4952 } 4953 4954 // C++11 [expr.cond]p4 4955 // If the second and third operands are glvalues of the same value 4956 // category and have the same type, the result is of that type and 4957 // value category and it is a bit-field if the second or the third 4958 // operand is a bit-field, or if both are bit-fields. 4959 // We only extend this to bitfields, not to the crazy other kinds of 4960 // l-values. 4961 bool Same = Context.hasSameType(LTy, RTy); 4962 if (Same && LVK == RVK && LVK != VK_RValue && 4963 LHS.get()->isOrdinaryOrBitFieldObject() && 4964 RHS.get()->isOrdinaryOrBitFieldObject()) { 4965 VK = LHS.get()->getValueKind(); 4966 if (LHS.get()->getObjectKind() == OK_BitField || 4967 RHS.get()->getObjectKind() == OK_BitField) 4968 OK = OK_BitField; 4969 return LTy; 4970 } 4971 4972 // C++11 [expr.cond]p5 4973 // Otherwise, the result is a prvalue. If the second and third operands 4974 // do not have the same type, and either has (cv) class type, ... 4975 if (!Same && (LTy->isRecordType() || RTy->isRecordType())) { 4976 // ... overload resolution is used to determine the conversions (if any) 4977 // to be applied to the operands. If the overload resolution fails, the 4978 // program is ill-formed. 4979 if (FindConditionalOverload(*this, LHS, RHS, QuestionLoc)) 4980 return QualType(); 4981 } 4982 4983 // C++11 [expr.cond]p6 4984 // Lvalue-to-rvalue, array-to-pointer, and function-to-pointer standard 4985 // conversions are performed on the second and third operands. 4986 LHS = DefaultFunctionArrayLvalueConversion(LHS.get()); 4987 RHS = DefaultFunctionArrayLvalueConversion(RHS.get()); 4988 if (LHS.isInvalid() || RHS.isInvalid()) 4989 return QualType(); 4990 LTy = LHS.get()->getType(); 4991 RTy = RHS.get()->getType(); 4992 4993 // After those conversions, one of the following shall hold: 4994 // -- The second and third operands have the same type; the result 4995 // is of that type. If the operands have class type, the result 4996 // is a prvalue temporary of the result type, which is 4997 // copy-initialized from either the second operand or the third 4998 // operand depending on the value of the first operand. 4999 if (Context.getCanonicalType(LTy) == Context.getCanonicalType(RTy)) { 5000 if (LTy->isRecordType()) { 5001 // The operands have class type. Make a temporary copy. 5002 if (RequireNonAbstractType(QuestionLoc, LTy, 5003 diag::err_allocation_of_abstract_type)) 5004 return QualType(); 5005 InitializedEntity Entity = InitializedEntity::InitializeTemporary(LTy); 5006 5007 ExprResult LHSCopy = PerformCopyInitialization(Entity, 5008 SourceLocation(), 5009 LHS); 5010 if (LHSCopy.isInvalid()) 5011 return QualType(); 5012 5013 ExprResult RHSCopy = PerformCopyInitialization(Entity, 5014 SourceLocation(), 5015 RHS); 5016 if (RHSCopy.isInvalid()) 5017 return QualType(); 5018 5019 LHS = LHSCopy; 5020 RHS = RHSCopy; 5021 } 5022 5023 return LTy; 5024 } 5025 5026 // Extension: conditional operator involving vector types. 5027 if (LTy->isVectorType() || RTy->isVectorType()) 5028 return CheckVectorOperands(LHS, RHS, QuestionLoc, /*isCompAssign*/false, 5029 /*AllowBothBool*/true, 5030 /*AllowBoolConversions*/false); 5031 5032 // -- The second and third operands have arithmetic or enumeration type; 5033 // the usual arithmetic conversions are performed to bring them to a 5034 // common type, and the result is of that type. 5035 if (LTy->isArithmeticType() && RTy->isArithmeticType()) { 5036 QualType ResTy = UsualArithmeticConversions(LHS, RHS); 5037 if (LHS.isInvalid() || RHS.isInvalid()) 5038 return QualType(); 5039 5040 LHS = ImpCastExprToType(LHS.get(), ResTy, PrepareScalarCast(LHS, ResTy)); 5041 RHS = ImpCastExprToType(RHS.get(), ResTy, PrepareScalarCast(RHS, ResTy)); 5042 5043 return ResTy; 5044 } 5045 5046 // -- The second and third operands have pointer type, or one has pointer 5047 // type and the other is a null pointer constant, or both are null 5048 // pointer constants, at least one of which is non-integral; pointer 5049 // conversions and qualification conversions are performed to bring them 5050 // to their composite pointer type. The result is of the composite 5051 // pointer type. 5052 // -- The second and third operands have pointer to member type, or one has 5053 // pointer to member type and the other is a null pointer constant; 5054 // pointer to member conversions and qualification conversions are 5055 // performed to bring them to a common type, whose cv-qualification 5056 // shall match the cv-qualification of either the second or the third 5057 // operand. The result is of the common type. 5058 bool NonStandardCompositeType = false; 5059 QualType Composite = FindCompositePointerType(QuestionLoc, LHS, RHS, 5060 isSFINAEContext() ? nullptr 5061 : &NonStandardCompositeType); 5062 if (!Composite.isNull()) { 5063 if (NonStandardCompositeType) 5064 Diag(QuestionLoc, 5065 diag::ext_typecheck_cond_incompatible_operands_nonstandard) 5066 << LTy << RTy << Composite 5067 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange(); 5068 5069 return Composite; 5070 } 5071 5072 // Similarly, attempt to find composite type of two objective-c pointers. 5073 Composite = FindCompositeObjCPointerType(LHS, RHS, QuestionLoc); 5074 if (!Composite.isNull()) 5075 return Composite; 5076 5077 // Check if we are using a null with a non-pointer type. 5078 if (DiagnoseConditionalForNull(LHS.get(), RHS.get(), QuestionLoc)) 5079 return QualType(); 5080 5081 Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands) 5082 << LHS.get()->getType() << RHS.get()->getType() 5083 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange(); 5084 return QualType(); 5085 } 5086 5087 /// \brief Find a merged pointer type and convert the two expressions to it. 5088 /// 5089 /// This finds the composite pointer type (or member pointer type) for @p E1 5090 /// and @p E2 according to C++11 5.9p2. It converts both expressions to this 5091 /// type and returns it. 5092 /// It does not emit diagnostics. 5093 /// 5094 /// \param Loc The location of the operator requiring these two expressions to 5095 /// be converted to the composite pointer type. 5096 /// 5097 /// If \p NonStandardCompositeType is non-NULL, then we are permitted to find 5098 /// a non-standard (but still sane) composite type to which both expressions 5099 /// can be converted. When such a type is chosen, \c *NonStandardCompositeType 5100 /// will be set true. 5101 QualType Sema::FindCompositePointerType(SourceLocation Loc, 5102 Expr *&E1, Expr *&E2, 5103 bool *NonStandardCompositeType) { 5104 if (NonStandardCompositeType) 5105 *NonStandardCompositeType = false; 5106 5107 assert(getLangOpts().CPlusPlus && "This function assumes C++"); 5108 QualType T1 = E1->getType(), T2 = E2->getType(); 5109 5110 // C++11 5.9p2 5111 // Pointer conversions and qualification conversions are performed on 5112 // pointer operands to bring them to their composite pointer type. If 5113 // one operand is a null pointer constant, the composite pointer type is 5114 // std::nullptr_t if the other operand is also a null pointer constant or, 5115 // if the other operand is a pointer, the type of the other operand. 5116 if (!T1->isAnyPointerType() && !T1->isMemberPointerType() && 5117 !T2->isAnyPointerType() && !T2->isMemberPointerType()) { 5118 if (T1->isNullPtrType() && 5119 E2->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) { 5120 E2 = ImpCastExprToType(E2, T1, CK_NullToPointer).get(); 5121 return T1; 5122 } 5123 if (T2->isNullPtrType() && 5124 E1->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) { 5125 E1 = ImpCastExprToType(E1, T2, CK_NullToPointer).get(); 5126 return T2; 5127 } 5128 return QualType(); 5129 } 5130 5131 if (E1->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) { 5132 if (T2->isMemberPointerType()) 5133 E1 = ImpCastExprToType(E1, T2, CK_NullToMemberPointer).get(); 5134 else 5135 E1 = ImpCastExprToType(E1, T2, CK_NullToPointer).get(); 5136 return T2; 5137 } 5138 if (E2->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) { 5139 if (T1->isMemberPointerType()) 5140 E2 = ImpCastExprToType(E2, T1, CK_NullToMemberPointer).get(); 5141 else 5142 E2 = ImpCastExprToType(E2, T1, CK_NullToPointer).get(); 5143 return T1; 5144 } 5145 5146 // Now both have to be pointers or member pointers. 5147 if ((!T1->isPointerType() && !T1->isMemberPointerType()) || 5148 (!T2->isPointerType() && !T2->isMemberPointerType())) 5149 return QualType(); 5150 5151 // Otherwise, of one of the operands has type "pointer to cv1 void," then 5152 // the other has type "pointer to cv2 T" and the composite pointer type is 5153 // "pointer to cv12 void," where cv12 is the union of cv1 and cv2. 5154 // Otherwise, the composite pointer type is a pointer type similar to the 5155 // type of one of the operands, with a cv-qualification signature that is 5156 // the union of the cv-qualification signatures of the operand types. 5157 // In practice, the first part here is redundant; it's subsumed by the second. 5158 // What we do here is, we build the two possible composite types, and try the 5159 // conversions in both directions. If only one works, or if the two composite 5160 // types are the same, we have succeeded. 5161 // FIXME: extended qualifiers? 5162 typedef SmallVector<unsigned, 4> QualifierVector; 5163 QualifierVector QualifierUnion; 5164 typedef SmallVector<std::pair<const Type *, const Type *>, 4> 5165 ContainingClassVector; 5166 ContainingClassVector MemberOfClass; 5167 QualType Composite1 = Context.getCanonicalType(T1), 5168 Composite2 = Context.getCanonicalType(T2); 5169 unsigned NeedConstBefore = 0; 5170 do { 5171 const PointerType *Ptr1, *Ptr2; 5172 if ((Ptr1 = Composite1->getAs<PointerType>()) && 5173 (Ptr2 = Composite2->getAs<PointerType>())) { 5174 Composite1 = Ptr1->getPointeeType(); 5175 Composite2 = Ptr2->getPointeeType(); 5176 5177 // If we're allowed to create a non-standard composite type, keep track 5178 // of where we need to fill in additional 'const' qualifiers. 5179 if (NonStandardCompositeType && 5180 Composite1.getCVRQualifiers() != Composite2.getCVRQualifiers()) 5181 NeedConstBefore = QualifierUnion.size(); 5182 5183 QualifierUnion.push_back( 5184 Composite1.getCVRQualifiers() | Composite2.getCVRQualifiers()); 5185 MemberOfClass.push_back(std::make_pair(nullptr, nullptr)); 5186 continue; 5187 } 5188 5189 const MemberPointerType *MemPtr1, *MemPtr2; 5190 if ((MemPtr1 = Composite1->getAs<MemberPointerType>()) && 5191 (MemPtr2 = Composite2->getAs<MemberPointerType>())) { 5192 Composite1 = MemPtr1->getPointeeType(); 5193 Composite2 = MemPtr2->getPointeeType(); 5194 5195 // If we're allowed to create a non-standard composite type, keep track 5196 // of where we need to fill in additional 'const' qualifiers. 5197 if (NonStandardCompositeType && 5198 Composite1.getCVRQualifiers() != Composite2.getCVRQualifiers()) 5199 NeedConstBefore = QualifierUnion.size(); 5200 5201 QualifierUnion.push_back( 5202 Composite1.getCVRQualifiers() | Composite2.getCVRQualifiers()); 5203 MemberOfClass.push_back(std::make_pair(MemPtr1->getClass(), 5204 MemPtr2->getClass())); 5205 continue; 5206 } 5207 5208 // FIXME: block pointer types? 5209 5210 // Cannot unwrap any more types. 5211 break; 5212 } while (true); 5213 5214 if (NeedConstBefore && NonStandardCompositeType) { 5215 // Extension: Add 'const' to qualifiers that come before the first qualifier 5216 // mismatch, so that our (non-standard!) composite type meets the 5217 // requirements of C++ [conv.qual]p4 bullet 3. 5218 for (unsigned I = 0; I != NeedConstBefore; ++I) { 5219 if ((QualifierUnion[I] & Qualifiers::Const) == 0) { 5220 QualifierUnion[I] = QualifierUnion[I] | Qualifiers::Const; 5221 *NonStandardCompositeType = true; 5222 } 5223 } 5224 } 5225 5226 // Rewrap the composites as pointers or member pointers with the union CVRs. 5227 ContainingClassVector::reverse_iterator MOC 5228 = MemberOfClass.rbegin(); 5229 for (QualifierVector::reverse_iterator 5230 I = QualifierUnion.rbegin(), 5231 E = QualifierUnion.rend(); 5232 I != E; (void)++I, ++MOC) { 5233 Qualifiers Quals = Qualifiers::fromCVRMask(*I); 5234 if (MOC->first && MOC->second) { 5235 // Rebuild member pointer type 5236 Composite1 = Context.getMemberPointerType( 5237 Context.getQualifiedType(Composite1, Quals), 5238 MOC->first); 5239 Composite2 = Context.getMemberPointerType( 5240 Context.getQualifiedType(Composite2, Quals), 5241 MOC->second); 5242 } else { 5243 // Rebuild pointer type 5244 Composite1 5245 = Context.getPointerType(Context.getQualifiedType(Composite1, Quals)); 5246 Composite2 5247 = Context.getPointerType(Context.getQualifiedType(Composite2, Quals)); 5248 } 5249 } 5250 5251 // Try to convert to the first composite pointer type. 5252 InitializedEntity Entity1 5253 = InitializedEntity::InitializeTemporary(Composite1); 5254 InitializationKind Kind 5255 = InitializationKind::CreateCopy(Loc, SourceLocation()); 5256 InitializationSequence E1ToC1(*this, Entity1, Kind, E1); 5257 InitializationSequence E2ToC1(*this, Entity1, Kind, E2); 5258 5259 if (E1ToC1 && E2ToC1) { 5260 // Conversion to Composite1 is viable. 5261 if (!Context.hasSameType(Composite1, Composite2)) { 5262 // Composite2 is a different type from Composite1. Check whether 5263 // Composite2 is also viable. 5264 InitializedEntity Entity2 5265 = InitializedEntity::InitializeTemporary(Composite2); 5266 InitializationSequence E1ToC2(*this, Entity2, Kind, E1); 5267 InitializationSequence E2ToC2(*this, Entity2, Kind, E2); 5268 if (E1ToC2 && E2ToC2) { 5269 // Both Composite1 and Composite2 are viable and are different; 5270 // this is an ambiguity. 5271 return QualType(); 5272 } 5273 } 5274 5275 // Convert E1 to Composite1 5276 ExprResult E1Result 5277 = E1ToC1.Perform(*this, Entity1, Kind, E1); 5278 if (E1Result.isInvalid()) 5279 return QualType(); 5280 E1 = E1Result.getAs<Expr>(); 5281 5282 // Convert E2 to Composite1 5283 ExprResult E2Result 5284 = E2ToC1.Perform(*this, Entity1, Kind, E2); 5285 if (E2Result.isInvalid()) 5286 return QualType(); 5287 E2 = E2Result.getAs<Expr>(); 5288 5289 return Composite1; 5290 } 5291 5292 // Check whether Composite2 is viable. 5293 InitializedEntity Entity2 5294 = InitializedEntity::InitializeTemporary(Composite2); 5295 InitializationSequence E1ToC2(*this, Entity2, Kind, E1); 5296 InitializationSequence E2ToC2(*this, Entity2, Kind, E2); 5297 if (!E1ToC2 || !E2ToC2) 5298 return QualType(); 5299 5300 // Convert E1 to Composite2 5301 ExprResult E1Result 5302 = E1ToC2.Perform(*this, Entity2, Kind, E1); 5303 if (E1Result.isInvalid()) 5304 return QualType(); 5305 E1 = E1Result.getAs<Expr>(); 5306 5307 // Convert E2 to Composite2 5308 ExprResult E2Result 5309 = E2ToC2.Perform(*this, Entity2, Kind, E2); 5310 if (E2Result.isInvalid()) 5311 return QualType(); 5312 E2 = E2Result.getAs<Expr>(); 5313 5314 return Composite2; 5315 } 5316 5317 ExprResult Sema::MaybeBindToTemporary(Expr *E) { 5318 if (!E) 5319 return ExprError(); 5320 5321 assert(!isa<CXXBindTemporaryExpr>(E) && "Double-bound temporary?"); 5322 5323 // If the result is a glvalue, we shouldn't bind it. 5324 if (!E->isRValue()) 5325 return E; 5326 5327 // In ARC, calls that return a retainable type can return retained, 5328 // in which case we have to insert a consuming cast. 5329 if (getLangOpts().ObjCAutoRefCount && 5330 E->getType()->isObjCRetainableType()) { 5331 5332 bool ReturnsRetained; 5333 5334 // For actual calls, we compute this by examining the type of the 5335 // called value. 5336 if (CallExpr *Call = dyn_cast<CallExpr>(E)) { 5337 Expr *Callee = Call->getCallee()->IgnoreParens(); 5338 QualType T = Callee->getType(); 5339 5340 if (T == Context.BoundMemberTy) { 5341 // Handle pointer-to-members. 5342 if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Callee)) 5343 T = BinOp->getRHS()->getType(); 5344 else if (MemberExpr *Mem = dyn_cast<MemberExpr>(Callee)) 5345 T = Mem->getMemberDecl()->getType(); 5346 } 5347 5348 if (const PointerType *Ptr = T->getAs<PointerType>()) 5349 T = Ptr->getPointeeType(); 5350 else if (const BlockPointerType *Ptr = T->getAs<BlockPointerType>()) 5351 T = Ptr->getPointeeType(); 5352 else if (const MemberPointerType *MemPtr = T->getAs<MemberPointerType>()) 5353 T = MemPtr->getPointeeType(); 5354 5355 const FunctionType *FTy = T->getAs<FunctionType>(); 5356 assert(FTy && "call to value not of function type?"); 5357 ReturnsRetained = FTy->getExtInfo().getProducesResult(); 5358 5359 // ActOnStmtExpr arranges things so that StmtExprs of retainable 5360 // type always produce a +1 object. 5361 } else if (isa<StmtExpr>(E)) { 5362 ReturnsRetained = true; 5363 5364 // We hit this case with the lambda conversion-to-block optimization; 5365 // we don't want any extra casts here. 5366 } else if (isa<CastExpr>(E) && 5367 isa<BlockExpr>(cast<CastExpr>(E)->getSubExpr())) { 5368 return E; 5369 5370 // For message sends and property references, we try to find an 5371 // actual method. FIXME: we should infer retention by selector in 5372 // cases where we don't have an actual method. 5373 } else { 5374 ObjCMethodDecl *D = nullptr; 5375 if (ObjCMessageExpr *Send = dyn_cast<ObjCMessageExpr>(E)) { 5376 D = Send->getMethodDecl(); 5377 } else if (ObjCBoxedExpr *BoxedExpr = dyn_cast<ObjCBoxedExpr>(E)) { 5378 D = BoxedExpr->getBoxingMethod(); 5379 } else if (ObjCArrayLiteral *ArrayLit = dyn_cast<ObjCArrayLiteral>(E)) { 5380 D = ArrayLit->getArrayWithObjectsMethod(); 5381 } else if (ObjCDictionaryLiteral *DictLit 5382 = dyn_cast<ObjCDictionaryLiteral>(E)) { 5383 D = DictLit->getDictWithObjectsMethod(); 5384 } 5385 5386 ReturnsRetained = (D && D->hasAttr<NSReturnsRetainedAttr>()); 5387 5388 // Don't do reclaims on performSelector calls; despite their 5389 // return type, the invoked method doesn't necessarily actually 5390 // return an object. 5391 if (!ReturnsRetained && 5392 D && D->getMethodFamily() == OMF_performSelector) 5393 return E; 5394 } 5395 5396 // Don't reclaim an object of Class type. 5397 if (!ReturnsRetained && E->getType()->isObjCARCImplicitlyUnretainedType()) 5398 return E; 5399 5400 ExprNeedsCleanups = true; 5401 5402 CastKind ck = (ReturnsRetained ? CK_ARCConsumeObject 5403 : CK_ARCReclaimReturnedObject); 5404 return ImplicitCastExpr::Create(Context, E->getType(), ck, E, nullptr, 5405 VK_RValue); 5406 } 5407 5408 if (!getLangOpts().CPlusPlus) 5409 return E; 5410 5411 // Search for the base element type (cf. ASTContext::getBaseElementType) with 5412 // a fast path for the common case that the type is directly a RecordType. 5413 const Type *T = Context.getCanonicalType(E->getType().getTypePtr()); 5414 const RecordType *RT = nullptr; 5415 while (!RT) { 5416 switch (T->getTypeClass()) { 5417 case Type::Record: 5418 RT = cast<RecordType>(T); 5419 break; 5420 case Type::ConstantArray: 5421 case Type::IncompleteArray: 5422 case Type::VariableArray: 5423 case Type::DependentSizedArray: 5424 T = cast<ArrayType>(T)->getElementType().getTypePtr(); 5425 break; 5426 default: 5427 return E; 5428 } 5429 } 5430 5431 // That should be enough to guarantee that this type is complete, if we're 5432 // not processing a decltype expression. 5433 CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl()); 5434 if (RD->isInvalidDecl() || RD->isDependentContext()) 5435 return E; 5436 5437 bool IsDecltype = ExprEvalContexts.back().IsDecltype; 5438 CXXDestructorDecl *Destructor = IsDecltype ? nullptr : LookupDestructor(RD); 5439 5440 if (Destructor) { 5441 MarkFunctionReferenced(E->getExprLoc(), Destructor); 5442 CheckDestructorAccess(E->getExprLoc(), Destructor, 5443 PDiag(diag::err_access_dtor_temp) 5444 << E->getType()); 5445 if (DiagnoseUseOfDecl(Destructor, E->getExprLoc())) 5446 return ExprError(); 5447 5448 // If destructor is trivial, we can avoid the extra copy. 5449 if (Destructor->isTrivial()) 5450 return E; 5451 5452 // We need a cleanup, but we don't need to remember the temporary. 5453 ExprNeedsCleanups = true; 5454 } 5455 5456 CXXTemporary *Temp = CXXTemporary::Create(Context, Destructor); 5457 CXXBindTemporaryExpr *Bind = CXXBindTemporaryExpr::Create(Context, Temp, E); 5458 5459 if (IsDecltype) 5460 ExprEvalContexts.back().DelayedDecltypeBinds.push_back(Bind); 5461 5462 return Bind; 5463 } 5464 5465 ExprResult 5466 Sema::MaybeCreateExprWithCleanups(ExprResult SubExpr) { 5467 if (SubExpr.isInvalid()) 5468 return ExprError(); 5469 5470 return MaybeCreateExprWithCleanups(SubExpr.get()); 5471 } 5472 5473 Expr *Sema::MaybeCreateExprWithCleanups(Expr *SubExpr) { 5474 assert(SubExpr && "subexpression can't be null!"); 5475 5476 CleanupVarDeclMarking(); 5477 5478 unsigned FirstCleanup = ExprEvalContexts.back().NumCleanupObjects; 5479 assert(ExprCleanupObjects.size() >= FirstCleanup); 5480 assert(ExprNeedsCleanups || ExprCleanupObjects.size() == FirstCleanup); 5481 if (!ExprNeedsCleanups) 5482 return SubExpr; 5483 5484 auto Cleanups = llvm::makeArrayRef(ExprCleanupObjects.begin() + FirstCleanup, 5485 ExprCleanupObjects.size() - FirstCleanup); 5486 5487 Expr *E = ExprWithCleanups::Create(Context, SubExpr, Cleanups); 5488 DiscardCleanupsInEvaluationContext(); 5489 5490 return E; 5491 } 5492 5493 Stmt *Sema::MaybeCreateStmtWithCleanups(Stmt *SubStmt) { 5494 assert(SubStmt && "sub-statement can't be null!"); 5495 5496 CleanupVarDeclMarking(); 5497 5498 if (!ExprNeedsCleanups) 5499 return SubStmt; 5500 5501 // FIXME: In order to attach the temporaries, wrap the statement into 5502 // a StmtExpr; currently this is only used for asm statements. 5503 // This is hacky, either create a new CXXStmtWithTemporaries statement or 5504 // a new AsmStmtWithTemporaries. 5505 CompoundStmt *CompStmt = new (Context) CompoundStmt(Context, SubStmt, 5506 SourceLocation(), 5507 SourceLocation()); 5508 Expr *E = new (Context) StmtExpr(CompStmt, Context.VoidTy, SourceLocation(), 5509 SourceLocation()); 5510 return MaybeCreateExprWithCleanups(E); 5511 } 5512 5513 /// Process the expression contained within a decltype. For such expressions, 5514 /// certain semantic checks on temporaries are delayed until this point, and 5515 /// are omitted for the 'topmost' call in the decltype expression. If the 5516 /// topmost call bound a temporary, strip that temporary off the expression. 5517 ExprResult Sema::ActOnDecltypeExpression(Expr *E) { 5518 assert(ExprEvalContexts.back().IsDecltype && "not in a decltype expression"); 5519 5520 // C++11 [expr.call]p11: 5521 // If a function call is a prvalue of object type, 5522 // -- if the function call is either 5523 // -- the operand of a decltype-specifier, or 5524 // -- the right operand of a comma operator that is the operand of a 5525 // decltype-specifier, 5526 // a temporary object is not introduced for the prvalue. 5527 5528 // Recursively rebuild ParenExprs and comma expressions to strip out the 5529 // outermost CXXBindTemporaryExpr, if any. 5530 if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) { 5531 ExprResult SubExpr = ActOnDecltypeExpression(PE->getSubExpr()); 5532 if (SubExpr.isInvalid()) 5533 return ExprError(); 5534 if (SubExpr.get() == PE->getSubExpr()) 5535 return E; 5536 return ActOnParenExpr(PE->getLParen(), PE->getRParen(), SubExpr.get()); 5537 } 5538 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) { 5539 if (BO->getOpcode() == BO_Comma) { 5540 ExprResult RHS = ActOnDecltypeExpression(BO->getRHS()); 5541 if (RHS.isInvalid()) 5542 return ExprError(); 5543 if (RHS.get() == BO->getRHS()) 5544 return E; 5545 return new (Context) BinaryOperator( 5546 BO->getLHS(), RHS.get(), BO_Comma, BO->getType(), BO->getValueKind(), 5547 BO->getObjectKind(), BO->getOperatorLoc(), BO->isFPContractable()); 5548 } 5549 } 5550 5551 CXXBindTemporaryExpr *TopBind = dyn_cast<CXXBindTemporaryExpr>(E); 5552 CallExpr *TopCall = TopBind ? dyn_cast<CallExpr>(TopBind->getSubExpr()) 5553 : nullptr; 5554 if (TopCall) 5555 E = TopCall; 5556 else 5557 TopBind = nullptr; 5558 5559 // Disable the special decltype handling now. 5560 ExprEvalContexts.back().IsDecltype = false; 5561 5562 // In MS mode, don't perform any extra checking of call return types within a 5563 // decltype expression. 5564 if (getLangOpts().MSVCCompat) 5565 return E; 5566 5567 // Perform the semantic checks we delayed until this point. 5568 for (unsigned I = 0, N = ExprEvalContexts.back().DelayedDecltypeCalls.size(); 5569 I != N; ++I) { 5570 CallExpr *Call = ExprEvalContexts.back().DelayedDecltypeCalls[I]; 5571 if (Call == TopCall) 5572 continue; 5573 5574 if (CheckCallReturnType(Call->getCallReturnType(Context), 5575 Call->getLocStart(), 5576 Call, Call->getDirectCallee())) 5577 return ExprError(); 5578 } 5579 5580 // Now all relevant types are complete, check the destructors are accessible 5581 // and non-deleted, and annotate them on the temporaries. 5582 for (unsigned I = 0, N = ExprEvalContexts.back().DelayedDecltypeBinds.size(); 5583 I != N; ++I) { 5584 CXXBindTemporaryExpr *Bind = 5585 ExprEvalContexts.back().DelayedDecltypeBinds[I]; 5586 if (Bind == TopBind) 5587 continue; 5588 5589 CXXTemporary *Temp = Bind->getTemporary(); 5590 5591 CXXRecordDecl *RD = 5592 Bind->getType()->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); 5593 CXXDestructorDecl *Destructor = LookupDestructor(RD); 5594 Temp->setDestructor(Destructor); 5595 5596 MarkFunctionReferenced(Bind->getExprLoc(), Destructor); 5597 CheckDestructorAccess(Bind->getExprLoc(), Destructor, 5598 PDiag(diag::err_access_dtor_temp) 5599 << Bind->getType()); 5600 if (DiagnoseUseOfDecl(Destructor, Bind->getExprLoc())) 5601 return ExprError(); 5602 5603 // We need a cleanup, but we don't need to remember the temporary. 5604 ExprNeedsCleanups = true; 5605 } 5606 5607 // Possibly strip off the top CXXBindTemporaryExpr. 5608 return E; 5609 } 5610 5611 /// Note a set of 'operator->' functions that were used for a member access. 5612 static void noteOperatorArrows(Sema &S, 5613 ArrayRef<FunctionDecl *> OperatorArrows) { 5614 unsigned SkipStart = OperatorArrows.size(), SkipCount = 0; 5615 // FIXME: Make this configurable? 5616 unsigned Limit = 9; 5617 if (OperatorArrows.size() > Limit) { 5618 // Produce Limit-1 normal notes and one 'skipping' note. 5619 SkipStart = (Limit - 1) / 2 + (Limit - 1) % 2; 5620 SkipCount = OperatorArrows.size() - (Limit - 1); 5621 } 5622 5623 for (unsigned I = 0; I < OperatorArrows.size(); /**/) { 5624 if (I == SkipStart) { 5625 S.Diag(OperatorArrows[I]->getLocation(), 5626 diag::note_operator_arrows_suppressed) 5627 << SkipCount; 5628 I += SkipCount; 5629 } else { 5630 S.Diag(OperatorArrows[I]->getLocation(), diag::note_operator_arrow_here) 5631 << OperatorArrows[I]->getCallResultType(); 5632 ++I; 5633 } 5634 } 5635 } 5636 5637 ExprResult Sema::ActOnStartCXXMemberReference(Scope *S, Expr *Base, 5638 SourceLocation OpLoc, 5639 tok::TokenKind OpKind, 5640 ParsedType &ObjectType, 5641 bool &MayBePseudoDestructor) { 5642 // Since this might be a postfix expression, get rid of ParenListExprs. 5643 ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Base); 5644 if (Result.isInvalid()) return ExprError(); 5645 Base = Result.get(); 5646 5647 Result = CheckPlaceholderExpr(Base); 5648 if (Result.isInvalid()) return ExprError(); 5649 Base = Result.get(); 5650 5651 QualType BaseType = Base->getType(); 5652 MayBePseudoDestructor = false; 5653 if (BaseType->isDependentType()) { 5654 // If we have a pointer to a dependent type and are using the -> operator, 5655 // the object type is the type that the pointer points to. We might still 5656 // have enough information about that type to do something useful. 5657 if (OpKind == tok::arrow) 5658 if (const PointerType *Ptr = BaseType->getAs<PointerType>()) 5659 BaseType = Ptr->getPointeeType(); 5660 5661 ObjectType = ParsedType::make(BaseType); 5662 MayBePseudoDestructor = true; 5663 return Base; 5664 } 5665 5666 // C++ [over.match.oper]p8: 5667 // [...] When operator->returns, the operator-> is applied to the value 5668 // returned, with the original second operand. 5669 if (OpKind == tok::arrow) { 5670 QualType StartingType = BaseType; 5671 bool NoArrowOperatorFound = false; 5672 bool FirstIteration = true; 5673 FunctionDecl *CurFD = dyn_cast<FunctionDecl>(CurContext); 5674 // The set of types we've considered so far. 5675 llvm::SmallPtrSet<CanQualType,8> CTypes; 5676 SmallVector<FunctionDecl*, 8> OperatorArrows; 5677 CTypes.insert(Context.getCanonicalType(BaseType)); 5678 5679 while (BaseType->isRecordType()) { 5680 if (OperatorArrows.size() >= getLangOpts().ArrowDepth) { 5681 Diag(OpLoc, diag::err_operator_arrow_depth_exceeded) 5682 << StartingType << getLangOpts().ArrowDepth << Base->getSourceRange(); 5683 noteOperatorArrows(*this, OperatorArrows); 5684 Diag(OpLoc, diag::note_operator_arrow_depth) 5685 << getLangOpts().ArrowDepth; 5686 return ExprError(); 5687 } 5688 5689 Result = BuildOverloadedArrowExpr( 5690 S, Base, OpLoc, 5691 // When in a template specialization and on the first loop iteration, 5692 // potentially give the default diagnostic (with the fixit in a 5693 // separate note) instead of having the error reported back to here 5694 // and giving a diagnostic with a fixit attached to the error itself. 5695 (FirstIteration && CurFD && CurFD->isFunctionTemplateSpecialization()) 5696 ? nullptr 5697 : &NoArrowOperatorFound); 5698 if (Result.isInvalid()) { 5699 if (NoArrowOperatorFound) { 5700 if (FirstIteration) { 5701 Diag(OpLoc, diag::err_typecheck_member_reference_suggestion) 5702 << BaseType << 1 << Base->getSourceRange() 5703 << FixItHint::CreateReplacement(OpLoc, "."); 5704 OpKind = tok::period; 5705 break; 5706 } 5707 Diag(OpLoc, diag::err_typecheck_member_reference_arrow) 5708 << BaseType << Base->getSourceRange(); 5709 CallExpr *CE = dyn_cast<CallExpr>(Base); 5710 if (Decl *CD = (CE ? CE->getCalleeDecl() : nullptr)) { 5711 Diag(CD->getLocStart(), 5712 diag::note_member_reference_arrow_from_operator_arrow); 5713 } 5714 } 5715 return ExprError(); 5716 } 5717 Base = Result.get(); 5718 if (CXXOperatorCallExpr *OpCall = dyn_cast<CXXOperatorCallExpr>(Base)) 5719 OperatorArrows.push_back(OpCall->getDirectCallee()); 5720 BaseType = Base->getType(); 5721 CanQualType CBaseType = Context.getCanonicalType(BaseType); 5722 if (!CTypes.insert(CBaseType).second) { 5723 Diag(OpLoc, diag::err_operator_arrow_circular) << StartingType; 5724 noteOperatorArrows(*this, OperatorArrows); 5725 return ExprError(); 5726 } 5727 FirstIteration = false; 5728 } 5729 5730 if (OpKind == tok::arrow && 5731 (BaseType->isPointerType() || BaseType->isObjCObjectPointerType())) 5732 BaseType = BaseType->getPointeeType(); 5733 } 5734 5735 // Objective-C properties allow "." access on Objective-C pointer types, 5736 // so adjust the base type to the object type itself. 5737 if (BaseType->isObjCObjectPointerType()) 5738 BaseType = BaseType->getPointeeType(); 5739 5740 // C++ [basic.lookup.classref]p2: 5741 // [...] If the type of the object expression is of pointer to scalar 5742 // type, the unqualified-id is looked up in the context of the complete 5743 // postfix-expression. 5744 // 5745 // This also indicates that we could be parsing a pseudo-destructor-name. 5746 // Note that Objective-C class and object types can be pseudo-destructor 5747 // expressions or normal member (ivar or property) access expressions, and 5748 // it's legal for the type to be incomplete if this is a pseudo-destructor 5749 // call. We'll do more incomplete-type checks later in the lookup process, 5750 // so just skip this check for ObjC types. 5751 if (BaseType->isObjCObjectOrInterfaceType()) { 5752 ObjectType = ParsedType::make(BaseType); 5753 MayBePseudoDestructor = true; 5754 return Base; 5755 } else if (!BaseType->isRecordType()) { 5756 ObjectType = ParsedType(); 5757 MayBePseudoDestructor = true; 5758 return Base; 5759 } 5760 5761 // The object type must be complete (or dependent), or 5762 // C++11 [expr.prim.general]p3: 5763 // Unlike the object expression in other contexts, *this is not required to 5764 // be of complete type for purposes of class member access (5.2.5) outside 5765 // the member function body. 5766 if (!BaseType->isDependentType() && 5767 !isThisOutsideMemberFunctionBody(BaseType) && 5768 RequireCompleteType(OpLoc, BaseType, diag::err_incomplete_member_access)) 5769 return ExprError(); 5770 5771 // C++ [basic.lookup.classref]p2: 5772 // If the id-expression in a class member access (5.2.5) is an 5773 // unqualified-id, and the type of the object expression is of a class 5774 // type C (or of pointer to a class type C), the unqualified-id is looked 5775 // up in the scope of class C. [...] 5776 ObjectType = ParsedType::make(BaseType); 5777 return Base; 5778 } 5779 5780 static bool CheckArrow(Sema& S, QualType& ObjectType, Expr *&Base, 5781 tok::TokenKind& OpKind, SourceLocation OpLoc) { 5782 if (Base->hasPlaceholderType()) { 5783 ExprResult result = S.CheckPlaceholderExpr(Base); 5784 if (result.isInvalid()) return true; 5785 Base = result.get(); 5786 } 5787 ObjectType = Base->getType(); 5788 5789 // C++ [expr.pseudo]p2: 5790 // The left-hand side of the dot operator shall be of scalar type. The 5791 // left-hand side of the arrow operator shall be of pointer to scalar type. 5792 // This scalar type is the object type. 5793 // Note that this is rather different from the normal handling for the 5794 // arrow operator. 5795 if (OpKind == tok::arrow) { 5796 if (const PointerType *Ptr = ObjectType->getAs<PointerType>()) { 5797 ObjectType = Ptr->getPointeeType(); 5798 } else if (!Base->isTypeDependent()) { 5799 // The user wrote "p->" when she probably meant "p."; fix it. 5800 S.Diag(OpLoc, diag::err_typecheck_member_reference_suggestion) 5801 << ObjectType << true 5802 << FixItHint::CreateReplacement(OpLoc, "."); 5803 if (S.isSFINAEContext()) 5804 return true; 5805 5806 OpKind = tok::period; 5807 } 5808 } 5809 5810 return false; 5811 } 5812 5813 ExprResult Sema::BuildPseudoDestructorExpr(Expr *Base, 5814 SourceLocation OpLoc, 5815 tok::TokenKind OpKind, 5816 const CXXScopeSpec &SS, 5817 TypeSourceInfo *ScopeTypeInfo, 5818 SourceLocation CCLoc, 5819 SourceLocation TildeLoc, 5820 PseudoDestructorTypeStorage Destructed) { 5821 TypeSourceInfo *DestructedTypeInfo = Destructed.getTypeSourceInfo(); 5822 5823 QualType ObjectType; 5824 if (CheckArrow(*this, ObjectType, Base, OpKind, OpLoc)) 5825 return ExprError(); 5826 5827 if (!ObjectType->isDependentType() && !ObjectType->isScalarType() && 5828 !ObjectType->isVectorType()) { 5829 if (getLangOpts().MSVCCompat && ObjectType->isVoidType()) 5830 Diag(OpLoc, diag::ext_pseudo_dtor_on_void) << Base->getSourceRange(); 5831 else { 5832 Diag(OpLoc, diag::err_pseudo_dtor_base_not_scalar) 5833 << ObjectType << Base->getSourceRange(); 5834 return ExprError(); 5835 } 5836 } 5837 5838 // C++ [expr.pseudo]p2: 5839 // [...] The cv-unqualified versions of the object type and of the type 5840 // designated by the pseudo-destructor-name shall be the same type. 5841 if (DestructedTypeInfo) { 5842 QualType DestructedType = DestructedTypeInfo->getType(); 5843 SourceLocation DestructedTypeStart 5844 = DestructedTypeInfo->getTypeLoc().getLocalSourceRange().getBegin(); 5845 if (!DestructedType->isDependentType() && !ObjectType->isDependentType()) { 5846 if (!Context.hasSameUnqualifiedType(DestructedType, ObjectType)) { 5847 Diag(DestructedTypeStart, diag::err_pseudo_dtor_type_mismatch) 5848 << ObjectType << DestructedType << Base->getSourceRange() 5849 << DestructedTypeInfo->getTypeLoc().getLocalSourceRange(); 5850 5851 // Recover by setting the destructed type to the object type. 5852 DestructedType = ObjectType; 5853 DestructedTypeInfo = Context.getTrivialTypeSourceInfo(ObjectType, 5854 DestructedTypeStart); 5855 Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo); 5856 } else if (DestructedType.getObjCLifetime() != 5857 ObjectType.getObjCLifetime()) { 5858 5859 if (DestructedType.getObjCLifetime() == Qualifiers::OCL_None) { 5860 // Okay: just pretend that the user provided the correctly-qualified 5861 // type. 5862 } else { 5863 Diag(DestructedTypeStart, diag::err_arc_pseudo_dtor_inconstant_quals) 5864 << ObjectType << DestructedType << Base->getSourceRange() 5865 << DestructedTypeInfo->getTypeLoc().getLocalSourceRange(); 5866 } 5867 5868 // Recover by setting the destructed type to the object type. 5869 DestructedType = ObjectType; 5870 DestructedTypeInfo = Context.getTrivialTypeSourceInfo(ObjectType, 5871 DestructedTypeStart); 5872 Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo); 5873 } 5874 } 5875 } 5876 5877 // C++ [expr.pseudo]p2: 5878 // [...] Furthermore, the two type-names in a pseudo-destructor-name of the 5879 // form 5880 // 5881 // ::[opt] nested-name-specifier[opt] type-name :: ~ type-name 5882 // 5883 // shall designate the same scalar type. 5884 if (ScopeTypeInfo) { 5885 QualType ScopeType = ScopeTypeInfo->getType(); 5886 if (!ScopeType->isDependentType() && !ObjectType->isDependentType() && 5887 !Context.hasSameUnqualifiedType(ScopeType, ObjectType)) { 5888 5889 Diag(ScopeTypeInfo->getTypeLoc().getLocalSourceRange().getBegin(), 5890 diag::err_pseudo_dtor_type_mismatch) 5891 << ObjectType << ScopeType << Base->getSourceRange() 5892 << ScopeTypeInfo->getTypeLoc().getLocalSourceRange(); 5893 5894 ScopeType = QualType(); 5895 ScopeTypeInfo = nullptr; 5896 } 5897 } 5898 5899 Expr *Result 5900 = new (Context) CXXPseudoDestructorExpr(Context, Base, 5901 OpKind == tok::arrow, OpLoc, 5902 SS.getWithLocInContext(Context), 5903 ScopeTypeInfo, 5904 CCLoc, 5905 TildeLoc, 5906 Destructed); 5907 5908 return Result; 5909 } 5910 5911 ExprResult Sema::ActOnPseudoDestructorExpr(Scope *S, Expr *Base, 5912 SourceLocation OpLoc, 5913 tok::TokenKind OpKind, 5914 CXXScopeSpec &SS, 5915 UnqualifiedId &FirstTypeName, 5916 SourceLocation CCLoc, 5917 SourceLocation TildeLoc, 5918 UnqualifiedId &SecondTypeName) { 5919 assert((FirstTypeName.getKind() == UnqualifiedId::IK_TemplateId || 5920 FirstTypeName.getKind() == UnqualifiedId::IK_Identifier) && 5921 "Invalid first type name in pseudo-destructor"); 5922 assert((SecondTypeName.getKind() == UnqualifiedId::IK_TemplateId || 5923 SecondTypeName.getKind() == UnqualifiedId::IK_Identifier) && 5924 "Invalid second type name in pseudo-destructor"); 5925 5926 QualType ObjectType; 5927 if (CheckArrow(*this, ObjectType, Base, OpKind, OpLoc)) 5928 return ExprError(); 5929 5930 // Compute the object type that we should use for name lookup purposes. Only 5931 // record types and dependent types matter. 5932 ParsedType ObjectTypePtrForLookup; 5933 if (!SS.isSet()) { 5934 if (ObjectType->isRecordType()) 5935 ObjectTypePtrForLookup = ParsedType::make(ObjectType); 5936 else if (ObjectType->isDependentType()) 5937 ObjectTypePtrForLookup = ParsedType::make(Context.DependentTy); 5938 } 5939 5940 // Convert the name of the type being destructed (following the ~) into a 5941 // type (with source-location information). 5942 QualType DestructedType; 5943 TypeSourceInfo *DestructedTypeInfo = nullptr; 5944 PseudoDestructorTypeStorage Destructed; 5945 if (SecondTypeName.getKind() == UnqualifiedId::IK_Identifier) { 5946 ParsedType T = getTypeName(*SecondTypeName.Identifier, 5947 SecondTypeName.StartLocation, 5948 S, &SS, true, false, ObjectTypePtrForLookup); 5949 if (!T && 5950 ((SS.isSet() && !computeDeclContext(SS, false)) || 5951 (!SS.isSet() && ObjectType->isDependentType()))) { 5952 // The name of the type being destroyed is a dependent name, and we 5953 // couldn't find anything useful in scope. Just store the identifier and 5954 // it's location, and we'll perform (qualified) name lookup again at 5955 // template instantiation time. 5956 Destructed = PseudoDestructorTypeStorage(SecondTypeName.Identifier, 5957 SecondTypeName.StartLocation); 5958 } else if (!T) { 5959 Diag(SecondTypeName.StartLocation, 5960 diag::err_pseudo_dtor_destructor_non_type) 5961 << SecondTypeName.Identifier << ObjectType; 5962 if (isSFINAEContext()) 5963 return ExprError(); 5964 5965 // Recover by assuming we had the right type all along. 5966 DestructedType = ObjectType; 5967 } else 5968 DestructedType = GetTypeFromParser(T, &DestructedTypeInfo); 5969 } else { 5970 // Resolve the template-id to a type. 5971 TemplateIdAnnotation *TemplateId = SecondTypeName.TemplateId; 5972 ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(), 5973 TemplateId->NumArgs); 5974 TypeResult T = ActOnTemplateIdType(TemplateId->SS, 5975 TemplateId->TemplateKWLoc, 5976 TemplateId->Template, 5977 TemplateId->TemplateNameLoc, 5978 TemplateId->LAngleLoc, 5979 TemplateArgsPtr, 5980 TemplateId->RAngleLoc); 5981 if (T.isInvalid() || !T.get()) { 5982 // Recover by assuming we had the right type all along. 5983 DestructedType = ObjectType; 5984 } else 5985 DestructedType = GetTypeFromParser(T.get(), &DestructedTypeInfo); 5986 } 5987 5988 // If we've performed some kind of recovery, (re-)build the type source 5989 // information. 5990 if (!DestructedType.isNull()) { 5991 if (!DestructedTypeInfo) 5992 DestructedTypeInfo = Context.getTrivialTypeSourceInfo(DestructedType, 5993 SecondTypeName.StartLocation); 5994 Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo); 5995 } 5996 5997 // Convert the name of the scope type (the type prior to '::') into a type. 5998 TypeSourceInfo *ScopeTypeInfo = nullptr; 5999 QualType ScopeType; 6000 if (FirstTypeName.getKind() == UnqualifiedId::IK_TemplateId || 6001 FirstTypeName.Identifier) { 6002 if (FirstTypeName.getKind() == UnqualifiedId::IK_Identifier) { 6003 ParsedType T = getTypeName(*FirstTypeName.Identifier, 6004 FirstTypeName.StartLocation, 6005 S, &SS, true, false, ObjectTypePtrForLookup); 6006 if (!T) { 6007 Diag(FirstTypeName.StartLocation, 6008 diag::err_pseudo_dtor_destructor_non_type) 6009 << FirstTypeName.Identifier << ObjectType; 6010 6011 if (isSFINAEContext()) 6012 return ExprError(); 6013 6014 // Just drop this type. It's unnecessary anyway. 6015 ScopeType = QualType(); 6016 } else 6017 ScopeType = GetTypeFromParser(T, &ScopeTypeInfo); 6018 } else { 6019 // Resolve the template-id to a type. 6020 TemplateIdAnnotation *TemplateId = FirstTypeName.TemplateId; 6021 ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(), 6022 TemplateId->NumArgs); 6023 TypeResult T = ActOnTemplateIdType(TemplateId->SS, 6024 TemplateId->TemplateKWLoc, 6025 TemplateId->Template, 6026 TemplateId->TemplateNameLoc, 6027 TemplateId->LAngleLoc, 6028 TemplateArgsPtr, 6029 TemplateId->RAngleLoc); 6030 if (T.isInvalid() || !T.get()) { 6031 // Recover by dropping this type. 6032 ScopeType = QualType(); 6033 } else 6034 ScopeType = GetTypeFromParser(T.get(), &ScopeTypeInfo); 6035 } 6036 } 6037 6038 if (!ScopeType.isNull() && !ScopeTypeInfo) 6039 ScopeTypeInfo = Context.getTrivialTypeSourceInfo(ScopeType, 6040 FirstTypeName.StartLocation); 6041 6042 6043 return BuildPseudoDestructorExpr(Base, OpLoc, OpKind, SS, 6044 ScopeTypeInfo, CCLoc, TildeLoc, 6045 Destructed); 6046 } 6047 6048 ExprResult Sema::ActOnPseudoDestructorExpr(Scope *S, Expr *Base, 6049 SourceLocation OpLoc, 6050 tok::TokenKind OpKind, 6051 SourceLocation TildeLoc, 6052 const DeclSpec& DS) { 6053 QualType ObjectType; 6054 if (CheckArrow(*this, ObjectType, Base, OpKind, OpLoc)) 6055 return ExprError(); 6056 6057 QualType T = BuildDecltypeType(DS.getRepAsExpr(), DS.getTypeSpecTypeLoc(), 6058 false); 6059 6060 TypeLocBuilder TLB; 6061 DecltypeTypeLoc DecltypeTL = TLB.push<DecltypeTypeLoc>(T); 6062 DecltypeTL.setNameLoc(DS.getTypeSpecTypeLoc()); 6063 TypeSourceInfo *DestructedTypeInfo = TLB.getTypeSourceInfo(Context, T); 6064 PseudoDestructorTypeStorage Destructed(DestructedTypeInfo); 6065 6066 return BuildPseudoDestructorExpr(Base, OpLoc, OpKind, CXXScopeSpec(), 6067 nullptr, SourceLocation(), TildeLoc, 6068 Destructed); 6069 } 6070 6071 ExprResult Sema::BuildCXXMemberCallExpr(Expr *E, NamedDecl *FoundDecl, 6072 CXXConversionDecl *Method, 6073 bool HadMultipleCandidates) { 6074 if (Method->getParent()->isLambda() && 6075 Method->getConversionType()->isBlockPointerType()) { 6076 // This is a lambda coversion to block pointer; check if the argument 6077 // is a LambdaExpr. 6078 Expr *SubE = E; 6079 CastExpr *CE = dyn_cast<CastExpr>(SubE); 6080 if (CE && CE->getCastKind() == CK_NoOp) 6081 SubE = CE->getSubExpr(); 6082 SubE = SubE->IgnoreParens(); 6083 if (CXXBindTemporaryExpr *BE = dyn_cast<CXXBindTemporaryExpr>(SubE)) 6084 SubE = BE->getSubExpr(); 6085 if (isa<LambdaExpr>(SubE)) { 6086 // For the conversion to block pointer on a lambda expression, we 6087 // construct a special BlockLiteral instead; this doesn't really make 6088 // a difference in ARC, but outside of ARC the resulting block literal 6089 // follows the normal lifetime rules for block literals instead of being 6090 // autoreleased. 6091 DiagnosticErrorTrap Trap(Diags); 6092 ExprResult Exp = BuildBlockForLambdaConversion(E->getExprLoc(), 6093 E->getExprLoc(), 6094 Method, E); 6095 if (Exp.isInvalid()) 6096 Diag(E->getExprLoc(), diag::note_lambda_to_block_conv); 6097 return Exp; 6098 } 6099 } 6100 6101 ExprResult Exp = PerformObjectArgumentInitialization(E, /*Qualifier=*/nullptr, 6102 FoundDecl, Method); 6103 if (Exp.isInvalid()) 6104 return true; 6105 6106 MemberExpr *ME = new (Context) MemberExpr( 6107 Exp.get(), /*IsArrow=*/false, SourceLocation(), Method, SourceLocation(), 6108 Context.BoundMemberTy, VK_RValue, OK_Ordinary); 6109 if (HadMultipleCandidates) 6110 ME->setHadMultipleCandidates(true); 6111 MarkMemberReferenced(ME); 6112 6113 QualType ResultType = Method->getReturnType(); 6114 ExprValueKind VK = Expr::getValueKindForType(ResultType); 6115 ResultType = ResultType.getNonLValueExprType(Context); 6116 6117 CXXMemberCallExpr *CE = 6118 new (Context) CXXMemberCallExpr(Context, ME, None, ResultType, VK, 6119 Exp.get()->getLocEnd()); 6120 return CE; 6121 } 6122 6123 ExprResult Sema::BuildCXXNoexceptExpr(SourceLocation KeyLoc, Expr *Operand, 6124 SourceLocation RParen) { 6125 // If the operand is an unresolved lookup expression, the expression is ill- 6126 // formed per [over.over]p1, because overloaded function names cannot be used 6127 // without arguments except in explicit contexts. 6128 ExprResult R = CheckPlaceholderExpr(Operand); 6129 if (R.isInvalid()) 6130 return R; 6131 6132 // The operand may have been modified when checking the placeholder type. 6133 Operand = R.get(); 6134 6135 if (ActiveTemplateInstantiations.empty() && 6136 Operand->HasSideEffects(Context, false)) { 6137 // The expression operand for noexcept is in an unevaluated expression 6138 // context, so side effects could result in unintended consequences. 6139 Diag(Operand->getExprLoc(), diag::warn_side_effects_unevaluated_context); 6140 } 6141 6142 CanThrowResult CanThrow = canThrow(Operand); 6143 return new (Context) 6144 CXXNoexceptExpr(Context.BoolTy, Operand, CanThrow, KeyLoc, RParen); 6145 } 6146 6147 ExprResult Sema::ActOnNoexceptExpr(SourceLocation KeyLoc, SourceLocation, 6148 Expr *Operand, SourceLocation RParen) { 6149 return BuildCXXNoexceptExpr(KeyLoc, Operand, RParen); 6150 } 6151 6152 static bool IsSpecialDiscardedValue(Expr *E) { 6153 // In C++11, discarded-value expressions of a certain form are special, 6154 // according to [expr]p10: 6155 // The lvalue-to-rvalue conversion (4.1) is applied only if the 6156 // expression is an lvalue of volatile-qualified type and it has 6157 // one of the following forms: 6158 E = E->IgnoreParens(); 6159 6160 // - id-expression (5.1.1), 6161 if (isa<DeclRefExpr>(E)) 6162 return true; 6163 6164 // - subscripting (5.2.1), 6165 if (isa<ArraySubscriptExpr>(E)) 6166 return true; 6167 6168 // - class member access (5.2.5), 6169 if (isa<MemberExpr>(E)) 6170 return true; 6171 6172 // - indirection (5.3.1), 6173 if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) 6174 if (UO->getOpcode() == UO_Deref) 6175 return true; 6176 6177 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) { 6178 // - pointer-to-member operation (5.5), 6179 if (BO->isPtrMemOp()) 6180 return true; 6181 6182 // - comma expression (5.18) where the right operand is one of the above. 6183 if (BO->getOpcode() == BO_Comma) 6184 return IsSpecialDiscardedValue(BO->getRHS()); 6185 } 6186 6187 // - conditional expression (5.16) where both the second and the third 6188 // operands are one of the above, or 6189 if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) 6190 return IsSpecialDiscardedValue(CO->getTrueExpr()) && 6191 IsSpecialDiscardedValue(CO->getFalseExpr()); 6192 // The related edge case of "*x ?: *x". 6193 if (BinaryConditionalOperator *BCO = 6194 dyn_cast<BinaryConditionalOperator>(E)) { 6195 if (OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(BCO->getTrueExpr())) 6196 return IsSpecialDiscardedValue(OVE->getSourceExpr()) && 6197 IsSpecialDiscardedValue(BCO->getFalseExpr()); 6198 } 6199 6200 // Objective-C++ extensions to the rule. 6201 if (isa<PseudoObjectExpr>(E) || isa<ObjCIvarRefExpr>(E)) 6202 return true; 6203 6204 return false; 6205 } 6206 6207 /// Perform the conversions required for an expression used in a 6208 /// context that ignores the result. 6209 ExprResult Sema::IgnoredValueConversions(Expr *E) { 6210 if (E->hasPlaceholderType()) { 6211 ExprResult result = CheckPlaceholderExpr(E); 6212 if (result.isInvalid()) return E; 6213 E = result.get(); 6214 } 6215 6216 // C99 6.3.2.1: 6217 // [Except in specific positions,] an lvalue that does not have 6218 // array type is converted to the value stored in the 6219 // designated object (and is no longer an lvalue). 6220 if (E->isRValue()) { 6221 // In C, function designators (i.e. expressions of function type) 6222 // are r-values, but we still want to do function-to-pointer decay 6223 // on them. This is both technically correct and convenient for 6224 // some clients. 6225 if (!getLangOpts().CPlusPlus && E->getType()->isFunctionType()) 6226 return DefaultFunctionArrayConversion(E); 6227 6228 return E; 6229 } 6230 6231 if (getLangOpts().CPlusPlus) { 6232 // The C++11 standard defines the notion of a discarded-value expression; 6233 // normally, we don't need to do anything to handle it, but if it is a 6234 // volatile lvalue with a special form, we perform an lvalue-to-rvalue 6235 // conversion. 6236 if (getLangOpts().CPlusPlus11 && E->isGLValue() && 6237 E->getType().isVolatileQualified() && 6238 IsSpecialDiscardedValue(E)) { 6239 ExprResult Res = DefaultLvalueConversion(E); 6240 if (Res.isInvalid()) 6241 return E; 6242 E = Res.get(); 6243 } 6244 return E; 6245 } 6246 6247 // GCC seems to also exclude expressions of incomplete enum type. 6248 if (const EnumType *T = E->getType()->getAs<EnumType>()) { 6249 if (!T->getDecl()->isComplete()) { 6250 // FIXME: stupid workaround for a codegen bug! 6251 E = ImpCastExprToType(E, Context.VoidTy, CK_ToVoid).get(); 6252 return E; 6253 } 6254 } 6255 6256 ExprResult Res = DefaultFunctionArrayLvalueConversion(E); 6257 if (Res.isInvalid()) 6258 return E; 6259 E = Res.get(); 6260 6261 if (!E->getType()->isVoidType()) 6262 RequireCompleteType(E->getExprLoc(), E->getType(), 6263 diag::err_incomplete_type); 6264 return E; 6265 } 6266 6267 // If we can unambiguously determine whether Var can never be used 6268 // in a constant expression, return true. 6269 // - if the variable and its initializer are non-dependent, then 6270 // we can unambiguously check if the variable is a constant expression. 6271 // - if the initializer is not value dependent - we can determine whether 6272 // it can be used to initialize a constant expression. If Init can not 6273 // be used to initialize a constant expression we conclude that Var can 6274 // never be a constant expression. 6275 // - FXIME: if the initializer is dependent, we can still do some analysis and 6276 // identify certain cases unambiguously as non-const by using a Visitor: 6277 // - such as those that involve odr-use of a ParmVarDecl, involve a new 6278 // delete, lambda-expr, dynamic-cast, reinterpret-cast etc... 6279 static inline bool VariableCanNeverBeAConstantExpression(VarDecl *Var, 6280 ASTContext &Context) { 6281 if (isa<ParmVarDecl>(Var)) return true; 6282 const VarDecl *DefVD = nullptr; 6283 6284 // If there is no initializer - this can not be a constant expression. 6285 if (!Var->getAnyInitializer(DefVD)) return true; 6286 assert(DefVD); 6287 if (DefVD->isWeak()) return false; 6288 EvaluatedStmt *Eval = DefVD->ensureEvaluatedStmt(); 6289 6290 Expr *Init = cast<Expr>(Eval->Value); 6291 6292 if (Var->getType()->isDependentType() || Init->isValueDependent()) { 6293 // FIXME: Teach the constant evaluator to deal with the non-dependent parts 6294 // of value-dependent expressions, and use it here to determine whether the 6295 // initializer is a potential constant expression. 6296 return false; 6297 } 6298 6299 return !IsVariableAConstantExpression(Var, Context); 6300 } 6301 6302 /// \brief Check if the current lambda has any potential captures 6303 /// that must be captured by any of its enclosing lambdas that are ready to 6304 /// capture. If there is a lambda that can capture a nested 6305 /// potential-capture, go ahead and do so. Also, check to see if any 6306 /// variables are uncaptureable or do not involve an odr-use so do not 6307 /// need to be captured. 6308 6309 static void CheckIfAnyEnclosingLambdasMustCaptureAnyPotentialCaptures( 6310 Expr *const FE, LambdaScopeInfo *const CurrentLSI, Sema &S) { 6311 6312 assert(!S.isUnevaluatedContext()); 6313 assert(S.CurContext->isDependentContext()); 6314 assert(CurrentLSI->CallOperator == S.CurContext && 6315 "The current call operator must be synchronized with Sema's CurContext"); 6316 6317 const bool IsFullExprInstantiationDependent = FE->isInstantiationDependent(); 6318 6319 ArrayRef<const FunctionScopeInfo *> FunctionScopesArrayRef( 6320 S.FunctionScopes.data(), S.FunctionScopes.size()); 6321 6322 // All the potentially captureable variables in the current nested 6323 // lambda (within a generic outer lambda), must be captured by an 6324 // outer lambda that is enclosed within a non-dependent context. 6325 const unsigned NumPotentialCaptures = 6326 CurrentLSI->getNumPotentialVariableCaptures(); 6327 for (unsigned I = 0; I != NumPotentialCaptures; ++I) { 6328 Expr *VarExpr = nullptr; 6329 VarDecl *Var = nullptr; 6330 CurrentLSI->getPotentialVariableCapture(I, Var, VarExpr); 6331 // If the variable is clearly identified as non-odr-used and the full 6332 // expression is not instantiation dependent, only then do we not 6333 // need to check enclosing lambda's for speculative captures. 6334 // For e.g.: 6335 // Even though 'x' is not odr-used, it should be captured. 6336 // int test() { 6337 // const int x = 10; 6338 // auto L = [=](auto a) { 6339 // (void) +x + a; 6340 // }; 6341 // } 6342 if (CurrentLSI->isVariableExprMarkedAsNonODRUsed(VarExpr) && 6343 !IsFullExprInstantiationDependent) 6344 continue; 6345 6346 // If we have a capture-capable lambda for the variable, go ahead and 6347 // capture the variable in that lambda (and all its enclosing lambdas). 6348 if (const Optional<unsigned> Index = 6349 getStackIndexOfNearestEnclosingCaptureCapableLambda( 6350 FunctionScopesArrayRef, Var, S)) { 6351 const unsigned FunctionScopeIndexOfCapturableLambda = Index.getValue(); 6352 MarkVarDeclODRUsed(Var, VarExpr->getExprLoc(), S, 6353 &FunctionScopeIndexOfCapturableLambda); 6354 } 6355 const bool IsVarNeverAConstantExpression = 6356 VariableCanNeverBeAConstantExpression(Var, S.Context); 6357 if (!IsFullExprInstantiationDependent || IsVarNeverAConstantExpression) { 6358 // This full expression is not instantiation dependent or the variable 6359 // can not be used in a constant expression - which means 6360 // this variable must be odr-used here, so diagnose a 6361 // capture violation early, if the variable is un-captureable. 6362 // This is purely for diagnosing errors early. Otherwise, this 6363 // error would get diagnosed when the lambda becomes capture ready. 6364 QualType CaptureType, DeclRefType; 6365 SourceLocation ExprLoc = VarExpr->getExprLoc(); 6366 if (S.tryCaptureVariable(Var, ExprLoc, S.TryCapture_Implicit, 6367 /*EllipsisLoc*/ SourceLocation(), 6368 /*BuildAndDiagnose*/false, CaptureType, 6369 DeclRefType, nullptr)) { 6370 // We will never be able to capture this variable, and we need 6371 // to be able to in any and all instantiations, so diagnose it. 6372 S.tryCaptureVariable(Var, ExprLoc, S.TryCapture_Implicit, 6373 /*EllipsisLoc*/ SourceLocation(), 6374 /*BuildAndDiagnose*/true, CaptureType, 6375 DeclRefType, nullptr); 6376 } 6377 } 6378 } 6379 6380 // Check if 'this' needs to be captured. 6381 if (CurrentLSI->hasPotentialThisCapture()) { 6382 // If we have a capture-capable lambda for 'this', go ahead and capture 6383 // 'this' in that lambda (and all its enclosing lambdas). 6384 if (const Optional<unsigned> Index = 6385 getStackIndexOfNearestEnclosingCaptureCapableLambda( 6386 FunctionScopesArrayRef, /*0 is 'this'*/ nullptr, S)) { 6387 const unsigned FunctionScopeIndexOfCapturableLambda = Index.getValue(); 6388 S.CheckCXXThisCapture(CurrentLSI->PotentialThisCaptureLocation, 6389 /*Explicit*/ false, /*BuildAndDiagnose*/ true, 6390 &FunctionScopeIndexOfCapturableLambda); 6391 } 6392 } 6393 6394 // Reset all the potential captures at the end of each full-expression. 6395 CurrentLSI->clearPotentialCaptures(); 6396 } 6397 6398 static ExprResult attemptRecovery(Sema &SemaRef, 6399 const TypoCorrectionConsumer &Consumer, 6400 TypoCorrection TC) { 6401 LookupResult R(SemaRef, Consumer.getLookupResult().getLookupNameInfo(), 6402 Consumer.getLookupResult().getLookupKind()); 6403 const CXXScopeSpec *SS = Consumer.getSS(); 6404 CXXScopeSpec NewSS; 6405 6406 // Use an approprate CXXScopeSpec for building the expr. 6407 if (auto *NNS = TC.getCorrectionSpecifier()) 6408 NewSS.MakeTrivial(SemaRef.Context, NNS, TC.getCorrectionRange()); 6409 else if (SS && !TC.WillReplaceSpecifier()) 6410 NewSS = *SS; 6411 6412 if (auto *ND = TC.getCorrectionDecl()) { 6413 R.setLookupName(ND->getDeclName()); 6414 R.addDecl(ND); 6415 if (ND->isCXXClassMember()) { 6416 // Figure out the correct naming class to add to the LookupResult. 6417 CXXRecordDecl *Record = nullptr; 6418 if (auto *NNS = TC.getCorrectionSpecifier()) 6419 Record = NNS->getAsType()->getAsCXXRecordDecl(); 6420 if (!Record) 6421 Record = 6422 dyn_cast<CXXRecordDecl>(ND->getDeclContext()->getRedeclContext()); 6423 if (Record) 6424 R.setNamingClass(Record); 6425 6426 // Detect and handle the case where the decl might be an implicit 6427 // member. 6428 bool MightBeImplicitMember; 6429 if (!Consumer.isAddressOfOperand()) 6430 MightBeImplicitMember = true; 6431 else if (!NewSS.isEmpty()) 6432 MightBeImplicitMember = false; 6433 else if (R.isOverloadedResult()) 6434 MightBeImplicitMember = false; 6435 else if (R.isUnresolvableResult()) 6436 MightBeImplicitMember = true; 6437 else 6438 MightBeImplicitMember = isa<FieldDecl>(ND) || 6439 isa<IndirectFieldDecl>(ND) || 6440 isa<MSPropertyDecl>(ND); 6441 6442 if (MightBeImplicitMember) 6443 return SemaRef.BuildPossibleImplicitMemberExpr( 6444 NewSS, /*TemplateKWLoc*/ SourceLocation(), R, 6445 /*TemplateArgs*/ nullptr, /*S*/ nullptr); 6446 } else if (auto *Ivar = dyn_cast<ObjCIvarDecl>(ND)) { 6447 return SemaRef.LookupInObjCMethod(R, Consumer.getScope(), 6448 Ivar->getIdentifier()); 6449 } 6450 } 6451 6452 return SemaRef.BuildDeclarationNameExpr(NewSS, R, /*NeedsADL*/ false, 6453 /*AcceptInvalidDecl*/ true); 6454 } 6455 6456 namespace { 6457 class FindTypoExprs : public RecursiveASTVisitor<FindTypoExprs> { 6458 llvm::SmallSetVector<TypoExpr *, 2> &TypoExprs; 6459 6460 public: 6461 explicit FindTypoExprs(llvm::SmallSetVector<TypoExpr *, 2> &TypoExprs) 6462 : TypoExprs(TypoExprs) {} 6463 bool VisitTypoExpr(TypoExpr *TE) { 6464 TypoExprs.insert(TE); 6465 return true; 6466 } 6467 }; 6468 6469 class TransformTypos : public TreeTransform<TransformTypos> { 6470 typedef TreeTransform<TransformTypos> BaseTransform; 6471 6472 VarDecl *InitDecl; // A decl to avoid as a correction because it is in the 6473 // process of being initialized. 6474 llvm::function_ref<ExprResult(Expr *)> ExprFilter; 6475 llvm::SmallSetVector<TypoExpr *, 2> TypoExprs, AmbiguousTypoExprs; 6476 llvm::SmallDenseMap<TypoExpr *, ExprResult, 2> TransformCache; 6477 llvm::SmallDenseMap<OverloadExpr *, Expr *, 4> OverloadResolution; 6478 6479 /// \brief Emit diagnostics for all of the TypoExprs encountered. 6480 /// If the TypoExprs were successfully corrected, then the diagnostics should 6481 /// suggest the corrections. Otherwise the diagnostics will not suggest 6482 /// anything (having been passed an empty TypoCorrection). 6483 void EmitAllDiagnostics() { 6484 for (auto E : TypoExprs) { 6485 TypoExpr *TE = cast<TypoExpr>(E); 6486 auto &State = SemaRef.getTypoExprState(TE); 6487 if (State.DiagHandler) { 6488 TypoCorrection TC = State.Consumer->getCurrentCorrection(); 6489 ExprResult Replacement = TransformCache[TE]; 6490 6491 // Extract the NamedDecl from the transformed TypoExpr and add it to the 6492 // TypoCorrection, replacing the existing decls. This ensures the right 6493 // NamedDecl is used in diagnostics e.g. in the case where overload 6494 // resolution was used to select one from several possible decls that 6495 // had been stored in the TypoCorrection. 6496 if (auto *ND = getDeclFromExpr( 6497 Replacement.isInvalid() ? nullptr : Replacement.get())) 6498 TC.setCorrectionDecl(ND); 6499 6500 State.DiagHandler(TC); 6501 } 6502 SemaRef.clearDelayedTypo(TE); 6503 } 6504 } 6505 6506 /// \brief If corrections for the first TypoExpr have been exhausted for a 6507 /// given combination of the other TypoExprs, retry those corrections against 6508 /// the next combination of substitutions for the other TypoExprs by advancing 6509 /// to the next potential correction of the second TypoExpr. For the second 6510 /// and subsequent TypoExprs, if its stream of corrections has been exhausted, 6511 /// the stream is reset and the next TypoExpr's stream is advanced by one (a 6512 /// TypoExpr's correction stream is advanced by removing the TypoExpr from the 6513 /// TransformCache). Returns true if there is still any untried combinations 6514 /// of corrections. 6515 bool CheckAndAdvanceTypoExprCorrectionStreams() { 6516 for (auto TE : TypoExprs) { 6517 auto &State = SemaRef.getTypoExprState(TE); 6518 TransformCache.erase(TE); 6519 if (!State.Consumer->finished()) 6520 return true; 6521 State.Consumer->resetCorrectionStream(); 6522 } 6523 return false; 6524 } 6525 6526 NamedDecl *getDeclFromExpr(Expr *E) { 6527 if (auto *OE = dyn_cast_or_null<OverloadExpr>(E)) 6528 E = OverloadResolution[OE]; 6529 6530 if (!E) 6531 return nullptr; 6532 if (auto *DRE = dyn_cast<DeclRefExpr>(E)) 6533 return DRE->getDecl(); 6534 if (auto *ME = dyn_cast<MemberExpr>(E)) 6535 return ME->getMemberDecl(); 6536 // FIXME: Add any other expr types that could be be seen by the delayed typo 6537 // correction TreeTransform for which the corresponding TypoCorrection could 6538 // contain multiple decls. 6539 return nullptr; 6540 } 6541 6542 ExprResult TryTransform(Expr *E) { 6543 Sema::SFINAETrap Trap(SemaRef); 6544 ExprResult Res = TransformExpr(E); 6545 if (Trap.hasErrorOccurred() || Res.isInvalid()) 6546 return ExprError(); 6547 6548 return ExprFilter(Res.get()); 6549 } 6550 6551 public: 6552 TransformTypos(Sema &SemaRef, VarDecl *InitDecl, llvm::function_ref<ExprResult(Expr *)> Filter) 6553 : BaseTransform(SemaRef), InitDecl(InitDecl), ExprFilter(Filter) {} 6554 6555 ExprResult RebuildCallExpr(Expr *Callee, SourceLocation LParenLoc, 6556 MultiExprArg Args, 6557 SourceLocation RParenLoc, 6558 Expr *ExecConfig = nullptr) { 6559 auto Result = BaseTransform::RebuildCallExpr(Callee, LParenLoc, Args, 6560 RParenLoc, ExecConfig); 6561 if (auto *OE = dyn_cast<OverloadExpr>(Callee)) { 6562 if (Result.isUsable()) { 6563 Expr *ResultCall = Result.get(); 6564 if (auto *BE = dyn_cast<CXXBindTemporaryExpr>(ResultCall)) 6565 ResultCall = BE->getSubExpr(); 6566 if (auto *CE = dyn_cast<CallExpr>(ResultCall)) 6567 OverloadResolution[OE] = CE->getCallee(); 6568 } 6569 } 6570 return Result; 6571 } 6572 6573 ExprResult TransformLambdaExpr(LambdaExpr *E) { return Owned(E); } 6574 6575 ExprResult TransformBlockExpr(BlockExpr *E) { return Owned(E); } 6576 6577 ExprResult Transform(Expr *E) { 6578 ExprResult Res; 6579 while (true) { 6580 Res = TryTransform(E); 6581 6582 // Exit if either the transform was valid or if there were no TypoExprs 6583 // to transform that still have any untried correction candidates.. 6584 if (!Res.isInvalid() || 6585 !CheckAndAdvanceTypoExprCorrectionStreams()) 6586 break; 6587 } 6588 6589 // Ensure none of the TypoExprs have multiple typo correction candidates 6590 // with the same edit length that pass all the checks and filters. 6591 // TODO: Properly handle various permutations of possible corrections when 6592 // there is more than one potentially ambiguous typo correction. 6593 // Also, disable typo correction while attempting the transform when 6594 // handling potentially ambiguous typo corrections as any new TypoExprs will 6595 // have been introduced by the application of one of the correction 6596 // candidates and add little to no value if corrected. 6597 SemaRef.DisableTypoCorrection = true; 6598 while (!AmbiguousTypoExprs.empty()) { 6599 auto TE = AmbiguousTypoExprs.back(); 6600 auto Cached = TransformCache[TE]; 6601 auto &State = SemaRef.getTypoExprState(TE); 6602 State.Consumer->saveCurrentPosition(); 6603 TransformCache.erase(TE); 6604 if (!TryTransform(E).isInvalid()) { 6605 State.Consumer->resetCorrectionStream(); 6606 TransformCache.erase(TE); 6607 Res = ExprError(); 6608 break; 6609 } 6610 AmbiguousTypoExprs.remove(TE); 6611 State.Consumer->restoreSavedPosition(); 6612 TransformCache[TE] = Cached; 6613 } 6614 SemaRef.DisableTypoCorrection = false; 6615 6616 // Ensure that all of the TypoExprs within the current Expr have been found. 6617 if (!Res.isUsable()) 6618 FindTypoExprs(TypoExprs).TraverseStmt(E); 6619 6620 EmitAllDiagnostics(); 6621 6622 return Res; 6623 } 6624 6625 ExprResult TransformTypoExpr(TypoExpr *E) { 6626 // If the TypoExpr hasn't been seen before, record it. Otherwise, return the 6627 // cached transformation result if there is one and the TypoExpr isn't the 6628 // first one that was encountered. 6629 auto &CacheEntry = TransformCache[E]; 6630 if (!TypoExprs.insert(E) && !CacheEntry.isUnset()) { 6631 return CacheEntry; 6632 } 6633 6634 auto &State = SemaRef.getTypoExprState(E); 6635 assert(State.Consumer && "Cannot transform a cleared TypoExpr"); 6636 6637 // For the first TypoExpr and an uncached TypoExpr, find the next likely 6638 // typo correction and return it. 6639 while (TypoCorrection TC = State.Consumer->getNextCorrection()) { 6640 if (InitDecl && TC.getCorrectionDecl() == InitDecl) 6641 continue; 6642 ExprResult NE = State.RecoveryHandler ? 6643 State.RecoveryHandler(SemaRef, E, TC) : 6644 attemptRecovery(SemaRef, *State.Consumer, TC); 6645 if (!NE.isInvalid()) { 6646 // Check whether there may be a second viable correction with the same 6647 // edit distance; if so, remember this TypoExpr may have an ambiguous 6648 // correction so it can be more thoroughly vetted later. 6649 TypoCorrection Next; 6650 if ((Next = State.Consumer->peekNextCorrection()) && 6651 Next.getEditDistance(false) == TC.getEditDistance(false)) { 6652 AmbiguousTypoExprs.insert(E); 6653 } else { 6654 AmbiguousTypoExprs.remove(E); 6655 } 6656 assert(!NE.isUnset() && 6657 "Typo was transformed into a valid-but-null ExprResult"); 6658 return CacheEntry = NE; 6659 } 6660 } 6661 return CacheEntry = ExprError(); 6662 } 6663 }; 6664 } 6665 6666 ExprResult 6667 Sema::CorrectDelayedTyposInExpr(Expr *E, VarDecl *InitDecl, 6668 llvm::function_ref<ExprResult(Expr *)> Filter) { 6669 // If the current evaluation context indicates there are uncorrected typos 6670 // and the current expression isn't guaranteed to not have typos, try to 6671 // resolve any TypoExpr nodes that might be in the expression. 6672 if (E && !ExprEvalContexts.empty() && ExprEvalContexts.back().NumTypos && 6673 (E->isTypeDependent() || E->isValueDependent() || 6674 E->isInstantiationDependent())) { 6675 auto TyposInContext = ExprEvalContexts.back().NumTypos; 6676 assert(TyposInContext < ~0U && "Recursive call of CorrectDelayedTyposInExpr"); 6677 ExprEvalContexts.back().NumTypos = ~0U; 6678 auto TyposResolved = DelayedTypos.size(); 6679 auto Result = TransformTypos(*this, InitDecl, Filter).Transform(E); 6680 ExprEvalContexts.back().NumTypos = TyposInContext; 6681 TyposResolved -= DelayedTypos.size(); 6682 if (Result.isInvalid() || Result.get() != E) { 6683 ExprEvalContexts.back().NumTypos -= TyposResolved; 6684 return Result; 6685 } 6686 assert(TyposResolved == 0 && "Corrected typo but got same Expr back?"); 6687 } 6688 return E; 6689 } 6690 6691 ExprResult Sema::ActOnFinishFullExpr(Expr *FE, SourceLocation CC, 6692 bool DiscardedValue, 6693 bool IsConstexpr, 6694 bool IsLambdaInitCaptureInitializer) { 6695 ExprResult FullExpr = FE; 6696 6697 if (!FullExpr.get()) 6698 return ExprError(); 6699 6700 // If we are an init-expression in a lambdas init-capture, we should not 6701 // diagnose an unexpanded pack now (will be diagnosed once lambda-expr 6702 // containing full-expression is done). 6703 // template<class ... Ts> void test(Ts ... t) { 6704 // test([&a(t)]() { <-- (t) is an init-expr that shouldn't be diagnosed now. 6705 // return a; 6706 // }() ...); 6707 // } 6708 // FIXME: This is a hack. It would be better if we pushed the lambda scope 6709 // when we parse the lambda introducer, and teach capturing (but not 6710 // unexpanded pack detection) to walk over LambdaScopeInfos which don't have a 6711 // corresponding class yet (that is, have LambdaScopeInfo either represent a 6712 // lambda where we've entered the introducer but not the body, or represent a 6713 // lambda where we've entered the body, depending on where the 6714 // parser/instantiation has got to). 6715 if (!IsLambdaInitCaptureInitializer && 6716 DiagnoseUnexpandedParameterPack(FullExpr.get())) 6717 return ExprError(); 6718 6719 // Top-level expressions default to 'id' when we're in a debugger. 6720 if (DiscardedValue && getLangOpts().DebuggerCastResultToId && 6721 FullExpr.get()->getType() == Context.UnknownAnyTy) { 6722 FullExpr = forceUnknownAnyToType(FullExpr.get(), Context.getObjCIdType()); 6723 if (FullExpr.isInvalid()) 6724 return ExprError(); 6725 } 6726 6727 if (DiscardedValue) { 6728 FullExpr = CheckPlaceholderExpr(FullExpr.get()); 6729 if (FullExpr.isInvalid()) 6730 return ExprError(); 6731 6732 FullExpr = IgnoredValueConversions(FullExpr.get()); 6733 if (FullExpr.isInvalid()) 6734 return ExprError(); 6735 } 6736 6737 FullExpr = CorrectDelayedTyposInExpr(FullExpr.get()); 6738 if (FullExpr.isInvalid()) 6739 return ExprError(); 6740 6741 CheckCompletedExpr(FullExpr.get(), CC, IsConstexpr); 6742 6743 // At the end of this full expression (which could be a deeply nested 6744 // lambda), if there is a potential capture within the nested lambda, 6745 // have the outer capture-able lambda try and capture it. 6746 // Consider the following code: 6747 // void f(int, int); 6748 // void f(const int&, double); 6749 // void foo() { 6750 // const int x = 10, y = 20; 6751 // auto L = [=](auto a) { 6752 // auto M = [=](auto b) { 6753 // f(x, b); <-- requires x to be captured by L and M 6754 // f(y, a); <-- requires y to be captured by L, but not all Ms 6755 // }; 6756 // }; 6757 // } 6758 6759 // FIXME: Also consider what happens for something like this that involves 6760 // the gnu-extension statement-expressions or even lambda-init-captures: 6761 // void f() { 6762 // const int n = 0; 6763 // auto L = [&](auto a) { 6764 // +n + ({ 0; a; }); 6765 // }; 6766 // } 6767 // 6768 // Here, we see +n, and then the full-expression 0; ends, so we don't 6769 // capture n (and instead remove it from our list of potential captures), 6770 // and then the full-expression +n + ({ 0; }); ends, but it's too late 6771 // for us to see that we need to capture n after all. 6772 6773 LambdaScopeInfo *const CurrentLSI = getCurLambda(); 6774 // FIXME: PR 17877 showed that getCurLambda() can return a valid pointer 6775 // even if CurContext is not a lambda call operator. Refer to that Bug Report 6776 // for an example of the code that might cause this asynchrony. 6777 // By ensuring we are in the context of a lambda's call operator 6778 // we can fix the bug (we only need to check whether we need to capture 6779 // if we are within a lambda's body); but per the comments in that 6780 // PR, a proper fix would entail : 6781 // "Alternative suggestion: 6782 // - Add to Sema an integer holding the smallest (outermost) scope 6783 // index that we are *lexically* within, and save/restore/set to 6784 // FunctionScopes.size() in InstantiatingTemplate's 6785 // constructor/destructor. 6786 // - Teach the handful of places that iterate over FunctionScopes to 6787 // stop at the outermost enclosing lexical scope." 6788 const bool IsInLambdaDeclContext = isLambdaCallOperator(CurContext); 6789 if (IsInLambdaDeclContext && CurrentLSI && 6790 CurrentLSI->hasPotentialCaptures() && !FullExpr.isInvalid()) 6791 CheckIfAnyEnclosingLambdasMustCaptureAnyPotentialCaptures(FE, CurrentLSI, 6792 *this); 6793 return MaybeCreateExprWithCleanups(FullExpr); 6794 } 6795 6796 StmtResult Sema::ActOnFinishFullStmt(Stmt *FullStmt) { 6797 if (!FullStmt) return StmtError(); 6798 6799 return MaybeCreateStmtWithCleanups(FullStmt); 6800 } 6801 6802 Sema::IfExistsResult 6803 Sema::CheckMicrosoftIfExistsSymbol(Scope *S, 6804 CXXScopeSpec &SS, 6805 const DeclarationNameInfo &TargetNameInfo) { 6806 DeclarationName TargetName = TargetNameInfo.getName(); 6807 if (!TargetName) 6808 return IER_DoesNotExist; 6809 6810 // If the name itself is dependent, then the result is dependent. 6811 if (TargetName.isDependentName()) 6812 return IER_Dependent; 6813 6814 // Do the redeclaration lookup in the current scope. 6815 LookupResult R(*this, TargetNameInfo, Sema::LookupAnyName, 6816 Sema::NotForRedeclaration); 6817 LookupParsedName(R, S, &SS); 6818 R.suppressDiagnostics(); 6819 6820 switch (R.getResultKind()) { 6821 case LookupResult::Found: 6822 case LookupResult::FoundOverloaded: 6823 case LookupResult::FoundUnresolvedValue: 6824 case LookupResult::Ambiguous: 6825 return IER_Exists; 6826 6827 case LookupResult::NotFound: 6828 return IER_DoesNotExist; 6829 6830 case LookupResult::NotFoundInCurrentInstantiation: 6831 return IER_Dependent; 6832 } 6833 6834 llvm_unreachable("Invalid LookupResult Kind!"); 6835 } 6836 6837 Sema::IfExistsResult 6838 Sema::CheckMicrosoftIfExistsSymbol(Scope *S, SourceLocation KeywordLoc, 6839 bool IsIfExists, CXXScopeSpec &SS, 6840 UnqualifiedId &Name) { 6841 DeclarationNameInfo TargetNameInfo = GetNameFromUnqualifiedId(Name); 6842 6843 // Check for unexpanded parameter packs. 6844 SmallVector<UnexpandedParameterPack, 4> Unexpanded; 6845 collectUnexpandedParameterPacks(SS, Unexpanded); 6846 collectUnexpandedParameterPacks(TargetNameInfo, Unexpanded); 6847 if (!Unexpanded.empty()) { 6848 DiagnoseUnexpandedParameterPacks(KeywordLoc, 6849 IsIfExists? UPPC_IfExists 6850 : UPPC_IfNotExists, 6851 Unexpanded); 6852 return IER_Error; 6853 } 6854 6855 return CheckMicrosoftIfExistsSymbol(S, SS, TargetNameInfo); 6856 } 6857