Home | History | Annotate | Download | only in Sema
      1 //===--- SemaExprCXX.cpp - Semantic Analysis for Expressions --------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 ///
     10 /// \file
     11 /// \brief Implements semantic analysis for C++ expressions.
     12 ///
     13 //===----------------------------------------------------------------------===//
     14 
     15 #include "clang/Sema/SemaInternal.h"
     16 #include "TreeTransform.h"
     17 #include "TypeLocBuilder.h"
     18 #include "clang/AST/ASTContext.h"
     19 #include "clang/AST/ASTLambda.h"
     20 #include "clang/AST/CXXInheritance.h"
     21 #include "clang/AST/CharUnits.h"
     22 #include "clang/AST/DeclObjC.h"
     23 #include "clang/AST/ExprCXX.h"
     24 #include "clang/AST/ExprObjC.h"
     25 #include "clang/AST/RecursiveASTVisitor.h"
     26 #include "clang/AST/TypeLoc.h"
     27 #include "clang/Basic/PartialDiagnostic.h"
     28 #include "clang/Basic/TargetInfo.h"
     29 #include "clang/Lex/Preprocessor.h"
     30 #include "clang/Sema/DeclSpec.h"
     31 #include "clang/Sema/Initialization.h"
     32 #include "clang/Sema/Lookup.h"
     33 #include "clang/Sema/ParsedTemplate.h"
     34 #include "clang/Sema/Scope.h"
     35 #include "clang/Sema/ScopeInfo.h"
     36 #include "clang/Sema/SemaLambda.h"
     37 #include "clang/Sema/TemplateDeduction.h"
     38 #include "llvm/ADT/APInt.h"
     39 #include "llvm/ADT/STLExtras.h"
     40 #include "llvm/Support/ErrorHandling.h"
     41 using namespace clang;
     42 using namespace sema;
     43 
     44 /// \brief Handle the result of the special case name lookup for inheriting
     45 /// constructor declarations. 'NS::X::X' and 'NS::X<...>::X' are treated as
     46 /// constructor names in member using declarations, even if 'X' is not the
     47 /// name of the corresponding type.
     48 ParsedType Sema::getInheritingConstructorName(CXXScopeSpec &SS,
     49                                               SourceLocation NameLoc,
     50                                               IdentifierInfo &Name) {
     51   NestedNameSpecifier *NNS = SS.getScopeRep();
     52 
     53   // Convert the nested-name-specifier into a type.
     54   QualType Type;
     55   switch (NNS->getKind()) {
     56   case NestedNameSpecifier::TypeSpec:
     57   case NestedNameSpecifier::TypeSpecWithTemplate:
     58     Type = QualType(NNS->getAsType(), 0);
     59     break;
     60 
     61   case NestedNameSpecifier::Identifier:
     62     // Strip off the last layer of the nested-name-specifier and build a
     63     // typename type for it.
     64     assert(NNS->getAsIdentifier() == &Name && "not a constructor name");
     65     Type = Context.getDependentNameType(ETK_None, NNS->getPrefix(),
     66                                         NNS->getAsIdentifier());
     67     break;
     68 
     69   case NestedNameSpecifier::Global:
     70   case NestedNameSpecifier::Super:
     71   case NestedNameSpecifier::Namespace:
     72   case NestedNameSpecifier::NamespaceAlias:
     73     llvm_unreachable("Nested name specifier is not a type for inheriting ctor");
     74   }
     75 
     76   // This reference to the type is located entirely at the location of the
     77   // final identifier in the qualified-id.
     78   return CreateParsedType(Type,
     79                           Context.getTrivialTypeSourceInfo(Type, NameLoc));
     80 }
     81 
     82 ParsedType Sema::getDestructorName(SourceLocation TildeLoc,
     83                                    IdentifierInfo &II,
     84                                    SourceLocation NameLoc,
     85                                    Scope *S, CXXScopeSpec &SS,
     86                                    ParsedType ObjectTypePtr,
     87                                    bool EnteringContext) {
     88   // Determine where to perform name lookup.
     89 
     90   // FIXME: This area of the standard is very messy, and the current
     91   // wording is rather unclear about which scopes we search for the
     92   // destructor name; see core issues 399 and 555. Issue 399 in
     93   // particular shows where the current description of destructor name
     94   // lookup is completely out of line with existing practice, e.g.,
     95   // this appears to be ill-formed:
     96   //
     97   //   namespace N {
     98   //     template <typename T> struct S {
     99   //       ~S();
    100   //     };
    101   //   }
    102   //
    103   //   void f(N::S<int>* s) {
    104   //     s->N::S<int>::~S();
    105   //   }
    106   //
    107   // See also PR6358 and PR6359.
    108   // For this reason, we're currently only doing the C++03 version of this
    109   // code; the C++0x version has to wait until we get a proper spec.
    110   QualType SearchType;
    111   DeclContext *LookupCtx = nullptr;
    112   bool isDependent = false;
    113   bool LookInScope = false;
    114 
    115   if (SS.isInvalid())
    116     return ParsedType();
    117 
    118   // If we have an object type, it's because we are in a
    119   // pseudo-destructor-expression or a member access expression, and
    120   // we know what type we're looking for.
    121   if (ObjectTypePtr)
    122     SearchType = GetTypeFromParser(ObjectTypePtr);
    123 
    124   if (SS.isSet()) {
    125     NestedNameSpecifier *NNS = SS.getScopeRep();
    126 
    127     bool AlreadySearched = false;
    128     bool LookAtPrefix = true;
    129     // C++11 [basic.lookup.qual]p6:
    130     //   If a pseudo-destructor-name (5.2.4) contains a nested-name-specifier,
    131     //   the type-names are looked up as types in the scope designated by the
    132     //   nested-name-specifier. Similarly, in a qualified-id of the form:
    133     //
    134     //     nested-name-specifier[opt] class-name :: ~ class-name
    135     //
    136     //   the second class-name is looked up in the same scope as the first.
    137     //
    138     // Here, we determine whether the code below is permitted to look at the
    139     // prefix of the nested-name-specifier.
    140     DeclContext *DC = computeDeclContext(SS, EnteringContext);
    141     if (DC && DC->isFileContext()) {
    142       AlreadySearched = true;
    143       LookupCtx = DC;
    144       isDependent = false;
    145     } else if (DC && isa<CXXRecordDecl>(DC)) {
    146       LookAtPrefix = false;
    147       LookInScope = true;
    148     }
    149 
    150     // The second case from the C++03 rules quoted further above.
    151     NestedNameSpecifier *Prefix = nullptr;
    152     if (AlreadySearched) {
    153       // Nothing left to do.
    154     } else if (LookAtPrefix && (Prefix = NNS->getPrefix())) {
    155       CXXScopeSpec PrefixSS;
    156       PrefixSS.Adopt(NestedNameSpecifierLoc(Prefix, SS.location_data()));
    157       LookupCtx = computeDeclContext(PrefixSS, EnteringContext);
    158       isDependent = isDependentScopeSpecifier(PrefixSS);
    159     } else if (ObjectTypePtr) {
    160       LookupCtx = computeDeclContext(SearchType);
    161       isDependent = SearchType->isDependentType();
    162     } else {
    163       LookupCtx = computeDeclContext(SS, EnteringContext);
    164       isDependent = LookupCtx && LookupCtx->isDependentContext();
    165     }
    166   } else if (ObjectTypePtr) {
    167     // C++ [basic.lookup.classref]p3:
    168     //   If the unqualified-id is ~type-name, the type-name is looked up
    169     //   in the context of the entire postfix-expression. If the type T
    170     //   of the object expression is of a class type C, the type-name is
    171     //   also looked up in the scope of class C. At least one of the
    172     //   lookups shall find a name that refers to (possibly
    173     //   cv-qualified) T.
    174     LookupCtx = computeDeclContext(SearchType);
    175     isDependent = SearchType->isDependentType();
    176     assert((isDependent || !SearchType->isIncompleteType()) &&
    177            "Caller should have completed object type");
    178 
    179     LookInScope = true;
    180   } else {
    181     // Perform lookup into the current scope (only).
    182     LookInScope = true;
    183   }
    184 
    185   TypeDecl *NonMatchingTypeDecl = nullptr;
    186   LookupResult Found(*this, &II, NameLoc, LookupOrdinaryName);
    187   for (unsigned Step = 0; Step != 2; ++Step) {
    188     // Look for the name first in the computed lookup context (if we
    189     // have one) and, if that fails to find a match, in the scope (if
    190     // we're allowed to look there).
    191     Found.clear();
    192     if (Step == 0 && LookupCtx)
    193       LookupQualifiedName(Found, LookupCtx);
    194     else if (Step == 1 && LookInScope && S)
    195       LookupName(Found, S);
    196     else
    197       continue;
    198 
    199     // FIXME: Should we be suppressing ambiguities here?
    200     if (Found.isAmbiguous())
    201       return ParsedType();
    202 
    203     if (TypeDecl *Type = Found.getAsSingle<TypeDecl>()) {
    204       QualType T = Context.getTypeDeclType(Type);
    205       MarkAnyDeclReferenced(Type->getLocation(), Type, /*OdrUse=*/false);
    206 
    207       if (SearchType.isNull() || SearchType->isDependentType() ||
    208           Context.hasSameUnqualifiedType(T, SearchType)) {
    209         // We found our type!
    210 
    211         return CreateParsedType(T,
    212                                 Context.getTrivialTypeSourceInfo(T, NameLoc));
    213       }
    214 
    215       if (!SearchType.isNull())
    216         NonMatchingTypeDecl = Type;
    217     }
    218 
    219     // If the name that we found is a class template name, and it is
    220     // the same name as the template name in the last part of the
    221     // nested-name-specifier (if present) or the object type, then
    222     // this is the destructor for that class.
    223     // FIXME: This is a workaround until we get real drafting for core
    224     // issue 399, for which there isn't even an obvious direction.
    225     if (ClassTemplateDecl *Template = Found.getAsSingle<ClassTemplateDecl>()) {
    226       QualType MemberOfType;
    227       if (SS.isSet()) {
    228         if (DeclContext *Ctx = computeDeclContext(SS, EnteringContext)) {
    229           // Figure out the type of the context, if it has one.
    230           if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx))
    231             MemberOfType = Context.getTypeDeclType(Record);
    232         }
    233       }
    234       if (MemberOfType.isNull())
    235         MemberOfType = SearchType;
    236 
    237       if (MemberOfType.isNull())
    238         continue;
    239 
    240       // We're referring into a class template specialization. If the
    241       // class template we found is the same as the template being
    242       // specialized, we found what we are looking for.
    243       if (const RecordType *Record = MemberOfType->getAs<RecordType>()) {
    244         if (ClassTemplateSpecializationDecl *Spec
    245               = dyn_cast<ClassTemplateSpecializationDecl>(Record->getDecl())) {
    246           if (Spec->getSpecializedTemplate()->getCanonicalDecl() ==
    247                 Template->getCanonicalDecl())
    248             return CreateParsedType(
    249                 MemberOfType,
    250                 Context.getTrivialTypeSourceInfo(MemberOfType, NameLoc));
    251         }
    252 
    253         continue;
    254       }
    255 
    256       // We're referring to an unresolved class template
    257       // specialization. Determine whether we class template we found
    258       // is the same as the template being specialized or, if we don't
    259       // know which template is being specialized, that it at least
    260       // has the same name.
    261       if (const TemplateSpecializationType *SpecType
    262             = MemberOfType->getAs<TemplateSpecializationType>()) {
    263         TemplateName SpecName = SpecType->getTemplateName();
    264 
    265         // The class template we found is the same template being
    266         // specialized.
    267         if (TemplateDecl *SpecTemplate = SpecName.getAsTemplateDecl()) {
    268           if (SpecTemplate->getCanonicalDecl() == Template->getCanonicalDecl())
    269             return CreateParsedType(
    270                 MemberOfType,
    271                 Context.getTrivialTypeSourceInfo(MemberOfType, NameLoc));
    272 
    273           continue;
    274         }
    275 
    276         // The class template we found has the same name as the
    277         // (dependent) template name being specialized.
    278         if (DependentTemplateName *DepTemplate
    279                                     = SpecName.getAsDependentTemplateName()) {
    280           if (DepTemplate->isIdentifier() &&
    281               DepTemplate->getIdentifier() == Template->getIdentifier())
    282             return CreateParsedType(
    283                 MemberOfType,
    284                 Context.getTrivialTypeSourceInfo(MemberOfType, NameLoc));
    285 
    286           continue;
    287         }
    288       }
    289     }
    290   }
    291 
    292   if (isDependent) {
    293     // We didn't find our type, but that's okay: it's dependent
    294     // anyway.
    295 
    296     // FIXME: What if we have no nested-name-specifier?
    297     QualType T = CheckTypenameType(ETK_None, SourceLocation(),
    298                                    SS.getWithLocInContext(Context),
    299                                    II, NameLoc);
    300     return ParsedType::make(T);
    301   }
    302 
    303   if (NonMatchingTypeDecl) {
    304     QualType T = Context.getTypeDeclType(NonMatchingTypeDecl);
    305     Diag(NameLoc, diag::err_destructor_expr_type_mismatch)
    306       << T << SearchType;
    307     Diag(NonMatchingTypeDecl->getLocation(), diag::note_destructor_type_here)
    308       << T;
    309   } else if (ObjectTypePtr)
    310     Diag(NameLoc, diag::err_ident_in_dtor_not_a_type)
    311       << &II;
    312   else {
    313     SemaDiagnosticBuilder DtorDiag = Diag(NameLoc,
    314                                           diag::err_destructor_class_name);
    315     if (S) {
    316       const DeclContext *Ctx = S->getEntity();
    317       if (const CXXRecordDecl *Class = dyn_cast_or_null<CXXRecordDecl>(Ctx))
    318         DtorDiag << FixItHint::CreateReplacement(SourceRange(NameLoc),
    319                                                  Class->getNameAsString());
    320     }
    321   }
    322 
    323   return ParsedType();
    324 }
    325 
    326 ParsedType Sema::getDestructorType(const DeclSpec& DS, ParsedType ObjectType) {
    327     if (DS.getTypeSpecType() == DeclSpec::TST_error || !ObjectType)
    328       return ParsedType();
    329     assert(DS.getTypeSpecType() == DeclSpec::TST_decltype
    330            && "only get destructor types from declspecs");
    331     QualType T = BuildDecltypeType(DS.getRepAsExpr(), DS.getTypeSpecTypeLoc());
    332     QualType SearchType = GetTypeFromParser(ObjectType);
    333     if (SearchType->isDependentType() || Context.hasSameUnqualifiedType(SearchType, T)) {
    334       return ParsedType::make(T);
    335     }
    336 
    337     Diag(DS.getTypeSpecTypeLoc(), diag::err_destructor_expr_type_mismatch)
    338       << T << SearchType;
    339     return ParsedType();
    340 }
    341 
    342 bool Sema::checkLiteralOperatorId(const CXXScopeSpec &SS,
    343                                   const UnqualifiedId &Name) {
    344   assert(Name.getKind() == UnqualifiedId::IK_LiteralOperatorId);
    345 
    346   if (!SS.isValid())
    347     return false;
    348 
    349   switch (SS.getScopeRep()->getKind()) {
    350   case NestedNameSpecifier::Identifier:
    351   case NestedNameSpecifier::TypeSpec:
    352   case NestedNameSpecifier::TypeSpecWithTemplate:
    353     // Per C++11 [over.literal]p2, literal operators can only be declared at
    354     // namespace scope. Therefore, this unqualified-id cannot name anything.
    355     // Reject it early, because we have no AST representation for this in the
    356     // case where the scope is dependent.
    357     Diag(Name.getLocStart(), diag::err_literal_operator_id_outside_namespace)
    358       << SS.getScopeRep();
    359     return true;
    360 
    361   case NestedNameSpecifier::Global:
    362   case NestedNameSpecifier::Super:
    363   case NestedNameSpecifier::Namespace:
    364   case NestedNameSpecifier::NamespaceAlias:
    365     return false;
    366   }
    367 
    368   llvm_unreachable("unknown nested name specifier kind");
    369 }
    370 
    371 /// \brief Build a C++ typeid expression with a type operand.
    372 ExprResult Sema::BuildCXXTypeId(QualType TypeInfoType,
    373                                 SourceLocation TypeidLoc,
    374                                 TypeSourceInfo *Operand,
    375                                 SourceLocation RParenLoc) {
    376   // C++ [expr.typeid]p4:
    377   //   The top-level cv-qualifiers of the lvalue expression or the type-id
    378   //   that is the operand of typeid are always ignored.
    379   //   If the type of the type-id is a class type or a reference to a class
    380   //   type, the class shall be completely-defined.
    381   Qualifiers Quals;
    382   QualType T
    383     = Context.getUnqualifiedArrayType(Operand->getType().getNonReferenceType(),
    384                                       Quals);
    385   if (T->getAs<RecordType>() &&
    386       RequireCompleteType(TypeidLoc, T, diag::err_incomplete_typeid))
    387     return ExprError();
    388 
    389   if (T->isVariablyModifiedType())
    390     return ExprError(Diag(TypeidLoc, diag::err_variably_modified_typeid) << T);
    391 
    392   return new (Context) CXXTypeidExpr(TypeInfoType.withConst(), Operand,
    393                                      SourceRange(TypeidLoc, RParenLoc));
    394 }
    395 
    396 /// \brief Build a C++ typeid expression with an expression operand.
    397 ExprResult Sema::BuildCXXTypeId(QualType TypeInfoType,
    398                                 SourceLocation TypeidLoc,
    399                                 Expr *E,
    400                                 SourceLocation RParenLoc) {
    401   bool WasEvaluated = false;
    402   if (E && !E->isTypeDependent()) {
    403     if (E->getType()->isPlaceholderType()) {
    404       ExprResult result = CheckPlaceholderExpr(E);
    405       if (result.isInvalid()) return ExprError();
    406       E = result.get();
    407     }
    408 
    409     QualType T = E->getType();
    410     if (const RecordType *RecordT = T->getAs<RecordType>()) {
    411       CXXRecordDecl *RecordD = cast<CXXRecordDecl>(RecordT->getDecl());
    412       // C++ [expr.typeid]p3:
    413       //   [...] If the type of the expression is a class type, the class
    414       //   shall be completely-defined.
    415       if (RequireCompleteType(TypeidLoc, T, diag::err_incomplete_typeid))
    416         return ExprError();
    417 
    418       // C++ [expr.typeid]p3:
    419       //   When typeid is applied to an expression other than an glvalue of a
    420       //   polymorphic class type [...] [the] expression is an unevaluated
    421       //   operand. [...]
    422       if (RecordD->isPolymorphic() && E->isGLValue()) {
    423         // The subexpression is potentially evaluated; switch the context
    424         // and recheck the subexpression.
    425         ExprResult Result = TransformToPotentiallyEvaluated(E);
    426         if (Result.isInvalid()) return ExprError();
    427         E = Result.get();
    428 
    429         // We require a vtable to query the type at run time.
    430         MarkVTableUsed(TypeidLoc, RecordD);
    431         WasEvaluated = true;
    432       }
    433     }
    434 
    435     // C++ [expr.typeid]p4:
    436     //   [...] If the type of the type-id is a reference to a possibly
    437     //   cv-qualified type, the result of the typeid expression refers to a
    438     //   std::type_info object representing the cv-unqualified referenced
    439     //   type.
    440     Qualifiers Quals;
    441     QualType UnqualT = Context.getUnqualifiedArrayType(T, Quals);
    442     if (!Context.hasSameType(T, UnqualT)) {
    443       T = UnqualT;
    444       E = ImpCastExprToType(E, UnqualT, CK_NoOp, E->getValueKind()).get();
    445     }
    446   }
    447 
    448   if (E->getType()->isVariablyModifiedType())
    449     return ExprError(Diag(TypeidLoc, diag::err_variably_modified_typeid)
    450                      << E->getType());
    451   else if (ActiveTemplateInstantiations.empty() &&
    452            E->HasSideEffects(Context, WasEvaluated)) {
    453     // The expression operand for typeid is in an unevaluated expression
    454     // context, so side effects could result in unintended consequences.
    455     Diag(E->getExprLoc(), WasEvaluated
    456                               ? diag::warn_side_effects_typeid
    457                               : diag::warn_side_effects_unevaluated_context);
    458   }
    459 
    460   return new (Context) CXXTypeidExpr(TypeInfoType.withConst(), E,
    461                                      SourceRange(TypeidLoc, RParenLoc));
    462 }
    463 
    464 /// ActOnCXXTypeidOfType - Parse typeid( type-id ) or typeid (expression);
    465 ExprResult
    466 Sema::ActOnCXXTypeid(SourceLocation OpLoc, SourceLocation LParenLoc,
    467                      bool isType, void *TyOrExpr, SourceLocation RParenLoc) {
    468   // Find the std::type_info type.
    469   if (!getStdNamespace())
    470     return ExprError(Diag(OpLoc, diag::err_need_header_before_typeid));
    471 
    472   if (!CXXTypeInfoDecl) {
    473     IdentifierInfo *TypeInfoII = &PP.getIdentifierTable().get("type_info");
    474     LookupResult R(*this, TypeInfoII, SourceLocation(), LookupTagName);
    475     LookupQualifiedName(R, getStdNamespace());
    476     CXXTypeInfoDecl = R.getAsSingle<RecordDecl>();
    477     // Microsoft's typeinfo doesn't have type_info in std but in the global
    478     // namespace if _HAS_EXCEPTIONS is defined to 0. See PR13153.
    479     if (!CXXTypeInfoDecl && LangOpts.MSVCCompat) {
    480       LookupQualifiedName(R, Context.getTranslationUnitDecl());
    481       CXXTypeInfoDecl = R.getAsSingle<RecordDecl>();
    482     }
    483     if (!CXXTypeInfoDecl)
    484       return ExprError(Diag(OpLoc, diag::err_need_header_before_typeid));
    485   }
    486 
    487   if (!getLangOpts().RTTI) {
    488     return ExprError(Diag(OpLoc, diag::err_no_typeid_with_fno_rtti));
    489   }
    490 
    491   QualType TypeInfoType = Context.getTypeDeclType(CXXTypeInfoDecl);
    492 
    493   if (isType) {
    494     // The operand is a type; handle it as such.
    495     TypeSourceInfo *TInfo = nullptr;
    496     QualType T = GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrExpr),
    497                                    &TInfo);
    498     if (T.isNull())
    499       return ExprError();
    500 
    501     if (!TInfo)
    502       TInfo = Context.getTrivialTypeSourceInfo(T, OpLoc);
    503 
    504     return BuildCXXTypeId(TypeInfoType, OpLoc, TInfo, RParenLoc);
    505   }
    506 
    507   // The operand is an expression.
    508   return BuildCXXTypeId(TypeInfoType, OpLoc, (Expr*)TyOrExpr, RParenLoc);
    509 }
    510 
    511 /// \brief Build a Microsoft __uuidof expression with a type operand.
    512 ExprResult Sema::BuildCXXUuidof(QualType TypeInfoType,
    513                                 SourceLocation TypeidLoc,
    514                                 TypeSourceInfo *Operand,
    515                                 SourceLocation RParenLoc) {
    516   if (!Operand->getType()->isDependentType()) {
    517     bool HasMultipleGUIDs = false;
    518     if (!CXXUuidofExpr::GetUuidAttrOfType(Operand->getType(),
    519                                           &HasMultipleGUIDs)) {
    520       if (HasMultipleGUIDs)
    521         return ExprError(Diag(TypeidLoc, diag::err_uuidof_with_multiple_guids));
    522       else
    523         return ExprError(Diag(TypeidLoc, diag::err_uuidof_without_guid));
    524     }
    525   }
    526 
    527   return new (Context) CXXUuidofExpr(TypeInfoType.withConst(), Operand,
    528                                      SourceRange(TypeidLoc, RParenLoc));
    529 }
    530 
    531 /// \brief Build a Microsoft __uuidof expression with an expression operand.
    532 ExprResult Sema::BuildCXXUuidof(QualType TypeInfoType,
    533                                 SourceLocation TypeidLoc,
    534                                 Expr *E,
    535                                 SourceLocation RParenLoc) {
    536   if (!E->getType()->isDependentType()) {
    537     bool HasMultipleGUIDs = false;
    538     if (!CXXUuidofExpr::GetUuidAttrOfType(E->getType(), &HasMultipleGUIDs) &&
    539         !E->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
    540       if (HasMultipleGUIDs)
    541         return ExprError(Diag(TypeidLoc, diag::err_uuidof_with_multiple_guids));
    542       else
    543         return ExprError(Diag(TypeidLoc, diag::err_uuidof_without_guid));
    544     }
    545   }
    546 
    547   return new (Context) CXXUuidofExpr(TypeInfoType.withConst(), E,
    548                                      SourceRange(TypeidLoc, RParenLoc));
    549 }
    550 
    551 /// ActOnCXXUuidof - Parse __uuidof( type-id ) or __uuidof (expression);
    552 ExprResult
    553 Sema::ActOnCXXUuidof(SourceLocation OpLoc, SourceLocation LParenLoc,
    554                      bool isType, void *TyOrExpr, SourceLocation RParenLoc) {
    555   // If MSVCGuidDecl has not been cached, do the lookup.
    556   if (!MSVCGuidDecl) {
    557     IdentifierInfo *GuidII = &PP.getIdentifierTable().get("_GUID");
    558     LookupResult R(*this, GuidII, SourceLocation(), LookupTagName);
    559     LookupQualifiedName(R, Context.getTranslationUnitDecl());
    560     MSVCGuidDecl = R.getAsSingle<RecordDecl>();
    561     if (!MSVCGuidDecl)
    562       return ExprError(Diag(OpLoc, diag::err_need_header_before_ms_uuidof));
    563   }
    564 
    565   QualType GuidType = Context.getTypeDeclType(MSVCGuidDecl);
    566 
    567   if (isType) {
    568     // The operand is a type; handle it as such.
    569     TypeSourceInfo *TInfo = nullptr;
    570     QualType T = GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrExpr),
    571                                    &TInfo);
    572     if (T.isNull())
    573       return ExprError();
    574 
    575     if (!TInfo)
    576       TInfo = Context.getTrivialTypeSourceInfo(T, OpLoc);
    577 
    578     return BuildCXXUuidof(GuidType, OpLoc, TInfo, RParenLoc);
    579   }
    580 
    581   // The operand is an expression.
    582   return BuildCXXUuidof(GuidType, OpLoc, (Expr*)TyOrExpr, RParenLoc);
    583 }
    584 
    585 /// ActOnCXXBoolLiteral - Parse {true,false} literals.
    586 ExprResult
    587 Sema::ActOnCXXBoolLiteral(SourceLocation OpLoc, tok::TokenKind Kind) {
    588   assert((Kind == tok::kw_true || Kind == tok::kw_false) &&
    589          "Unknown C++ Boolean value!");
    590   return new (Context)
    591       CXXBoolLiteralExpr(Kind == tok::kw_true, Context.BoolTy, OpLoc);
    592 }
    593 
    594 /// ActOnCXXNullPtrLiteral - Parse 'nullptr'.
    595 ExprResult
    596 Sema::ActOnCXXNullPtrLiteral(SourceLocation Loc) {
    597   return new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc);
    598 }
    599 
    600 /// ActOnCXXThrow - Parse throw expressions.
    601 ExprResult
    602 Sema::ActOnCXXThrow(Scope *S, SourceLocation OpLoc, Expr *Ex) {
    603   bool IsThrownVarInScope = false;
    604   if (Ex) {
    605     // C++0x [class.copymove]p31:
    606     //   When certain criteria are met, an implementation is allowed to omit the
    607     //   copy/move construction of a class object [...]
    608     //
    609     //     - in a throw-expression, when the operand is the name of a
    610     //       non-volatile automatic object (other than a function or catch-
    611     //       clause parameter) whose scope does not extend beyond the end of the
    612     //       innermost enclosing try-block (if there is one), the copy/move
    613     //       operation from the operand to the exception object (15.1) can be
    614     //       omitted by constructing the automatic object directly into the
    615     //       exception object
    616     if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Ex->IgnoreParens()))
    617       if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) {
    618         if (Var->hasLocalStorage() && !Var->getType().isVolatileQualified()) {
    619           for( ; S; S = S->getParent()) {
    620             if (S->isDeclScope(Var)) {
    621               IsThrownVarInScope = true;
    622               break;
    623             }
    624 
    625             if (S->getFlags() &
    626                 (Scope::FnScope | Scope::ClassScope | Scope::BlockScope |
    627                  Scope::FunctionPrototypeScope | Scope::ObjCMethodScope |
    628                  Scope::TryScope))
    629               break;
    630           }
    631         }
    632       }
    633   }
    634 
    635   return BuildCXXThrow(OpLoc, Ex, IsThrownVarInScope);
    636 }
    637 
    638 ExprResult Sema::BuildCXXThrow(SourceLocation OpLoc, Expr *Ex,
    639                                bool IsThrownVarInScope) {
    640   // Don't report an error if 'throw' is used in system headers.
    641   if (!getLangOpts().CXXExceptions &&
    642       !getSourceManager().isInSystemHeader(OpLoc))
    643     Diag(OpLoc, diag::err_exceptions_disabled) << "throw";
    644 
    645   if (getCurScope() && getCurScope()->isOpenMPSimdDirectiveScope())
    646     Diag(OpLoc, diag::err_omp_simd_region_cannot_use_stmt) << "throw";
    647 
    648   if (Ex && !Ex->isTypeDependent()) {
    649     QualType ExceptionObjectTy = Context.getExceptionObjectType(Ex->getType());
    650     if (CheckCXXThrowOperand(OpLoc, ExceptionObjectTy, Ex))
    651       return ExprError();
    652 
    653     // Initialize the exception result.  This implicitly weeds out
    654     // abstract types or types with inaccessible copy constructors.
    655 
    656     // C++0x [class.copymove]p31:
    657     //   When certain criteria are met, an implementation is allowed to omit the
    658     //   copy/move construction of a class object [...]
    659     //
    660     //     - in a throw-expression, when the operand is the name of a
    661     //       non-volatile automatic object (other than a function or
    662     //       catch-clause
    663     //       parameter) whose scope does not extend beyond the end of the
    664     //       innermost enclosing try-block (if there is one), the copy/move
    665     //       operation from the operand to the exception object (15.1) can be
    666     //       omitted by constructing the automatic object directly into the
    667     //       exception object
    668     const VarDecl *NRVOVariable = nullptr;
    669     if (IsThrownVarInScope)
    670       NRVOVariable = getCopyElisionCandidate(QualType(), Ex, false);
    671 
    672     InitializedEntity Entity = InitializedEntity::InitializeException(
    673         OpLoc, ExceptionObjectTy,
    674         /*NRVO=*/NRVOVariable != nullptr);
    675     ExprResult Res = PerformMoveOrCopyInitialization(
    676         Entity, NRVOVariable, QualType(), Ex, IsThrownVarInScope);
    677     if (Res.isInvalid())
    678       return ExprError();
    679     Ex = Res.get();
    680   }
    681 
    682   return new (Context)
    683       CXXThrowExpr(Ex, Context.VoidTy, OpLoc, IsThrownVarInScope);
    684 }
    685 
    686 static void
    687 collectPublicBases(CXXRecordDecl *RD,
    688                    llvm::DenseMap<CXXRecordDecl *, unsigned> &SubobjectsSeen,
    689                    llvm::SmallPtrSetImpl<CXXRecordDecl *> &VBases,
    690                    llvm::SetVector<CXXRecordDecl *> &PublicSubobjectsSeen,
    691                    bool ParentIsPublic) {
    692   for (const CXXBaseSpecifier &BS : RD->bases()) {
    693     CXXRecordDecl *BaseDecl = BS.getType()->getAsCXXRecordDecl();
    694     bool NewSubobject;
    695     // Virtual bases constitute the same subobject.  Non-virtual bases are
    696     // always distinct subobjects.
    697     if (BS.isVirtual())
    698       NewSubobject = VBases.insert(BaseDecl).second;
    699     else
    700       NewSubobject = true;
    701 
    702     if (NewSubobject)
    703       ++SubobjectsSeen[BaseDecl];
    704 
    705     // Only add subobjects which have public access throughout the entire chain.
    706     bool PublicPath = ParentIsPublic && BS.getAccessSpecifier() == AS_public;
    707     if (PublicPath)
    708       PublicSubobjectsSeen.insert(BaseDecl);
    709 
    710     // Recurse on to each base subobject.
    711     collectPublicBases(BaseDecl, SubobjectsSeen, VBases, PublicSubobjectsSeen,
    712                        PublicPath);
    713   }
    714 }
    715 
    716 static void getUnambiguousPublicSubobjects(
    717     CXXRecordDecl *RD, llvm::SmallVectorImpl<CXXRecordDecl *> &Objects) {
    718   llvm::DenseMap<CXXRecordDecl *, unsigned> SubobjectsSeen;
    719   llvm::SmallSet<CXXRecordDecl *, 2> VBases;
    720   llvm::SetVector<CXXRecordDecl *> PublicSubobjectsSeen;
    721   SubobjectsSeen[RD] = 1;
    722   PublicSubobjectsSeen.insert(RD);
    723   collectPublicBases(RD, SubobjectsSeen, VBases, PublicSubobjectsSeen,
    724                      /*ParentIsPublic=*/true);
    725 
    726   for (CXXRecordDecl *PublicSubobject : PublicSubobjectsSeen) {
    727     // Skip ambiguous objects.
    728     if (SubobjectsSeen[PublicSubobject] > 1)
    729       continue;
    730 
    731     Objects.push_back(PublicSubobject);
    732   }
    733 }
    734 
    735 /// CheckCXXThrowOperand - Validate the operand of a throw.
    736 bool Sema::CheckCXXThrowOperand(SourceLocation ThrowLoc,
    737                                 QualType ExceptionObjectTy, Expr *E) {
    738   //   If the type of the exception would be an incomplete type or a pointer
    739   //   to an incomplete type other than (cv) void the program is ill-formed.
    740   QualType Ty = ExceptionObjectTy;
    741   bool isPointer = false;
    742   if (const PointerType* Ptr = Ty->getAs<PointerType>()) {
    743     Ty = Ptr->getPointeeType();
    744     isPointer = true;
    745   }
    746   if (!isPointer || !Ty->isVoidType()) {
    747     if (RequireCompleteType(ThrowLoc, Ty,
    748                             isPointer ? diag::err_throw_incomplete_ptr
    749                                       : diag::err_throw_incomplete,
    750                             E->getSourceRange()))
    751       return true;
    752 
    753     if (RequireNonAbstractType(ThrowLoc, ExceptionObjectTy,
    754                                diag::err_throw_abstract_type, E))
    755       return true;
    756   }
    757 
    758   // If the exception has class type, we need additional handling.
    759   CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
    760   if (!RD)
    761     return false;
    762 
    763   // If we are throwing a polymorphic class type or pointer thereof,
    764   // exception handling will make use of the vtable.
    765   MarkVTableUsed(ThrowLoc, RD);
    766 
    767   // If a pointer is thrown, the referenced object will not be destroyed.
    768   if (isPointer)
    769     return false;
    770 
    771   // If the class has a destructor, we must be able to call it.
    772   if (!RD->hasIrrelevantDestructor()) {
    773     if (CXXDestructorDecl *Destructor = LookupDestructor(RD)) {
    774       MarkFunctionReferenced(E->getExprLoc(), Destructor);
    775       CheckDestructorAccess(E->getExprLoc(), Destructor,
    776                             PDiag(diag::err_access_dtor_exception) << Ty);
    777       if (DiagnoseUseOfDecl(Destructor, E->getExprLoc()))
    778         return true;
    779     }
    780   }
    781 
    782   // The MSVC ABI creates a list of all types which can catch the exception
    783   // object.  This list also references the appropriate copy constructor to call
    784   // if the object is caught by value and has a non-trivial copy constructor.
    785   if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
    786     // We are only interested in the public, unambiguous bases contained within
    787     // the exception object.  Bases which are ambiguous or otherwise
    788     // inaccessible are not catchable types.
    789     llvm::SmallVector<CXXRecordDecl *, 2> UnambiguousPublicSubobjects;
    790     getUnambiguousPublicSubobjects(RD, UnambiguousPublicSubobjects);
    791 
    792     for (CXXRecordDecl *Subobject : UnambiguousPublicSubobjects) {
    793       // Attempt to lookup the copy constructor.  Various pieces of machinery
    794       // will spring into action, like template instantiation, which means this
    795       // cannot be a simple walk of the class's decls.  Instead, we must perform
    796       // lookup and overload resolution.
    797       CXXConstructorDecl *CD = LookupCopyingConstructor(Subobject, 0);
    798       if (!CD)
    799         continue;
    800 
    801       // Mark the constructor referenced as it is used by this throw expression.
    802       MarkFunctionReferenced(E->getExprLoc(), CD);
    803 
    804       // Skip this copy constructor if it is trivial, we don't need to record it
    805       // in the catchable type data.
    806       if (CD->isTrivial())
    807         continue;
    808 
    809       // The copy constructor is non-trivial, create a mapping from this class
    810       // type to this constructor.
    811       // N.B.  The selection of copy constructor is not sensitive to this
    812       // particular throw-site.  Lookup will be performed at the catch-site to
    813       // ensure that the copy constructor is, in fact, accessible (via
    814       // friendship or any other means).
    815       Context.addCopyConstructorForExceptionObject(Subobject, CD);
    816 
    817       // We don't keep the instantiated default argument expressions around so
    818       // we must rebuild them here.
    819       for (unsigned I = 1, E = CD->getNumParams(); I != E; ++I) {
    820         // Skip any default arguments that we've already instantiated.
    821         if (Context.getDefaultArgExprForConstructor(CD, I))
    822           continue;
    823 
    824         Expr *DefaultArg =
    825             BuildCXXDefaultArgExpr(ThrowLoc, CD, CD->getParamDecl(I)).get();
    826         Context.addDefaultArgExprForConstructor(CD, I, DefaultArg);
    827       }
    828     }
    829   }
    830 
    831   return false;
    832 }
    833 
    834 QualType Sema::getCurrentThisType() {
    835   DeclContext *DC = getFunctionLevelDeclContext();
    836   QualType ThisTy = CXXThisTypeOverride;
    837   if (CXXMethodDecl *method = dyn_cast<CXXMethodDecl>(DC)) {
    838     if (method && method->isInstance())
    839       ThisTy = method->getThisType(Context);
    840   }
    841   if (ThisTy.isNull()) {
    842     if (isGenericLambdaCallOperatorSpecialization(CurContext) &&
    843         CurContext->getParent()->getParent()->isRecord()) {
    844       // This is a generic lambda call operator that is being instantiated
    845       // within a default initializer - so use the enclosing class as 'this'.
    846       // There is no enclosing member function to retrieve the 'this' pointer
    847       // from.
    848       QualType ClassTy = Context.getTypeDeclType(
    849           cast<CXXRecordDecl>(CurContext->getParent()->getParent()));
    850       // There are no cv-qualifiers for 'this' within default initializers,
    851       // per [expr.prim.general]p4.
    852       return Context.getPointerType(ClassTy);
    853     }
    854   }
    855   return ThisTy;
    856 }
    857 
    858 Sema::CXXThisScopeRAII::CXXThisScopeRAII(Sema &S,
    859                                          Decl *ContextDecl,
    860                                          unsigned CXXThisTypeQuals,
    861                                          bool Enabled)
    862   : S(S), OldCXXThisTypeOverride(S.CXXThisTypeOverride), Enabled(false)
    863 {
    864   if (!Enabled || !ContextDecl)
    865     return;
    866 
    867   CXXRecordDecl *Record = nullptr;
    868   if (ClassTemplateDecl *Template = dyn_cast<ClassTemplateDecl>(ContextDecl))
    869     Record = Template->getTemplatedDecl();
    870   else
    871     Record = cast<CXXRecordDecl>(ContextDecl);
    872 
    873   S.CXXThisTypeOverride
    874     = S.Context.getPointerType(
    875         S.Context.getRecordType(Record).withCVRQualifiers(CXXThisTypeQuals));
    876 
    877   this->Enabled = true;
    878 }
    879 
    880 
    881 Sema::CXXThisScopeRAII::~CXXThisScopeRAII() {
    882   if (Enabled) {
    883     S.CXXThisTypeOverride = OldCXXThisTypeOverride;
    884   }
    885 }
    886 
    887 static Expr *captureThis(ASTContext &Context, RecordDecl *RD,
    888                          QualType ThisTy, SourceLocation Loc) {
    889   FieldDecl *Field
    890     = FieldDecl::Create(Context, RD, Loc, Loc, nullptr, ThisTy,
    891                         Context.getTrivialTypeSourceInfo(ThisTy, Loc),
    892                         nullptr, false, ICIS_NoInit);
    893   Field->setImplicit(true);
    894   Field->setAccess(AS_private);
    895   RD->addDecl(Field);
    896   return new (Context) CXXThisExpr(Loc, ThisTy, /*isImplicit*/true);
    897 }
    898 
    899 bool Sema::CheckCXXThisCapture(SourceLocation Loc, bool Explicit,
    900     bool BuildAndDiagnose, const unsigned *const FunctionScopeIndexToStopAt) {
    901   // We don't need to capture this in an unevaluated context.
    902   if (isUnevaluatedContext() && !Explicit)
    903     return true;
    904 
    905   const unsigned MaxFunctionScopesIndex = FunctionScopeIndexToStopAt ?
    906     *FunctionScopeIndexToStopAt : FunctionScopes.size() - 1;
    907  // Otherwise, check that we can capture 'this'.
    908   unsigned NumClosures = 0;
    909   for (unsigned idx = MaxFunctionScopesIndex; idx != 0; idx--) {
    910     if (CapturingScopeInfo *CSI =
    911             dyn_cast<CapturingScopeInfo>(FunctionScopes[idx])) {
    912       if (CSI->CXXThisCaptureIndex != 0) {
    913         // 'this' is already being captured; there isn't anything more to do.
    914         break;
    915       }
    916       LambdaScopeInfo *LSI = dyn_cast<LambdaScopeInfo>(CSI);
    917       if (LSI && isGenericLambdaCallOperatorSpecialization(LSI->CallOperator)) {
    918         // This context can't implicitly capture 'this'; fail out.
    919         if (BuildAndDiagnose)
    920           Diag(Loc, diag::err_this_capture) << Explicit;
    921         return true;
    922       }
    923       if (CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_LambdaByref ||
    924           CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_LambdaByval ||
    925           CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_Block ||
    926           CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_CapturedRegion ||
    927           Explicit) {
    928         // This closure can capture 'this'; continue looking upwards.
    929         NumClosures++;
    930         Explicit = false;
    931         continue;
    932       }
    933       // This context can't implicitly capture 'this'; fail out.
    934       if (BuildAndDiagnose)
    935         Diag(Loc, diag::err_this_capture) << Explicit;
    936       return true;
    937     }
    938     break;
    939   }
    940   if (!BuildAndDiagnose) return false;
    941   // Mark that we're implicitly capturing 'this' in all the scopes we skipped.
    942   // FIXME: We need to delay this marking in PotentiallyPotentiallyEvaluated
    943   // contexts.
    944   for (unsigned idx = MaxFunctionScopesIndex; NumClosures;
    945       --idx, --NumClosures) {
    946     CapturingScopeInfo *CSI = cast<CapturingScopeInfo>(FunctionScopes[idx]);
    947     Expr *ThisExpr = nullptr;
    948     QualType ThisTy = getCurrentThisType();
    949     if (LambdaScopeInfo *LSI = dyn_cast<LambdaScopeInfo>(CSI))
    950       // For lambda expressions, build a field and an initializing expression.
    951       ThisExpr = captureThis(Context, LSI->Lambda, ThisTy, Loc);
    952     else if (CapturedRegionScopeInfo *RSI
    953         = dyn_cast<CapturedRegionScopeInfo>(FunctionScopes[idx]))
    954       ThisExpr = captureThis(Context, RSI->TheRecordDecl, ThisTy, Loc);
    955 
    956     bool isNested = NumClosures > 1;
    957     CSI->addThisCapture(isNested, Loc, ThisTy, ThisExpr);
    958   }
    959   return false;
    960 }
    961 
    962 ExprResult Sema::ActOnCXXThis(SourceLocation Loc) {
    963   /// C++ 9.3.2: In the body of a non-static member function, the keyword this
    964   /// is a non-lvalue expression whose value is the address of the object for
    965   /// which the function is called.
    966 
    967   QualType ThisTy = getCurrentThisType();
    968   if (ThisTy.isNull()) return Diag(Loc, diag::err_invalid_this_use);
    969 
    970   CheckCXXThisCapture(Loc);
    971   return new (Context) CXXThisExpr(Loc, ThisTy, /*isImplicit=*/false);
    972 }
    973 
    974 bool Sema::isThisOutsideMemberFunctionBody(QualType BaseType) {
    975   // If we're outside the body of a member function, then we'll have a specified
    976   // type for 'this'.
    977   if (CXXThisTypeOverride.isNull())
    978     return false;
    979 
    980   // Determine whether we're looking into a class that's currently being
    981   // defined.
    982   CXXRecordDecl *Class = BaseType->getAsCXXRecordDecl();
    983   return Class && Class->isBeingDefined();
    984 }
    985 
    986 ExprResult
    987 Sema::ActOnCXXTypeConstructExpr(ParsedType TypeRep,
    988                                 SourceLocation LParenLoc,
    989                                 MultiExprArg exprs,
    990                                 SourceLocation RParenLoc) {
    991   if (!TypeRep)
    992     return ExprError();
    993 
    994   TypeSourceInfo *TInfo;
    995   QualType Ty = GetTypeFromParser(TypeRep, &TInfo);
    996   if (!TInfo)
    997     TInfo = Context.getTrivialTypeSourceInfo(Ty, SourceLocation());
    998 
    999   return BuildCXXTypeConstructExpr(TInfo, LParenLoc, exprs, RParenLoc);
   1000 }
   1001 
   1002 /// ActOnCXXTypeConstructExpr - Parse construction of a specified type.
   1003 /// Can be interpreted either as function-style casting ("int(x)")
   1004 /// or class type construction ("ClassType(x,y,z)")
   1005 /// or creation of a value-initialized type ("int()").
   1006 ExprResult
   1007 Sema::BuildCXXTypeConstructExpr(TypeSourceInfo *TInfo,
   1008                                 SourceLocation LParenLoc,
   1009                                 MultiExprArg Exprs,
   1010                                 SourceLocation RParenLoc) {
   1011   QualType Ty = TInfo->getType();
   1012   SourceLocation TyBeginLoc = TInfo->getTypeLoc().getBeginLoc();
   1013 
   1014   if (Ty->isDependentType() || CallExpr::hasAnyTypeDependentArguments(Exprs)) {
   1015     return CXXUnresolvedConstructExpr::Create(Context, TInfo, LParenLoc, Exprs,
   1016                                               RParenLoc);
   1017   }
   1018 
   1019   bool ListInitialization = LParenLoc.isInvalid();
   1020   assert((!ListInitialization || (Exprs.size() == 1 && isa<InitListExpr>(Exprs[0])))
   1021          && "List initialization must have initializer list as expression.");
   1022   SourceRange FullRange = SourceRange(TyBeginLoc,
   1023       ListInitialization ? Exprs[0]->getSourceRange().getEnd() : RParenLoc);
   1024 
   1025   // C++ [expr.type.conv]p1:
   1026   // If the expression list is a single expression, the type conversion
   1027   // expression is equivalent (in definedness, and if defined in meaning) to the
   1028   // corresponding cast expression.
   1029   if (Exprs.size() == 1 && !ListInitialization) {
   1030     Expr *Arg = Exprs[0];
   1031     return BuildCXXFunctionalCastExpr(TInfo, LParenLoc, Arg, RParenLoc);
   1032   }
   1033 
   1034   // C++14 [expr.type.conv]p2: The expression T(), where T is a
   1035   //   simple-type-specifier or typename-specifier for a non-array complete
   1036   //   object type or the (possibly cv-qualified) void type, creates a prvalue
   1037   //   of the specified type, whose value is that produced by value-initializing
   1038   //   an object of type T.
   1039   QualType ElemTy = Ty;
   1040   if (Ty->isArrayType()) {
   1041     if (!ListInitialization)
   1042       return ExprError(Diag(TyBeginLoc,
   1043                             diag::err_value_init_for_array_type) << FullRange);
   1044     ElemTy = Context.getBaseElementType(Ty);
   1045   }
   1046 
   1047   if (!ListInitialization && Ty->isFunctionType())
   1048     return ExprError(Diag(TyBeginLoc, diag::err_value_init_for_function_type)
   1049                      << FullRange);
   1050 
   1051   if (!Ty->isVoidType() &&
   1052       RequireCompleteType(TyBeginLoc, ElemTy,
   1053                           diag::err_invalid_incomplete_type_use, FullRange))
   1054     return ExprError();
   1055 
   1056   if (RequireNonAbstractType(TyBeginLoc, Ty,
   1057                              diag::err_allocation_of_abstract_type))
   1058     return ExprError();
   1059 
   1060   InitializedEntity Entity = InitializedEntity::InitializeTemporary(TInfo);
   1061   InitializationKind Kind =
   1062       Exprs.size() ? ListInitialization
   1063       ? InitializationKind::CreateDirectList(TyBeginLoc)
   1064       : InitializationKind::CreateDirect(TyBeginLoc, LParenLoc, RParenLoc)
   1065       : InitializationKind::CreateValue(TyBeginLoc, LParenLoc, RParenLoc);
   1066   InitializationSequence InitSeq(*this, Entity, Kind, Exprs);
   1067   ExprResult Result = InitSeq.Perform(*this, Entity, Kind, Exprs);
   1068 
   1069   if (Result.isInvalid() || !ListInitialization)
   1070     return Result;
   1071 
   1072   Expr *Inner = Result.get();
   1073   if (CXXBindTemporaryExpr *BTE = dyn_cast_or_null<CXXBindTemporaryExpr>(Inner))
   1074     Inner = BTE->getSubExpr();
   1075   if (!isa<CXXTemporaryObjectExpr>(Inner)) {
   1076     // If we created a CXXTemporaryObjectExpr, that node also represents the
   1077     // functional cast. Otherwise, create an explicit cast to represent
   1078     // the syntactic form of a functional-style cast that was used here.
   1079     //
   1080     // FIXME: Creating a CXXFunctionalCastExpr around a CXXConstructExpr
   1081     // would give a more consistent AST representation than using a
   1082     // CXXTemporaryObjectExpr. It's also weird that the functional cast
   1083     // is sometimes handled by initialization and sometimes not.
   1084     QualType ResultType = Result.get()->getType();
   1085     Result = CXXFunctionalCastExpr::Create(
   1086         Context, ResultType, Expr::getValueKindForType(TInfo->getType()), TInfo,
   1087         CK_NoOp, Result.get(), /*Path=*/nullptr, LParenLoc, RParenLoc);
   1088   }
   1089 
   1090   return Result;
   1091 }
   1092 
   1093 /// doesUsualArrayDeleteWantSize - Answers whether the usual
   1094 /// operator delete[] for the given type has a size_t parameter.
   1095 static bool doesUsualArrayDeleteWantSize(Sema &S, SourceLocation loc,
   1096                                          QualType allocType) {
   1097   const RecordType *record =
   1098     allocType->getBaseElementTypeUnsafe()->getAs<RecordType>();
   1099   if (!record) return false;
   1100 
   1101   // Try to find an operator delete[] in class scope.
   1102 
   1103   DeclarationName deleteName =
   1104     S.Context.DeclarationNames.getCXXOperatorName(OO_Array_Delete);
   1105   LookupResult ops(S, deleteName, loc, Sema::LookupOrdinaryName);
   1106   S.LookupQualifiedName(ops, record->getDecl());
   1107 
   1108   // We're just doing this for information.
   1109   ops.suppressDiagnostics();
   1110 
   1111   // Very likely: there's no operator delete[].
   1112   if (ops.empty()) return false;
   1113 
   1114   // If it's ambiguous, it should be illegal to call operator delete[]
   1115   // on this thing, so it doesn't matter if we allocate extra space or not.
   1116   if (ops.isAmbiguous()) return false;
   1117 
   1118   LookupResult::Filter filter = ops.makeFilter();
   1119   while (filter.hasNext()) {
   1120     NamedDecl *del = filter.next()->getUnderlyingDecl();
   1121 
   1122     // C++0x [basic.stc.dynamic.deallocation]p2:
   1123     //   A template instance is never a usual deallocation function,
   1124     //   regardless of its signature.
   1125     if (isa<FunctionTemplateDecl>(del)) {
   1126       filter.erase();
   1127       continue;
   1128     }
   1129 
   1130     // C++0x [basic.stc.dynamic.deallocation]p2:
   1131     //   If class T does not declare [an operator delete[] with one
   1132     //   parameter] but does declare a member deallocation function
   1133     //   named operator delete[] with exactly two parameters, the
   1134     //   second of which has type std::size_t, then this function
   1135     //   is a usual deallocation function.
   1136     if (!cast<CXXMethodDecl>(del)->isUsualDeallocationFunction()) {
   1137       filter.erase();
   1138       continue;
   1139     }
   1140   }
   1141   filter.done();
   1142 
   1143   if (!ops.isSingleResult()) return false;
   1144 
   1145   const FunctionDecl *del = cast<FunctionDecl>(ops.getFoundDecl());
   1146   return (del->getNumParams() == 2);
   1147 }
   1148 
   1149 /// \brief Parsed a C++ 'new' expression (C++ 5.3.4).
   1150 ///
   1151 /// E.g.:
   1152 /// @code new (memory) int[size][4] @endcode
   1153 /// or
   1154 /// @code ::new Foo(23, "hello") @endcode
   1155 ///
   1156 /// \param StartLoc The first location of the expression.
   1157 /// \param UseGlobal True if 'new' was prefixed with '::'.
   1158 /// \param PlacementLParen Opening paren of the placement arguments.
   1159 /// \param PlacementArgs Placement new arguments.
   1160 /// \param PlacementRParen Closing paren of the placement arguments.
   1161 /// \param TypeIdParens If the type is in parens, the source range.
   1162 /// \param D The type to be allocated, as well as array dimensions.
   1163 /// \param Initializer The initializing expression or initializer-list, or null
   1164 ///   if there is none.
   1165 ExprResult
   1166 Sema::ActOnCXXNew(SourceLocation StartLoc, bool UseGlobal,
   1167                   SourceLocation PlacementLParen, MultiExprArg PlacementArgs,
   1168                   SourceLocation PlacementRParen, SourceRange TypeIdParens,
   1169                   Declarator &D, Expr *Initializer) {
   1170   bool TypeContainsAuto = D.getDeclSpec().containsPlaceholderType();
   1171 
   1172   Expr *ArraySize = nullptr;
   1173   // If the specified type is an array, unwrap it and save the expression.
   1174   if (D.getNumTypeObjects() > 0 &&
   1175       D.getTypeObject(0).Kind == DeclaratorChunk::Array) {
   1176      DeclaratorChunk &Chunk = D.getTypeObject(0);
   1177     if (TypeContainsAuto)
   1178       return ExprError(Diag(Chunk.Loc, diag::err_new_array_of_auto)
   1179         << D.getSourceRange());
   1180     if (Chunk.Arr.hasStatic)
   1181       return ExprError(Diag(Chunk.Loc, diag::err_static_illegal_in_new)
   1182         << D.getSourceRange());
   1183     if (!Chunk.Arr.NumElts)
   1184       return ExprError(Diag(Chunk.Loc, diag::err_array_new_needs_size)
   1185         << D.getSourceRange());
   1186 
   1187     ArraySize = static_cast<Expr*>(Chunk.Arr.NumElts);
   1188     D.DropFirstTypeObject();
   1189   }
   1190 
   1191   // Every dimension shall be of constant size.
   1192   if (ArraySize) {
   1193     for (unsigned I = 0, N = D.getNumTypeObjects(); I < N; ++I) {
   1194       if (D.getTypeObject(I).Kind != DeclaratorChunk::Array)
   1195         break;
   1196 
   1197       DeclaratorChunk::ArrayTypeInfo &Array = D.getTypeObject(I).Arr;
   1198       if (Expr *NumElts = (Expr *)Array.NumElts) {
   1199         if (!NumElts->isTypeDependent() && !NumElts->isValueDependent()) {
   1200           if (getLangOpts().CPlusPlus14) {
   1201 	    // C++1y [expr.new]p6: Every constant-expression in a noptr-new-declarator
   1202 	    //   shall be a converted constant expression (5.19) of type std::size_t
   1203 	    //   and shall evaluate to a strictly positive value.
   1204             unsigned IntWidth = Context.getTargetInfo().getIntWidth();
   1205             assert(IntWidth && "Builtin type of size 0?");
   1206             llvm::APSInt Value(IntWidth);
   1207             Array.NumElts
   1208              = CheckConvertedConstantExpression(NumElts, Context.getSizeType(), Value,
   1209                                                 CCEK_NewExpr)
   1210                  .get();
   1211           } else {
   1212             Array.NumElts
   1213               = VerifyIntegerConstantExpression(NumElts, nullptr,
   1214                                                 diag::err_new_array_nonconst)
   1215                   .get();
   1216           }
   1217           if (!Array.NumElts)
   1218             return ExprError();
   1219         }
   1220       }
   1221     }
   1222   }
   1223 
   1224   TypeSourceInfo *TInfo = GetTypeForDeclarator(D, /*Scope=*/nullptr);
   1225   QualType AllocType = TInfo->getType();
   1226   if (D.isInvalidType())
   1227     return ExprError();
   1228 
   1229   SourceRange DirectInitRange;
   1230   if (ParenListExpr *List = dyn_cast_or_null<ParenListExpr>(Initializer))
   1231     DirectInitRange = List->getSourceRange();
   1232 
   1233   return BuildCXXNew(SourceRange(StartLoc, D.getLocEnd()), UseGlobal,
   1234                      PlacementLParen,
   1235                      PlacementArgs,
   1236                      PlacementRParen,
   1237                      TypeIdParens,
   1238                      AllocType,
   1239                      TInfo,
   1240                      ArraySize,
   1241                      DirectInitRange,
   1242                      Initializer,
   1243                      TypeContainsAuto);
   1244 }
   1245 
   1246 static bool isLegalArrayNewInitializer(CXXNewExpr::InitializationStyle Style,
   1247                                        Expr *Init) {
   1248   if (!Init)
   1249     return true;
   1250   if (ParenListExpr *PLE = dyn_cast<ParenListExpr>(Init))
   1251     return PLE->getNumExprs() == 0;
   1252   if (isa<ImplicitValueInitExpr>(Init))
   1253     return true;
   1254   else if (CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Init))
   1255     return !CCE->isListInitialization() &&
   1256            CCE->getConstructor()->isDefaultConstructor();
   1257   else if (Style == CXXNewExpr::ListInit) {
   1258     assert(isa<InitListExpr>(Init) &&
   1259            "Shouldn't create list CXXConstructExprs for arrays.");
   1260     return true;
   1261   }
   1262   return false;
   1263 }
   1264 
   1265 ExprResult
   1266 Sema::BuildCXXNew(SourceRange Range, bool UseGlobal,
   1267                   SourceLocation PlacementLParen,
   1268                   MultiExprArg PlacementArgs,
   1269                   SourceLocation PlacementRParen,
   1270                   SourceRange TypeIdParens,
   1271                   QualType AllocType,
   1272                   TypeSourceInfo *AllocTypeInfo,
   1273                   Expr *ArraySize,
   1274                   SourceRange DirectInitRange,
   1275                   Expr *Initializer,
   1276                   bool TypeMayContainAuto) {
   1277   SourceRange TypeRange = AllocTypeInfo->getTypeLoc().getSourceRange();
   1278   SourceLocation StartLoc = Range.getBegin();
   1279 
   1280   CXXNewExpr::InitializationStyle initStyle;
   1281   if (DirectInitRange.isValid()) {
   1282     assert(Initializer && "Have parens but no initializer.");
   1283     initStyle = CXXNewExpr::CallInit;
   1284   } else if (Initializer && isa<InitListExpr>(Initializer))
   1285     initStyle = CXXNewExpr::ListInit;
   1286   else {
   1287     assert((!Initializer || isa<ImplicitValueInitExpr>(Initializer) ||
   1288             isa<CXXConstructExpr>(Initializer)) &&
   1289            "Initializer expression that cannot have been implicitly created.");
   1290     initStyle = CXXNewExpr::NoInit;
   1291   }
   1292 
   1293   Expr **Inits = &Initializer;
   1294   unsigned NumInits = Initializer ? 1 : 0;
   1295   if (ParenListExpr *List = dyn_cast_or_null<ParenListExpr>(Initializer)) {
   1296     assert(initStyle == CXXNewExpr::CallInit && "paren init for non-call init");
   1297     Inits = List->getExprs();
   1298     NumInits = List->getNumExprs();
   1299   }
   1300 
   1301   // C++11 [dcl.spec.auto]p6. Deduce the type which 'auto' stands in for.
   1302   if (TypeMayContainAuto && AllocType->isUndeducedType()) {
   1303     if (initStyle == CXXNewExpr::NoInit || NumInits == 0)
   1304       return ExprError(Diag(StartLoc, diag::err_auto_new_requires_ctor_arg)
   1305                        << AllocType << TypeRange);
   1306     if (initStyle == CXXNewExpr::ListInit ||
   1307         (NumInits == 1 && isa<InitListExpr>(Inits[0])))
   1308       return ExprError(Diag(Inits[0]->getLocStart(),
   1309                             diag::err_auto_new_list_init)
   1310                        << AllocType << TypeRange);
   1311     if (NumInits > 1) {
   1312       Expr *FirstBad = Inits[1];
   1313       return ExprError(Diag(FirstBad->getLocStart(),
   1314                             diag::err_auto_new_ctor_multiple_expressions)
   1315                        << AllocType << TypeRange);
   1316     }
   1317     Expr *Deduce = Inits[0];
   1318     QualType DeducedType;
   1319     if (DeduceAutoType(AllocTypeInfo, Deduce, DeducedType) == DAR_Failed)
   1320       return ExprError(Diag(StartLoc, diag::err_auto_new_deduction_failure)
   1321                        << AllocType << Deduce->getType()
   1322                        << TypeRange << Deduce->getSourceRange());
   1323     if (DeducedType.isNull())
   1324       return ExprError();
   1325     AllocType = DeducedType;
   1326   }
   1327 
   1328   // Per C++0x [expr.new]p5, the type being constructed may be a
   1329   // typedef of an array type.
   1330   if (!ArraySize) {
   1331     if (const ConstantArrayType *Array
   1332                               = Context.getAsConstantArrayType(AllocType)) {
   1333       ArraySize = IntegerLiteral::Create(Context, Array->getSize(),
   1334                                          Context.getSizeType(),
   1335                                          TypeRange.getEnd());
   1336       AllocType = Array->getElementType();
   1337     }
   1338   }
   1339 
   1340   if (CheckAllocatedType(AllocType, TypeRange.getBegin(), TypeRange))
   1341     return ExprError();
   1342 
   1343   if (initStyle == CXXNewExpr::ListInit &&
   1344       isStdInitializerList(AllocType, nullptr)) {
   1345     Diag(AllocTypeInfo->getTypeLoc().getBeginLoc(),
   1346          diag::warn_dangling_std_initializer_list)
   1347         << /*at end of FE*/0 << Inits[0]->getSourceRange();
   1348   }
   1349 
   1350   // In ARC, infer 'retaining' for the allocated
   1351   if (getLangOpts().ObjCAutoRefCount &&
   1352       AllocType.getObjCLifetime() == Qualifiers::OCL_None &&
   1353       AllocType->isObjCLifetimeType()) {
   1354     AllocType = Context.getLifetimeQualifiedType(AllocType,
   1355                                     AllocType->getObjCARCImplicitLifetime());
   1356   }
   1357 
   1358   QualType ResultType = Context.getPointerType(AllocType);
   1359 
   1360   if (ArraySize && ArraySize->getType()->isNonOverloadPlaceholderType()) {
   1361     ExprResult result = CheckPlaceholderExpr(ArraySize);
   1362     if (result.isInvalid()) return ExprError();
   1363     ArraySize = result.get();
   1364   }
   1365   // C++98 5.3.4p6: "The expression in a direct-new-declarator shall have
   1366   //   integral or enumeration type with a non-negative value."
   1367   // C++11 [expr.new]p6: The expression [...] shall be of integral or unscoped
   1368   //   enumeration type, or a class type for which a single non-explicit
   1369   //   conversion function to integral or unscoped enumeration type exists.
   1370   // C++1y [expr.new]p6: The expression [...] is implicitly converted to
   1371   //   std::size_t.
   1372   if (ArraySize && !ArraySize->isTypeDependent()) {
   1373     ExprResult ConvertedSize;
   1374     if (getLangOpts().CPlusPlus14) {
   1375       assert(Context.getTargetInfo().getIntWidth() && "Builtin type of size 0?");
   1376 
   1377       ConvertedSize = PerformImplicitConversion(ArraySize, Context.getSizeType(),
   1378 						AA_Converting);
   1379 
   1380       if (!ConvertedSize.isInvalid() &&
   1381           ArraySize->getType()->getAs<RecordType>())
   1382         // Diagnose the compatibility of this conversion.
   1383         Diag(StartLoc, diag::warn_cxx98_compat_array_size_conversion)
   1384           << ArraySize->getType() << 0 << "'size_t'";
   1385     } else {
   1386       class SizeConvertDiagnoser : public ICEConvertDiagnoser {
   1387       protected:
   1388         Expr *ArraySize;
   1389 
   1390       public:
   1391         SizeConvertDiagnoser(Expr *ArraySize)
   1392             : ICEConvertDiagnoser(/*AllowScopedEnumerations*/false, false, false),
   1393               ArraySize(ArraySize) {}
   1394 
   1395         SemaDiagnosticBuilder diagnoseNotInt(Sema &S, SourceLocation Loc,
   1396                                              QualType T) override {
   1397           return S.Diag(Loc, diag::err_array_size_not_integral)
   1398                    << S.getLangOpts().CPlusPlus11 << T;
   1399         }
   1400 
   1401         SemaDiagnosticBuilder diagnoseIncomplete(
   1402             Sema &S, SourceLocation Loc, QualType T) override {
   1403           return S.Diag(Loc, diag::err_array_size_incomplete_type)
   1404                    << T << ArraySize->getSourceRange();
   1405         }
   1406 
   1407         SemaDiagnosticBuilder diagnoseExplicitConv(
   1408             Sema &S, SourceLocation Loc, QualType T, QualType ConvTy) override {
   1409           return S.Diag(Loc, diag::err_array_size_explicit_conversion) << T << ConvTy;
   1410         }
   1411 
   1412         SemaDiagnosticBuilder noteExplicitConv(
   1413             Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override {
   1414           return S.Diag(Conv->getLocation(), diag::note_array_size_conversion)
   1415                    << ConvTy->isEnumeralType() << ConvTy;
   1416         }
   1417 
   1418         SemaDiagnosticBuilder diagnoseAmbiguous(
   1419             Sema &S, SourceLocation Loc, QualType T) override {
   1420           return S.Diag(Loc, diag::err_array_size_ambiguous_conversion) << T;
   1421         }
   1422 
   1423         SemaDiagnosticBuilder noteAmbiguous(
   1424             Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override {
   1425           return S.Diag(Conv->getLocation(), diag::note_array_size_conversion)
   1426                    << ConvTy->isEnumeralType() << ConvTy;
   1427         }
   1428 
   1429         SemaDiagnosticBuilder diagnoseConversion(Sema &S, SourceLocation Loc,
   1430                                                  QualType T,
   1431                                                  QualType ConvTy) override {
   1432           return S.Diag(Loc,
   1433                         S.getLangOpts().CPlusPlus11
   1434                           ? diag::warn_cxx98_compat_array_size_conversion
   1435                           : diag::ext_array_size_conversion)
   1436                    << T << ConvTy->isEnumeralType() << ConvTy;
   1437         }
   1438       } SizeDiagnoser(ArraySize);
   1439 
   1440       ConvertedSize = PerformContextualImplicitConversion(StartLoc, ArraySize,
   1441                                                           SizeDiagnoser);
   1442     }
   1443     if (ConvertedSize.isInvalid())
   1444       return ExprError();
   1445 
   1446     ArraySize = ConvertedSize.get();
   1447     QualType SizeType = ArraySize->getType();
   1448 
   1449     if (!SizeType->isIntegralOrUnscopedEnumerationType())
   1450       return ExprError();
   1451 
   1452     // C++98 [expr.new]p7:
   1453     //   The expression in a direct-new-declarator shall have integral type
   1454     //   with a non-negative value.
   1455     //
   1456     // Let's see if this is a constant < 0. If so, we reject it out of
   1457     // hand. Otherwise, if it's not a constant, we must have an unparenthesized
   1458     // array type.
   1459     //
   1460     // Note: such a construct has well-defined semantics in C++11: it throws
   1461     // std::bad_array_new_length.
   1462     if (!ArraySize->isValueDependent()) {
   1463       llvm::APSInt Value;
   1464       // We've already performed any required implicit conversion to integer or
   1465       // unscoped enumeration type.
   1466       if (ArraySize->isIntegerConstantExpr(Value, Context)) {
   1467         if (Value < llvm::APSInt(
   1468                         llvm::APInt::getNullValue(Value.getBitWidth()),
   1469                                  Value.isUnsigned())) {
   1470           if (getLangOpts().CPlusPlus11)
   1471             Diag(ArraySize->getLocStart(),
   1472                  diag::warn_typecheck_negative_array_new_size)
   1473               << ArraySize->getSourceRange();
   1474           else
   1475             return ExprError(Diag(ArraySize->getLocStart(),
   1476                                   diag::err_typecheck_negative_array_size)
   1477                              << ArraySize->getSourceRange());
   1478         } else if (!AllocType->isDependentType()) {
   1479           unsigned ActiveSizeBits =
   1480             ConstantArrayType::getNumAddressingBits(Context, AllocType, Value);
   1481           if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) {
   1482             if (getLangOpts().CPlusPlus11)
   1483               Diag(ArraySize->getLocStart(),
   1484                    diag::warn_array_new_too_large)
   1485                 << Value.toString(10)
   1486                 << ArraySize->getSourceRange();
   1487             else
   1488               return ExprError(Diag(ArraySize->getLocStart(),
   1489                                     diag::err_array_too_large)
   1490                                << Value.toString(10)
   1491                                << ArraySize->getSourceRange());
   1492           }
   1493         }
   1494       } else if (TypeIdParens.isValid()) {
   1495         // Can't have dynamic array size when the type-id is in parentheses.
   1496         Diag(ArraySize->getLocStart(), diag::ext_new_paren_array_nonconst)
   1497           << ArraySize->getSourceRange()
   1498           << FixItHint::CreateRemoval(TypeIdParens.getBegin())
   1499           << FixItHint::CreateRemoval(TypeIdParens.getEnd());
   1500 
   1501         TypeIdParens = SourceRange();
   1502       }
   1503     }
   1504 
   1505     // Note that we do *not* convert the argument in any way.  It can
   1506     // be signed, larger than size_t, whatever.
   1507   }
   1508 
   1509   FunctionDecl *OperatorNew = nullptr;
   1510   FunctionDecl *OperatorDelete = nullptr;
   1511 
   1512   if (!AllocType->isDependentType() &&
   1513       !Expr::hasAnyTypeDependentArguments(PlacementArgs) &&
   1514       FindAllocationFunctions(StartLoc,
   1515                               SourceRange(PlacementLParen, PlacementRParen),
   1516                               UseGlobal, AllocType, ArraySize, PlacementArgs,
   1517                               OperatorNew, OperatorDelete))
   1518     return ExprError();
   1519 
   1520   // If this is an array allocation, compute whether the usual array
   1521   // deallocation function for the type has a size_t parameter.
   1522   bool UsualArrayDeleteWantsSize = false;
   1523   if (ArraySize && !AllocType->isDependentType())
   1524     UsualArrayDeleteWantsSize
   1525       = doesUsualArrayDeleteWantSize(*this, StartLoc, AllocType);
   1526 
   1527   SmallVector<Expr *, 8> AllPlaceArgs;
   1528   if (OperatorNew) {
   1529     const FunctionProtoType *Proto =
   1530         OperatorNew->getType()->getAs<FunctionProtoType>();
   1531     VariadicCallType CallType = Proto->isVariadic() ? VariadicFunction
   1532                                                     : VariadicDoesNotApply;
   1533 
   1534     // We've already converted the placement args, just fill in any default
   1535     // arguments. Skip the first parameter because we don't have a corresponding
   1536     // argument.
   1537     if (GatherArgumentsForCall(PlacementLParen, OperatorNew, Proto, 1,
   1538                                PlacementArgs, AllPlaceArgs, CallType))
   1539       return ExprError();
   1540 
   1541     if (!AllPlaceArgs.empty())
   1542       PlacementArgs = AllPlaceArgs;
   1543 
   1544     // FIXME: This is wrong: PlacementArgs misses out the first (size) argument.
   1545     DiagnoseSentinelCalls(OperatorNew, PlacementLParen, PlacementArgs);
   1546 
   1547     // FIXME: Missing call to CheckFunctionCall or equivalent
   1548   }
   1549 
   1550   // Warn if the type is over-aligned and is being allocated by global operator
   1551   // new.
   1552   if (PlacementArgs.empty() && OperatorNew &&
   1553       (OperatorNew->isImplicit() ||
   1554        getSourceManager().isInSystemHeader(OperatorNew->getLocStart()))) {
   1555     if (unsigned Align = Context.getPreferredTypeAlign(AllocType.getTypePtr())){
   1556       unsigned SuitableAlign = Context.getTargetInfo().getSuitableAlign();
   1557       if (Align > SuitableAlign)
   1558         Diag(StartLoc, diag::warn_overaligned_type)
   1559             << AllocType
   1560             << unsigned(Align / Context.getCharWidth())
   1561             << unsigned(SuitableAlign / Context.getCharWidth());
   1562     }
   1563   }
   1564 
   1565   QualType InitType = AllocType;
   1566   // Array 'new' can't have any initializers except empty parentheses.
   1567   // Initializer lists are also allowed, in C++11. Rely on the parser for the
   1568   // dialect distinction.
   1569   if (ResultType->isArrayType() || ArraySize) {
   1570     if (!isLegalArrayNewInitializer(initStyle, Initializer)) {
   1571       SourceRange InitRange(Inits[0]->getLocStart(),
   1572                             Inits[NumInits - 1]->getLocEnd());
   1573       Diag(StartLoc, diag::err_new_array_init_args) << InitRange;
   1574       return ExprError();
   1575     }
   1576     if (InitListExpr *ILE = dyn_cast_or_null<InitListExpr>(Initializer)) {
   1577       // We do the initialization typechecking against the array type
   1578       // corresponding to the number of initializers + 1 (to also check
   1579       // default-initialization).
   1580       unsigned NumElements = ILE->getNumInits() + 1;
   1581       InitType = Context.getConstantArrayType(AllocType,
   1582           llvm::APInt(Context.getTypeSize(Context.getSizeType()), NumElements),
   1583                                               ArrayType::Normal, 0);
   1584     }
   1585   }
   1586 
   1587   // If we can perform the initialization, and we've not already done so,
   1588   // do it now.
   1589   if (!AllocType->isDependentType() &&
   1590       !Expr::hasAnyTypeDependentArguments(
   1591           llvm::makeArrayRef(Inits, NumInits))) {
   1592     // C++11 [expr.new]p15:
   1593     //   A new-expression that creates an object of type T initializes that
   1594     //   object as follows:
   1595     InitializationKind Kind
   1596     //     - If the new-initializer is omitted, the object is default-
   1597     //       initialized (8.5); if no initialization is performed,
   1598     //       the object has indeterminate value
   1599       = initStyle == CXXNewExpr::NoInit
   1600           ? InitializationKind::CreateDefault(TypeRange.getBegin())
   1601     //     - Otherwise, the new-initializer is interpreted according to the
   1602     //       initialization rules of 8.5 for direct-initialization.
   1603           : initStyle == CXXNewExpr::ListInit
   1604               ? InitializationKind::CreateDirectList(TypeRange.getBegin())
   1605               : InitializationKind::CreateDirect(TypeRange.getBegin(),
   1606                                                  DirectInitRange.getBegin(),
   1607                                                  DirectInitRange.getEnd());
   1608 
   1609     InitializedEntity Entity
   1610       = InitializedEntity::InitializeNew(StartLoc, InitType);
   1611     InitializationSequence InitSeq(*this, Entity, Kind, MultiExprArg(Inits, NumInits));
   1612     ExprResult FullInit = InitSeq.Perform(*this, Entity, Kind,
   1613                                           MultiExprArg(Inits, NumInits));
   1614     if (FullInit.isInvalid())
   1615       return ExprError();
   1616 
   1617     // FullInit is our initializer; strip off CXXBindTemporaryExprs, because
   1618     // we don't want the initialized object to be destructed.
   1619     if (CXXBindTemporaryExpr *Binder =
   1620             dyn_cast_or_null<CXXBindTemporaryExpr>(FullInit.get()))
   1621       FullInit = Binder->getSubExpr();
   1622 
   1623     Initializer = FullInit.get();
   1624   }
   1625 
   1626   // Mark the new and delete operators as referenced.
   1627   if (OperatorNew) {
   1628     if (DiagnoseUseOfDecl(OperatorNew, StartLoc))
   1629       return ExprError();
   1630     MarkFunctionReferenced(StartLoc, OperatorNew);
   1631   }
   1632   if (OperatorDelete) {
   1633     if (DiagnoseUseOfDecl(OperatorDelete, StartLoc))
   1634       return ExprError();
   1635     MarkFunctionReferenced(StartLoc, OperatorDelete);
   1636   }
   1637 
   1638   // C++0x [expr.new]p17:
   1639   //   If the new expression creates an array of objects of class type,
   1640   //   access and ambiguity control are done for the destructor.
   1641   QualType BaseAllocType = Context.getBaseElementType(AllocType);
   1642   if (ArraySize && !BaseAllocType->isDependentType()) {
   1643     if (const RecordType *BaseRecordType = BaseAllocType->getAs<RecordType>()) {
   1644       if (CXXDestructorDecl *dtor = LookupDestructor(
   1645               cast<CXXRecordDecl>(BaseRecordType->getDecl()))) {
   1646         MarkFunctionReferenced(StartLoc, dtor);
   1647         CheckDestructorAccess(StartLoc, dtor,
   1648                               PDiag(diag::err_access_dtor)
   1649                                 << BaseAllocType);
   1650         if (DiagnoseUseOfDecl(dtor, StartLoc))
   1651           return ExprError();
   1652       }
   1653     }
   1654   }
   1655 
   1656   return new (Context)
   1657       CXXNewExpr(Context, UseGlobal, OperatorNew, OperatorDelete,
   1658                  UsualArrayDeleteWantsSize, PlacementArgs, TypeIdParens,
   1659                  ArraySize, initStyle, Initializer, ResultType, AllocTypeInfo,
   1660                  Range, DirectInitRange);
   1661 }
   1662 
   1663 /// \brief Checks that a type is suitable as the allocated type
   1664 /// in a new-expression.
   1665 bool Sema::CheckAllocatedType(QualType AllocType, SourceLocation Loc,
   1666                               SourceRange R) {
   1667   // C++ 5.3.4p1: "[The] type shall be a complete object type, but not an
   1668   //   abstract class type or array thereof.
   1669   if (AllocType->isFunctionType())
   1670     return Diag(Loc, diag::err_bad_new_type)
   1671       << AllocType << 0 << R;
   1672   else if (AllocType->isReferenceType())
   1673     return Diag(Loc, diag::err_bad_new_type)
   1674       << AllocType << 1 << R;
   1675   else if (!AllocType->isDependentType() &&
   1676            RequireCompleteType(Loc, AllocType, diag::err_new_incomplete_type,R))
   1677     return true;
   1678   else if (RequireNonAbstractType(Loc, AllocType,
   1679                                   diag::err_allocation_of_abstract_type))
   1680     return true;
   1681   else if (AllocType->isVariablyModifiedType())
   1682     return Diag(Loc, diag::err_variably_modified_new_type)
   1683              << AllocType;
   1684   else if (unsigned AddressSpace = AllocType.getAddressSpace())
   1685     return Diag(Loc, diag::err_address_space_qualified_new)
   1686       << AllocType.getUnqualifiedType() << AddressSpace;
   1687   else if (getLangOpts().ObjCAutoRefCount) {
   1688     if (const ArrayType *AT = Context.getAsArrayType(AllocType)) {
   1689       QualType BaseAllocType = Context.getBaseElementType(AT);
   1690       if (BaseAllocType.getObjCLifetime() == Qualifiers::OCL_None &&
   1691           BaseAllocType->isObjCLifetimeType())
   1692         return Diag(Loc, diag::err_arc_new_array_without_ownership)
   1693           << BaseAllocType;
   1694     }
   1695   }
   1696 
   1697   return false;
   1698 }
   1699 
   1700 /// \brief Determine whether the given function is a non-placement
   1701 /// deallocation function.
   1702 static bool isNonPlacementDeallocationFunction(Sema &S, FunctionDecl *FD) {
   1703   if (FD->isInvalidDecl())
   1704     return false;
   1705 
   1706   if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FD))
   1707     return Method->isUsualDeallocationFunction();
   1708 
   1709   if (FD->getOverloadedOperator() != OO_Delete &&
   1710       FD->getOverloadedOperator() != OO_Array_Delete)
   1711     return false;
   1712 
   1713   if (FD->getNumParams() == 1)
   1714     return true;
   1715 
   1716   return S.getLangOpts().SizedDeallocation && FD->getNumParams() == 2 &&
   1717          S.Context.hasSameUnqualifiedType(FD->getParamDecl(1)->getType(),
   1718                                           S.Context.getSizeType());
   1719 }
   1720 
   1721 /// FindAllocationFunctions - Finds the overloads of operator new and delete
   1722 /// that are appropriate for the allocation.
   1723 bool Sema::FindAllocationFunctions(SourceLocation StartLoc, SourceRange Range,
   1724                                    bool UseGlobal, QualType AllocType,
   1725                                    bool IsArray, MultiExprArg PlaceArgs,
   1726                                    FunctionDecl *&OperatorNew,
   1727                                    FunctionDecl *&OperatorDelete) {
   1728   // --- Choosing an allocation function ---
   1729   // C++ 5.3.4p8 - 14 & 18
   1730   // 1) If UseGlobal is true, only look in the global scope. Else, also look
   1731   //   in the scope of the allocated class.
   1732   // 2) If an array size is given, look for operator new[], else look for
   1733   //   operator new.
   1734   // 3) The first argument is always size_t. Append the arguments from the
   1735   //   placement form.
   1736 
   1737   SmallVector<Expr*, 8> AllocArgs(1 + PlaceArgs.size());
   1738   // We don't care about the actual value of this argument.
   1739   // FIXME: Should the Sema create the expression and embed it in the syntax
   1740   // tree? Or should the consumer just recalculate the value?
   1741   IntegerLiteral Size(Context, llvm::APInt::getNullValue(
   1742                       Context.getTargetInfo().getPointerWidth(0)),
   1743                       Context.getSizeType(),
   1744                       SourceLocation());
   1745   AllocArgs[0] = &Size;
   1746   std::copy(PlaceArgs.begin(), PlaceArgs.end(), AllocArgs.begin() + 1);
   1747 
   1748   // C++ [expr.new]p8:
   1749   //   If the allocated type is a non-array type, the allocation
   1750   //   function's name is operator new and the deallocation function's
   1751   //   name is operator delete. If the allocated type is an array
   1752   //   type, the allocation function's name is operator new[] and the
   1753   //   deallocation function's name is operator delete[].
   1754   DeclarationName NewName = Context.DeclarationNames.getCXXOperatorName(
   1755                                         IsArray ? OO_Array_New : OO_New);
   1756   DeclarationName DeleteName = Context.DeclarationNames.getCXXOperatorName(
   1757                                         IsArray ? OO_Array_Delete : OO_Delete);
   1758 
   1759   QualType AllocElemType = Context.getBaseElementType(AllocType);
   1760 
   1761   if (AllocElemType->isRecordType() && !UseGlobal) {
   1762     CXXRecordDecl *Record
   1763       = cast<CXXRecordDecl>(AllocElemType->getAs<RecordType>()->getDecl());
   1764     if (FindAllocationOverload(StartLoc, Range, NewName, AllocArgs, Record,
   1765                                /*AllowMissing=*/true, OperatorNew))
   1766       return true;
   1767   }
   1768 
   1769   if (!OperatorNew) {
   1770     // Didn't find a member overload. Look for a global one.
   1771     DeclareGlobalNewDelete();
   1772     DeclContext *TUDecl = Context.getTranslationUnitDecl();
   1773     bool FallbackEnabled = IsArray && Context.getLangOpts().MSVCCompat;
   1774     if (FindAllocationOverload(StartLoc, Range, NewName, AllocArgs, TUDecl,
   1775                                /*AllowMissing=*/FallbackEnabled, OperatorNew,
   1776                                /*Diagnose=*/!FallbackEnabled)) {
   1777       if (!FallbackEnabled)
   1778         return true;
   1779 
   1780       // MSVC will fall back on trying to find a matching global operator new
   1781       // if operator new[] cannot be found.  Also, MSVC will leak by not
   1782       // generating a call to operator delete or operator delete[], but we
   1783       // will not replicate that bug.
   1784       NewName = Context.DeclarationNames.getCXXOperatorName(OO_New);
   1785       DeleteName = Context.DeclarationNames.getCXXOperatorName(OO_Delete);
   1786       if (FindAllocationOverload(StartLoc, Range, NewName, AllocArgs, TUDecl,
   1787                                /*AllowMissing=*/false, OperatorNew))
   1788       return true;
   1789     }
   1790   }
   1791 
   1792   // We don't need an operator delete if we're running under
   1793   // -fno-exceptions.
   1794   if (!getLangOpts().Exceptions) {
   1795     OperatorDelete = nullptr;
   1796     return false;
   1797   }
   1798 
   1799   // C++ [expr.new]p19:
   1800   //
   1801   //   If the new-expression begins with a unary :: operator, the
   1802   //   deallocation function's name is looked up in the global
   1803   //   scope. Otherwise, if the allocated type is a class type T or an
   1804   //   array thereof, the deallocation function's name is looked up in
   1805   //   the scope of T. If this lookup fails to find the name, or if
   1806   //   the allocated type is not a class type or array thereof, the
   1807   //   deallocation function's name is looked up in the global scope.
   1808   LookupResult FoundDelete(*this, DeleteName, StartLoc, LookupOrdinaryName);
   1809   if (AllocElemType->isRecordType() && !UseGlobal) {
   1810     CXXRecordDecl *RD
   1811       = cast<CXXRecordDecl>(AllocElemType->getAs<RecordType>()->getDecl());
   1812     LookupQualifiedName(FoundDelete, RD);
   1813   }
   1814   if (FoundDelete.isAmbiguous())
   1815     return true; // FIXME: clean up expressions?
   1816 
   1817   if (FoundDelete.empty()) {
   1818     DeclareGlobalNewDelete();
   1819     LookupQualifiedName(FoundDelete, Context.getTranslationUnitDecl());
   1820   }
   1821 
   1822   FoundDelete.suppressDiagnostics();
   1823 
   1824   SmallVector<std::pair<DeclAccessPair,FunctionDecl*>, 2> Matches;
   1825 
   1826   // Whether we're looking for a placement operator delete is dictated
   1827   // by whether we selected a placement operator new, not by whether
   1828   // we had explicit placement arguments.  This matters for things like
   1829   //   struct A { void *operator new(size_t, int = 0); ... };
   1830   //   A *a = new A()
   1831   bool isPlacementNew = (!PlaceArgs.empty() || OperatorNew->param_size() != 1);
   1832 
   1833   if (isPlacementNew) {
   1834     // C++ [expr.new]p20:
   1835     //   A declaration of a placement deallocation function matches the
   1836     //   declaration of a placement allocation function if it has the
   1837     //   same number of parameters and, after parameter transformations
   1838     //   (8.3.5), all parameter types except the first are
   1839     //   identical. [...]
   1840     //
   1841     // To perform this comparison, we compute the function type that
   1842     // the deallocation function should have, and use that type both
   1843     // for template argument deduction and for comparison purposes.
   1844     //
   1845     // FIXME: this comparison should ignore CC and the like.
   1846     QualType ExpectedFunctionType;
   1847     {
   1848       const FunctionProtoType *Proto
   1849         = OperatorNew->getType()->getAs<FunctionProtoType>();
   1850 
   1851       SmallVector<QualType, 4> ArgTypes;
   1852       ArgTypes.push_back(Context.VoidPtrTy);
   1853       for (unsigned I = 1, N = Proto->getNumParams(); I < N; ++I)
   1854         ArgTypes.push_back(Proto->getParamType(I));
   1855 
   1856       FunctionProtoType::ExtProtoInfo EPI;
   1857       EPI.Variadic = Proto->isVariadic();
   1858 
   1859       ExpectedFunctionType
   1860         = Context.getFunctionType(Context.VoidTy, ArgTypes, EPI);
   1861     }
   1862 
   1863     for (LookupResult::iterator D = FoundDelete.begin(),
   1864                              DEnd = FoundDelete.end();
   1865          D != DEnd; ++D) {
   1866       FunctionDecl *Fn = nullptr;
   1867       if (FunctionTemplateDecl *FnTmpl
   1868             = dyn_cast<FunctionTemplateDecl>((*D)->getUnderlyingDecl())) {
   1869         // Perform template argument deduction to try to match the
   1870         // expected function type.
   1871         TemplateDeductionInfo Info(StartLoc);
   1872         if (DeduceTemplateArguments(FnTmpl, nullptr, ExpectedFunctionType, Fn,
   1873                                     Info))
   1874           continue;
   1875       } else
   1876         Fn = cast<FunctionDecl>((*D)->getUnderlyingDecl());
   1877 
   1878       if (Context.hasSameType(Fn->getType(), ExpectedFunctionType))
   1879         Matches.push_back(std::make_pair(D.getPair(), Fn));
   1880     }
   1881   } else {
   1882     // C++ [expr.new]p20:
   1883     //   [...] Any non-placement deallocation function matches a
   1884     //   non-placement allocation function. [...]
   1885     for (LookupResult::iterator D = FoundDelete.begin(),
   1886                              DEnd = FoundDelete.end();
   1887          D != DEnd; ++D) {
   1888       if (FunctionDecl *Fn = dyn_cast<FunctionDecl>((*D)->getUnderlyingDecl()))
   1889         if (isNonPlacementDeallocationFunction(*this, Fn))
   1890           Matches.push_back(std::make_pair(D.getPair(), Fn));
   1891     }
   1892 
   1893     // C++1y [expr.new]p22:
   1894     //   For a non-placement allocation function, the normal deallocation
   1895     //   function lookup is used
   1896     // C++1y [expr.delete]p?:
   1897     //   If [...] deallocation function lookup finds both a usual deallocation
   1898     //   function with only a pointer parameter and a usual deallocation
   1899     //   function with both a pointer parameter and a size parameter, then the
   1900     //   selected deallocation function shall be the one with two parameters.
   1901     //   Otherwise, the selected deallocation function shall be the function
   1902     //   with one parameter.
   1903     if (getLangOpts().SizedDeallocation && Matches.size() == 2) {
   1904       if (Matches[0].second->getNumParams() == 1)
   1905         Matches.erase(Matches.begin());
   1906       else
   1907         Matches.erase(Matches.begin() + 1);
   1908       assert(Matches[0].second->getNumParams() == 2 &&
   1909              "found an unexpected usual deallocation function");
   1910     }
   1911   }
   1912 
   1913   // C++ [expr.new]p20:
   1914   //   [...] If the lookup finds a single matching deallocation
   1915   //   function, that function will be called; otherwise, no
   1916   //   deallocation function will be called.
   1917   if (Matches.size() == 1) {
   1918     OperatorDelete = Matches[0].second;
   1919 
   1920     // C++0x [expr.new]p20:
   1921     //   If the lookup finds the two-parameter form of a usual
   1922     //   deallocation function (3.7.4.2) and that function, considered
   1923     //   as a placement deallocation function, would have been
   1924     //   selected as a match for the allocation function, the program
   1925     //   is ill-formed.
   1926     if (!PlaceArgs.empty() && getLangOpts().CPlusPlus11 &&
   1927         isNonPlacementDeallocationFunction(*this, OperatorDelete)) {
   1928       Diag(StartLoc, diag::err_placement_new_non_placement_delete)
   1929         << SourceRange(PlaceArgs.front()->getLocStart(),
   1930                        PlaceArgs.back()->getLocEnd());
   1931       if (!OperatorDelete->isImplicit())
   1932         Diag(OperatorDelete->getLocation(), diag::note_previous_decl)
   1933           << DeleteName;
   1934     } else {
   1935       CheckAllocationAccess(StartLoc, Range, FoundDelete.getNamingClass(),
   1936                             Matches[0].first);
   1937     }
   1938   }
   1939 
   1940   return false;
   1941 }
   1942 
   1943 /// \brief Find an fitting overload for the allocation function
   1944 /// in the specified scope.
   1945 ///
   1946 /// \param StartLoc The location of the 'new' token.
   1947 /// \param Range The range of the placement arguments.
   1948 /// \param Name The name of the function ('operator new' or 'operator new[]').
   1949 /// \param Args The placement arguments specified.
   1950 /// \param Ctx The scope in which we should search; either a class scope or the
   1951 ///        translation unit.
   1952 /// \param AllowMissing If \c true, report an error if we can't find any
   1953 ///        allocation functions. Otherwise, succeed but don't fill in \p
   1954 ///        Operator.
   1955 /// \param Operator Filled in with the found allocation function. Unchanged if
   1956 ///        no allocation function was found.
   1957 /// \param Diagnose If \c true, issue errors if the allocation function is not
   1958 ///        usable.
   1959 bool Sema::FindAllocationOverload(SourceLocation StartLoc, SourceRange Range,
   1960                                   DeclarationName Name, MultiExprArg Args,
   1961                                   DeclContext *Ctx,
   1962                                   bool AllowMissing, FunctionDecl *&Operator,
   1963                                   bool Diagnose) {
   1964   LookupResult R(*this, Name, StartLoc, LookupOrdinaryName);
   1965   LookupQualifiedName(R, Ctx);
   1966   if (R.empty()) {
   1967     if (AllowMissing || !Diagnose)
   1968       return false;
   1969     return Diag(StartLoc, diag::err_ovl_no_viable_function_in_call)
   1970       << Name << Range;
   1971   }
   1972 
   1973   if (R.isAmbiguous())
   1974     return true;
   1975 
   1976   R.suppressDiagnostics();
   1977 
   1978   OverloadCandidateSet Candidates(StartLoc, OverloadCandidateSet::CSK_Normal);
   1979   for (LookupResult::iterator Alloc = R.begin(), AllocEnd = R.end();
   1980        Alloc != AllocEnd; ++Alloc) {
   1981     // Even member operator new/delete are implicitly treated as
   1982     // static, so don't use AddMemberCandidate.
   1983     NamedDecl *D = (*Alloc)->getUnderlyingDecl();
   1984 
   1985     if (FunctionTemplateDecl *FnTemplate = dyn_cast<FunctionTemplateDecl>(D)) {
   1986       AddTemplateOverloadCandidate(FnTemplate, Alloc.getPair(),
   1987                                    /*ExplicitTemplateArgs=*/nullptr,
   1988                                    Args, Candidates,
   1989                                    /*SuppressUserConversions=*/false);
   1990       continue;
   1991     }
   1992 
   1993     FunctionDecl *Fn = cast<FunctionDecl>(D);
   1994     AddOverloadCandidate(Fn, Alloc.getPair(), Args, Candidates,
   1995                          /*SuppressUserConversions=*/false);
   1996   }
   1997 
   1998   // Do the resolution.
   1999   OverloadCandidateSet::iterator Best;
   2000   switch (Candidates.BestViableFunction(*this, StartLoc, Best)) {
   2001   case OR_Success: {
   2002     // Got one!
   2003     FunctionDecl *FnDecl = Best->Function;
   2004     if (CheckAllocationAccess(StartLoc, Range, R.getNamingClass(),
   2005                               Best->FoundDecl, Diagnose) == AR_inaccessible)
   2006       return true;
   2007 
   2008     Operator = FnDecl;
   2009     return false;
   2010   }
   2011 
   2012   case OR_No_Viable_Function:
   2013     if (Diagnose) {
   2014       Diag(StartLoc, diag::err_ovl_no_viable_function_in_call)
   2015         << Name << Range;
   2016       Candidates.NoteCandidates(*this, OCD_AllCandidates, Args);
   2017     }
   2018     return true;
   2019 
   2020   case OR_Ambiguous:
   2021     if (Diagnose) {
   2022       Diag(StartLoc, diag::err_ovl_ambiguous_call)
   2023         << Name << Range;
   2024       Candidates.NoteCandidates(*this, OCD_ViableCandidates, Args);
   2025     }
   2026     return true;
   2027 
   2028   case OR_Deleted: {
   2029     if (Diagnose) {
   2030       Diag(StartLoc, diag::err_ovl_deleted_call)
   2031         << Best->Function->isDeleted()
   2032         << Name
   2033         << getDeletedOrUnavailableSuffix(Best->Function)
   2034         << Range;
   2035       Candidates.NoteCandidates(*this, OCD_AllCandidates, Args);
   2036     }
   2037     return true;
   2038   }
   2039   }
   2040   llvm_unreachable("Unreachable, bad result from BestViableFunction");
   2041 }
   2042 
   2043 
   2044 /// DeclareGlobalNewDelete - Declare the global forms of operator new and
   2045 /// delete. These are:
   2046 /// @code
   2047 ///   // C++03:
   2048 ///   void* operator new(std::size_t) throw(std::bad_alloc);
   2049 ///   void* operator new[](std::size_t) throw(std::bad_alloc);
   2050 ///   void operator delete(void *) throw();
   2051 ///   void operator delete[](void *) throw();
   2052 ///   // C++11:
   2053 ///   void* operator new(std::size_t);
   2054 ///   void* operator new[](std::size_t);
   2055 ///   void operator delete(void *) noexcept;
   2056 ///   void operator delete[](void *) noexcept;
   2057 ///   // C++1y:
   2058 ///   void* operator new(std::size_t);
   2059 ///   void* operator new[](std::size_t);
   2060 ///   void operator delete(void *) noexcept;
   2061 ///   void operator delete[](void *) noexcept;
   2062 ///   void operator delete(void *, std::size_t) noexcept;
   2063 ///   void operator delete[](void *, std::size_t) noexcept;
   2064 /// @endcode
   2065 /// Note that the placement and nothrow forms of new are *not* implicitly
   2066 /// declared. Their use requires including \<new\>.
   2067 void Sema::DeclareGlobalNewDelete() {
   2068   if (GlobalNewDeleteDeclared)
   2069     return;
   2070 
   2071   // C++ [basic.std.dynamic]p2:
   2072   //   [...] The following allocation and deallocation functions (18.4) are
   2073   //   implicitly declared in global scope in each translation unit of a
   2074   //   program
   2075   //
   2076   //     C++03:
   2077   //     void* operator new(std::size_t) throw(std::bad_alloc);
   2078   //     void* operator new[](std::size_t) throw(std::bad_alloc);
   2079   //     void  operator delete(void*) throw();
   2080   //     void  operator delete[](void*) throw();
   2081   //     C++11:
   2082   //     void* operator new(std::size_t);
   2083   //     void* operator new[](std::size_t);
   2084   //     void  operator delete(void*) noexcept;
   2085   //     void  operator delete[](void*) noexcept;
   2086   //     C++1y:
   2087   //     void* operator new(std::size_t);
   2088   //     void* operator new[](std::size_t);
   2089   //     void  operator delete(void*) noexcept;
   2090   //     void  operator delete[](void*) noexcept;
   2091   //     void  operator delete(void*, std::size_t) noexcept;
   2092   //     void  operator delete[](void*, std::size_t) noexcept;
   2093   //
   2094   //   These implicit declarations introduce only the function names operator
   2095   //   new, operator new[], operator delete, operator delete[].
   2096   //
   2097   // Here, we need to refer to std::bad_alloc, so we will implicitly declare
   2098   // "std" or "bad_alloc" as necessary to form the exception specification.
   2099   // However, we do not make these implicit declarations visible to name
   2100   // lookup.
   2101   if (!StdBadAlloc && !getLangOpts().CPlusPlus11) {
   2102     // The "std::bad_alloc" class has not yet been declared, so build it
   2103     // implicitly.
   2104     StdBadAlloc = CXXRecordDecl::Create(Context, TTK_Class,
   2105                                         getOrCreateStdNamespace(),
   2106                                         SourceLocation(), SourceLocation(),
   2107                                       &PP.getIdentifierTable().get("bad_alloc"),
   2108                                         nullptr);
   2109     getStdBadAlloc()->setImplicit(true);
   2110   }
   2111 
   2112   GlobalNewDeleteDeclared = true;
   2113 
   2114   QualType VoidPtr = Context.getPointerType(Context.VoidTy);
   2115   QualType SizeT = Context.getSizeType();
   2116   bool AssumeSaneOperatorNew = getLangOpts().AssumeSaneOperatorNew;
   2117 
   2118   DeclareGlobalAllocationFunction(
   2119       Context.DeclarationNames.getCXXOperatorName(OO_New),
   2120       VoidPtr, SizeT, QualType(), AssumeSaneOperatorNew);
   2121   DeclareGlobalAllocationFunction(
   2122       Context.DeclarationNames.getCXXOperatorName(OO_Array_New),
   2123       VoidPtr, SizeT, QualType(), AssumeSaneOperatorNew);
   2124   DeclareGlobalAllocationFunction(
   2125       Context.DeclarationNames.getCXXOperatorName(OO_Delete),
   2126       Context.VoidTy, VoidPtr);
   2127   DeclareGlobalAllocationFunction(
   2128       Context.DeclarationNames.getCXXOperatorName(OO_Array_Delete),
   2129       Context.VoidTy, VoidPtr);
   2130   if (getLangOpts().SizedDeallocation) {
   2131     DeclareGlobalAllocationFunction(
   2132         Context.DeclarationNames.getCXXOperatorName(OO_Delete),
   2133         Context.VoidTy, VoidPtr, Context.getSizeType());
   2134     DeclareGlobalAllocationFunction(
   2135         Context.DeclarationNames.getCXXOperatorName(OO_Array_Delete),
   2136         Context.VoidTy, VoidPtr, Context.getSizeType());
   2137   }
   2138 }
   2139 
   2140 /// DeclareGlobalAllocationFunction - Declares a single implicit global
   2141 /// allocation function if it doesn't already exist.
   2142 void Sema::DeclareGlobalAllocationFunction(DeclarationName Name,
   2143                                            QualType Return,
   2144                                            QualType Param1, QualType Param2,
   2145                                            bool AddRestrictAttr) {
   2146   DeclContext *GlobalCtx = Context.getTranslationUnitDecl();
   2147   unsigned NumParams = Param2.isNull() ? 1 : 2;
   2148 
   2149   // Check if this function is already declared.
   2150   DeclContext::lookup_result R = GlobalCtx->lookup(Name);
   2151   for (DeclContext::lookup_iterator Alloc = R.begin(), AllocEnd = R.end();
   2152        Alloc != AllocEnd; ++Alloc) {
   2153     // Only look at non-template functions, as it is the predefined,
   2154     // non-templated allocation function we are trying to declare here.
   2155     if (FunctionDecl *Func = dyn_cast<FunctionDecl>(*Alloc)) {
   2156       if (Func->getNumParams() == NumParams) {
   2157         QualType InitialParam1Type =
   2158             Context.getCanonicalType(Func->getParamDecl(0)
   2159                                          ->getType().getUnqualifiedType());
   2160         QualType InitialParam2Type =
   2161             NumParams == 2
   2162                 ? Context.getCanonicalType(Func->getParamDecl(1)
   2163                                                ->getType().getUnqualifiedType())
   2164                 : QualType();
   2165         // FIXME: Do we need to check for default arguments here?
   2166         if (InitialParam1Type == Param1 &&
   2167             (NumParams == 1 || InitialParam2Type == Param2)) {
   2168           if (AddRestrictAttr && !Func->hasAttr<RestrictAttr>())
   2169             Func->addAttr(RestrictAttr::CreateImplicit(
   2170                 Context, RestrictAttr::GNU_malloc));
   2171           // Make the function visible to name lookup, even if we found it in
   2172           // an unimported module. It either is an implicitly-declared global
   2173           // allocation function, or is suppressing that function.
   2174           Func->setHidden(false);
   2175           return;
   2176         }
   2177       }
   2178     }
   2179   }
   2180 
   2181   FunctionProtoType::ExtProtoInfo EPI;
   2182 
   2183   QualType BadAllocType;
   2184   bool HasBadAllocExceptionSpec
   2185     = (Name.getCXXOverloadedOperator() == OO_New ||
   2186        Name.getCXXOverloadedOperator() == OO_Array_New);
   2187   if (HasBadAllocExceptionSpec) {
   2188     if (!getLangOpts().CPlusPlus11) {
   2189       BadAllocType = Context.getTypeDeclType(getStdBadAlloc());
   2190       assert(StdBadAlloc && "Must have std::bad_alloc declared");
   2191       EPI.ExceptionSpec.Type = EST_Dynamic;
   2192       EPI.ExceptionSpec.Exceptions = llvm::makeArrayRef(BadAllocType);
   2193     }
   2194   } else {
   2195     EPI.ExceptionSpec =
   2196         getLangOpts().CPlusPlus11 ? EST_BasicNoexcept : EST_DynamicNone;
   2197   }
   2198 
   2199   QualType Params[] = { Param1, Param2 };
   2200 
   2201   QualType FnType = Context.getFunctionType(
   2202       Return, llvm::makeArrayRef(Params, NumParams), EPI);
   2203   FunctionDecl *Alloc =
   2204     FunctionDecl::Create(Context, GlobalCtx, SourceLocation(),
   2205                          SourceLocation(), Name,
   2206                          FnType, /*TInfo=*/nullptr, SC_None, false, true);
   2207   Alloc->setImplicit();
   2208 
   2209   // Implicit sized deallocation functions always have default visibility.
   2210   Alloc->addAttr(VisibilityAttr::CreateImplicit(Context,
   2211                                                 VisibilityAttr::Default));
   2212 
   2213   if (AddRestrictAttr)
   2214     Alloc->addAttr(
   2215         RestrictAttr::CreateImplicit(Context, RestrictAttr::GNU_malloc));
   2216 
   2217   ParmVarDecl *ParamDecls[2];
   2218   for (unsigned I = 0; I != NumParams; ++I) {
   2219     ParamDecls[I] = ParmVarDecl::Create(Context, Alloc, SourceLocation(),
   2220                                         SourceLocation(), nullptr,
   2221                                         Params[I], /*TInfo=*/nullptr,
   2222                                         SC_None, nullptr);
   2223     ParamDecls[I]->setImplicit();
   2224   }
   2225   Alloc->setParams(llvm::makeArrayRef(ParamDecls, NumParams));
   2226 
   2227   Context.getTranslationUnitDecl()->addDecl(Alloc);
   2228   IdResolver.tryAddTopLevelDecl(Alloc, Name);
   2229 }
   2230 
   2231 FunctionDecl *Sema::FindUsualDeallocationFunction(SourceLocation StartLoc,
   2232                                                   bool CanProvideSize,
   2233                                                   DeclarationName Name) {
   2234   DeclareGlobalNewDelete();
   2235 
   2236   LookupResult FoundDelete(*this, Name, StartLoc, LookupOrdinaryName);
   2237   LookupQualifiedName(FoundDelete, Context.getTranslationUnitDecl());
   2238 
   2239   // C++ [expr.new]p20:
   2240   //   [...] Any non-placement deallocation function matches a
   2241   //   non-placement allocation function. [...]
   2242   llvm::SmallVector<FunctionDecl*, 2> Matches;
   2243   for (LookupResult::iterator D = FoundDelete.begin(),
   2244                            DEnd = FoundDelete.end();
   2245        D != DEnd; ++D) {
   2246     if (FunctionDecl *Fn = dyn_cast<FunctionDecl>(*D))
   2247       if (isNonPlacementDeallocationFunction(*this, Fn))
   2248         Matches.push_back(Fn);
   2249   }
   2250 
   2251   // C++1y [expr.delete]p?:
   2252   //   If the type is complete and deallocation function lookup finds both a
   2253   //   usual deallocation function with only a pointer parameter and a usual
   2254   //   deallocation function with both a pointer parameter and a size
   2255   //   parameter, then the selected deallocation function shall be the one
   2256   //   with two parameters.  Otherwise, the selected deallocation function
   2257   //   shall be the function with one parameter.
   2258   if (getLangOpts().SizedDeallocation && Matches.size() == 2) {
   2259     unsigned NumArgs = CanProvideSize ? 2 : 1;
   2260     if (Matches[0]->getNumParams() != NumArgs)
   2261       Matches.erase(Matches.begin());
   2262     else
   2263       Matches.erase(Matches.begin() + 1);
   2264     assert(Matches[0]->getNumParams() == NumArgs &&
   2265            "found an unexpected usual deallocation function");
   2266   }
   2267 
   2268   if (getLangOpts().CUDA && getLangOpts().CUDATargetOverloads)
   2269     EraseUnwantedCUDAMatches(dyn_cast<FunctionDecl>(CurContext), Matches);
   2270 
   2271   assert(Matches.size() == 1 &&
   2272          "unexpectedly have multiple usual deallocation functions");
   2273   return Matches.front();
   2274 }
   2275 
   2276 bool Sema::FindDeallocationFunction(SourceLocation StartLoc, CXXRecordDecl *RD,
   2277                                     DeclarationName Name,
   2278                                     FunctionDecl* &Operator, bool Diagnose) {
   2279   LookupResult Found(*this, Name, StartLoc, LookupOrdinaryName);
   2280   // Try to find operator delete/operator delete[] in class scope.
   2281   LookupQualifiedName(Found, RD);
   2282 
   2283   if (Found.isAmbiguous())
   2284     return true;
   2285 
   2286   Found.suppressDiagnostics();
   2287 
   2288   SmallVector<DeclAccessPair,4> Matches;
   2289   for (LookupResult::iterator F = Found.begin(), FEnd = Found.end();
   2290        F != FEnd; ++F) {
   2291     NamedDecl *ND = (*F)->getUnderlyingDecl();
   2292 
   2293     // Ignore template operator delete members from the check for a usual
   2294     // deallocation function.
   2295     if (isa<FunctionTemplateDecl>(ND))
   2296       continue;
   2297 
   2298     if (cast<CXXMethodDecl>(ND)->isUsualDeallocationFunction())
   2299       Matches.push_back(F.getPair());
   2300   }
   2301 
   2302   if (getLangOpts().CUDA && getLangOpts().CUDATargetOverloads)
   2303     EraseUnwantedCUDAMatches(dyn_cast<FunctionDecl>(CurContext), Matches);
   2304 
   2305   // There's exactly one suitable operator;  pick it.
   2306   if (Matches.size() == 1) {
   2307     Operator = cast<CXXMethodDecl>(Matches[0]->getUnderlyingDecl());
   2308 
   2309     if (Operator->isDeleted()) {
   2310       if (Diagnose) {
   2311         Diag(StartLoc, diag::err_deleted_function_use);
   2312         NoteDeletedFunction(Operator);
   2313       }
   2314       return true;
   2315     }
   2316 
   2317     if (CheckAllocationAccess(StartLoc, SourceRange(), Found.getNamingClass(),
   2318                               Matches[0], Diagnose) == AR_inaccessible)
   2319       return true;
   2320 
   2321     return false;
   2322 
   2323   // We found multiple suitable operators;  complain about the ambiguity.
   2324   } else if (!Matches.empty()) {
   2325     if (Diagnose) {
   2326       Diag(StartLoc, diag::err_ambiguous_suitable_delete_member_function_found)
   2327         << Name << RD;
   2328 
   2329       for (SmallVectorImpl<DeclAccessPair>::iterator
   2330              F = Matches.begin(), FEnd = Matches.end(); F != FEnd; ++F)
   2331         Diag((*F)->getUnderlyingDecl()->getLocation(),
   2332              diag::note_member_declared_here) << Name;
   2333     }
   2334     return true;
   2335   }
   2336 
   2337   // We did find operator delete/operator delete[] declarations, but
   2338   // none of them were suitable.
   2339   if (!Found.empty()) {
   2340     if (Diagnose) {
   2341       Diag(StartLoc, diag::err_no_suitable_delete_member_function_found)
   2342         << Name << RD;
   2343 
   2344       for (LookupResult::iterator F = Found.begin(), FEnd = Found.end();
   2345            F != FEnd; ++F)
   2346         Diag((*F)->getUnderlyingDecl()->getLocation(),
   2347              diag::note_member_declared_here) << Name;
   2348     }
   2349     return true;
   2350   }
   2351 
   2352   Operator = nullptr;
   2353   return false;
   2354 }
   2355 
   2356 namespace {
   2357 /// \brief Checks whether delete-expression, and new-expression used for
   2358 ///  initializing deletee have the same array form.
   2359 class MismatchingNewDeleteDetector {
   2360 public:
   2361   enum MismatchResult {
   2362     /// Indicates that there is no mismatch or a mismatch cannot be proven.
   2363     NoMismatch,
   2364     /// Indicates that variable is initialized with mismatching form of \a new.
   2365     VarInitMismatches,
   2366     /// Indicates that member is initialized with mismatching form of \a new.
   2367     MemberInitMismatches,
   2368     /// Indicates that 1 or more constructors' definitions could not been
   2369     /// analyzed, and they will be checked again at the end of translation unit.
   2370     AnalyzeLater
   2371   };
   2372 
   2373   /// \param EndOfTU True, if this is the final analysis at the end of
   2374   /// translation unit. False, if this is the initial analysis at the point
   2375   /// delete-expression was encountered.
   2376   explicit MismatchingNewDeleteDetector(bool EndOfTU)
   2377       : IsArrayForm(false), Field(nullptr), EndOfTU(EndOfTU),
   2378         HasUndefinedConstructors(false) {}
   2379 
   2380   /// \brief Checks whether pointee of a delete-expression is initialized with
   2381   /// matching form of new-expression.
   2382   ///
   2383   /// If return value is \c VarInitMismatches or \c MemberInitMismatches at the
   2384   /// point where delete-expression is encountered, then a warning will be
   2385   /// issued immediately. If return value is \c AnalyzeLater at the point where
   2386   /// delete-expression is seen, then member will be analyzed at the end of
   2387   /// translation unit. \c AnalyzeLater is returned iff at least one constructor
   2388   /// couldn't be analyzed. If at least one constructor initializes the member
   2389   /// with matching type of new, the return value is \c NoMismatch.
   2390   MismatchResult analyzeDeleteExpr(const CXXDeleteExpr *DE);
   2391   /// \brief Analyzes a class member.
   2392   /// \param Field Class member to analyze.
   2393   /// \param DeleteWasArrayForm Array form-ness of the delete-expression used
   2394   /// for deleting the \p Field.
   2395   MismatchResult analyzeField(FieldDecl *Field, bool DeleteWasArrayForm);
   2396   /// List of mismatching new-expressions used for initialization of the pointee
   2397   llvm::SmallVector<const CXXNewExpr *, 4> NewExprs;
   2398   /// Indicates whether delete-expression was in array form.
   2399   bool IsArrayForm;
   2400   FieldDecl *Field;
   2401 
   2402 private:
   2403   const bool EndOfTU;
   2404   /// \brief Indicates that there is at least one constructor without body.
   2405   bool HasUndefinedConstructors;
   2406   /// \brief Returns \c CXXNewExpr from given initialization expression.
   2407   /// \param E Expression used for initializing pointee in delete-expression.
   2408   /// E can be a single-element \c InitListExpr consisting of new-expression.
   2409   const CXXNewExpr *getNewExprFromInitListOrExpr(const Expr *E);
   2410   /// \brief Returns whether member is initialized with mismatching form of
   2411   /// \c new either by the member initializer or in-class initialization.
   2412   ///
   2413   /// If bodies of all constructors are not visible at the end of translation
   2414   /// unit or at least one constructor initializes member with the matching
   2415   /// form of \c new, mismatch cannot be proven, and this function will return
   2416   /// \c NoMismatch.
   2417   MismatchResult analyzeMemberExpr(const MemberExpr *ME);
   2418   /// \brief Returns whether variable is initialized with mismatching form of
   2419   /// \c new.
   2420   ///
   2421   /// If variable is initialized with matching form of \c new or variable is not
   2422   /// initialized with a \c new expression, this function will return true.
   2423   /// If variable is initialized with mismatching form of \c new, returns false.
   2424   /// \param D Variable to analyze.
   2425   bool hasMatchingVarInit(const DeclRefExpr *D);
   2426   /// \brief Checks whether the constructor initializes pointee with mismatching
   2427   /// form of \c new.
   2428   ///
   2429   /// Returns true, if member is initialized with matching form of \c new in
   2430   /// member initializer list. Returns false, if member is initialized with the
   2431   /// matching form of \c new in this constructor's initializer or given
   2432   /// constructor isn't defined at the point where delete-expression is seen, or
   2433   /// member isn't initialized by the constructor.
   2434   bool hasMatchingNewInCtor(const CXXConstructorDecl *CD);
   2435   /// \brief Checks whether member is initialized with matching form of
   2436   /// \c new in member initializer list.
   2437   bool hasMatchingNewInCtorInit(const CXXCtorInitializer *CI);
   2438   /// Checks whether member is initialized with mismatching form of \c new by
   2439   /// in-class initializer.
   2440   MismatchResult analyzeInClassInitializer();
   2441 };
   2442 }
   2443 
   2444 MismatchingNewDeleteDetector::MismatchResult
   2445 MismatchingNewDeleteDetector::analyzeDeleteExpr(const CXXDeleteExpr *DE) {
   2446   NewExprs.clear();
   2447   assert(DE && "Expected delete-expression");
   2448   IsArrayForm = DE->isArrayForm();
   2449   const Expr *E = DE->getArgument()->IgnoreParenImpCasts();
   2450   if (const MemberExpr *ME = dyn_cast<const MemberExpr>(E)) {
   2451     return analyzeMemberExpr(ME);
   2452   } else if (const DeclRefExpr *D = dyn_cast<const DeclRefExpr>(E)) {
   2453     if (!hasMatchingVarInit(D))
   2454       return VarInitMismatches;
   2455   }
   2456   return NoMismatch;
   2457 }
   2458 
   2459 const CXXNewExpr *
   2460 MismatchingNewDeleteDetector::getNewExprFromInitListOrExpr(const Expr *E) {
   2461   assert(E != nullptr && "Expected a valid initializer expression");
   2462   E = E->IgnoreParenImpCasts();
   2463   if (const InitListExpr *ILE = dyn_cast<const InitListExpr>(E)) {
   2464     if (ILE->getNumInits() == 1)
   2465       E = dyn_cast<const CXXNewExpr>(ILE->getInit(0)->IgnoreParenImpCasts());
   2466   }
   2467 
   2468   return dyn_cast_or_null<const CXXNewExpr>(E);
   2469 }
   2470 
   2471 bool MismatchingNewDeleteDetector::hasMatchingNewInCtorInit(
   2472     const CXXCtorInitializer *CI) {
   2473   const CXXNewExpr *NE = nullptr;
   2474   if (Field == CI->getMember() &&
   2475       (NE = getNewExprFromInitListOrExpr(CI->getInit()))) {
   2476     if (NE->isArray() == IsArrayForm)
   2477       return true;
   2478     else
   2479       NewExprs.push_back(NE);
   2480   }
   2481   return false;
   2482 }
   2483 
   2484 bool MismatchingNewDeleteDetector::hasMatchingNewInCtor(
   2485     const CXXConstructorDecl *CD) {
   2486   if (CD->isImplicit())
   2487     return false;
   2488   const FunctionDecl *Definition = CD;
   2489   if (!CD->isThisDeclarationADefinition() && !CD->isDefined(Definition)) {
   2490     HasUndefinedConstructors = true;
   2491     return EndOfTU;
   2492   }
   2493   for (const auto *CI : cast<const CXXConstructorDecl>(Definition)->inits()) {
   2494     if (hasMatchingNewInCtorInit(CI))
   2495       return true;
   2496   }
   2497   return false;
   2498 }
   2499 
   2500 MismatchingNewDeleteDetector::MismatchResult
   2501 MismatchingNewDeleteDetector::analyzeInClassInitializer() {
   2502   assert(Field != nullptr && "This should be called only for members");
   2503   const Expr *InitExpr = Field->getInClassInitializer();
   2504   if (!InitExpr)
   2505     return EndOfTU ? NoMismatch : AnalyzeLater;
   2506   if (const CXXNewExpr *NE = getNewExprFromInitListOrExpr(InitExpr)) {
   2507     if (NE->isArray() != IsArrayForm) {
   2508       NewExprs.push_back(NE);
   2509       return MemberInitMismatches;
   2510     }
   2511   }
   2512   return NoMismatch;
   2513 }
   2514 
   2515 MismatchingNewDeleteDetector::MismatchResult
   2516 MismatchingNewDeleteDetector::analyzeField(FieldDecl *Field,
   2517                                            bool DeleteWasArrayForm) {
   2518   assert(Field != nullptr && "Analysis requires a valid class member.");
   2519   this->Field = Field;
   2520   IsArrayForm = DeleteWasArrayForm;
   2521   const CXXRecordDecl *RD = cast<const CXXRecordDecl>(Field->getParent());
   2522   for (const auto *CD : RD->ctors()) {
   2523     if (hasMatchingNewInCtor(CD))
   2524       return NoMismatch;
   2525   }
   2526   if (HasUndefinedConstructors)
   2527     return EndOfTU ? NoMismatch : AnalyzeLater;
   2528   if (!NewExprs.empty())
   2529     return MemberInitMismatches;
   2530   return Field->hasInClassInitializer() ? analyzeInClassInitializer()
   2531                                         : NoMismatch;
   2532 }
   2533 
   2534 MismatchingNewDeleteDetector::MismatchResult
   2535 MismatchingNewDeleteDetector::analyzeMemberExpr(const MemberExpr *ME) {
   2536   assert(ME != nullptr && "Expected a member expression");
   2537   if (FieldDecl *F = dyn_cast<FieldDecl>(ME->getMemberDecl()))
   2538     return analyzeField(F, IsArrayForm);
   2539   return NoMismatch;
   2540 }
   2541 
   2542 bool MismatchingNewDeleteDetector::hasMatchingVarInit(const DeclRefExpr *D) {
   2543   const CXXNewExpr *NE = nullptr;
   2544   if (const VarDecl *VD = dyn_cast<const VarDecl>(D->getDecl())) {
   2545     if (VD->hasInit() && (NE = getNewExprFromInitListOrExpr(VD->getInit())) &&
   2546         NE->isArray() != IsArrayForm) {
   2547       NewExprs.push_back(NE);
   2548     }
   2549   }
   2550   return NewExprs.empty();
   2551 }
   2552 
   2553 static void
   2554 DiagnoseMismatchedNewDelete(Sema &SemaRef, SourceLocation DeleteLoc,
   2555                             const MismatchingNewDeleteDetector &Detector) {
   2556   SourceLocation EndOfDelete = SemaRef.getLocForEndOfToken(DeleteLoc);
   2557   FixItHint H;
   2558   if (!Detector.IsArrayForm)
   2559     H = FixItHint::CreateInsertion(EndOfDelete, "[]");
   2560   else {
   2561     SourceLocation RSquare = Lexer::findLocationAfterToken(
   2562         DeleteLoc, tok::l_square, SemaRef.getSourceManager(),
   2563         SemaRef.getLangOpts(), true);
   2564     if (RSquare.isValid())
   2565       H = FixItHint::CreateRemoval(SourceRange(EndOfDelete, RSquare));
   2566   }
   2567   SemaRef.Diag(DeleteLoc, diag::warn_mismatched_delete_new)
   2568       << Detector.IsArrayForm << H;
   2569 
   2570   for (const auto *NE : Detector.NewExprs)
   2571     SemaRef.Diag(NE->getExprLoc(), diag::note_allocated_here)
   2572         << Detector.IsArrayForm;
   2573 }
   2574 
   2575 void Sema::AnalyzeDeleteExprMismatch(const CXXDeleteExpr *DE) {
   2576   if (Diags.isIgnored(diag::warn_mismatched_delete_new, SourceLocation()))
   2577     return;
   2578   MismatchingNewDeleteDetector Detector(/*EndOfTU=*/false);
   2579   switch (Detector.analyzeDeleteExpr(DE)) {
   2580   case MismatchingNewDeleteDetector::VarInitMismatches:
   2581   case MismatchingNewDeleteDetector::MemberInitMismatches: {
   2582     DiagnoseMismatchedNewDelete(*this, DE->getLocStart(), Detector);
   2583     break;
   2584   }
   2585   case MismatchingNewDeleteDetector::AnalyzeLater: {
   2586     DeleteExprs[Detector.Field].push_back(
   2587         std::make_pair(DE->getLocStart(), DE->isArrayForm()));
   2588     break;
   2589   }
   2590   case MismatchingNewDeleteDetector::NoMismatch:
   2591     break;
   2592   }
   2593 }
   2594 
   2595 void Sema::AnalyzeDeleteExprMismatch(FieldDecl *Field, SourceLocation DeleteLoc,
   2596                                      bool DeleteWasArrayForm) {
   2597   MismatchingNewDeleteDetector Detector(/*EndOfTU=*/true);
   2598   switch (Detector.analyzeField(Field, DeleteWasArrayForm)) {
   2599   case MismatchingNewDeleteDetector::VarInitMismatches:
   2600     llvm_unreachable("This analysis should have been done for class members.");
   2601   case MismatchingNewDeleteDetector::AnalyzeLater:
   2602     llvm_unreachable("Analysis cannot be postponed any point beyond end of "
   2603                      "translation unit.");
   2604   case MismatchingNewDeleteDetector::MemberInitMismatches:
   2605     DiagnoseMismatchedNewDelete(*this, DeleteLoc, Detector);
   2606     break;
   2607   case MismatchingNewDeleteDetector::NoMismatch:
   2608     break;
   2609   }
   2610 }
   2611 
   2612 /// ActOnCXXDelete - Parsed a C++ 'delete' expression (C++ 5.3.5), as in:
   2613 /// @code ::delete ptr; @endcode
   2614 /// or
   2615 /// @code delete [] ptr; @endcode
   2616 ExprResult
   2617 Sema::ActOnCXXDelete(SourceLocation StartLoc, bool UseGlobal,
   2618                      bool ArrayForm, Expr *ExE) {
   2619   // C++ [expr.delete]p1:
   2620   //   The operand shall have a pointer type, or a class type having a single
   2621   //   non-explicit conversion function to a pointer type. The result has type
   2622   //   void.
   2623   //
   2624   // DR599 amends "pointer type" to "pointer to object type" in both cases.
   2625 
   2626   ExprResult Ex = ExE;
   2627   FunctionDecl *OperatorDelete = nullptr;
   2628   bool ArrayFormAsWritten = ArrayForm;
   2629   bool UsualArrayDeleteWantsSize = false;
   2630 
   2631   if (!Ex.get()->isTypeDependent()) {
   2632     // Perform lvalue-to-rvalue cast, if needed.
   2633     Ex = DefaultLvalueConversion(Ex.get());
   2634     if (Ex.isInvalid())
   2635       return ExprError();
   2636 
   2637     QualType Type = Ex.get()->getType();
   2638 
   2639     class DeleteConverter : public ContextualImplicitConverter {
   2640     public:
   2641       DeleteConverter() : ContextualImplicitConverter(false, true) {}
   2642 
   2643       bool match(QualType ConvType) override {
   2644         // FIXME: If we have an operator T* and an operator void*, we must pick
   2645         // the operator T*.
   2646         if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>())
   2647           if (ConvPtrType->getPointeeType()->isIncompleteOrObjectType())
   2648             return true;
   2649         return false;
   2650       }
   2651 
   2652       SemaDiagnosticBuilder diagnoseNoMatch(Sema &S, SourceLocation Loc,
   2653                                             QualType T) override {
   2654         return S.Diag(Loc, diag::err_delete_operand) << T;
   2655       }
   2656 
   2657       SemaDiagnosticBuilder diagnoseIncomplete(Sema &S, SourceLocation Loc,
   2658                                                QualType T) override {
   2659         return S.Diag(Loc, diag::err_delete_incomplete_class_type) << T;
   2660       }
   2661 
   2662       SemaDiagnosticBuilder diagnoseExplicitConv(Sema &S, SourceLocation Loc,
   2663                                                  QualType T,
   2664                                                  QualType ConvTy) override {
   2665         return S.Diag(Loc, diag::err_delete_explicit_conversion) << T << ConvTy;
   2666       }
   2667 
   2668       SemaDiagnosticBuilder noteExplicitConv(Sema &S, CXXConversionDecl *Conv,
   2669                                              QualType ConvTy) override {
   2670         return S.Diag(Conv->getLocation(), diag::note_delete_conversion)
   2671           << ConvTy;
   2672       }
   2673 
   2674       SemaDiagnosticBuilder diagnoseAmbiguous(Sema &S, SourceLocation Loc,
   2675                                               QualType T) override {
   2676         return S.Diag(Loc, diag::err_ambiguous_delete_operand) << T;
   2677       }
   2678 
   2679       SemaDiagnosticBuilder noteAmbiguous(Sema &S, CXXConversionDecl *Conv,
   2680                                           QualType ConvTy) override {
   2681         return S.Diag(Conv->getLocation(), diag::note_delete_conversion)
   2682           << ConvTy;
   2683       }
   2684 
   2685       SemaDiagnosticBuilder diagnoseConversion(Sema &S, SourceLocation Loc,
   2686                                                QualType T,
   2687                                                QualType ConvTy) override {
   2688         llvm_unreachable("conversion functions are permitted");
   2689       }
   2690     } Converter;
   2691 
   2692     Ex = PerformContextualImplicitConversion(StartLoc, Ex.get(), Converter);
   2693     if (Ex.isInvalid())
   2694       return ExprError();
   2695     Type = Ex.get()->getType();
   2696     if (!Converter.match(Type))
   2697       // FIXME: PerformContextualImplicitConversion should return ExprError
   2698       //        itself in this case.
   2699       return ExprError();
   2700 
   2701     QualType Pointee = Type->getAs<PointerType>()->getPointeeType();
   2702     QualType PointeeElem = Context.getBaseElementType(Pointee);
   2703 
   2704     if (unsigned AddressSpace = Pointee.getAddressSpace())
   2705       return Diag(Ex.get()->getLocStart(),
   2706                   diag::err_address_space_qualified_delete)
   2707                << Pointee.getUnqualifiedType() << AddressSpace;
   2708 
   2709     CXXRecordDecl *PointeeRD = nullptr;
   2710     if (Pointee->isVoidType() && !isSFINAEContext()) {
   2711       // The C++ standard bans deleting a pointer to a non-object type, which
   2712       // effectively bans deletion of "void*". However, most compilers support
   2713       // this, so we treat it as a warning unless we're in a SFINAE context.
   2714       Diag(StartLoc, diag::ext_delete_void_ptr_operand)
   2715         << Type << Ex.get()->getSourceRange();
   2716     } else if (Pointee->isFunctionType() || Pointee->isVoidType()) {
   2717       return ExprError(Diag(StartLoc, diag::err_delete_operand)
   2718         << Type << Ex.get()->getSourceRange());
   2719     } else if (!Pointee->isDependentType()) {
   2720       // FIXME: This can result in errors if the definition was imported from a
   2721       // module but is hidden.
   2722       if (!RequireCompleteType(StartLoc, Pointee,
   2723                                diag::warn_delete_incomplete, Ex.get())) {
   2724         if (const RecordType *RT = PointeeElem->getAs<RecordType>())
   2725           PointeeRD = cast<CXXRecordDecl>(RT->getDecl());
   2726       }
   2727     }
   2728 
   2729     if (Pointee->isArrayType() && !ArrayForm) {
   2730       Diag(StartLoc, diag::warn_delete_array_type)
   2731           << Type << Ex.get()->getSourceRange()
   2732           << FixItHint::CreateInsertion(getLocForEndOfToken(StartLoc), "[]");
   2733       ArrayForm = true;
   2734     }
   2735 
   2736     DeclarationName DeleteName = Context.DeclarationNames.getCXXOperatorName(
   2737                                       ArrayForm ? OO_Array_Delete : OO_Delete);
   2738 
   2739     if (PointeeRD) {
   2740       if (!UseGlobal &&
   2741           FindDeallocationFunction(StartLoc, PointeeRD, DeleteName,
   2742                                    OperatorDelete))
   2743         return ExprError();
   2744 
   2745       // If we're allocating an array of records, check whether the
   2746       // usual operator delete[] has a size_t parameter.
   2747       if (ArrayForm) {
   2748         // If the user specifically asked to use the global allocator,
   2749         // we'll need to do the lookup into the class.
   2750         if (UseGlobal)
   2751           UsualArrayDeleteWantsSize =
   2752             doesUsualArrayDeleteWantSize(*this, StartLoc, PointeeElem);
   2753 
   2754         // Otherwise, the usual operator delete[] should be the
   2755         // function we just found.
   2756         else if (OperatorDelete && isa<CXXMethodDecl>(OperatorDelete))
   2757           UsualArrayDeleteWantsSize = (OperatorDelete->getNumParams() == 2);
   2758       }
   2759 
   2760       if (!PointeeRD->hasIrrelevantDestructor())
   2761         if (CXXDestructorDecl *Dtor = LookupDestructor(PointeeRD)) {
   2762           MarkFunctionReferenced(StartLoc,
   2763                                     const_cast<CXXDestructorDecl*>(Dtor));
   2764           if (DiagnoseUseOfDecl(Dtor, StartLoc))
   2765             return ExprError();
   2766         }
   2767 
   2768       // C++ [expr.delete]p3:
   2769       //   In the first alternative (delete object), if the static type of the
   2770       //   object to be deleted is different from its dynamic type, the static
   2771       //   type shall be a base class of the dynamic type of the object to be
   2772       //   deleted and the static type shall have a virtual destructor or the
   2773       //   behavior is undefined.
   2774       //
   2775       // Note: a final class cannot be derived from, no issue there
   2776       if (PointeeRD->isPolymorphic() && !PointeeRD->hasAttr<FinalAttr>()) {
   2777         CXXDestructorDecl *dtor = PointeeRD->getDestructor();
   2778         if (dtor && !dtor->isVirtual()) {
   2779           if (PointeeRD->isAbstract()) {
   2780             // If the class is abstract, we warn by default, because we're
   2781             // sure the code has undefined behavior.
   2782             Diag(StartLoc, diag::warn_delete_abstract_non_virtual_dtor)
   2783                 << PointeeElem;
   2784           } else if (!ArrayForm) {
   2785             // Otherwise, if this is not an array delete, it's a bit suspect,
   2786             // but not necessarily wrong.
   2787             Diag(StartLoc, diag::warn_delete_non_virtual_dtor) << PointeeElem;
   2788           }
   2789         }
   2790       }
   2791 
   2792     }
   2793 
   2794     if (!OperatorDelete)
   2795       // Look for a global declaration.
   2796       OperatorDelete = FindUsualDeallocationFunction(
   2797           StartLoc, isCompleteType(StartLoc, Pointee) &&
   2798                     (!ArrayForm || UsualArrayDeleteWantsSize ||
   2799                      Pointee.isDestructedType()),
   2800           DeleteName);
   2801 
   2802     MarkFunctionReferenced(StartLoc, OperatorDelete);
   2803 
   2804     // Check access and ambiguity of operator delete and destructor.
   2805     if (PointeeRD) {
   2806       if (CXXDestructorDecl *Dtor = LookupDestructor(PointeeRD)) {
   2807           CheckDestructorAccess(Ex.get()->getExprLoc(), Dtor,
   2808                       PDiag(diag::err_access_dtor) << PointeeElem);
   2809       }
   2810     }
   2811   }
   2812 
   2813   CXXDeleteExpr *Result = new (Context) CXXDeleteExpr(
   2814       Context.VoidTy, UseGlobal, ArrayForm, ArrayFormAsWritten,
   2815       UsualArrayDeleteWantsSize, OperatorDelete, Ex.get(), StartLoc);
   2816   AnalyzeDeleteExprMismatch(Result);
   2817   return Result;
   2818 }
   2819 
   2820 /// \brief Check the use of the given variable as a C++ condition in an if,
   2821 /// while, do-while, or switch statement.
   2822 ExprResult Sema::CheckConditionVariable(VarDecl *ConditionVar,
   2823                                         SourceLocation StmtLoc,
   2824                                         bool ConvertToBoolean) {
   2825   if (ConditionVar->isInvalidDecl())
   2826     return ExprError();
   2827 
   2828   QualType T = ConditionVar->getType();
   2829 
   2830   // C++ [stmt.select]p2:
   2831   //   The declarator shall not specify a function or an array.
   2832   if (T->isFunctionType())
   2833     return ExprError(Diag(ConditionVar->getLocation(),
   2834                           diag::err_invalid_use_of_function_type)
   2835                        << ConditionVar->getSourceRange());
   2836   else if (T->isArrayType())
   2837     return ExprError(Diag(ConditionVar->getLocation(),
   2838                           diag::err_invalid_use_of_array_type)
   2839                      << ConditionVar->getSourceRange());
   2840 
   2841   ExprResult Condition = DeclRefExpr::Create(
   2842       Context, NestedNameSpecifierLoc(), SourceLocation(), ConditionVar,
   2843       /*enclosing*/ false, ConditionVar->getLocation(),
   2844       ConditionVar->getType().getNonReferenceType(), VK_LValue);
   2845 
   2846   MarkDeclRefReferenced(cast<DeclRefExpr>(Condition.get()));
   2847 
   2848   if (ConvertToBoolean) {
   2849     Condition = CheckBooleanCondition(Condition.get(), StmtLoc);
   2850     if (Condition.isInvalid())
   2851       return ExprError();
   2852   }
   2853 
   2854   return Condition;
   2855 }
   2856 
   2857 /// CheckCXXBooleanCondition - Returns true if a conversion to bool is invalid.
   2858 ExprResult Sema::CheckCXXBooleanCondition(Expr *CondExpr) {
   2859   // C++ 6.4p4:
   2860   // The value of a condition that is an initialized declaration in a statement
   2861   // other than a switch statement is the value of the declared variable
   2862   // implicitly converted to type bool. If that conversion is ill-formed, the
   2863   // program is ill-formed.
   2864   // The value of a condition that is an expression is the value of the
   2865   // expression, implicitly converted to bool.
   2866   //
   2867   return PerformContextuallyConvertToBool(CondExpr);
   2868 }
   2869 
   2870 /// Helper function to determine whether this is the (deprecated) C++
   2871 /// conversion from a string literal to a pointer to non-const char or
   2872 /// non-const wchar_t (for narrow and wide string literals,
   2873 /// respectively).
   2874 bool
   2875 Sema::IsStringLiteralToNonConstPointerConversion(Expr *From, QualType ToType) {
   2876   // Look inside the implicit cast, if it exists.
   2877   if (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(From))
   2878     From = Cast->getSubExpr();
   2879 
   2880   // A string literal (2.13.4) that is not a wide string literal can
   2881   // be converted to an rvalue of type "pointer to char"; a wide
   2882   // string literal can be converted to an rvalue of type "pointer
   2883   // to wchar_t" (C++ 4.2p2).
   2884   if (StringLiteral *StrLit = dyn_cast<StringLiteral>(From->IgnoreParens()))
   2885     if (const PointerType *ToPtrType = ToType->getAs<PointerType>())
   2886       if (const BuiltinType *ToPointeeType
   2887           = ToPtrType->getPointeeType()->getAs<BuiltinType>()) {
   2888         // This conversion is considered only when there is an
   2889         // explicit appropriate pointer target type (C++ 4.2p2).
   2890         if (!ToPtrType->getPointeeType().hasQualifiers()) {
   2891           switch (StrLit->getKind()) {
   2892             case StringLiteral::UTF8:
   2893             case StringLiteral::UTF16:
   2894             case StringLiteral::UTF32:
   2895               // We don't allow UTF literals to be implicitly converted
   2896               break;
   2897             case StringLiteral::Ascii:
   2898               return (ToPointeeType->getKind() == BuiltinType::Char_U ||
   2899                       ToPointeeType->getKind() == BuiltinType::Char_S);
   2900             case StringLiteral::Wide:
   2901               return ToPointeeType->isWideCharType();
   2902           }
   2903         }
   2904       }
   2905 
   2906   return false;
   2907 }
   2908 
   2909 static ExprResult BuildCXXCastArgument(Sema &S,
   2910                                        SourceLocation CastLoc,
   2911                                        QualType Ty,
   2912                                        CastKind Kind,
   2913                                        CXXMethodDecl *Method,
   2914                                        DeclAccessPair FoundDecl,
   2915                                        bool HadMultipleCandidates,
   2916                                        Expr *From) {
   2917   switch (Kind) {
   2918   default: llvm_unreachable("Unhandled cast kind!");
   2919   case CK_ConstructorConversion: {
   2920     CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(Method);
   2921     SmallVector<Expr*, 8> ConstructorArgs;
   2922 
   2923     if (S.RequireNonAbstractType(CastLoc, Ty,
   2924                                  diag::err_allocation_of_abstract_type))
   2925       return ExprError();
   2926 
   2927     if (S.CompleteConstructorCall(Constructor, From, CastLoc, ConstructorArgs))
   2928       return ExprError();
   2929 
   2930     S.CheckConstructorAccess(CastLoc, Constructor,
   2931                              InitializedEntity::InitializeTemporary(Ty),
   2932                              Constructor->getAccess());
   2933     if (S.DiagnoseUseOfDecl(Method, CastLoc))
   2934       return ExprError();
   2935 
   2936     ExprResult Result = S.BuildCXXConstructExpr(
   2937         CastLoc, Ty, cast<CXXConstructorDecl>(Method),
   2938         ConstructorArgs, HadMultipleCandidates,
   2939         /*ListInit*/ false, /*StdInitListInit*/ false, /*ZeroInit*/ false,
   2940         CXXConstructExpr::CK_Complete, SourceRange());
   2941     if (Result.isInvalid())
   2942       return ExprError();
   2943 
   2944     return S.MaybeBindToTemporary(Result.getAs<Expr>());
   2945   }
   2946 
   2947   case CK_UserDefinedConversion: {
   2948     assert(!From->getType()->isPointerType() && "Arg can't have pointer type!");
   2949 
   2950     S.CheckMemberOperatorAccess(CastLoc, From, /*arg*/ nullptr, FoundDecl);
   2951     if (S.DiagnoseUseOfDecl(Method, CastLoc))
   2952       return ExprError();
   2953 
   2954     // Create an implicit call expr that calls it.
   2955     CXXConversionDecl *Conv = cast<CXXConversionDecl>(Method);
   2956     ExprResult Result = S.BuildCXXMemberCallExpr(From, FoundDecl, Conv,
   2957                                                  HadMultipleCandidates);
   2958     if (Result.isInvalid())
   2959       return ExprError();
   2960     // Record usage of conversion in an implicit cast.
   2961     Result = ImplicitCastExpr::Create(S.Context, Result.get()->getType(),
   2962                                       CK_UserDefinedConversion, Result.get(),
   2963                                       nullptr, Result.get()->getValueKind());
   2964 
   2965     return S.MaybeBindToTemporary(Result.get());
   2966   }
   2967   }
   2968 }
   2969 
   2970 /// PerformImplicitConversion - Perform an implicit conversion of the
   2971 /// expression From to the type ToType using the pre-computed implicit
   2972 /// conversion sequence ICS. Returns the converted
   2973 /// expression. Action is the kind of conversion we're performing,
   2974 /// used in the error message.
   2975 ExprResult
   2976 Sema::PerformImplicitConversion(Expr *From, QualType ToType,
   2977                                 const ImplicitConversionSequence &ICS,
   2978                                 AssignmentAction Action,
   2979                                 CheckedConversionKind CCK) {
   2980   switch (ICS.getKind()) {
   2981   case ImplicitConversionSequence::StandardConversion: {
   2982     ExprResult Res = PerformImplicitConversion(From, ToType, ICS.Standard,
   2983                                                Action, CCK);
   2984     if (Res.isInvalid())
   2985       return ExprError();
   2986     From = Res.get();
   2987     break;
   2988   }
   2989 
   2990   case ImplicitConversionSequence::UserDefinedConversion: {
   2991 
   2992       FunctionDecl *FD = ICS.UserDefined.ConversionFunction;
   2993       CastKind CastKind;
   2994       QualType BeforeToType;
   2995       assert(FD && "no conversion function for user-defined conversion seq");
   2996       if (const CXXConversionDecl *Conv = dyn_cast<CXXConversionDecl>(FD)) {
   2997         CastKind = CK_UserDefinedConversion;
   2998 
   2999         // If the user-defined conversion is specified by a conversion function,
   3000         // the initial standard conversion sequence converts the source type to
   3001         // the implicit object parameter of the conversion function.
   3002         BeforeToType = Context.getTagDeclType(Conv->getParent());
   3003       } else {
   3004         const CXXConstructorDecl *Ctor = cast<CXXConstructorDecl>(FD);
   3005         CastKind = CK_ConstructorConversion;
   3006         // Do no conversion if dealing with ... for the first conversion.
   3007         if (!ICS.UserDefined.EllipsisConversion) {
   3008           // If the user-defined conversion is specified by a constructor, the
   3009           // initial standard conversion sequence converts the source type to
   3010           // the type required by the argument of the constructor
   3011           BeforeToType = Ctor->getParamDecl(0)->getType().getNonReferenceType();
   3012         }
   3013       }
   3014       // Watch out for ellipsis conversion.
   3015       if (!ICS.UserDefined.EllipsisConversion) {
   3016         ExprResult Res =
   3017           PerformImplicitConversion(From, BeforeToType,
   3018                                     ICS.UserDefined.Before, AA_Converting,
   3019                                     CCK);
   3020         if (Res.isInvalid())
   3021           return ExprError();
   3022         From = Res.get();
   3023       }
   3024 
   3025       ExprResult CastArg
   3026         = BuildCXXCastArgument(*this,
   3027                                From->getLocStart(),
   3028                                ToType.getNonReferenceType(),
   3029                                CastKind, cast<CXXMethodDecl>(FD),
   3030                                ICS.UserDefined.FoundConversionFunction,
   3031                                ICS.UserDefined.HadMultipleCandidates,
   3032                                From);
   3033 
   3034       if (CastArg.isInvalid())
   3035         return ExprError();
   3036 
   3037       From = CastArg.get();
   3038 
   3039       return PerformImplicitConversion(From, ToType, ICS.UserDefined.After,
   3040                                        AA_Converting, CCK);
   3041   }
   3042 
   3043   case ImplicitConversionSequence::AmbiguousConversion:
   3044     ICS.DiagnoseAmbiguousConversion(*this, From->getExprLoc(),
   3045                           PDiag(diag::err_typecheck_ambiguous_condition)
   3046                             << From->getSourceRange());
   3047      return ExprError();
   3048 
   3049   case ImplicitConversionSequence::EllipsisConversion:
   3050     llvm_unreachable("Cannot perform an ellipsis conversion");
   3051 
   3052   case ImplicitConversionSequence::BadConversion:
   3053     return ExprError();
   3054   }
   3055 
   3056   // Everything went well.
   3057   return From;
   3058 }
   3059 
   3060 /// PerformImplicitConversion - Perform an implicit conversion of the
   3061 /// expression From to the type ToType by following the standard
   3062 /// conversion sequence SCS. Returns the converted
   3063 /// expression. Flavor is the context in which we're performing this
   3064 /// conversion, for use in error messages.
   3065 ExprResult
   3066 Sema::PerformImplicitConversion(Expr *From, QualType ToType,
   3067                                 const StandardConversionSequence& SCS,
   3068                                 AssignmentAction Action,
   3069                                 CheckedConversionKind CCK) {
   3070   bool CStyle = (CCK == CCK_CStyleCast || CCK == CCK_FunctionalCast);
   3071 
   3072   // Overall FIXME: we are recomputing too many types here and doing far too
   3073   // much extra work. What this means is that we need to keep track of more
   3074   // information that is computed when we try the implicit conversion initially,
   3075   // so that we don't need to recompute anything here.
   3076   QualType FromType = From->getType();
   3077 
   3078   if (SCS.CopyConstructor) {
   3079     // FIXME: When can ToType be a reference type?
   3080     assert(!ToType->isReferenceType());
   3081     if (SCS.Second == ICK_Derived_To_Base) {
   3082       SmallVector<Expr*, 8> ConstructorArgs;
   3083       if (CompleteConstructorCall(cast<CXXConstructorDecl>(SCS.CopyConstructor),
   3084                                   From, /*FIXME:ConstructLoc*/SourceLocation(),
   3085                                   ConstructorArgs))
   3086         return ExprError();
   3087       return BuildCXXConstructExpr(
   3088           /*FIXME:ConstructLoc*/ SourceLocation(), ToType, SCS.CopyConstructor,
   3089           ConstructorArgs, /*HadMultipleCandidates*/ false,
   3090           /*ListInit*/ false, /*StdInitListInit*/ false, /*ZeroInit*/ false,
   3091           CXXConstructExpr::CK_Complete, SourceRange());
   3092     }
   3093     return BuildCXXConstructExpr(
   3094         /*FIXME:ConstructLoc*/ SourceLocation(), ToType, SCS.CopyConstructor,
   3095         From, /*HadMultipleCandidates*/ false,
   3096         /*ListInit*/ false, /*StdInitListInit*/ false, /*ZeroInit*/ false,
   3097         CXXConstructExpr::CK_Complete, SourceRange());
   3098   }
   3099 
   3100   // Resolve overloaded function references.
   3101   if (Context.hasSameType(FromType, Context.OverloadTy)) {
   3102     DeclAccessPair Found;
   3103     FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(From, ToType,
   3104                                                           true, Found);
   3105     if (!Fn)
   3106       return ExprError();
   3107 
   3108     if (DiagnoseUseOfDecl(Fn, From->getLocStart()))
   3109       return ExprError();
   3110 
   3111     From = FixOverloadedFunctionReference(From, Found, Fn);
   3112     FromType = From->getType();
   3113   }
   3114 
   3115   // If we're converting to an atomic type, first convert to the corresponding
   3116   // non-atomic type.
   3117   QualType ToAtomicType;
   3118   if (const AtomicType *ToAtomic = ToType->getAs<AtomicType>()) {
   3119     ToAtomicType = ToType;
   3120     ToType = ToAtomic->getValueType();
   3121   }
   3122 
   3123   QualType InitialFromType = FromType;
   3124   // Perform the first implicit conversion.
   3125   switch (SCS.First) {
   3126   case ICK_Identity:
   3127     if (const AtomicType *FromAtomic = FromType->getAs<AtomicType>()) {
   3128       FromType = FromAtomic->getValueType().getUnqualifiedType();
   3129       From = ImplicitCastExpr::Create(Context, FromType, CK_AtomicToNonAtomic,
   3130                                       From, /*BasePath=*/nullptr, VK_RValue);
   3131     }
   3132     break;
   3133 
   3134   case ICK_Lvalue_To_Rvalue: {
   3135     assert(From->getObjectKind() != OK_ObjCProperty);
   3136     ExprResult FromRes = DefaultLvalueConversion(From);
   3137     assert(!FromRes.isInvalid() && "Can't perform deduced conversion?!");
   3138     From = FromRes.get();
   3139     FromType = From->getType();
   3140     break;
   3141   }
   3142 
   3143   case ICK_Array_To_Pointer:
   3144     FromType = Context.getArrayDecayedType(FromType);
   3145     From = ImpCastExprToType(From, FromType, CK_ArrayToPointerDecay,
   3146                              VK_RValue, /*BasePath=*/nullptr, CCK).get();
   3147     break;
   3148 
   3149   case ICK_Function_To_Pointer:
   3150     FromType = Context.getPointerType(FromType);
   3151     From = ImpCastExprToType(From, FromType, CK_FunctionToPointerDecay,
   3152                              VK_RValue, /*BasePath=*/nullptr, CCK).get();
   3153     break;
   3154 
   3155   default:
   3156     llvm_unreachable("Improper first standard conversion");
   3157   }
   3158 
   3159   // Perform the second implicit conversion
   3160   switch (SCS.Second) {
   3161   case ICK_Identity:
   3162     // C++ [except.spec]p5:
   3163     //   [For] assignment to and initialization of pointers to functions,
   3164     //   pointers to member functions, and references to functions: the
   3165     //   target entity shall allow at least the exceptions allowed by the
   3166     //   source value in the assignment or initialization.
   3167     switch (Action) {
   3168     case AA_Assigning:
   3169     case AA_Initializing:
   3170       // Note, function argument passing and returning are initialization.
   3171     case AA_Passing:
   3172     case AA_Returning:
   3173     case AA_Sending:
   3174     case AA_Passing_CFAudited:
   3175       if (CheckExceptionSpecCompatibility(From, ToType))
   3176         return ExprError();
   3177       break;
   3178 
   3179     case AA_Casting:
   3180     case AA_Converting:
   3181       // Casts and implicit conversions are not initialization, so are not
   3182       // checked for exception specification mismatches.
   3183       break;
   3184     }
   3185     // Nothing else to do.
   3186     break;
   3187 
   3188   case ICK_NoReturn_Adjustment:
   3189     // If both sides are functions (or pointers/references to them), there could
   3190     // be incompatible exception declarations.
   3191     if (CheckExceptionSpecCompatibility(From, ToType))
   3192       return ExprError();
   3193 
   3194     From = ImpCastExprToType(From, ToType, CK_NoOp,
   3195                              VK_RValue, /*BasePath=*/nullptr, CCK).get();
   3196     break;
   3197 
   3198   case ICK_Integral_Promotion:
   3199   case ICK_Integral_Conversion:
   3200     if (ToType->isBooleanType()) {
   3201       assert(FromType->castAs<EnumType>()->getDecl()->isFixed() &&
   3202              SCS.Second == ICK_Integral_Promotion &&
   3203              "only enums with fixed underlying type can promote to bool");
   3204       From = ImpCastExprToType(From, ToType, CK_IntegralToBoolean,
   3205                                VK_RValue, /*BasePath=*/nullptr, CCK).get();
   3206     } else {
   3207       From = ImpCastExprToType(From, ToType, CK_IntegralCast,
   3208                                VK_RValue, /*BasePath=*/nullptr, CCK).get();
   3209     }
   3210     break;
   3211 
   3212   case ICK_Floating_Promotion:
   3213   case ICK_Floating_Conversion:
   3214     From = ImpCastExprToType(From, ToType, CK_FloatingCast,
   3215                              VK_RValue, /*BasePath=*/nullptr, CCK).get();
   3216     break;
   3217 
   3218   case ICK_Complex_Promotion:
   3219   case ICK_Complex_Conversion: {
   3220     QualType FromEl = From->getType()->getAs<ComplexType>()->getElementType();
   3221     QualType ToEl = ToType->getAs<ComplexType>()->getElementType();
   3222     CastKind CK;
   3223     if (FromEl->isRealFloatingType()) {
   3224       if (ToEl->isRealFloatingType())
   3225         CK = CK_FloatingComplexCast;
   3226       else
   3227         CK = CK_FloatingComplexToIntegralComplex;
   3228     } else if (ToEl->isRealFloatingType()) {
   3229       CK = CK_IntegralComplexToFloatingComplex;
   3230     } else {
   3231       CK = CK_IntegralComplexCast;
   3232     }
   3233     From = ImpCastExprToType(From, ToType, CK,
   3234                              VK_RValue, /*BasePath=*/nullptr, CCK).get();
   3235     break;
   3236   }
   3237 
   3238   case ICK_Floating_Integral:
   3239     if (ToType->isRealFloatingType())
   3240       From = ImpCastExprToType(From, ToType, CK_IntegralToFloating,
   3241                                VK_RValue, /*BasePath=*/nullptr, CCK).get();
   3242     else
   3243       From = ImpCastExprToType(From, ToType, CK_FloatingToIntegral,
   3244                                VK_RValue, /*BasePath=*/nullptr, CCK).get();
   3245     break;
   3246 
   3247   case ICK_Compatible_Conversion:
   3248       From = ImpCastExprToType(From, ToType, CK_NoOp,
   3249                                VK_RValue, /*BasePath=*/nullptr, CCK).get();
   3250     break;
   3251 
   3252   case ICK_Writeback_Conversion:
   3253   case ICK_Pointer_Conversion: {
   3254     if (SCS.IncompatibleObjC && Action != AA_Casting) {
   3255       // Diagnose incompatible Objective-C conversions
   3256       if (Action == AA_Initializing || Action == AA_Assigning)
   3257         Diag(From->getLocStart(),
   3258              diag::ext_typecheck_convert_incompatible_pointer)
   3259           << ToType << From->getType() << Action
   3260           << From->getSourceRange() << 0;
   3261       else
   3262         Diag(From->getLocStart(),
   3263              diag::ext_typecheck_convert_incompatible_pointer)
   3264           << From->getType() << ToType << Action
   3265           << From->getSourceRange() << 0;
   3266 
   3267       if (From->getType()->isObjCObjectPointerType() &&
   3268           ToType->isObjCObjectPointerType())
   3269         EmitRelatedResultTypeNote(From);
   3270     }
   3271     else if (getLangOpts().ObjCAutoRefCount &&
   3272              !CheckObjCARCUnavailableWeakConversion(ToType,
   3273                                                     From->getType())) {
   3274       if (Action == AA_Initializing)
   3275         Diag(From->getLocStart(),
   3276              diag::err_arc_weak_unavailable_assign);
   3277       else
   3278         Diag(From->getLocStart(),
   3279              diag::err_arc_convesion_of_weak_unavailable)
   3280           << (Action == AA_Casting) << From->getType() << ToType
   3281           << From->getSourceRange();
   3282     }
   3283 
   3284     CastKind Kind = CK_Invalid;
   3285     CXXCastPath BasePath;
   3286     if (CheckPointerConversion(From, ToType, Kind, BasePath, CStyle))
   3287       return ExprError();
   3288 
   3289     // Make sure we extend blocks if necessary.
   3290     // FIXME: doing this here is really ugly.
   3291     if (Kind == CK_BlockPointerToObjCPointerCast) {
   3292       ExprResult E = From;
   3293       (void) PrepareCastToObjCObjectPointer(E);
   3294       From = E.get();
   3295     }
   3296     if (getLangOpts().ObjCAutoRefCount)
   3297       CheckObjCARCConversion(SourceRange(), ToType, From, CCK);
   3298     From = ImpCastExprToType(From, ToType, Kind, VK_RValue, &BasePath, CCK)
   3299              .get();
   3300     break;
   3301   }
   3302 
   3303   case ICK_Pointer_Member: {
   3304     CastKind Kind = CK_Invalid;
   3305     CXXCastPath BasePath;
   3306     if (CheckMemberPointerConversion(From, ToType, Kind, BasePath, CStyle))
   3307       return ExprError();
   3308     if (CheckExceptionSpecCompatibility(From, ToType))
   3309       return ExprError();
   3310 
   3311     // We may not have been able to figure out what this member pointer resolved
   3312     // to up until this exact point.  Attempt to lock-in it's inheritance model.
   3313     if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
   3314       (void)isCompleteType(From->getExprLoc(), From->getType());
   3315       (void)isCompleteType(From->getExprLoc(), ToType);
   3316     }
   3317 
   3318     From = ImpCastExprToType(From, ToType, Kind, VK_RValue, &BasePath, CCK)
   3319              .get();
   3320     break;
   3321   }
   3322 
   3323   case ICK_Boolean_Conversion:
   3324     // Perform half-to-boolean conversion via float.
   3325     if (From->getType()->isHalfType()) {
   3326       From = ImpCastExprToType(From, Context.FloatTy, CK_FloatingCast).get();
   3327       FromType = Context.FloatTy;
   3328     }
   3329 
   3330     From = ImpCastExprToType(From, Context.BoolTy,
   3331                              ScalarTypeToBooleanCastKind(FromType),
   3332                              VK_RValue, /*BasePath=*/nullptr, CCK).get();
   3333     break;
   3334 
   3335   case ICK_Derived_To_Base: {
   3336     CXXCastPath BasePath;
   3337     if (CheckDerivedToBaseConversion(From->getType(),
   3338                                      ToType.getNonReferenceType(),
   3339                                      From->getLocStart(),
   3340                                      From->getSourceRange(),
   3341                                      &BasePath,
   3342                                      CStyle))
   3343       return ExprError();
   3344 
   3345     From = ImpCastExprToType(From, ToType.getNonReferenceType(),
   3346                       CK_DerivedToBase, From->getValueKind(),
   3347                       &BasePath, CCK).get();
   3348     break;
   3349   }
   3350 
   3351   case ICK_Vector_Conversion:
   3352     From = ImpCastExprToType(From, ToType, CK_BitCast,
   3353                              VK_RValue, /*BasePath=*/nullptr, CCK).get();
   3354     break;
   3355 
   3356   case ICK_Vector_Splat:
   3357     // Vector splat from any arithmetic type to a vector.
   3358     // Cast to the element type.
   3359     {
   3360       QualType elType = ToType->getAs<ExtVectorType>()->getElementType();
   3361       if (elType != From->getType()) {
   3362         ExprResult E = From;
   3363         From = ImpCastExprToType(From, elType,
   3364                                  PrepareScalarCast(E, elType)).get();
   3365       }
   3366       From = ImpCastExprToType(From, ToType, CK_VectorSplat,
   3367                                VK_RValue, /*BasePath=*/nullptr, CCK).get();
   3368     }
   3369     break;
   3370 
   3371   case ICK_Complex_Real:
   3372     // Case 1.  x -> _Complex y
   3373     if (const ComplexType *ToComplex = ToType->getAs<ComplexType>()) {
   3374       QualType ElType = ToComplex->getElementType();
   3375       bool isFloatingComplex = ElType->isRealFloatingType();
   3376 
   3377       // x -> y
   3378       if (Context.hasSameUnqualifiedType(ElType, From->getType())) {
   3379         // do nothing
   3380       } else if (From->getType()->isRealFloatingType()) {
   3381         From = ImpCastExprToType(From, ElType,
   3382                 isFloatingComplex ? CK_FloatingCast : CK_FloatingToIntegral).get();
   3383       } else {
   3384         assert(From->getType()->isIntegerType());
   3385         From = ImpCastExprToType(From, ElType,
   3386                 isFloatingComplex ? CK_IntegralToFloating : CK_IntegralCast).get();
   3387       }
   3388       // y -> _Complex y
   3389       From = ImpCastExprToType(From, ToType,
   3390                    isFloatingComplex ? CK_FloatingRealToComplex
   3391                                      : CK_IntegralRealToComplex).get();
   3392 
   3393     // Case 2.  _Complex x -> y
   3394     } else {
   3395       const ComplexType *FromComplex = From->getType()->getAs<ComplexType>();
   3396       assert(FromComplex);
   3397 
   3398       QualType ElType = FromComplex->getElementType();
   3399       bool isFloatingComplex = ElType->isRealFloatingType();
   3400 
   3401       // _Complex x -> x
   3402       From = ImpCastExprToType(From, ElType,
   3403                    isFloatingComplex ? CK_FloatingComplexToReal
   3404                                      : CK_IntegralComplexToReal,
   3405                                VK_RValue, /*BasePath=*/nullptr, CCK).get();
   3406 
   3407       // x -> y
   3408       if (Context.hasSameUnqualifiedType(ElType, ToType)) {
   3409         // do nothing
   3410       } else if (ToType->isRealFloatingType()) {
   3411         From = ImpCastExprToType(From, ToType,
   3412                    isFloatingComplex ? CK_FloatingCast : CK_IntegralToFloating,
   3413                                  VK_RValue, /*BasePath=*/nullptr, CCK).get();
   3414       } else {
   3415         assert(ToType->isIntegerType());
   3416         From = ImpCastExprToType(From, ToType,
   3417                    isFloatingComplex ? CK_FloatingToIntegral : CK_IntegralCast,
   3418                                  VK_RValue, /*BasePath=*/nullptr, CCK).get();
   3419       }
   3420     }
   3421     break;
   3422 
   3423   case ICK_Block_Pointer_Conversion: {
   3424     From = ImpCastExprToType(From, ToType.getUnqualifiedType(), CK_BitCast,
   3425                              VK_RValue, /*BasePath=*/nullptr, CCK).get();
   3426     break;
   3427   }
   3428 
   3429   case ICK_TransparentUnionConversion: {
   3430     ExprResult FromRes = From;
   3431     Sema::AssignConvertType ConvTy =
   3432       CheckTransparentUnionArgumentConstraints(ToType, FromRes);
   3433     if (FromRes.isInvalid())
   3434       return ExprError();
   3435     From = FromRes.get();
   3436     assert ((ConvTy == Sema::Compatible) &&
   3437             "Improper transparent union conversion");
   3438     (void)ConvTy;
   3439     break;
   3440   }
   3441 
   3442   case ICK_Zero_Event_Conversion:
   3443     From = ImpCastExprToType(From, ToType,
   3444                              CK_ZeroToOCLEvent,
   3445                              From->getValueKind()).get();
   3446     break;
   3447 
   3448   case ICK_Lvalue_To_Rvalue:
   3449   case ICK_Array_To_Pointer:
   3450   case ICK_Function_To_Pointer:
   3451   case ICK_Qualification:
   3452   case ICK_Num_Conversion_Kinds:
   3453   case ICK_C_Only_Conversion:
   3454     llvm_unreachable("Improper second standard conversion");
   3455   }
   3456 
   3457   switch (SCS.Third) {
   3458   case ICK_Identity:
   3459     // Nothing to do.
   3460     break;
   3461 
   3462   case ICK_Qualification: {
   3463     // The qualification keeps the category of the inner expression, unless the
   3464     // target type isn't a reference.
   3465     ExprValueKind VK = ToType->isReferenceType() ?
   3466                                   From->getValueKind() : VK_RValue;
   3467     From = ImpCastExprToType(From, ToType.getNonLValueExprType(Context),
   3468                              CK_NoOp, VK, /*BasePath=*/nullptr, CCK).get();
   3469 
   3470     if (SCS.DeprecatedStringLiteralToCharPtr &&
   3471         !getLangOpts().WritableStrings) {
   3472       Diag(From->getLocStart(), getLangOpts().CPlusPlus11
   3473            ? diag::ext_deprecated_string_literal_conversion
   3474            : diag::warn_deprecated_string_literal_conversion)
   3475         << ToType.getNonReferenceType();
   3476     }
   3477 
   3478     break;
   3479   }
   3480 
   3481   default:
   3482     llvm_unreachable("Improper third standard conversion");
   3483   }
   3484 
   3485   // If this conversion sequence involved a scalar -> atomic conversion, perform
   3486   // that conversion now.
   3487   if (!ToAtomicType.isNull()) {
   3488     assert(Context.hasSameType(
   3489         ToAtomicType->castAs<AtomicType>()->getValueType(), From->getType()));
   3490     From = ImpCastExprToType(From, ToAtomicType, CK_NonAtomicToAtomic,
   3491                              VK_RValue, nullptr, CCK).get();
   3492   }
   3493 
   3494   // If this conversion sequence succeeded and involved implicitly converting a
   3495   // _Nullable type to a _Nonnull one, complain.
   3496   if (CCK == CCK_ImplicitConversion)
   3497     diagnoseNullableToNonnullConversion(ToType, InitialFromType,
   3498                                         From->getLocStart());
   3499 
   3500   return From;
   3501 }
   3502 
   3503 /// \brief Check the completeness of a type in a unary type trait.
   3504 ///
   3505 /// If the particular type trait requires a complete type, tries to complete
   3506 /// it. If completing the type fails, a diagnostic is emitted and false
   3507 /// returned. If completing the type succeeds or no completion was required,
   3508 /// returns true.
   3509 static bool CheckUnaryTypeTraitTypeCompleteness(Sema &S, TypeTrait UTT,
   3510                                                 SourceLocation Loc,
   3511                                                 QualType ArgTy) {
   3512   // C++0x [meta.unary.prop]p3:
   3513   //   For all of the class templates X declared in this Clause, instantiating
   3514   //   that template with a template argument that is a class template
   3515   //   specialization may result in the implicit instantiation of the template
   3516   //   argument if and only if the semantics of X require that the argument
   3517   //   must be a complete type.
   3518   // We apply this rule to all the type trait expressions used to implement
   3519   // these class templates. We also try to follow any GCC documented behavior
   3520   // in these expressions to ensure portability of standard libraries.
   3521   switch (UTT) {
   3522   default: llvm_unreachable("not a UTT");
   3523     // is_complete_type somewhat obviously cannot require a complete type.
   3524   case UTT_IsCompleteType:
   3525     // Fall-through
   3526 
   3527     // These traits are modeled on the type predicates in C++0x
   3528     // [meta.unary.cat] and [meta.unary.comp]. They are not specified as
   3529     // requiring a complete type, as whether or not they return true cannot be
   3530     // impacted by the completeness of the type.
   3531   case UTT_IsVoid:
   3532   case UTT_IsIntegral:
   3533   case UTT_IsFloatingPoint:
   3534   case UTT_IsArray:
   3535   case UTT_IsPointer:
   3536   case UTT_IsLvalueReference:
   3537   case UTT_IsRvalueReference:
   3538   case UTT_IsMemberFunctionPointer:
   3539   case UTT_IsMemberObjectPointer:
   3540   case UTT_IsEnum:
   3541   case UTT_IsUnion:
   3542   case UTT_IsClass:
   3543   case UTT_IsFunction:
   3544   case UTT_IsReference:
   3545   case UTT_IsArithmetic:
   3546   case UTT_IsFundamental:
   3547   case UTT_IsObject:
   3548   case UTT_IsScalar:
   3549   case UTT_IsCompound:
   3550   case UTT_IsMemberPointer:
   3551     // Fall-through
   3552 
   3553     // These traits are modeled on type predicates in C++0x [meta.unary.prop]
   3554     // which requires some of its traits to have the complete type. However,
   3555     // the completeness of the type cannot impact these traits' semantics, and
   3556     // so they don't require it. This matches the comments on these traits in
   3557     // Table 49.
   3558   case UTT_IsConst:
   3559   case UTT_IsVolatile:
   3560   case UTT_IsSigned:
   3561   case UTT_IsUnsigned:
   3562 
   3563   // This type trait always returns false, checking the type is moot.
   3564   case UTT_IsInterfaceClass:
   3565     return true;
   3566 
   3567   // C++14 [meta.unary.prop]:
   3568   //   If T is a non-union class type, T shall be a complete type.
   3569   case UTT_IsEmpty:
   3570   case UTT_IsPolymorphic:
   3571   case UTT_IsAbstract:
   3572     if (const auto *RD = ArgTy->getAsCXXRecordDecl())
   3573       if (!RD->isUnion())
   3574         return !S.RequireCompleteType(
   3575             Loc, ArgTy, diag::err_incomplete_type_used_in_type_trait_expr);
   3576     return true;
   3577 
   3578   // C++14 [meta.unary.prop]:
   3579   //   If T is a class type, T shall be a complete type.
   3580   case UTT_IsFinal:
   3581   case UTT_IsSealed:
   3582     if (ArgTy->getAsCXXRecordDecl())
   3583       return !S.RequireCompleteType(
   3584           Loc, ArgTy, diag::err_incomplete_type_used_in_type_trait_expr);
   3585     return true;
   3586 
   3587   // C++0x [meta.unary.prop] Table 49 requires the following traits to be
   3588   // applied to a complete type.
   3589   case UTT_IsTrivial:
   3590   case UTT_IsTriviallyCopyable:
   3591   case UTT_IsStandardLayout:
   3592   case UTT_IsPOD:
   3593   case UTT_IsLiteral:
   3594 
   3595   case UTT_IsDestructible:
   3596   case UTT_IsNothrowDestructible:
   3597     // Fall-through
   3598 
   3599     // These trait expressions are designed to help implement predicates in
   3600     // [meta.unary.prop] despite not being named the same. They are specified
   3601     // by both GCC and the Embarcadero C++ compiler, and require the complete
   3602     // type due to the overarching C++0x type predicates being implemented
   3603     // requiring the complete type.
   3604   case UTT_HasNothrowAssign:
   3605   case UTT_HasNothrowMoveAssign:
   3606   case UTT_HasNothrowConstructor:
   3607   case UTT_HasNothrowCopy:
   3608   case UTT_HasTrivialAssign:
   3609   case UTT_HasTrivialMoveAssign:
   3610   case UTT_HasTrivialDefaultConstructor:
   3611   case UTT_HasTrivialMoveConstructor:
   3612   case UTT_HasTrivialCopy:
   3613   case UTT_HasTrivialDestructor:
   3614   case UTT_HasVirtualDestructor:
   3615     // Arrays of unknown bound are expressly allowed.
   3616     QualType ElTy = ArgTy;
   3617     if (ArgTy->isIncompleteArrayType())
   3618       ElTy = S.Context.getAsArrayType(ArgTy)->getElementType();
   3619 
   3620     // The void type is expressly allowed.
   3621     if (ElTy->isVoidType())
   3622       return true;
   3623 
   3624     return !S.RequireCompleteType(
   3625       Loc, ElTy, diag::err_incomplete_type_used_in_type_trait_expr);
   3626   }
   3627 }
   3628 
   3629 static bool HasNoThrowOperator(const RecordType *RT, OverloadedOperatorKind Op,
   3630                                Sema &Self, SourceLocation KeyLoc, ASTContext &C,
   3631                                bool (CXXRecordDecl::*HasTrivial)() const,
   3632                                bool (CXXRecordDecl::*HasNonTrivial)() const,
   3633                                bool (CXXMethodDecl::*IsDesiredOp)() const)
   3634 {
   3635   CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
   3636   if ((RD->*HasTrivial)() && !(RD->*HasNonTrivial)())
   3637     return true;
   3638 
   3639   DeclarationName Name = C.DeclarationNames.getCXXOperatorName(Op);
   3640   DeclarationNameInfo NameInfo(Name, KeyLoc);
   3641   LookupResult Res(Self, NameInfo, Sema::LookupOrdinaryName);
   3642   if (Self.LookupQualifiedName(Res, RD)) {
   3643     bool FoundOperator = false;
   3644     Res.suppressDiagnostics();
   3645     for (LookupResult::iterator Op = Res.begin(), OpEnd = Res.end();
   3646          Op != OpEnd; ++Op) {
   3647       if (isa<FunctionTemplateDecl>(*Op))
   3648         continue;
   3649 
   3650       CXXMethodDecl *Operator = cast<CXXMethodDecl>(*Op);
   3651       if((Operator->*IsDesiredOp)()) {
   3652         FoundOperator = true;
   3653         const FunctionProtoType *CPT =
   3654           Operator->getType()->getAs<FunctionProtoType>();
   3655         CPT = Self.ResolveExceptionSpec(KeyLoc, CPT);
   3656         if (!CPT || !CPT->isNothrow(C))
   3657           return false;
   3658       }
   3659     }
   3660     return FoundOperator;
   3661   }
   3662   return false;
   3663 }
   3664 
   3665 static bool EvaluateUnaryTypeTrait(Sema &Self, TypeTrait UTT,
   3666                                    SourceLocation KeyLoc, QualType T) {
   3667   assert(!T->isDependentType() && "Cannot evaluate traits of dependent type");
   3668 
   3669   ASTContext &C = Self.Context;
   3670   switch(UTT) {
   3671   default: llvm_unreachable("not a UTT");
   3672     // Type trait expressions corresponding to the primary type category
   3673     // predicates in C++0x [meta.unary.cat].
   3674   case UTT_IsVoid:
   3675     return T->isVoidType();
   3676   case UTT_IsIntegral:
   3677     return T->isIntegralType(C);
   3678   case UTT_IsFloatingPoint:
   3679     return T->isFloatingType();
   3680   case UTT_IsArray:
   3681     return T->isArrayType();
   3682   case UTT_IsPointer:
   3683     return T->isPointerType();
   3684   case UTT_IsLvalueReference:
   3685     return T->isLValueReferenceType();
   3686   case UTT_IsRvalueReference:
   3687     return T->isRValueReferenceType();
   3688   case UTT_IsMemberFunctionPointer:
   3689     return T->isMemberFunctionPointerType();
   3690   case UTT_IsMemberObjectPointer:
   3691     return T->isMemberDataPointerType();
   3692   case UTT_IsEnum:
   3693     return T->isEnumeralType();
   3694   case UTT_IsUnion:
   3695     return T->isUnionType();
   3696   case UTT_IsClass:
   3697     return T->isClassType() || T->isStructureType() || T->isInterfaceType();
   3698   case UTT_IsFunction:
   3699     return T->isFunctionType();
   3700 
   3701     // Type trait expressions which correspond to the convenient composition
   3702     // predicates in C++0x [meta.unary.comp].
   3703   case UTT_IsReference:
   3704     return T->isReferenceType();
   3705   case UTT_IsArithmetic:
   3706     return T->isArithmeticType() && !T->isEnumeralType();
   3707   case UTT_IsFundamental:
   3708     return T->isFundamentalType();
   3709   case UTT_IsObject:
   3710     return T->isObjectType();
   3711   case UTT_IsScalar:
   3712     // Note: semantic analysis depends on Objective-C lifetime types to be
   3713     // considered scalar types. However, such types do not actually behave
   3714     // like scalar types at run time (since they may require retain/release
   3715     // operations), so we report them as non-scalar.
   3716     if (T->isObjCLifetimeType()) {
   3717       switch (T.getObjCLifetime()) {
   3718       case Qualifiers::OCL_None:
   3719       case Qualifiers::OCL_ExplicitNone:
   3720         return true;
   3721 
   3722       case Qualifiers::OCL_Strong:
   3723       case Qualifiers::OCL_Weak:
   3724       case Qualifiers::OCL_Autoreleasing:
   3725         return false;
   3726       }
   3727     }
   3728 
   3729     return T->isScalarType();
   3730   case UTT_IsCompound:
   3731     return T->isCompoundType();
   3732   case UTT_IsMemberPointer:
   3733     return T->isMemberPointerType();
   3734 
   3735     // Type trait expressions which correspond to the type property predicates
   3736     // in C++0x [meta.unary.prop].
   3737   case UTT_IsConst:
   3738     return T.isConstQualified();
   3739   case UTT_IsVolatile:
   3740     return T.isVolatileQualified();
   3741   case UTT_IsTrivial:
   3742     return T.isTrivialType(C);
   3743   case UTT_IsTriviallyCopyable:
   3744     return T.isTriviallyCopyableType(C);
   3745   case UTT_IsStandardLayout:
   3746     return T->isStandardLayoutType();
   3747   case UTT_IsPOD:
   3748     return T.isPODType(C);
   3749   case UTT_IsLiteral:
   3750     return T->isLiteralType(C);
   3751   case UTT_IsEmpty:
   3752     if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
   3753       return !RD->isUnion() && RD->isEmpty();
   3754     return false;
   3755   case UTT_IsPolymorphic:
   3756     if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
   3757       return !RD->isUnion() && RD->isPolymorphic();
   3758     return false;
   3759   case UTT_IsAbstract:
   3760     if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
   3761       return !RD->isUnion() && RD->isAbstract();
   3762     return false;
   3763   // __is_interface_class only returns true when CL is invoked in /CLR mode and
   3764   // even then only when it is used with the 'interface struct ...' syntax
   3765   // Clang doesn't support /CLR which makes this type trait moot.
   3766   case UTT_IsInterfaceClass:
   3767     return false;
   3768   case UTT_IsFinal:
   3769   case UTT_IsSealed:
   3770     if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
   3771       return RD->hasAttr<FinalAttr>();
   3772     return false;
   3773   case UTT_IsSigned:
   3774     return T->isSignedIntegerType();
   3775   case UTT_IsUnsigned:
   3776     return T->isUnsignedIntegerType();
   3777 
   3778     // Type trait expressions which query classes regarding their construction,
   3779     // destruction, and copying. Rather than being based directly on the
   3780     // related type predicates in the standard, they are specified by both
   3781     // GCC[1] and the Embarcadero C++ compiler[2], and Clang implements those
   3782     // specifications.
   3783     //
   3784     //   1: http://gcc.gnu/.org/onlinedocs/gcc/Type-Traits.html
   3785     //   2: http://docwiki.embarcadero.com/RADStudio/XE/en/Type_Trait_Functions_(C%2B%2B0x)_Index
   3786     //
   3787     // Note that these builtins do not behave as documented in g++: if a class
   3788     // has both a trivial and a non-trivial special member of a particular kind,
   3789     // they return false! For now, we emulate this behavior.
   3790     // FIXME: This appears to be a g++ bug: more complex cases reveal that it
   3791     // does not correctly compute triviality in the presence of multiple special
   3792     // members of the same kind. Revisit this once the g++ bug is fixed.
   3793   case UTT_HasTrivialDefaultConstructor:
   3794     // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
   3795     //   If __is_pod (type) is true then the trait is true, else if type is
   3796     //   a cv class or union type (or array thereof) with a trivial default
   3797     //   constructor ([class.ctor]) then the trait is true, else it is false.
   3798     if (T.isPODType(C))
   3799       return true;
   3800     if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl())
   3801       return RD->hasTrivialDefaultConstructor() &&
   3802              !RD->hasNonTrivialDefaultConstructor();
   3803     return false;
   3804   case UTT_HasTrivialMoveConstructor:
   3805     //  This trait is implemented by MSVC 2012 and needed to parse the
   3806     //  standard library headers. Specifically this is used as the logic
   3807     //  behind std::is_trivially_move_constructible (20.9.4.3).
   3808     if (T.isPODType(C))
   3809       return true;
   3810     if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl())
   3811       return RD->hasTrivialMoveConstructor() && !RD->hasNonTrivialMoveConstructor();
   3812     return false;
   3813   case UTT_HasTrivialCopy:
   3814     // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
   3815     //   If __is_pod (type) is true or type is a reference type then
   3816     //   the trait is true, else if type is a cv class or union type
   3817     //   with a trivial copy constructor ([class.copy]) then the trait
   3818     //   is true, else it is false.
   3819     if (T.isPODType(C) || T->isReferenceType())
   3820       return true;
   3821     if (CXXRecordDecl *RD = T->getAsCXXRecordDecl())
   3822       return RD->hasTrivialCopyConstructor() &&
   3823              !RD->hasNonTrivialCopyConstructor();
   3824     return false;
   3825   case UTT_HasTrivialMoveAssign:
   3826     //  This trait is implemented by MSVC 2012 and needed to parse the
   3827     //  standard library headers. Specifically it is used as the logic
   3828     //  behind std::is_trivially_move_assignable (20.9.4.3)
   3829     if (T.isPODType(C))
   3830       return true;
   3831     if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl())
   3832       return RD->hasTrivialMoveAssignment() && !RD->hasNonTrivialMoveAssignment();
   3833     return false;
   3834   case UTT_HasTrivialAssign:
   3835     // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
   3836     //   If type is const qualified or is a reference type then the
   3837     //   trait is false. Otherwise if __is_pod (type) is true then the
   3838     //   trait is true, else if type is a cv class or union type with
   3839     //   a trivial copy assignment ([class.copy]) then the trait is
   3840     //   true, else it is false.
   3841     // Note: the const and reference restrictions are interesting,
   3842     // given that const and reference members don't prevent a class
   3843     // from having a trivial copy assignment operator (but do cause
   3844     // errors if the copy assignment operator is actually used, q.v.
   3845     // [class.copy]p12).
   3846 
   3847     if (T.isConstQualified())
   3848       return false;
   3849     if (T.isPODType(C))
   3850       return true;
   3851     if (CXXRecordDecl *RD = T->getAsCXXRecordDecl())
   3852       return RD->hasTrivialCopyAssignment() &&
   3853              !RD->hasNonTrivialCopyAssignment();
   3854     return false;
   3855   case UTT_IsDestructible:
   3856   case UTT_IsNothrowDestructible:
   3857     // C++14 [meta.unary.prop]:
   3858     //   For reference types, is_destructible<T>::value is true.
   3859     if (T->isReferenceType())
   3860       return true;
   3861 
   3862     // Objective-C++ ARC: autorelease types don't require destruction.
   3863     if (T->isObjCLifetimeType() &&
   3864         T.getObjCLifetime() == Qualifiers::OCL_Autoreleasing)
   3865       return true;
   3866 
   3867     // C++14 [meta.unary.prop]:
   3868     //   For incomplete types and function types, is_destructible<T>::value is
   3869     //   false.
   3870     if (T->isIncompleteType() || T->isFunctionType())
   3871       return false;
   3872 
   3873     // C++14 [meta.unary.prop]:
   3874     //   For object types and given U equal to remove_all_extents_t<T>, if the
   3875     //   expression std::declval<U&>().~U() is well-formed when treated as an
   3876     //   unevaluated operand (Clause 5), then is_destructible<T>::value is true
   3877     if (auto *RD = C.getBaseElementType(T)->getAsCXXRecordDecl()) {
   3878       CXXDestructorDecl *Destructor = Self.LookupDestructor(RD);
   3879       if (!Destructor)
   3880         return false;
   3881       //  C++14 [dcl.fct.def.delete]p2:
   3882       //    A program that refers to a deleted function implicitly or
   3883       //    explicitly, other than to declare it, is ill-formed.
   3884       if (Destructor->isDeleted())
   3885         return false;
   3886       if (C.getLangOpts().AccessControl && Destructor->getAccess() != AS_public)
   3887         return false;
   3888       if (UTT == UTT_IsNothrowDestructible) {
   3889         const FunctionProtoType *CPT =
   3890             Destructor->getType()->getAs<FunctionProtoType>();
   3891         CPT = Self.ResolveExceptionSpec(KeyLoc, CPT);
   3892         if (!CPT || !CPT->isNothrow(C))
   3893           return false;
   3894       }
   3895     }
   3896     return true;
   3897 
   3898   case UTT_HasTrivialDestructor:
   3899     // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html
   3900     //   If __is_pod (type) is true or type is a reference type
   3901     //   then the trait is true, else if type is a cv class or union
   3902     //   type (or array thereof) with a trivial destructor
   3903     //   ([class.dtor]) then the trait is true, else it is
   3904     //   false.
   3905     if (T.isPODType(C) || T->isReferenceType())
   3906       return true;
   3907 
   3908     // Objective-C++ ARC: autorelease types don't require destruction.
   3909     if (T->isObjCLifetimeType() &&
   3910         T.getObjCLifetime() == Qualifiers::OCL_Autoreleasing)
   3911       return true;
   3912 
   3913     if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl())
   3914       return RD->hasTrivialDestructor();
   3915     return false;
   3916   // TODO: Propagate nothrowness for implicitly declared special members.
   3917   case UTT_HasNothrowAssign:
   3918     // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
   3919     //   If type is const qualified or is a reference type then the
   3920     //   trait is false. Otherwise if __has_trivial_assign (type)
   3921     //   is true then the trait is true, else if type is a cv class
   3922     //   or union type with copy assignment operators that are known
   3923     //   not to throw an exception then the trait is true, else it is
   3924     //   false.
   3925     if (C.getBaseElementType(T).isConstQualified())
   3926       return false;
   3927     if (T->isReferenceType())
   3928       return false;
   3929     if (T.isPODType(C) || T->isObjCLifetimeType())
   3930       return true;
   3931 
   3932     if (const RecordType *RT = T->getAs<RecordType>())
   3933       return HasNoThrowOperator(RT, OO_Equal, Self, KeyLoc, C,
   3934                                 &CXXRecordDecl::hasTrivialCopyAssignment,
   3935                                 &CXXRecordDecl::hasNonTrivialCopyAssignment,
   3936                                 &CXXMethodDecl::isCopyAssignmentOperator);
   3937     return false;
   3938   case UTT_HasNothrowMoveAssign:
   3939     //  This trait is implemented by MSVC 2012 and needed to parse the
   3940     //  standard library headers. Specifically this is used as the logic
   3941     //  behind std::is_nothrow_move_assignable (20.9.4.3).
   3942     if (T.isPODType(C))
   3943       return true;
   3944 
   3945     if (const RecordType *RT = C.getBaseElementType(T)->getAs<RecordType>())
   3946       return HasNoThrowOperator(RT, OO_Equal, Self, KeyLoc, C,
   3947                                 &CXXRecordDecl::hasTrivialMoveAssignment,
   3948                                 &CXXRecordDecl::hasNonTrivialMoveAssignment,
   3949                                 &CXXMethodDecl::isMoveAssignmentOperator);
   3950     return false;
   3951   case UTT_HasNothrowCopy:
   3952     // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
   3953     //   If __has_trivial_copy (type) is true then the trait is true, else
   3954     //   if type is a cv class or union type with copy constructors that are
   3955     //   known not to throw an exception then the trait is true, else it is
   3956     //   false.
   3957     if (T.isPODType(C) || T->isReferenceType() || T->isObjCLifetimeType())
   3958       return true;
   3959     if (CXXRecordDecl *RD = T->getAsCXXRecordDecl()) {
   3960       if (RD->hasTrivialCopyConstructor() &&
   3961           !RD->hasNonTrivialCopyConstructor())
   3962         return true;
   3963 
   3964       bool FoundConstructor = false;
   3965       unsigned FoundTQs;
   3966       for (const auto *ND : Self.LookupConstructors(RD)) {
   3967         // A template constructor is never a copy constructor.
   3968         // FIXME: However, it may actually be selected at the actual overload
   3969         // resolution point.
   3970         if (isa<FunctionTemplateDecl>(ND))
   3971           continue;
   3972         const CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(ND);
   3973         if (Constructor->isCopyConstructor(FoundTQs)) {
   3974           FoundConstructor = true;
   3975           const FunctionProtoType *CPT
   3976               = Constructor->getType()->getAs<FunctionProtoType>();
   3977           CPT = Self.ResolveExceptionSpec(KeyLoc, CPT);
   3978           if (!CPT)
   3979             return false;
   3980           // TODO: check whether evaluating default arguments can throw.
   3981           // For now, we'll be conservative and assume that they can throw.
   3982           if (!CPT->isNothrow(C) || CPT->getNumParams() > 1)
   3983             return false;
   3984         }
   3985       }
   3986 
   3987       return FoundConstructor;
   3988     }
   3989     return false;
   3990   case UTT_HasNothrowConstructor:
   3991     // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html
   3992     //   If __has_trivial_constructor (type) is true then the trait is
   3993     //   true, else if type is a cv class or union type (or array
   3994     //   thereof) with a default constructor that is known not to
   3995     //   throw an exception then the trait is true, else it is false.
   3996     if (T.isPODType(C) || T->isObjCLifetimeType())
   3997       return true;
   3998     if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl()) {
   3999       if (RD->hasTrivialDefaultConstructor() &&
   4000           !RD->hasNonTrivialDefaultConstructor())
   4001         return true;
   4002 
   4003       bool FoundConstructor = false;
   4004       for (const auto *ND : Self.LookupConstructors(RD)) {
   4005         // FIXME: In C++0x, a constructor template can be a default constructor.
   4006         if (isa<FunctionTemplateDecl>(ND))
   4007           continue;
   4008         const CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(ND);
   4009         if (Constructor->isDefaultConstructor()) {
   4010           FoundConstructor = true;
   4011           const FunctionProtoType *CPT
   4012               = Constructor->getType()->getAs<FunctionProtoType>();
   4013           CPT = Self.ResolveExceptionSpec(KeyLoc, CPT);
   4014           if (!CPT)
   4015             return false;
   4016           // FIXME: check whether evaluating default arguments can throw.
   4017           // For now, we'll be conservative and assume that they can throw.
   4018           if (!CPT->isNothrow(C) || CPT->getNumParams() > 0)
   4019             return false;
   4020         }
   4021       }
   4022       return FoundConstructor;
   4023     }
   4024     return false;
   4025   case UTT_HasVirtualDestructor:
   4026     // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
   4027     //   If type is a class type with a virtual destructor ([class.dtor])
   4028     //   then the trait is true, else it is false.
   4029     if (CXXRecordDecl *RD = T->getAsCXXRecordDecl())
   4030       if (CXXDestructorDecl *Destructor = Self.LookupDestructor(RD))
   4031         return Destructor->isVirtual();
   4032     return false;
   4033 
   4034     // These type trait expressions are modeled on the specifications for the
   4035     // Embarcadero C++0x type trait functions:
   4036     //   http://docwiki.embarcadero.com/RADStudio/XE/en/Type_Trait_Functions_(C%2B%2B0x)_Index
   4037   case UTT_IsCompleteType:
   4038     // http://docwiki.embarcadero.com/RADStudio/XE/en/Is_complete_type_(typename_T_):
   4039     //   Returns True if and only if T is a complete type at the point of the
   4040     //   function call.
   4041     return !T->isIncompleteType();
   4042   }
   4043 }
   4044 
   4045 /// \brief Determine whether T has a non-trivial Objective-C lifetime in
   4046 /// ARC mode.
   4047 static bool hasNontrivialObjCLifetime(QualType T) {
   4048   switch (T.getObjCLifetime()) {
   4049   case Qualifiers::OCL_ExplicitNone:
   4050     return false;
   4051 
   4052   case Qualifiers::OCL_Strong:
   4053   case Qualifiers::OCL_Weak:
   4054   case Qualifiers::OCL_Autoreleasing:
   4055     return true;
   4056 
   4057   case Qualifiers::OCL_None:
   4058     return T->isObjCLifetimeType();
   4059   }
   4060 
   4061   llvm_unreachable("Unknown ObjC lifetime qualifier");
   4062 }
   4063 
   4064 static bool EvaluateBinaryTypeTrait(Sema &Self, TypeTrait BTT, QualType LhsT,
   4065                                     QualType RhsT, SourceLocation KeyLoc);
   4066 
   4067 static bool evaluateTypeTrait(Sema &S, TypeTrait Kind, SourceLocation KWLoc,
   4068                               ArrayRef<TypeSourceInfo *> Args,
   4069                               SourceLocation RParenLoc) {
   4070   if (Kind <= UTT_Last)
   4071     return EvaluateUnaryTypeTrait(S, Kind, KWLoc, Args[0]->getType());
   4072 
   4073   if (Kind <= BTT_Last)
   4074     return EvaluateBinaryTypeTrait(S, Kind, Args[0]->getType(),
   4075                                    Args[1]->getType(), RParenLoc);
   4076 
   4077   switch (Kind) {
   4078   case clang::TT_IsConstructible:
   4079   case clang::TT_IsNothrowConstructible:
   4080   case clang::TT_IsTriviallyConstructible: {
   4081     // C++11 [meta.unary.prop]:
   4082     //   is_trivially_constructible is defined as:
   4083     //
   4084     //     is_constructible<T, Args...>::value is true and the variable
   4085     //     definition for is_constructible, as defined below, is known to call
   4086     //     no operation that is not trivial.
   4087     //
   4088     //   The predicate condition for a template specialization
   4089     //   is_constructible<T, Args...> shall be satisfied if and only if the
   4090     //   following variable definition would be well-formed for some invented
   4091     //   variable t:
   4092     //
   4093     //     T t(create<Args>()...);
   4094     assert(!Args.empty());
   4095 
   4096     // Precondition: T and all types in the parameter pack Args shall be
   4097     // complete types, (possibly cv-qualified) void, or arrays of
   4098     // unknown bound.
   4099     for (const auto *TSI : Args) {
   4100       QualType ArgTy = TSI->getType();
   4101       if (ArgTy->isVoidType() || ArgTy->isIncompleteArrayType())
   4102         continue;
   4103 
   4104       if (S.RequireCompleteType(KWLoc, ArgTy,
   4105           diag::err_incomplete_type_used_in_type_trait_expr))
   4106         return false;
   4107     }
   4108 
   4109     // Make sure the first argument is not incomplete nor a function type.
   4110     QualType T = Args[0]->getType();
   4111     if (T->isIncompleteType() || T->isFunctionType())
   4112       return false;
   4113 
   4114     // Make sure the first argument is not an abstract type.
   4115     CXXRecordDecl *RD = T->getAsCXXRecordDecl();
   4116     if (RD && RD->isAbstract())
   4117       return false;
   4118 
   4119     SmallVector<OpaqueValueExpr, 2> OpaqueArgExprs;
   4120     SmallVector<Expr *, 2> ArgExprs;
   4121     ArgExprs.reserve(Args.size() - 1);
   4122     for (unsigned I = 1, N = Args.size(); I != N; ++I) {
   4123       QualType ArgTy = Args[I]->getType();
   4124       if (ArgTy->isObjectType() || ArgTy->isFunctionType())
   4125         ArgTy = S.Context.getRValueReferenceType(ArgTy);
   4126       OpaqueArgExprs.push_back(
   4127           OpaqueValueExpr(Args[I]->getTypeLoc().getLocStart(),
   4128                           ArgTy.getNonLValueExprType(S.Context),
   4129                           Expr::getValueKindForType(ArgTy)));
   4130     }
   4131     for (Expr &E : OpaqueArgExprs)
   4132       ArgExprs.push_back(&E);
   4133 
   4134     // Perform the initialization in an unevaluated context within a SFINAE
   4135     // trap at translation unit scope.
   4136     EnterExpressionEvaluationContext Unevaluated(S, Sema::Unevaluated);
   4137     Sema::SFINAETrap SFINAE(S, /*AccessCheckingSFINAE=*/true);
   4138     Sema::ContextRAII TUContext(S, S.Context.getTranslationUnitDecl());
   4139     InitializedEntity To(InitializedEntity::InitializeTemporary(Args[0]));
   4140     InitializationKind InitKind(InitializationKind::CreateDirect(KWLoc, KWLoc,
   4141                                                                  RParenLoc));
   4142     InitializationSequence Init(S, To, InitKind, ArgExprs);
   4143     if (Init.Failed())
   4144       return false;
   4145 
   4146     ExprResult Result = Init.Perform(S, To, InitKind, ArgExprs);
   4147     if (Result.isInvalid() || SFINAE.hasErrorOccurred())
   4148       return false;
   4149 
   4150     if (Kind == clang::TT_IsConstructible)
   4151       return true;
   4152 
   4153     if (Kind == clang::TT_IsNothrowConstructible)
   4154       return S.canThrow(Result.get()) == CT_Cannot;
   4155 
   4156     if (Kind == clang::TT_IsTriviallyConstructible) {
   4157       // Under Objective-C ARC, if the destination has non-trivial Objective-C
   4158       // lifetime, this is a non-trivial construction.
   4159       if (S.getLangOpts().ObjCAutoRefCount &&
   4160           hasNontrivialObjCLifetime(T.getNonReferenceType()))
   4161         return false;
   4162 
   4163       // The initialization succeeded; now make sure there are no non-trivial
   4164       // calls.
   4165       return !Result.get()->hasNonTrivialCall(S.Context);
   4166     }
   4167 
   4168     llvm_unreachable("unhandled type trait");
   4169     return false;
   4170   }
   4171     default: llvm_unreachable("not a TT");
   4172   }
   4173 
   4174   return false;
   4175 }
   4176 
   4177 ExprResult Sema::BuildTypeTrait(TypeTrait Kind, SourceLocation KWLoc,
   4178                                 ArrayRef<TypeSourceInfo *> Args,
   4179                                 SourceLocation RParenLoc) {
   4180   QualType ResultType = Context.getLogicalOperationType();
   4181 
   4182   if (Kind <= UTT_Last && !CheckUnaryTypeTraitTypeCompleteness(
   4183                                *this, Kind, KWLoc, Args[0]->getType()))
   4184     return ExprError();
   4185 
   4186   bool Dependent = false;
   4187   for (unsigned I = 0, N = Args.size(); I != N; ++I) {
   4188     if (Args[I]->getType()->isDependentType()) {
   4189       Dependent = true;
   4190       break;
   4191     }
   4192   }
   4193 
   4194   bool Result = false;
   4195   if (!Dependent)
   4196     Result = evaluateTypeTrait(*this, Kind, KWLoc, Args, RParenLoc);
   4197 
   4198   return TypeTraitExpr::Create(Context, ResultType, KWLoc, Kind, Args,
   4199                                RParenLoc, Result);
   4200 }
   4201 
   4202 ExprResult Sema::ActOnTypeTrait(TypeTrait Kind, SourceLocation KWLoc,
   4203                                 ArrayRef<ParsedType> Args,
   4204                                 SourceLocation RParenLoc) {
   4205   SmallVector<TypeSourceInfo *, 4> ConvertedArgs;
   4206   ConvertedArgs.reserve(Args.size());
   4207 
   4208   for (unsigned I = 0, N = Args.size(); I != N; ++I) {
   4209     TypeSourceInfo *TInfo;
   4210     QualType T = GetTypeFromParser(Args[I], &TInfo);
   4211     if (!TInfo)
   4212       TInfo = Context.getTrivialTypeSourceInfo(T, KWLoc);
   4213 
   4214     ConvertedArgs.push_back(TInfo);
   4215   }
   4216 
   4217   return BuildTypeTrait(Kind, KWLoc, ConvertedArgs, RParenLoc);
   4218 }
   4219 
   4220 static bool EvaluateBinaryTypeTrait(Sema &Self, TypeTrait BTT, QualType LhsT,
   4221                                     QualType RhsT, SourceLocation KeyLoc) {
   4222   assert(!LhsT->isDependentType() && !RhsT->isDependentType() &&
   4223          "Cannot evaluate traits of dependent types");
   4224 
   4225   switch(BTT) {
   4226   case BTT_IsBaseOf: {
   4227     // C++0x [meta.rel]p2
   4228     // Base is a base class of Derived without regard to cv-qualifiers or
   4229     // Base and Derived are not unions and name the same class type without
   4230     // regard to cv-qualifiers.
   4231 
   4232     const RecordType *lhsRecord = LhsT->getAs<RecordType>();
   4233     if (!lhsRecord) return false;
   4234 
   4235     const RecordType *rhsRecord = RhsT->getAs<RecordType>();
   4236     if (!rhsRecord) return false;
   4237 
   4238     assert(Self.Context.hasSameUnqualifiedType(LhsT, RhsT)
   4239              == (lhsRecord == rhsRecord));
   4240 
   4241     if (lhsRecord == rhsRecord)
   4242       return !lhsRecord->getDecl()->isUnion();
   4243 
   4244     // C++0x [meta.rel]p2:
   4245     //   If Base and Derived are class types and are different types
   4246     //   (ignoring possible cv-qualifiers) then Derived shall be a
   4247     //   complete type.
   4248     if (Self.RequireCompleteType(KeyLoc, RhsT,
   4249                           diag::err_incomplete_type_used_in_type_trait_expr))
   4250       return false;
   4251 
   4252     return cast<CXXRecordDecl>(rhsRecord->getDecl())
   4253       ->isDerivedFrom(cast<CXXRecordDecl>(lhsRecord->getDecl()));
   4254   }
   4255   case BTT_IsSame:
   4256     return Self.Context.hasSameType(LhsT, RhsT);
   4257   case BTT_TypeCompatible:
   4258     return Self.Context.typesAreCompatible(LhsT.getUnqualifiedType(),
   4259                                            RhsT.getUnqualifiedType());
   4260   case BTT_IsConvertible:
   4261   case BTT_IsConvertibleTo: {
   4262     // C++0x [meta.rel]p4:
   4263     //   Given the following function prototype:
   4264     //
   4265     //     template <class T>
   4266     //       typename add_rvalue_reference<T>::type create();
   4267     //
   4268     //   the predicate condition for a template specialization
   4269     //   is_convertible<From, To> shall be satisfied if and only if
   4270     //   the return expression in the following code would be
   4271     //   well-formed, including any implicit conversions to the return
   4272     //   type of the function:
   4273     //
   4274     //     To test() {
   4275     //       return create<From>();
   4276     //     }
   4277     //
   4278     //   Access checking is performed as if in a context unrelated to To and
   4279     //   From. Only the validity of the immediate context of the expression
   4280     //   of the return-statement (including conversions to the return type)
   4281     //   is considered.
   4282     //
   4283     // We model the initialization as a copy-initialization of a temporary
   4284     // of the appropriate type, which for this expression is identical to the
   4285     // return statement (since NRVO doesn't apply).
   4286 
   4287     // Functions aren't allowed to return function or array types.
   4288     if (RhsT->isFunctionType() || RhsT->isArrayType())
   4289       return false;
   4290 
   4291     // A return statement in a void function must have void type.
   4292     if (RhsT->isVoidType())
   4293       return LhsT->isVoidType();
   4294 
   4295     // A function definition requires a complete, non-abstract return type.
   4296     if (!Self.isCompleteType(KeyLoc, RhsT) || Self.isAbstractType(KeyLoc, RhsT))
   4297       return false;
   4298 
   4299     // Compute the result of add_rvalue_reference.
   4300     if (LhsT->isObjectType() || LhsT->isFunctionType())
   4301       LhsT = Self.Context.getRValueReferenceType(LhsT);
   4302 
   4303     // Build a fake source and destination for initialization.
   4304     InitializedEntity To(InitializedEntity::InitializeTemporary(RhsT));
   4305     OpaqueValueExpr From(KeyLoc, LhsT.getNonLValueExprType(Self.Context),
   4306                          Expr::getValueKindForType(LhsT));
   4307     Expr *FromPtr = &From;
   4308     InitializationKind Kind(InitializationKind::CreateCopy(KeyLoc,
   4309                                                            SourceLocation()));
   4310 
   4311     // Perform the initialization in an unevaluated context within a SFINAE
   4312     // trap at translation unit scope.
   4313     EnterExpressionEvaluationContext Unevaluated(Self, Sema::Unevaluated);
   4314     Sema::SFINAETrap SFINAE(Self, /*AccessCheckingSFINAE=*/true);
   4315     Sema::ContextRAII TUContext(Self, Self.Context.getTranslationUnitDecl());
   4316     InitializationSequence Init(Self, To, Kind, FromPtr);
   4317     if (Init.Failed())
   4318       return false;
   4319 
   4320     ExprResult Result = Init.Perform(Self, To, Kind, FromPtr);
   4321     return !Result.isInvalid() && !SFINAE.hasErrorOccurred();
   4322   }
   4323 
   4324   case BTT_IsNothrowAssignable:
   4325   case BTT_IsTriviallyAssignable: {
   4326     // C++11 [meta.unary.prop]p3:
   4327     //   is_trivially_assignable is defined as:
   4328     //     is_assignable<T, U>::value is true and the assignment, as defined by
   4329     //     is_assignable, is known to call no operation that is not trivial
   4330     //
   4331     //   is_assignable is defined as:
   4332     //     The expression declval<T>() = declval<U>() is well-formed when
   4333     //     treated as an unevaluated operand (Clause 5).
   4334     //
   4335     //   For both, T and U shall be complete types, (possibly cv-qualified)
   4336     //   void, or arrays of unknown bound.
   4337     if (!LhsT->isVoidType() && !LhsT->isIncompleteArrayType() &&
   4338         Self.RequireCompleteType(KeyLoc, LhsT,
   4339           diag::err_incomplete_type_used_in_type_trait_expr))
   4340       return false;
   4341     if (!RhsT->isVoidType() && !RhsT->isIncompleteArrayType() &&
   4342         Self.RequireCompleteType(KeyLoc, RhsT,
   4343           diag::err_incomplete_type_used_in_type_trait_expr))
   4344       return false;
   4345 
   4346     // cv void is never assignable.
   4347     if (LhsT->isVoidType() || RhsT->isVoidType())
   4348       return false;
   4349 
   4350     // Build expressions that emulate the effect of declval<T>() and
   4351     // declval<U>().
   4352     if (LhsT->isObjectType() || LhsT->isFunctionType())
   4353       LhsT = Self.Context.getRValueReferenceType(LhsT);
   4354     if (RhsT->isObjectType() || RhsT->isFunctionType())
   4355       RhsT = Self.Context.getRValueReferenceType(RhsT);
   4356     OpaqueValueExpr Lhs(KeyLoc, LhsT.getNonLValueExprType(Self.Context),
   4357                         Expr::getValueKindForType(LhsT));
   4358     OpaqueValueExpr Rhs(KeyLoc, RhsT.getNonLValueExprType(Self.Context),
   4359                         Expr::getValueKindForType(RhsT));
   4360 
   4361     // Attempt the assignment in an unevaluated context within a SFINAE
   4362     // trap at translation unit scope.
   4363     EnterExpressionEvaluationContext Unevaluated(Self, Sema::Unevaluated);
   4364     Sema::SFINAETrap SFINAE(Self, /*AccessCheckingSFINAE=*/true);
   4365     Sema::ContextRAII TUContext(Self, Self.Context.getTranslationUnitDecl());
   4366     ExprResult Result = Self.BuildBinOp(/*S=*/nullptr, KeyLoc, BO_Assign, &Lhs,
   4367                                         &Rhs);
   4368     if (Result.isInvalid() || SFINAE.hasErrorOccurred())
   4369       return false;
   4370 
   4371     if (BTT == BTT_IsNothrowAssignable)
   4372       return Self.canThrow(Result.get()) == CT_Cannot;
   4373 
   4374     if (BTT == BTT_IsTriviallyAssignable) {
   4375       // Under Objective-C ARC, if the destination has non-trivial Objective-C
   4376       // lifetime, this is a non-trivial assignment.
   4377       if (Self.getLangOpts().ObjCAutoRefCount &&
   4378           hasNontrivialObjCLifetime(LhsT.getNonReferenceType()))
   4379         return false;
   4380 
   4381       return !Result.get()->hasNonTrivialCall(Self.Context);
   4382     }
   4383 
   4384     llvm_unreachable("unhandled type trait");
   4385     return false;
   4386   }
   4387     default: llvm_unreachable("not a BTT");
   4388   }
   4389   llvm_unreachable("Unknown type trait or not implemented");
   4390 }
   4391 
   4392 ExprResult Sema::ActOnArrayTypeTrait(ArrayTypeTrait ATT,
   4393                                      SourceLocation KWLoc,
   4394                                      ParsedType Ty,
   4395                                      Expr* DimExpr,
   4396                                      SourceLocation RParen) {
   4397   TypeSourceInfo *TSInfo;
   4398   QualType T = GetTypeFromParser(Ty, &TSInfo);
   4399   if (!TSInfo)
   4400     TSInfo = Context.getTrivialTypeSourceInfo(T);
   4401 
   4402   return BuildArrayTypeTrait(ATT, KWLoc, TSInfo, DimExpr, RParen);
   4403 }
   4404 
   4405 static uint64_t EvaluateArrayTypeTrait(Sema &Self, ArrayTypeTrait ATT,
   4406                                            QualType T, Expr *DimExpr,
   4407                                            SourceLocation KeyLoc) {
   4408   assert(!T->isDependentType() && "Cannot evaluate traits of dependent type");
   4409 
   4410   switch(ATT) {
   4411   case ATT_ArrayRank:
   4412     if (T->isArrayType()) {
   4413       unsigned Dim = 0;
   4414       while (const ArrayType *AT = Self.Context.getAsArrayType(T)) {
   4415         ++Dim;
   4416         T = AT->getElementType();
   4417       }
   4418       return Dim;
   4419     }
   4420     return 0;
   4421 
   4422   case ATT_ArrayExtent: {
   4423     llvm::APSInt Value;
   4424     uint64_t Dim;
   4425     if (Self.VerifyIntegerConstantExpression(DimExpr, &Value,
   4426           diag::err_dimension_expr_not_constant_integer,
   4427           false).isInvalid())
   4428       return 0;
   4429     if (Value.isSigned() && Value.isNegative()) {
   4430       Self.Diag(KeyLoc, diag::err_dimension_expr_not_constant_integer)
   4431         << DimExpr->getSourceRange();
   4432       return 0;
   4433     }
   4434     Dim = Value.getLimitedValue();
   4435 
   4436     if (T->isArrayType()) {
   4437       unsigned D = 0;
   4438       bool Matched = false;
   4439       while (const ArrayType *AT = Self.Context.getAsArrayType(T)) {
   4440         if (Dim == D) {
   4441           Matched = true;
   4442           break;
   4443         }
   4444         ++D;
   4445         T = AT->getElementType();
   4446       }
   4447 
   4448       if (Matched && T->isArrayType()) {
   4449         if (const ConstantArrayType *CAT = Self.Context.getAsConstantArrayType(T))
   4450           return CAT->getSize().getLimitedValue();
   4451       }
   4452     }
   4453     return 0;
   4454   }
   4455   }
   4456   llvm_unreachable("Unknown type trait or not implemented");
   4457 }
   4458 
   4459 ExprResult Sema::BuildArrayTypeTrait(ArrayTypeTrait ATT,
   4460                                      SourceLocation KWLoc,
   4461                                      TypeSourceInfo *TSInfo,
   4462                                      Expr* DimExpr,
   4463                                      SourceLocation RParen) {
   4464   QualType T = TSInfo->getType();
   4465 
   4466   // FIXME: This should likely be tracked as an APInt to remove any host
   4467   // assumptions about the width of size_t on the target.
   4468   uint64_t Value = 0;
   4469   if (!T->isDependentType())
   4470     Value = EvaluateArrayTypeTrait(*this, ATT, T, DimExpr, KWLoc);
   4471 
   4472   // While the specification for these traits from the Embarcadero C++
   4473   // compiler's documentation says the return type is 'unsigned int', Clang
   4474   // returns 'size_t'. On Windows, the primary platform for the Embarcadero
   4475   // compiler, there is no difference. On several other platforms this is an
   4476   // important distinction.
   4477   return new (Context) ArrayTypeTraitExpr(KWLoc, ATT, TSInfo, Value, DimExpr,
   4478                                           RParen, Context.getSizeType());
   4479 }
   4480 
   4481 ExprResult Sema::ActOnExpressionTrait(ExpressionTrait ET,
   4482                                       SourceLocation KWLoc,
   4483                                       Expr *Queried,
   4484                                       SourceLocation RParen) {
   4485   // If error parsing the expression, ignore.
   4486   if (!Queried)
   4487     return ExprError();
   4488 
   4489   ExprResult Result = BuildExpressionTrait(ET, KWLoc, Queried, RParen);
   4490 
   4491   return Result;
   4492 }
   4493 
   4494 static bool EvaluateExpressionTrait(ExpressionTrait ET, Expr *E) {
   4495   switch (ET) {
   4496   case ET_IsLValueExpr: return E->isLValue();
   4497   case ET_IsRValueExpr: return E->isRValue();
   4498   }
   4499   llvm_unreachable("Expression trait not covered by switch");
   4500 }
   4501 
   4502 ExprResult Sema::BuildExpressionTrait(ExpressionTrait ET,
   4503                                       SourceLocation KWLoc,
   4504                                       Expr *Queried,
   4505                                       SourceLocation RParen) {
   4506   if (Queried->isTypeDependent()) {
   4507     // Delay type-checking for type-dependent expressions.
   4508   } else if (Queried->getType()->isPlaceholderType()) {
   4509     ExprResult PE = CheckPlaceholderExpr(Queried);
   4510     if (PE.isInvalid()) return ExprError();
   4511     return BuildExpressionTrait(ET, KWLoc, PE.get(), RParen);
   4512   }
   4513 
   4514   bool Value = EvaluateExpressionTrait(ET, Queried);
   4515 
   4516   return new (Context)
   4517       ExpressionTraitExpr(KWLoc, ET, Queried, Value, RParen, Context.BoolTy);
   4518 }
   4519 
   4520 QualType Sema::CheckPointerToMemberOperands(ExprResult &LHS, ExprResult &RHS,
   4521                                             ExprValueKind &VK,
   4522                                             SourceLocation Loc,
   4523                                             bool isIndirect) {
   4524   assert(!LHS.get()->getType()->isPlaceholderType() &&
   4525          !RHS.get()->getType()->isPlaceholderType() &&
   4526          "placeholders should have been weeded out by now");
   4527 
   4528   // The LHS undergoes lvalue conversions if this is ->*.
   4529   if (isIndirect) {
   4530     LHS = DefaultLvalueConversion(LHS.get());
   4531     if (LHS.isInvalid()) return QualType();
   4532   }
   4533 
   4534   // The RHS always undergoes lvalue conversions.
   4535   RHS = DefaultLvalueConversion(RHS.get());
   4536   if (RHS.isInvalid()) return QualType();
   4537 
   4538   const char *OpSpelling = isIndirect ? "->*" : ".*";
   4539   // C++ 5.5p2
   4540   //   The binary operator .* [p3: ->*] binds its second operand, which shall
   4541   //   be of type "pointer to member of T" (where T is a completely-defined
   4542   //   class type) [...]
   4543   QualType RHSType = RHS.get()->getType();
   4544   const MemberPointerType *MemPtr = RHSType->getAs<MemberPointerType>();
   4545   if (!MemPtr) {
   4546     Diag(Loc, diag::err_bad_memptr_rhs)
   4547       << OpSpelling << RHSType << RHS.get()->getSourceRange();
   4548     return QualType();
   4549   }
   4550 
   4551   QualType Class(MemPtr->getClass(), 0);
   4552 
   4553   // Note: C++ [expr.mptr.oper]p2-3 says that the class type into which the
   4554   // member pointer points must be completely-defined. However, there is no
   4555   // reason for this semantic distinction, and the rule is not enforced by
   4556   // other compilers. Therefore, we do not check this property, as it is
   4557   // likely to be considered a defect.
   4558 
   4559   // C++ 5.5p2
   4560   //   [...] to its first operand, which shall be of class T or of a class of
   4561   //   which T is an unambiguous and accessible base class. [p3: a pointer to
   4562   //   such a class]
   4563   QualType LHSType = LHS.get()->getType();
   4564   if (isIndirect) {
   4565     if (const PointerType *Ptr = LHSType->getAs<PointerType>())
   4566       LHSType = Ptr->getPointeeType();
   4567     else {
   4568       Diag(Loc, diag::err_bad_memptr_lhs)
   4569         << OpSpelling << 1 << LHSType
   4570         << FixItHint::CreateReplacement(SourceRange(Loc), ".*");
   4571       return QualType();
   4572     }
   4573   }
   4574 
   4575   if (!Context.hasSameUnqualifiedType(Class, LHSType)) {
   4576     // If we want to check the hierarchy, we need a complete type.
   4577     if (RequireCompleteType(Loc, LHSType, diag::err_bad_memptr_lhs,
   4578                             OpSpelling, (int)isIndirect)) {
   4579       return QualType();
   4580     }
   4581 
   4582     if (!IsDerivedFrom(Loc, LHSType, Class)) {
   4583       Diag(Loc, diag::err_bad_memptr_lhs) << OpSpelling
   4584         << (int)isIndirect << LHS.get()->getType();
   4585       return QualType();
   4586     }
   4587 
   4588     CXXCastPath BasePath;
   4589     if (CheckDerivedToBaseConversion(LHSType, Class, Loc,
   4590                                      SourceRange(LHS.get()->getLocStart(),
   4591                                                  RHS.get()->getLocEnd()),
   4592                                      &BasePath))
   4593       return QualType();
   4594 
   4595     // Cast LHS to type of use.
   4596     QualType UseType = isIndirect ? Context.getPointerType(Class) : Class;
   4597     ExprValueKind VK = isIndirect ? VK_RValue : LHS.get()->getValueKind();
   4598     LHS = ImpCastExprToType(LHS.get(), UseType, CK_DerivedToBase, VK,
   4599                             &BasePath);
   4600   }
   4601 
   4602   if (isa<CXXScalarValueInitExpr>(RHS.get()->IgnoreParens())) {
   4603     // Diagnose use of pointer-to-member type which when used as
   4604     // the functional cast in a pointer-to-member expression.
   4605     Diag(Loc, diag::err_pointer_to_member_type) << isIndirect;
   4606      return QualType();
   4607   }
   4608 
   4609   // C++ 5.5p2
   4610   //   The result is an object or a function of the type specified by the
   4611   //   second operand.
   4612   // The cv qualifiers are the union of those in the pointer and the left side,
   4613   // in accordance with 5.5p5 and 5.2.5.
   4614   QualType Result = MemPtr->getPointeeType();
   4615   Result = Context.getCVRQualifiedType(Result, LHSType.getCVRQualifiers());
   4616 
   4617   // C++0x [expr.mptr.oper]p6:
   4618   //   In a .* expression whose object expression is an rvalue, the program is
   4619   //   ill-formed if the second operand is a pointer to member function with
   4620   //   ref-qualifier &. In a ->* expression or in a .* expression whose object
   4621   //   expression is an lvalue, the program is ill-formed if the second operand
   4622   //   is a pointer to member function with ref-qualifier &&.
   4623   if (const FunctionProtoType *Proto = Result->getAs<FunctionProtoType>()) {
   4624     switch (Proto->getRefQualifier()) {
   4625     case RQ_None:
   4626       // Do nothing
   4627       break;
   4628 
   4629     case RQ_LValue:
   4630       if (!isIndirect && !LHS.get()->Classify(Context).isLValue())
   4631         Diag(Loc, diag::err_pointer_to_member_oper_value_classify)
   4632           << RHSType << 1 << LHS.get()->getSourceRange();
   4633       break;
   4634 
   4635     case RQ_RValue:
   4636       if (isIndirect || !LHS.get()->Classify(Context).isRValue())
   4637         Diag(Loc, diag::err_pointer_to_member_oper_value_classify)
   4638           << RHSType << 0 << LHS.get()->getSourceRange();
   4639       break;
   4640     }
   4641   }
   4642 
   4643   // C++ [expr.mptr.oper]p6:
   4644   //   The result of a .* expression whose second operand is a pointer
   4645   //   to a data member is of the same value category as its
   4646   //   first operand. The result of a .* expression whose second
   4647   //   operand is a pointer to a member function is a prvalue. The
   4648   //   result of an ->* expression is an lvalue if its second operand
   4649   //   is a pointer to data member and a prvalue otherwise.
   4650   if (Result->isFunctionType()) {
   4651     VK = VK_RValue;
   4652     return Context.BoundMemberTy;
   4653   } else if (isIndirect) {
   4654     VK = VK_LValue;
   4655   } else {
   4656     VK = LHS.get()->getValueKind();
   4657   }
   4658 
   4659   return Result;
   4660 }
   4661 
   4662 /// \brief Try to convert a type to another according to C++0x 5.16p3.
   4663 ///
   4664 /// This is part of the parameter validation for the ? operator. If either
   4665 /// value operand is a class type, the two operands are attempted to be
   4666 /// converted to each other. This function does the conversion in one direction.
   4667 /// It returns true if the program is ill-formed and has already been diagnosed
   4668 /// as such.
   4669 static bool TryClassUnification(Sema &Self, Expr *From, Expr *To,
   4670                                 SourceLocation QuestionLoc,
   4671                                 bool &HaveConversion,
   4672                                 QualType &ToType) {
   4673   HaveConversion = false;
   4674   ToType = To->getType();
   4675 
   4676   InitializationKind Kind = InitializationKind::CreateCopy(To->getLocStart(),
   4677                                                            SourceLocation());
   4678   // C++0x 5.16p3
   4679   //   The process for determining whether an operand expression E1 of type T1
   4680   //   can be converted to match an operand expression E2 of type T2 is defined
   4681   //   as follows:
   4682   //   -- If E2 is an lvalue:
   4683   bool ToIsLvalue = To->isLValue();
   4684   if (ToIsLvalue) {
   4685     //   E1 can be converted to match E2 if E1 can be implicitly converted to
   4686     //   type "lvalue reference to T2", subject to the constraint that in the
   4687     //   conversion the reference must bind directly to E1.
   4688     QualType T = Self.Context.getLValueReferenceType(ToType);
   4689     InitializedEntity Entity = InitializedEntity::InitializeTemporary(T);
   4690 
   4691     InitializationSequence InitSeq(Self, Entity, Kind, From);
   4692     if (InitSeq.isDirectReferenceBinding()) {
   4693       ToType = T;
   4694       HaveConversion = true;
   4695       return false;
   4696     }
   4697 
   4698     if (InitSeq.isAmbiguous())
   4699       return InitSeq.Diagnose(Self, Entity, Kind, From);
   4700   }
   4701 
   4702   //   -- If E2 is an rvalue, or if the conversion above cannot be done:
   4703   //      -- if E1 and E2 have class type, and the underlying class types are
   4704   //         the same or one is a base class of the other:
   4705   QualType FTy = From->getType();
   4706   QualType TTy = To->getType();
   4707   const RecordType *FRec = FTy->getAs<RecordType>();
   4708   const RecordType *TRec = TTy->getAs<RecordType>();
   4709   bool FDerivedFromT = FRec && TRec && FRec != TRec &&
   4710                        Self.IsDerivedFrom(QuestionLoc, FTy, TTy);
   4711   if (FRec && TRec && (FRec == TRec || FDerivedFromT ||
   4712                        Self.IsDerivedFrom(QuestionLoc, TTy, FTy))) {
   4713     //         E1 can be converted to match E2 if the class of T2 is the
   4714     //         same type as, or a base class of, the class of T1, and
   4715     //         [cv2 > cv1].
   4716     if (FRec == TRec || FDerivedFromT) {
   4717       if (TTy.isAtLeastAsQualifiedAs(FTy)) {
   4718         InitializedEntity Entity = InitializedEntity::InitializeTemporary(TTy);
   4719         InitializationSequence InitSeq(Self, Entity, Kind, From);
   4720         if (InitSeq) {
   4721           HaveConversion = true;
   4722           return false;
   4723         }
   4724 
   4725         if (InitSeq.isAmbiguous())
   4726           return InitSeq.Diagnose(Self, Entity, Kind, From);
   4727       }
   4728     }
   4729 
   4730     return false;
   4731   }
   4732 
   4733   //     -- Otherwise: E1 can be converted to match E2 if E1 can be
   4734   //        implicitly converted to the type that expression E2 would have
   4735   //        if E2 were converted to an rvalue (or the type it has, if E2 is
   4736   //        an rvalue).
   4737   //
   4738   // This actually refers very narrowly to the lvalue-to-rvalue conversion, not
   4739   // to the array-to-pointer or function-to-pointer conversions.
   4740   if (!TTy->getAs<TagType>())
   4741     TTy = TTy.getUnqualifiedType();
   4742 
   4743   InitializedEntity Entity = InitializedEntity::InitializeTemporary(TTy);
   4744   InitializationSequence InitSeq(Self, Entity, Kind, From);
   4745   HaveConversion = !InitSeq.Failed();
   4746   ToType = TTy;
   4747   if (InitSeq.isAmbiguous())
   4748     return InitSeq.Diagnose(Self, Entity, Kind, From);
   4749 
   4750   return false;
   4751 }
   4752 
   4753 /// \brief Try to find a common type for two according to C++0x 5.16p5.
   4754 ///
   4755 /// This is part of the parameter validation for the ? operator. If either
   4756 /// value operand is a class type, overload resolution is used to find a
   4757 /// conversion to a common type.
   4758 static bool FindConditionalOverload(Sema &Self, ExprResult &LHS, ExprResult &RHS,
   4759                                     SourceLocation QuestionLoc) {
   4760   Expr *Args[2] = { LHS.get(), RHS.get() };
   4761   OverloadCandidateSet CandidateSet(QuestionLoc,
   4762                                     OverloadCandidateSet::CSK_Operator);
   4763   Self.AddBuiltinOperatorCandidates(OO_Conditional, QuestionLoc, Args,
   4764                                     CandidateSet);
   4765 
   4766   OverloadCandidateSet::iterator Best;
   4767   switch (CandidateSet.BestViableFunction(Self, QuestionLoc, Best)) {
   4768     case OR_Success: {
   4769       // We found a match. Perform the conversions on the arguments and move on.
   4770       ExprResult LHSRes =
   4771         Self.PerformImplicitConversion(LHS.get(), Best->BuiltinTypes.ParamTypes[0],
   4772                                        Best->Conversions[0], Sema::AA_Converting);
   4773       if (LHSRes.isInvalid())
   4774         break;
   4775       LHS = LHSRes;
   4776 
   4777       ExprResult RHSRes =
   4778         Self.PerformImplicitConversion(RHS.get(), Best->BuiltinTypes.ParamTypes[1],
   4779                                        Best->Conversions[1], Sema::AA_Converting);
   4780       if (RHSRes.isInvalid())
   4781         break;
   4782       RHS = RHSRes;
   4783       if (Best->Function)
   4784         Self.MarkFunctionReferenced(QuestionLoc, Best->Function);
   4785       return false;
   4786     }
   4787 
   4788     case OR_No_Viable_Function:
   4789 
   4790       // Emit a better diagnostic if one of the expressions is a null pointer
   4791       // constant and the other is a pointer type. In this case, the user most
   4792       // likely forgot to take the address of the other expression.
   4793       if (Self.DiagnoseConditionalForNull(LHS.get(), RHS.get(), QuestionLoc))
   4794         return true;
   4795 
   4796       Self.Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
   4797         << LHS.get()->getType() << RHS.get()->getType()
   4798         << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
   4799       return true;
   4800 
   4801     case OR_Ambiguous:
   4802       Self.Diag(QuestionLoc, diag::err_conditional_ambiguous_ovl)
   4803         << LHS.get()->getType() << RHS.get()->getType()
   4804         << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
   4805       // FIXME: Print the possible common types by printing the return types of
   4806       // the viable candidates.
   4807       break;
   4808 
   4809     case OR_Deleted:
   4810       llvm_unreachable("Conditional operator has only built-in overloads");
   4811   }
   4812   return true;
   4813 }
   4814 
   4815 /// \brief Perform an "extended" implicit conversion as returned by
   4816 /// TryClassUnification.
   4817 static bool ConvertForConditional(Sema &Self, ExprResult &E, QualType T) {
   4818   InitializedEntity Entity = InitializedEntity::InitializeTemporary(T);
   4819   InitializationKind Kind = InitializationKind::CreateCopy(E.get()->getLocStart(),
   4820                                                            SourceLocation());
   4821   Expr *Arg = E.get();
   4822   InitializationSequence InitSeq(Self, Entity, Kind, Arg);
   4823   ExprResult Result = InitSeq.Perform(Self, Entity, Kind, Arg);
   4824   if (Result.isInvalid())
   4825     return true;
   4826 
   4827   E = Result;
   4828   return false;
   4829 }
   4830 
   4831 /// \brief Check the operands of ?: under C++ semantics.
   4832 ///
   4833 /// See C++ [expr.cond]. Note that LHS is never null, even for the GNU x ?: y
   4834 /// extension. In this case, LHS == Cond. (But they're not aliases.)
   4835 QualType Sema::CXXCheckConditionalOperands(ExprResult &Cond, ExprResult &LHS,
   4836                                            ExprResult &RHS, ExprValueKind &VK,
   4837                                            ExprObjectKind &OK,
   4838                                            SourceLocation QuestionLoc) {
   4839   // FIXME: Handle C99's complex types, vector types, block pointers and Obj-C++
   4840   // interface pointers.
   4841 
   4842   // C++11 [expr.cond]p1
   4843   //   The first expression is contextually converted to bool.
   4844   if (!Cond.get()->isTypeDependent()) {
   4845     ExprResult CondRes = CheckCXXBooleanCondition(Cond.get());
   4846     if (CondRes.isInvalid())
   4847       return QualType();
   4848     Cond = CondRes;
   4849   }
   4850 
   4851   // Assume r-value.
   4852   VK = VK_RValue;
   4853   OK = OK_Ordinary;
   4854 
   4855   // Either of the arguments dependent?
   4856   if (LHS.get()->isTypeDependent() || RHS.get()->isTypeDependent())
   4857     return Context.DependentTy;
   4858 
   4859   // C++11 [expr.cond]p2
   4860   //   If either the second or the third operand has type (cv) void, ...
   4861   QualType LTy = LHS.get()->getType();
   4862   QualType RTy = RHS.get()->getType();
   4863   bool LVoid = LTy->isVoidType();
   4864   bool RVoid = RTy->isVoidType();
   4865   if (LVoid || RVoid) {
   4866     //   ... one of the following shall hold:
   4867     //   -- The second or the third operand (but not both) is a (possibly
   4868     //      parenthesized) throw-expression; the result is of the type
   4869     //      and value category of the other.
   4870     bool LThrow = isa<CXXThrowExpr>(LHS.get()->IgnoreParenImpCasts());
   4871     bool RThrow = isa<CXXThrowExpr>(RHS.get()->IgnoreParenImpCasts());
   4872     if (LThrow != RThrow) {
   4873       Expr *NonThrow = LThrow ? RHS.get() : LHS.get();
   4874       VK = NonThrow->getValueKind();
   4875       // DR (no number yet): the result is a bit-field if the
   4876       // non-throw-expression operand is a bit-field.
   4877       OK = NonThrow->getObjectKind();
   4878       return NonThrow->getType();
   4879     }
   4880 
   4881     //   -- Both the second and third operands have type void; the result is of
   4882     //      type void and is a prvalue.
   4883     if (LVoid && RVoid)
   4884       return Context.VoidTy;
   4885 
   4886     // Neither holds, error.
   4887     Diag(QuestionLoc, diag::err_conditional_void_nonvoid)
   4888       << (LVoid ? RTy : LTy) << (LVoid ? 0 : 1)
   4889       << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
   4890     return QualType();
   4891   }
   4892 
   4893   // Neither is void.
   4894 
   4895   // C++11 [expr.cond]p3
   4896   //   Otherwise, if the second and third operand have different types, and
   4897   //   either has (cv) class type [...] an attempt is made to convert each of
   4898   //   those operands to the type of the other.
   4899   if (!Context.hasSameType(LTy, RTy) &&
   4900       (LTy->isRecordType() || RTy->isRecordType())) {
   4901     // These return true if a single direction is already ambiguous.
   4902     QualType L2RType, R2LType;
   4903     bool HaveL2R, HaveR2L;
   4904     if (TryClassUnification(*this, LHS.get(), RHS.get(), QuestionLoc, HaveL2R, L2RType))
   4905       return QualType();
   4906     if (TryClassUnification(*this, RHS.get(), LHS.get(), QuestionLoc, HaveR2L, R2LType))
   4907       return QualType();
   4908 
   4909     //   If both can be converted, [...] the program is ill-formed.
   4910     if (HaveL2R && HaveR2L) {
   4911       Diag(QuestionLoc, diag::err_conditional_ambiguous)
   4912         << LTy << RTy << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
   4913       return QualType();
   4914     }
   4915 
   4916     //   If exactly one conversion is possible, that conversion is applied to
   4917     //   the chosen operand and the converted operands are used in place of the
   4918     //   original operands for the remainder of this section.
   4919     if (HaveL2R) {
   4920       if (ConvertForConditional(*this, LHS, L2RType) || LHS.isInvalid())
   4921         return QualType();
   4922       LTy = LHS.get()->getType();
   4923     } else if (HaveR2L) {
   4924       if (ConvertForConditional(*this, RHS, R2LType) || RHS.isInvalid())
   4925         return QualType();
   4926       RTy = RHS.get()->getType();
   4927     }
   4928   }
   4929 
   4930   // C++11 [expr.cond]p3
   4931   //   if both are glvalues of the same value category and the same type except
   4932   //   for cv-qualification, an attempt is made to convert each of those
   4933   //   operands to the type of the other.
   4934   ExprValueKind LVK = LHS.get()->getValueKind();
   4935   ExprValueKind RVK = RHS.get()->getValueKind();
   4936   if (!Context.hasSameType(LTy, RTy) &&
   4937       Context.hasSameUnqualifiedType(LTy, RTy) &&
   4938       LVK == RVK && LVK != VK_RValue) {
   4939     // Since the unqualified types are reference-related and we require the
   4940     // result to be as if a reference bound directly, the only conversion
   4941     // we can perform is to add cv-qualifiers.
   4942     Qualifiers LCVR = Qualifiers::fromCVRMask(LTy.getCVRQualifiers());
   4943     Qualifiers RCVR = Qualifiers::fromCVRMask(RTy.getCVRQualifiers());
   4944     if (RCVR.isStrictSupersetOf(LCVR)) {
   4945       LHS = ImpCastExprToType(LHS.get(), RTy, CK_NoOp, LVK);
   4946       LTy = LHS.get()->getType();
   4947     }
   4948     else if (LCVR.isStrictSupersetOf(RCVR)) {
   4949       RHS = ImpCastExprToType(RHS.get(), LTy, CK_NoOp, RVK);
   4950       RTy = RHS.get()->getType();
   4951     }
   4952   }
   4953 
   4954   // C++11 [expr.cond]p4
   4955   //   If the second and third operands are glvalues of the same value
   4956   //   category and have the same type, the result is of that type and
   4957   //   value category and it is a bit-field if the second or the third
   4958   //   operand is a bit-field, or if both are bit-fields.
   4959   // We only extend this to bitfields, not to the crazy other kinds of
   4960   // l-values.
   4961   bool Same = Context.hasSameType(LTy, RTy);
   4962   if (Same && LVK == RVK && LVK != VK_RValue &&
   4963       LHS.get()->isOrdinaryOrBitFieldObject() &&
   4964       RHS.get()->isOrdinaryOrBitFieldObject()) {
   4965     VK = LHS.get()->getValueKind();
   4966     if (LHS.get()->getObjectKind() == OK_BitField ||
   4967         RHS.get()->getObjectKind() == OK_BitField)
   4968       OK = OK_BitField;
   4969     return LTy;
   4970   }
   4971 
   4972   // C++11 [expr.cond]p5
   4973   //   Otherwise, the result is a prvalue. If the second and third operands
   4974   //   do not have the same type, and either has (cv) class type, ...
   4975   if (!Same && (LTy->isRecordType() || RTy->isRecordType())) {
   4976     //   ... overload resolution is used to determine the conversions (if any)
   4977     //   to be applied to the operands. If the overload resolution fails, the
   4978     //   program is ill-formed.
   4979     if (FindConditionalOverload(*this, LHS, RHS, QuestionLoc))
   4980       return QualType();
   4981   }
   4982 
   4983   // C++11 [expr.cond]p6
   4984   //   Lvalue-to-rvalue, array-to-pointer, and function-to-pointer standard
   4985   //   conversions are performed on the second and third operands.
   4986   LHS = DefaultFunctionArrayLvalueConversion(LHS.get());
   4987   RHS = DefaultFunctionArrayLvalueConversion(RHS.get());
   4988   if (LHS.isInvalid() || RHS.isInvalid())
   4989     return QualType();
   4990   LTy = LHS.get()->getType();
   4991   RTy = RHS.get()->getType();
   4992 
   4993   //   After those conversions, one of the following shall hold:
   4994   //   -- The second and third operands have the same type; the result
   4995   //      is of that type. If the operands have class type, the result
   4996   //      is a prvalue temporary of the result type, which is
   4997   //      copy-initialized from either the second operand or the third
   4998   //      operand depending on the value of the first operand.
   4999   if (Context.getCanonicalType(LTy) == Context.getCanonicalType(RTy)) {
   5000     if (LTy->isRecordType()) {
   5001       // The operands have class type. Make a temporary copy.
   5002       if (RequireNonAbstractType(QuestionLoc, LTy,
   5003                                  diag::err_allocation_of_abstract_type))
   5004         return QualType();
   5005       InitializedEntity Entity = InitializedEntity::InitializeTemporary(LTy);
   5006 
   5007       ExprResult LHSCopy = PerformCopyInitialization(Entity,
   5008                                                      SourceLocation(),
   5009                                                      LHS);
   5010       if (LHSCopy.isInvalid())
   5011         return QualType();
   5012 
   5013       ExprResult RHSCopy = PerformCopyInitialization(Entity,
   5014                                                      SourceLocation(),
   5015                                                      RHS);
   5016       if (RHSCopy.isInvalid())
   5017         return QualType();
   5018 
   5019       LHS = LHSCopy;
   5020       RHS = RHSCopy;
   5021     }
   5022 
   5023     return LTy;
   5024   }
   5025 
   5026   // Extension: conditional operator involving vector types.
   5027   if (LTy->isVectorType() || RTy->isVectorType())
   5028     return CheckVectorOperands(LHS, RHS, QuestionLoc, /*isCompAssign*/false,
   5029                                /*AllowBothBool*/true,
   5030                                /*AllowBoolConversions*/false);
   5031 
   5032   //   -- The second and third operands have arithmetic or enumeration type;
   5033   //      the usual arithmetic conversions are performed to bring them to a
   5034   //      common type, and the result is of that type.
   5035   if (LTy->isArithmeticType() && RTy->isArithmeticType()) {
   5036     QualType ResTy = UsualArithmeticConversions(LHS, RHS);
   5037     if (LHS.isInvalid() || RHS.isInvalid())
   5038       return QualType();
   5039 
   5040     LHS = ImpCastExprToType(LHS.get(), ResTy, PrepareScalarCast(LHS, ResTy));
   5041     RHS = ImpCastExprToType(RHS.get(), ResTy, PrepareScalarCast(RHS, ResTy));
   5042 
   5043     return ResTy;
   5044   }
   5045 
   5046   //   -- The second and third operands have pointer type, or one has pointer
   5047   //      type and the other is a null pointer constant, or both are null
   5048   //      pointer constants, at least one of which is non-integral; pointer
   5049   //      conversions and qualification conversions are performed to bring them
   5050   //      to their composite pointer type. The result is of the composite
   5051   //      pointer type.
   5052   //   -- The second and third operands have pointer to member type, or one has
   5053   //      pointer to member type and the other is a null pointer constant;
   5054   //      pointer to member conversions and qualification conversions are
   5055   //      performed to bring them to a common type, whose cv-qualification
   5056   //      shall match the cv-qualification of either the second or the third
   5057   //      operand. The result is of the common type.
   5058   bool NonStandardCompositeType = false;
   5059   QualType Composite = FindCompositePointerType(QuestionLoc, LHS, RHS,
   5060                                  isSFINAEContext() ? nullptr
   5061                                                    : &NonStandardCompositeType);
   5062   if (!Composite.isNull()) {
   5063     if (NonStandardCompositeType)
   5064       Diag(QuestionLoc,
   5065            diag::ext_typecheck_cond_incompatible_operands_nonstandard)
   5066         << LTy << RTy << Composite
   5067         << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
   5068 
   5069     return Composite;
   5070   }
   5071 
   5072   // Similarly, attempt to find composite type of two objective-c pointers.
   5073   Composite = FindCompositeObjCPointerType(LHS, RHS, QuestionLoc);
   5074   if (!Composite.isNull())
   5075     return Composite;
   5076 
   5077   // Check if we are using a null with a non-pointer type.
   5078   if (DiagnoseConditionalForNull(LHS.get(), RHS.get(), QuestionLoc))
   5079     return QualType();
   5080 
   5081   Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
   5082     << LHS.get()->getType() << RHS.get()->getType()
   5083     << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
   5084   return QualType();
   5085 }
   5086 
   5087 /// \brief Find a merged pointer type and convert the two expressions to it.
   5088 ///
   5089 /// This finds the composite pointer type (or member pointer type) for @p E1
   5090 /// and @p E2 according to C++11 5.9p2. It converts both expressions to this
   5091 /// type and returns it.
   5092 /// It does not emit diagnostics.
   5093 ///
   5094 /// \param Loc The location of the operator requiring these two expressions to
   5095 /// be converted to the composite pointer type.
   5096 ///
   5097 /// If \p NonStandardCompositeType is non-NULL, then we are permitted to find
   5098 /// a non-standard (but still sane) composite type to which both expressions
   5099 /// can be converted. When such a type is chosen, \c *NonStandardCompositeType
   5100 /// will be set true.
   5101 QualType Sema::FindCompositePointerType(SourceLocation Loc,
   5102                                         Expr *&E1, Expr *&E2,
   5103                                         bool *NonStandardCompositeType) {
   5104   if (NonStandardCompositeType)
   5105     *NonStandardCompositeType = false;
   5106 
   5107   assert(getLangOpts().CPlusPlus && "This function assumes C++");
   5108   QualType T1 = E1->getType(), T2 = E2->getType();
   5109 
   5110   // C++11 5.9p2
   5111   //   Pointer conversions and qualification conversions are performed on
   5112   //   pointer operands to bring them to their composite pointer type. If
   5113   //   one operand is a null pointer constant, the composite pointer type is
   5114   //   std::nullptr_t if the other operand is also a null pointer constant or,
   5115   //   if the other operand is a pointer, the type of the other operand.
   5116   if (!T1->isAnyPointerType() && !T1->isMemberPointerType() &&
   5117       !T2->isAnyPointerType() && !T2->isMemberPointerType()) {
   5118     if (T1->isNullPtrType() &&
   5119         E2->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
   5120       E2 = ImpCastExprToType(E2, T1, CK_NullToPointer).get();
   5121       return T1;
   5122     }
   5123     if (T2->isNullPtrType() &&
   5124         E1->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
   5125       E1 = ImpCastExprToType(E1, T2, CK_NullToPointer).get();
   5126       return T2;
   5127     }
   5128     return QualType();
   5129   }
   5130 
   5131   if (E1->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
   5132     if (T2->isMemberPointerType())
   5133       E1 = ImpCastExprToType(E1, T2, CK_NullToMemberPointer).get();
   5134     else
   5135       E1 = ImpCastExprToType(E1, T2, CK_NullToPointer).get();
   5136     return T2;
   5137   }
   5138   if (E2->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
   5139     if (T1->isMemberPointerType())
   5140       E2 = ImpCastExprToType(E2, T1, CK_NullToMemberPointer).get();
   5141     else
   5142       E2 = ImpCastExprToType(E2, T1, CK_NullToPointer).get();
   5143     return T1;
   5144   }
   5145 
   5146   // Now both have to be pointers or member pointers.
   5147   if ((!T1->isPointerType() && !T1->isMemberPointerType()) ||
   5148       (!T2->isPointerType() && !T2->isMemberPointerType()))
   5149     return QualType();
   5150 
   5151   //   Otherwise, of one of the operands has type "pointer to cv1 void," then
   5152   //   the other has type "pointer to cv2 T" and the composite pointer type is
   5153   //   "pointer to cv12 void," where cv12 is the union of cv1 and cv2.
   5154   //   Otherwise, the composite pointer type is a pointer type similar to the
   5155   //   type of one of the operands, with a cv-qualification signature that is
   5156   //   the union of the cv-qualification signatures of the operand types.
   5157   // In practice, the first part here is redundant; it's subsumed by the second.
   5158   // What we do here is, we build the two possible composite types, and try the
   5159   // conversions in both directions. If only one works, or if the two composite
   5160   // types are the same, we have succeeded.
   5161   // FIXME: extended qualifiers?
   5162   typedef SmallVector<unsigned, 4> QualifierVector;
   5163   QualifierVector QualifierUnion;
   5164   typedef SmallVector<std::pair<const Type *, const Type *>, 4>
   5165       ContainingClassVector;
   5166   ContainingClassVector MemberOfClass;
   5167   QualType Composite1 = Context.getCanonicalType(T1),
   5168            Composite2 = Context.getCanonicalType(T2);
   5169   unsigned NeedConstBefore = 0;
   5170   do {
   5171     const PointerType *Ptr1, *Ptr2;
   5172     if ((Ptr1 = Composite1->getAs<PointerType>()) &&
   5173         (Ptr2 = Composite2->getAs<PointerType>())) {
   5174       Composite1 = Ptr1->getPointeeType();
   5175       Composite2 = Ptr2->getPointeeType();
   5176 
   5177       // If we're allowed to create a non-standard composite type, keep track
   5178       // of where we need to fill in additional 'const' qualifiers.
   5179       if (NonStandardCompositeType &&
   5180           Composite1.getCVRQualifiers() != Composite2.getCVRQualifiers())
   5181         NeedConstBefore = QualifierUnion.size();
   5182 
   5183       QualifierUnion.push_back(
   5184                  Composite1.getCVRQualifiers() | Composite2.getCVRQualifiers());
   5185       MemberOfClass.push_back(std::make_pair(nullptr, nullptr));
   5186       continue;
   5187     }
   5188 
   5189     const MemberPointerType *MemPtr1, *MemPtr2;
   5190     if ((MemPtr1 = Composite1->getAs<MemberPointerType>()) &&
   5191         (MemPtr2 = Composite2->getAs<MemberPointerType>())) {
   5192       Composite1 = MemPtr1->getPointeeType();
   5193       Composite2 = MemPtr2->getPointeeType();
   5194 
   5195       // If we're allowed to create a non-standard composite type, keep track
   5196       // of where we need to fill in additional 'const' qualifiers.
   5197       if (NonStandardCompositeType &&
   5198           Composite1.getCVRQualifiers() != Composite2.getCVRQualifiers())
   5199         NeedConstBefore = QualifierUnion.size();
   5200 
   5201       QualifierUnion.push_back(
   5202                  Composite1.getCVRQualifiers() | Composite2.getCVRQualifiers());
   5203       MemberOfClass.push_back(std::make_pair(MemPtr1->getClass(),
   5204                                              MemPtr2->getClass()));
   5205       continue;
   5206     }
   5207 
   5208     // FIXME: block pointer types?
   5209 
   5210     // Cannot unwrap any more types.
   5211     break;
   5212   } while (true);
   5213 
   5214   if (NeedConstBefore && NonStandardCompositeType) {
   5215     // Extension: Add 'const' to qualifiers that come before the first qualifier
   5216     // mismatch, so that our (non-standard!) composite type meets the
   5217     // requirements of C++ [conv.qual]p4 bullet 3.
   5218     for (unsigned I = 0; I != NeedConstBefore; ++I) {
   5219       if ((QualifierUnion[I] & Qualifiers::Const) == 0) {
   5220         QualifierUnion[I] = QualifierUnion[I] | Qualifiers::Const;
   5221         *NonStandardCompositeType = true;
   5222       }
   5223     }
   5224   }
   5225 
   5226   // Rewrap the composites as pointers or member pointers with the union CVRs.
   5227   ContainingClassVector::reverse_iterator MOC
   5228     = MemberOfClass.rbegin();
   5229   for (QualifierVector::reverse_iterator
   5230          I = QualifierUnion.rbegin(),
   5231          E = QualifierUnion.rend();
   5232        I != E; (void)++I, ++MOC) {
   5233     Qualifiers Quals = Qualifiers::fromCVRMask(*I);
   5234     if (MOC->first && MOC->second) {
   5235       // Rebuild member pointer type
   5236       Composite1 = Context.getMemberPointerType(
   5237                                     Context.getQualifiedType(Composite1, Quals),
   5238                                     MOC->first);
   5239       Composite2 = Context.getMemberPointerType(
   5240                                     Context.getQualifiedType(Composite2, Quals),
   5241                                     MOC->second);
   5242     } else {
   5243       // Rebuild pointer type
   5244       Composite1
   5245         = Context.getPointerType(Context.getQualifiedType(Composite1, Quals));
   5246       Composite2
   5247         = Context.getPointerType(Context.getQualifiedType(Composite2, Quals));
   5248     }
   5249   }
   5250 
   5251   // Try to convert to the first composite pointer type.
   5252   InitializedEntity Entity1
   5253     = InitializedEntity::InitializeTemporary(Composite1);
   5254   InitializationKind Kind
   5255     = InitializationKind::CreateCopy(Loc, SourceLocation());
   5256   InitializationSequence E1ToC1(*this, Entity1, Kind, E1);
   5257   InitializationSequence E2ToC1(*this, Entity1, Kind, E2);
   5258 
   5259   if (E1ToC1 && E2ToC1) {
   5260     // Conversion to Composite1 is viable.
   5261     if (!Context.hasSameType(Composite1, Composite2)) {
   5262       // Composite2 is a different type from Composite1. Check whether
   5263       // Composite2 is also viable.
   5264       InitializedEntity Entity2
   5265         = InitializedEntity::InitializeTemporary(Composite2);
   5266       InitializationSequence E1ToC2(*this, Entity2, Kind, E1);
   5267       InitializationSequence E2ToC2(*this, Entity2, Kind, E2);
   5268       if (E1ToC2 && E2ToC2) {
   5269         // Both Composite1 and Composite2 are viable and are different;
   5270         // this is an ambiguity.
   5271         return QualType();
   5272       }
   5273     }
   5274 
   5275     // Convert E1 to Composite1
   5276     ExprResult E1Result
   5277       = E1ToC1.Perform(*this, Entity1, Kind, E1);
   5278     if (E1Result.isInvalid())
   5279       return QualType();
   5280     E1 = E1Result.getAs<Expr>();
   5281 
   5282     // Convert E2 to Composite1
   5283     ExprResult E2Result
   5284       = E2ToC1.Perform(*this, Entity1, Kind, E2);
   5285     if (E2Result.isInvalid())
   5286       return QualType();
   5287     E2 = E2Result.getAs<Expr>();
   5288 
   5289     return Composite1;
   5290   }
   5291 
   5292   // Check whether Composite2 is viable.
   5293   InitializedEntity Entity2
   5294     = InitializedEntity::InitializeTemporary(Composite2);
   5295   InitializationSequence E1ToC2(*this, Entity2, Kind, E1);
   5296   InitializationSequence E2ToC2(*this, Entity2, Kind, E2);
   5297   if (!E1ToC2 || !E2ToC2)
   5298     return QualType();
   5299 
   5300   // Convert E1 to Composite2
   5301   ExprResult E1Result
   5302     = E1ToC2.Perform(*this, Entity2, Kind, E1);
   5303   if (E1Result.isInvalid())
   5304     return QualType();
   5305   E1 = E1Result.getAs<Expr>();
   5306 
   5307   // Convert E2 to Composite2
   5308   ExprResult E2Result
   5309     = E2ToC2.Perform(*this, Entity2, Kind, E2);
   5310   if (E2Result.isInvalid())
   5311     return QualType();
   5312   E2 = E2Result.getAs<Expr>();
   5313 
   5314   return Composite2;
   5315 }
   5316 
   5317 ExprResult Sema::MaybeBindToTemporary(Expr *E) {
   5318   if (!E)
   5319     return ExprError();
   5320 
   5321   assert(!isa<CXXBindTemporaryExpr>(E) && "Double-bound temporary?");
   5322 
   5323   // If the result is a glvalue, we shouldn't bind it.
   5324   if (!E->isRValue())
   5325     return E;
   5326 
   5327   // In ARC, calls that return a retainable type can return retained,
   5328   // in which case we have to insert a consuming cast.
   5329   if (getLangOpts().ObjCAutoRefCount &&
   5330       E->getType()->isObjCRetainableType()) {
   5331 
   5332     bool ReturnsRetained;
   5333 
   5334     // For actual calls, we compute this by examining the type of the
   5335     // called value.
   5336     if (CallExpr *Call = dyn_cast<CallExpr>(E)) {
   5337       Expr *Callee = Call->getCallee()->IgnoreParens();
   5338       QualType T = Callee->getType();
   5339 
   5340       if (T == Context.BoundMemberTy) {
   5341         // Handle pointer-to-members.
   5342         if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Callee))
   5343           T = BinOp->getRHS()->getType();
   5344         else if (MemberExpr *Mem = dyn_cast<MemberExpr>(Callee))
   5345           T = Mem->getMemberDecl()->getType();
   5346       }
   5347 
   5348       if (const PointerType *Ptr = T->getAs<PointerType>())
   5349         T = Ptr->getPointeeType();
   5350       else if (const BlockPointerType *Ptr = T->getAs<BlockPointerType>())
   5351         T = Ptr->getPointeeType();
   5352       else if (const MemberPointerType *MemPtr = T->getAs<MemberPointerType>())
   5353         T = MemPtr->getPointeeType();
   5354 
   5355       const FunctionType *FTy = T->getAs<FunctionType>();
   5356       assert(FTy && "call to value not of function type?");
   5357       ReturnsRetained = FTy->getExtInfo().getProducesResult();
   5358 
   5359     // ActOnStmtExpr arranges things so that StmtExprs of retainable
   5360     // type always produce a +1 object.
   5361     } else if (isa<StmtExpr>(E)) {
   5362       ReturnsRetained = true;
   5363 
   5364     // We hit this case with the lambda conversion-to-block optimization;
   5365     // we don't want any extra casts here.
   5366     } else if (isa<CastExpr>(E) &&
   5367                isa<BlockExpr>(cast<CastExpr>(E)->getSubExpr())) {
   5368       return E;
   5369 
   5370     // For message sends and property references, we try to find an
   5371     // actual method.  FIXME: we should infer retention by selector in
   5372     // cases where we don't have an actual method.
   5373     } else {
   5374       ObjCMethodDecl *D = nullptr;
   5375       if (ObjCMessageExpr *Send = dyn_cast<ObjCMessageExpr>(E)) {
   5376         D = Send->getMethodDecl();
   5377       } else if (ObjCBoxedExpr *BoxedExpr = dyn_cast<ObjCBoxedExpr>(E)) {
   5378         D = BoxedExpr->getBoxingMethod();
   5379       } else if (ObjCArrayLiteral *ArrayLit = dyn_cast<ObjCArrayLiteral>(E)) {
   5380         D = ArrayLit->getArrayWithObjectsMethod();
   5381       } else if (ObjCDictionaryLiteral *DictLit
   5382                                         = dyn_cast<ObjCDictionaryLiteral>(E)) {
   5383         D = DictLit->getDictWithObjectsMethod();
   5384       }
   5385 
   5386       ReturnsRetained = (D && D->hasAttr<NSReturnsRetainedAttr>());
   5387 
   5388       // Don't do reclaims on performSelector calls; despite their
   5389       // return type, the invoked method doesn't necessarily actually
   5390       // return an object.
   5391       if (!ReturnsRetained &&
   5392           D && D->getMethodFamily() == OMF_performSelector)
   5393         return E;
   5394     }
   5395 
   5396     // Don't reclaim an object of Class type.
   5397     if (!ReturnsRetained && E->getType()->isObjCARCImplicitlyUnretainedType())
   5398       return E;
   5399 
   5400     ExprNeedsCleanups = true;
   5401 
   5402     CastKind ck = (ReturnsRetained ? CK_ARCConsumeObject
   5403                                    : CK_ARCReclaimReturnedObject);
   5404     return ImplicitCastExpr::Create(Context, E->getType(), ck, E, nullptr,
   5405                                     VK_RValue);
   5406   }
   5407 
   5408   if (!getLangOpts().CPlusPlus)
   5409     return E;
   5410 
   5411   // Search for the base element type (cf. ASTContext::getBaseElementType) with
   5412   // a fast path for the common case that the type is directly a RecordType.
   5413   const Type *T = Context.getCanonicalType(E->getType().getTypePtr());
   5414   const RecordType *RT = nullptr;
   5415   while (!RT) {
   5416     switch (T->getTypeClass()) {
   5417     case Type::Record:
   5418       RT = cast<RecordType>(T);
   5419       break;
   5420     case Type::ConstantArray:
   5421     case Type::IncompleteArray:
   5422     case Type::VariableArray:
   5423     case Type::DependentSizedArray:
   5424       T = cast<ArrayType>(T)->getElementType().getTypePtr();
   5425       break;
   5426     default:
   5427       return E;
   5428     }
   5429   }
   5430 
   5431   // That should be enough to guarantee that this type is complete, if we're
   5432   // not processing a decltype expression.
   5433   CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
   5434   if (RD->isInvalidDecl() || RD->isDependentContext())
   5435     return E;
   5436 
   5437   bool IsDecltype = ExprEvalContexts.back().IsDecltype;
   5438   CXXDestructorDecl *Destructor = IsDecltype ? nullptr : LookupDestructor(RD);
   5439 
   5440   if (Destructor) {
   5441     MarkFunctionReferenced(E->getExprLoc(), Destructor);
   5442     CheckDestructorAccess(E->getExprLoc(), Destructor,
   5443                           PDiag(diag::err_access_dtor_temp)
   5444                             << E->getType());
   5445     if (DiagnoseUseOfDecl(Destructor, E->getExprLoc()))
   5446       return ExprError();
   5447 
   5448     // If destructor is trivial, we can avoid the extra copy.
   5449     if (Destructor->isTrivial())
   5450       return E;
   5451 
   5452     // We need a cleanup, but we don't need to remember the temporary.
   5453     ExprNeedsCleanups = true;
   5454   }
   5455 
   5456   CXXTemporary *Temp = CXXTemporary::Create(Context, Destructor);
   5457   CXXBindTemporaryExpr *Bind = CXXBindTemporaryExpr::Create(Context, Temp, E);
   5458 
   5459   if (IsDecltype)
   5460     ExprEvalContexts.back().DelayedDecltypeBinds.push_back(Bind);
   5461 
   5462   return Bind;
   5463 }
   5464 
   5465 ExprResult
   5466 Sema::MaybeCreateExprWithCleanups(ExprResult SubExpr) {
   5467   if (SubExpr.isInvalid())
   5468     return ExprError();
   5469 
   5470   return MaybeCreateExprWithCleanups(SubExpr.get());
   5471 }
   5472 
   5473 Expr *Sema::MaybeCreateExprWithCleanups(Expr *SubExpr) {
   5474   assert(SubExpr && "subexpression can't be null!");
   5475 
   5476   CleanupVarDeclMarking();
   5477 
   5478   unsigned FirstCleanup = ExprEvalContexts.back().NumCleanupObjects;
   5479   assert(ExprCleanupObjects.size() >= FirstCleanup);
   5480   assert(ExprNeedsCleanups || ExprCleanupObjects.size() == FirstCleanup);
   5481   if (!ExprNeedsCleanups)
   5482     return SubExpr;
   5483 
   5484   auto Cleanups = llvm::makeArrayRef(ExprCleanupObjects.begin() + FirstCleanup,
   5485                                      ExprCleanupObjects.size() - FirstCleanup);
   5486 
   5487   Expr *E = ExprWithCleanups::Create(Context, SubExpr, Cleanups);
   5488   DiscardCleanupsInEvaluationContext();
   5489 
   5490   return E;
   5491 }
   5492 
   5493 Stmt *Sema::MaybeCreateStmtWithCleanups(Stmt *SubStmt) {
   5494   assert(SubStmt && "sub-statement can't be null!");
   5495 
   5496   CleanupVarDeclMarking();
   5497 
   5498   if (!ExprNeedsCleanups)
   5499     return SubStmt;
   5500 
   5501   // FIXME: In order to attach the temporaries, wrap the statement into
   5502   // a StmtExpr; currently this is only used for asm statements.
   5503   // This is hacky, either create a new CXXStmtWithTemporaries statement or
   5504   // a new AsmStmtWithTemporaries.
   5505   CompoundStmt *CompStmt = new (Context) CompoundStmt(Context, SubStmt,
   5506                                                       SourceLocation(),
   5507                                                       SourceLocation());
   5508   Expr *E = new (Context) StmtExpr(CompStmt, Context.VoidTy, SourceLocation(),
   5509                                    SourceLocation());
   5510   return MaybeCreateExprWithCleanups(E);
   5511 }
   5512 
   5513 /// Process the expression contained within a decltype. For such expressions,
   5514 /// certain semantic checks on temporaries are delayed until this point, and
   5515 /// are omitted for the 'topmost' call in the decltype expression. If the
   5516 /// topmost call bound a temporary, strip that temporary off the expression.
   5517 ExprResult Sema::ActOnDecltypeExpression(Expr *E) {
   5518   assert(ExprEvalContexts.back().IsDecltype && "not in a decltype expression");
   5519 
   5520   // C++11 [expr.call]p11:
   5521   //   If a function call is a prvalue of object type,
   5522   // -- if the function call is either
   5523   //   -- the operand of a decltype-specifier, or
   5524   //   -- the right operand of a comma operator that is the operand of a
   5525   //      decltype-specifier,
   5526   //   a temporary object is not introduced for the prvalue.
   5527 
   5528   // Recursively rebuild ParenExprs and comma expressions to strip out the
   5529   // outermost CXXBindTemporaryExpr, if any.
   5530   if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) {
   5531     ExprResult SubExpr = ActOnDecltypeExpression(PE->getSubExpr());
   5532     if (SubExpr.isInvalid())
   5533       return ExprError();
   5534     if (SubExpr.get() == PE->getSubExpr())
   5535       return E;
   5536     return ActOnParenExpr(PE->getLParen(), PE->getRParen(), SubExpr.get());
   5537   }
   5538   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
   5539     if (BO->getOpcode() == BO_Comma) {
   5540       ExprResult RHS = ActOnDecltypeExpression(BO->getRHS());
   5541       if (RHS.isInvalid())
   5542         return ExprError();
   5543       if (RHS.get() == BO->getRHS())
   5544         return E;
   5545       return new (Context) BinaryOperator(
   5546           BO->getLHS(), RHS.get(), BO_Comma, BO->getType(), BO->getValueKind(),
   5547           BO->getObjectKind(), BO->getOperatorLoc(), BO->isFPContractable());
   5548     }
   5549   }
   5550 
   5551   CXXBindTemporaryExpr *TopBind = dyn_cast<CXXBindTemporaryExpr>(E);
   5552   CallExpr *TopCall = TopBind ? dyn_cast<CallExpr>(TopBind->getSubExpr())
   5553                               : nullptr;
   5554   if (TopCall)
   5555     E = TopCall;
   5556   else
   5557     TopBind = nullptr;
   5558 
   5559   // Disable the special decltype handling now.
   5560   ExprEvalContexts.back().IsDecltype = false;
   5561 
   5562   // In MS mode, don't perform any extra checking of call return types within a
   5563   // decltype expression.
   5564   if (getLangOpts().MSVCCompat)
   5565     return E;
   5566 
   5567   // Perform the semantic checks we delayed until this point.
   5568   for (unsigned I = 0, N = ExprEvalContexts.back().DelayedDecltypeCalls.size();
   5569        I != N; ++I) {
   5570     CallExpr *Call = ExprEvalContexts.back().DelayedDecltypeCalls[I];
   5571     if (Call == TopCall)
   5572       continue;
   5573 
   5574     if (CheckCallReturnType(Call->getCallReturnType(Context),
   5575                             Call->getLocStart(),
   5576                             Call, Call->getDirectCallee()))
   5577       return ExprError();
   5578   }
   5579 
   5580   // Now all relevant types are complete, check the destructors are accessible
   5581   // and non-deleted, and annotate them on the temporaries.
   5582   for (unsigned I = 0, N = ExprEvalContexts.back().DelayedDecltypeBinds.size();
   5583        I != N; ++I) {
   5584     CXXBindTemporaryExpr *Bind =
   5585       ExprEvalContexts.back().DelayedDecltypeBinds[I];
   5586     if (Bind == TopBind)
   5587       continue;
   5588 
   5589     CXXTemporary *Temp = Bind->getTemporary();
   5590 
   5591     CXXRecordDecl *RD =
   5592       Bind->getType()->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
   5593     CXXDestructorDecl *Destructor = LookupDestructor(RD);
   5594     Temp->setDestructor(Destructor);
   5595 
   5596     MarkFunctionReferenced(Bind->getExprLoc(), Destructor);
   5597     CheckDestructorAccess(Bind->getExprLoc(), Destructor,
   5598                           PDiag(diag::err_access_dtor_temp)
   5599                             << Bind->getType());
   5600     if (DiagnoseUseOfDecl(Destructor, Bind->getExprLoc()))
   5601       return ExprError();
   5602 
   5603     // We need a cleanup, but we don't need to remember the temporary.
   5604     ExprNeedsCleanups = true;
   5605   }
   5606 
   5607   // Possibly strip off the top CXXBindTemporaryExpr.
   5608   return E;
   5609 }
   5610 
   5611 /// Note a set of 'operator->' functions that were used for a member access.
   5612 static void noteOperatorArrows(Sema &S,
   5613                                ArrayRef<FunctionDecl *> OperatorArrows) {
   5614   unsigned SkipStart = OperatorArrows.size(), SkipCount = 0;
   5615   // FIXME: Make this configurable?
   5616   unsigned Limit = 9;
   5617   if (OperatorArrows.size() > Limit) {
   5618     // Produce Limit-1 normal notes and one 'skipping' note.
   5619     SkipStart = (Limit - 1) / 2 + (Limit - 1) % 2;
   5620     SkipCount = OperatorArrows.size() - (Limit - 1);
   5621   }
   5622 
   5623   for (unsigned I = 0; I < OperatorArrows.size(); /**/) {
   5624     if (I == SkipStart) {
   5625       S.Diag(OperatorArrows[I]->getLocation(),
   5626              diag::note_operator_arrows_suppressed)
   5627           << SkipCount;
   5628       I += SkipCount;
   5629     } else {
   5630       S.Diag(OperatorArrows[I]->getLocation(), diag::note_operator_arrow_here)
   5631           << OperatorArrows[I]->getCallResultType();
   5632       ++I;
   5633     }
   5634   }
   5635 }
   5636 
   5637 ExprResult Sema::ActOnStartCXXMemberReference(Scope *S, Expr *Base,
   5638                                               SourceLocation OpLoc,
   5639                                               tok::TokenKind OpKind,
   5640                                               ParsedType &ObjectType,
   5641                                               bool &MayBePseudoDestructor) {
   5642   // Since this might be a postfix expression, get rid of ParenListExprs.
   5643   ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Base);
   5644   if (Result.isInvalid()) return ExprError();
   5645   Base = Result.get();
   5646 
   5647   Result = CheckPlaceholderExpr(Base);
   5648   if (Result.isInvalid()) return ExprError();
   5649   Base = Result.get();
   5650 
   5651   QualType BaseType = Base->getType();
   5652   MayBePseudoDestructor = false;
   5653   if (BaseType->isDependentType()) {
   5654     // If we have a pointer to a dependent type and are using the -> operator,
   5655     // the object type is the type that the pointer points to. We might still
   5656     // have enough information about that type to do something useful.
   5657     if (OpKind == tok::arrow)
   5658       if (const PointerType *Ptr = BaseType->getAs<PointerType>())
   5659         BaseType = Ptr->getPointeeType();
   5660 
   5661     ObjectType = ParsedType::make(BaseType);
   5662     MayBePseudoDestructor = true;
   5663     return Base;
   5664   }
   5665 
   5666   // C++ [over.match.oper]p8:
   5667   //   [...] When operator->returns, the operator-> is applied  to the value
   5668   //   returned, with the original second operand.
   5669   if (OpKind == tok::arrow) {
   5670     QualType StartingType = BaseType;
   5671     bool NoArrowOperatorFound = false;
   5672     bool FirstIteration = true;
   5673     FunctionDecl *CurFD = dyn_cast<FunctionDecl>(CurContext);
   5674     // The set of types we've considered so far.
   5675     llvm::SmallPtrSet<CanQualType,8> CTypes;
   5676     SmallVector<FunctionDecl*, 8> OperatorArrows;
   5677     CTypes.insert(Context.getCanonicalType(BaseType));
   5678 
   5679     while (BaseType->isRecordType()) {
   5680       if (OperatorArrows.size() >= getLangOpts().ArrowDepth) {
   5681         Diag(OpLoc, diag::err_operator_arrow_depth_exceeded)
   5682           << StartingType << getLangOpts().ArrowDepth << Base->getSourceRange();
   5683         noteOperatorArrows(*this, OperatorArrows);
   5684         Diag(OpLoc, diag::note_operator_arrow_depth)
   5685           << getLangOpts().ArrowDepth;
   5686         return ExprError();
   5687       }
   5688 
   5689       Result = BuildOverloadedArrowExpr(
   5690           S, Base, OpLoc,
   5691           // When in a template specialization and on the first loop iteration,
   5692           // potentially give the default diagnostic (with the fixit in a
   5693           // separate note) instead of having the error reported back to here
   5694           // and giving a diagnostic with a fixit attached to the error itself.
   5695           (FirstIteration && CurFD && CurFD->isFunctionTemplateSpecialization())
   5696               ? nullptr
   5697               : &NoArrowOperatorFound);
   5698       if (Result.isInvalid()) {
   5699         if (NoArrowOperatorFound) {
   5700           if (FirstIteration) {
   5701             Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
   5702               << BaseType << 1 << Base->getSourceRange()
   5703               << FixItHint::CreateReplacement(OpLoc, ".");
   5704             OpKind = tok::period;
   5705             break;
   5706           }
   5707           Diag(OpLoc, diag::err_typecheck_member_reference_arrow)
   5708             << BaseType << Base->getSourceRange();
   5709           CallExpr *CE = dyn_cast<CallExpr>(Base);
   5710           if (Decl *CD = (CE ? CE->getCalleeDecl() : nullptr)) {
   5711             Diag(CD->getLocStart(),
   5712                  diag::note_member_reference_arrow_from_operator_arrow);
   5713           }
   5714         }
   5715         return ExprError();
   5716       }
   5717       Base = Result.get();
   5718       if (CXXOperatorCallExpr *OpCall = dyn_cast<CXXOperatorCallExpr>(Base))
   5719         OperatorArrows.push_back(OpCall->getDirectCallee());
   5720       BaseType = Base->getType();
   5721       CanQualType CBaseType = Context.getCanonicalType(BaseType);
   5722       if (!CTypes.insert(CBaseType).second) {
   5723         Diag(OpLoc, diag::err_operator_arrow_circular) << StartingType;
   5724         noteOperatorArrows(*this, OperatorArrows);
   5725         return ExprError();
   5726       }
   5727       FirstIteration = false;
   5728     }
   5729 
   5730     if (OpKind == tok::arrow &&
   5731         (BaseType->isPointerType() || BaseType->isObjCObjectPointerType()))
   5732       BaseType = BaseType->getPointeeType();
   5733   }
   5734 
   5735   // Objective-C properties allow "." access on Objective-C pointer types,
   5736   // so adjust the base type to the object type itself.
   5737   if (BaseType->isObjCObjectPointerType())
   5738     BaseType = BaseType->getPointeeType();
   5739 
   5740   // C++ [basic.lookup.classref]p2:
   5741   //   [...] If the type of the object expression is of pointer to scalar
   5742   //   type, the unqualified-id is looked up in the context of the complete
   5743   //   postfix-expression.
   5744   //
   5745   // This also indicates that we could be parsing a pseudo-destructor-name.
   5746   // Note that Objective-C class and object types can be pseudo-destructor
   5747   // expressions or normal member (ivar or property) access expressions, and
   5748   // it's legal for the type to be incomplete if this is a pseudo-destructor
   5749   // call.  We'll do more incomplete-type checks later in the lookup process,
   5750   // so just skip this check for ObjC types.
   5751   if (BaseType->isObjCObjectOrInterfaceType()) {
   5752     ObjectType = ParsedType::make(BaseType);
   5753     MayBePseudoDestructor = true;
   5754     return Base;
   5755   } else if (!BaseType->isRecordType()) {
   5756     ObjectType = ParsedType();
   5757     MayBePseudoDestructor = true;
   5758     return Base;
   5759   }
   5760 
   5761   // The object type must be complete (or dependent), or
   5762   // C++11 [expr.prim.general]p3:
   5763   //   Unlike the object expression in other contexts, *this is not required to
   5764   //   be of complete type for purposes of class member access (5.2.5) outside
   5765   //   the member function body.
   5766   if (!BaseType->isDependentType() &&
   5767       !isThisOutsideMemberFunctionBody(BaseType) &&
   5768       RequireCompleteType(OpLoc, BaseType, diag::err_incomplete_member_access))
   5769     return ExprError();
   5770 
   5771   // C++ [basic.lookup.classref]p2:
   5772   //   If the id-expression in a class member access (5.2.5) is an
   5773   //   unqualified-id, and the type of the object expression is of a class
   5774   //   type C (or of pointer to a class type C), the unqualified-id is looked
   5775   //   up in the scope of class C. [...]
   5776   ObjectType = ParsedType::make(BaseType);
   5777   return Base;
   5778 }
   5779 
   5780 static bool CheckArrow(Sema& S, QualType& ObjectType, Expr *&Base,
   5781                    tok::TokenKind& OpKind, SourceLocation OpLoc) {
   5782   if (Base->hasPlaceholderType()) {
   5783     ExprResult result = S.CheckPlaceholderExpr(Base);
   5784     if (result.isInvalid()) return true;
   5785     Base = result.get();
   5786   }
   5787   ObjectType = Base->getType();
   5788 
   5789   // C++ [expr.pseudo]p2:
   5790   //   The left-hand side of the dot operator shall be of scalar type. The
   5791   //   left-hand side of the arrow operator shall be of pointer to scalar type.
   5792   //   This scalar type is the object type.
   5793   // Note that this is rather different from the normal handling for the
   5794   // arrow operator.
   5795   if (OpKind == tok::arrow) {
   5796     if (const PointerType *Ptr = ObjectType->getAs<PointerType>()) {
   5797       ObjectType = Ptr->getPointeeType();
   5798     } else if (!Base->isTypeDependent()) {
   5799       // The user wrote "p->" when she probably meant "p."; fix it.
   5800       S.Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
   5801         << ObjectType << true
   5802         << FixItHint::CreateReplacement(OpLoc, ".");
   5803       if (S.isSFINAEContext())
   5804         return true;
   5805 
   5806       OpKind = tok::period;
   5807     }
   5808   }
   5809 
   5810   return false;
   5811 }
   5812 
   5813 ExprResult Sema::BuildPseudoDestructorExpr(Expr *Base,
   5814                                            SourceLocation OpLoc,
   5815                                            tok::TokenKind OpKind,
   5816                                            const CXXScopeSpec &SS,
   5817                                            TypeSourceInfo *ScopeTypeInfo,
   5818                                            SourceLocation CCLoc,
   5819                                            SourceLocation TildeLoc,
   5820                                          PseudoDestructorTypeStorage Destructed) {
   5821   TypeSourceInfo *DestructedTypeInfo = Destructed.getTypeSourceInfo();
   5822 
   5823   QualType ObjectType;
   5824   if (CheckArrow(*this, ObjectType, Base, OpKind, OpLoc))
   5825     return ExprError();
   5826 
   5827   if (!ObjectType->isDependentType() && !ObjectType->isScalarType() &&
   5828       !ObjectType->isVectorType()) {
   5829     if (getLangOpts().MSVCCompat && ObjectType->isVoidType())
   5830       Diag(OpLoc, diag::ext_pseudo_dtor_on_void) << Base->getSourceRange();
   5831     else {
   5832       Diag(OpLoc, diag::err_pseudo_dtor_base_not_scalar)
   5833         << ObjectType << Base->getSourceRange();
   5834       return ExprError();
   5835     }
   5836   }
   5837 
   5838   // C++ [expr.pseudo]p2:
   5839   //   [...] The cv-unqualified versions of the object type and of the type
   5840   //   designated by the pseudo-destructor-name shall be the same type.
   5841   if (DestructedTypeInfo) {
   5842     QualType DestructedType = DestructedTypeInfo->getType();
   5843     SourceLocation DestructedTypeStart
   5844       = DestructedTypeInfo->getTypeLoc().getLocalSourceRange().getBegin();
   5845     if (!DestructedType->isDependentType() && !ObjectType->isDependentType()) {
   5846       if (!Context.hasSameUnqualifiedType(DestructedType, ObjectType)) {
   5847         Diag(DestructedTypeStart, diag::err_pseudo_dtor_type_mismatch)
   5848           << ObjectType << DestructedType << Base->getSourceRange()
   5849           << DestructedTypeInfo->getTypeLoc().getLocalSourceRange();
   5850 
   5851         // Recover by setting the destructed type to the object type.
   5852         DestructedType = ObjectType;
   5853         DestructedTypeInfo = Context.getTrivialTypeSourceInfo(ObjectType,
   5854                                                            DestructedTypeStart);
   5855         Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo);
   5856       } else if (DestructedType.getObjCLifetime() !=
   5857                                                 ObjectType.getObjCLifetime()) {
   5858 
   5859         if (DestructedType.getObjCLifetime() == Qualifiers::OCL_None) {
   5860           // Okay: just pretend that the user provided the correctly-qualified
   5861           // type.
   5862         } else {
   5863           Diag(DestructedTypeStart, diag::err_arc_pseudo_dtor_inconstant_quals)
   5864             << ObjectType << DestructedType << Base->getSourceRange()
   5865             << DestructedTypeInfo->getTypeLoc().getLocalSourceRange();
   5866         }
   5867 
   5868         // Recover by setting the destructed type to the object type.
   5869         DestructedType = ObjectType;
   5870         DestructedTypeInfo = Context.getTrivialTypeSourceInfo(ObjectType,
   5871                                                            DestructedTypeStart);
   5872         Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo);
   5873       }
   5874     }
   5875   }
   5876 
   5877   // C++ [expr.pseudo]p2:
   5878   //   [...] Furthermore, the two type-names in a pseudo-destructor-name of the
   5879   //   form
   5880   //
   5881   //     ::[opt] nested-name-specifier[opt] type-name :: ~ type-name
   5882   //
   5883   //   shall designate the same scalar type.
   5884   if (ScopeTypeInfo) {
   5885     QualType ScopeType = ScopeTypeInfo->getType();
   5886     if (!ScopeType->isDependentType() && !ObjectType->isDependentType() &&
   5887         !Context.hasSameUnqualifiedType(ScopeType, ObjectType)) {
   5888 
   5889       Diag(ScopeTypeInfo->getTypeLoc().getLocalSourceRange().getBegin(),
   5890            diag::err_pseudo_dtor_type_mismatch)
   5891         << ObjectType << ScopeType << Base->getSourceRange()
   5892         << ScopeTypeInfo->getTypeLoc().getLocalSourceRange();
   5893 
   5894       ScopeType = QualType();
   5895       ScopeTypeInfo = nullptr;
   5896     }
   5897   }
   5898 
   5899   Expr *Result
   5900     = new (Context) CXXPseudoDestructorExpr(Context, Base,
   5901                                             OpKind == tok::arrow, OpLoc,
   5902                                             SS.getWithLocInContext(Context),
   5903                                             ScopeTypeInfo,
   5904                                             CCLoc,
   5905                                             TildeLoc,
   5906                                             Destructed);
   5907 
   5908   return Result;
   5909 }
   5910 
   5911 ExprResult Sema::ActOnPseudoDestructorExpr(Scope *S, Expr *Base,
   5912                                            SourceLocation OpLoc,
   5913                                            tok::TokenKind OpKind,
   5914                                            CXXScopeSpec &SS,
   5915                                            UnqualifiedId &FirstTypeName,
   5916                                            SourceLocation CCLoc,
   5917                                            SourceLocation TildeLoc,
   5918                                            UnqualifiedId &SecondTypeName) {
   5919   assert((FirstTypeName.getKind() == UnqualifiedId::IK_TemplateId ||
   5920           FirstTypeName.getKind() == UnqualifiedId::IK_Identifier) &&
   5921          "Invalid first type name in pseudo-destructor");
   5922   assert((SecondTypeName.getKind() == UnqualifiedId::IK_TemplateId ||
   5923           SecondTypeName.getKind() == UnqualifiedId::IK_Identifier) &&
   5924          "Invalid second type name in pseudo-destructor");
   5925 
   5926   QualType ObjectType;
   5927   if (CheckArrow(*this, ObjectType, Base, OpKind, OpLoc))
   5928     return ExprError();
   5929 
   5930   // Compute the object type that we should use for name lookup purposes. Only
   5931   // record types and dependent types matter.
   5932   ParsedType ObjectTypePtrForLookup;
   5933   if (!SS.isSet()) {
   5934     if (ObjectType->isRecordType())
   5935       ObjectTypePtrForLookup = ParsedType::make(ObjectType);
   5936     else if (ObjectType->isDependentType())
   5937       ObjectTypePtrForLookup = ParsedType::make(Context.DependentTy);
   5938   }
   5939 
   5940   // Convert the name of the type being destructed (following the ~) into a
   5941   // type (with source-location information).
   5942   QualType DestructedType;
   5943   TypeSourceInfo *DestructedTypeInfo = nullptr;
   5944   PseudoDestructorTypeStorage Destructed;
   5945   if (SecondTypeName.getKind() == UnqualifiedId::IK_Identifier) {
   5946     ParsedType T = getTypeName(*SecondTypeName.Identifier,
   5947                                SecondTypeName.StartLocation,
   5948                                S, &SS, true, false, ObjectTypePtrForLookup);
   5949     if (!T &&
   5950         ((SS.isSet() && !computeDeclContext(SS, false)) ||
   5951          (!SS.isSet() && ObjectType->isDependentType()))) {
   5952       // The name of the type being destroyed is a dependent name, and we
   5953       // couldn't find anything useful in scope. Just store the identifier and
   5954       // it's location, and we'll perform (qualified) name lookup again at
   5955       // template instantiation time.
   5956       Destructed = PseudoDestructorTypeStorage(SecondTypeName.Identifier,
   5957                                                SecondTypeName.StartLocation);
   5958     } else if (!T) {
   5959       Diag(SecondTypeName.StartLocation,
   5960            diag::err_pseudo_dtor_destructor_non_type)
   5961         << SecondTypeName.Identifier << ObjectType;
   5962       if (isSFINAEContext())
   5963         return ExprError();
   5964 
   5965       // Recover by assuming we had the right type all along.
   5966       DestructedType = ObjectType;
   5967     } else
   5968       DestructedType = GetTypeFromParser(T, &DestructedTypeInfo);
   5969   } else {
   5970     // Resolve the template-id to a type.
   5971     TemplateIdAnnotation *TemplateId = SecondTypeName.TemplateId;
   5972     ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(),
   5973                                        TemplateId->NumArgs);
   5974     TypeResult T = ActOnTemplateIdType(TemplateId->SS,
   5975                                        TemplateId->TemplateKWLoc,
   5976                                        TemplateId->Template,
   5977                                        TemplateId->TemplateNameLoc,
   5978                                        TemplateId->LAngleLoc,
   5979                                        TemplateArgsPtr,
   5980                                        TemplateId->RAngleLoc);
   5981     if (T.isInvalid() || !T.get()) {
   5982       // Recover by assuming we had the right type all along.
   5983       DestructedType = ObjectType;
   5984     } else
   5985       DestructedType = GetTypeFromParser(T.get(), &DestructedTypeInfo);
   5986   }
   5987 
   5988   // If we've performed some kind of recovery, (re-)build the type source
   5989   // information.
   5990   if (!DestructedType.isNull()) {
   5991     if (!DestructedTypeInfo)
   5992       DestructedTypeInfo = Context.getTrivialTypeSourceInfo(DestructedType,
   5993                                                   SecondTypeName.StartLocation);
   5994     Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo);
   5995   }
   5996 
   5997   // Convert the name of the scope type (the type prior to '::') into a type.
   5998   TypeSourceInfo *ScopeTypeInfo = nullptr;
   5999   QualType ScopeType;
   6000   if (FirstTypeName.getKind() == UnqualifiedId::IK_TemplateId ||
   6001       FirstTypeName.Identifier) {
   6002     if (FirstTypeName.getKind() == UnqualifiedId::IK_Identifier) {
   6003       ParsedType T = getTypeName(*FirstTypeName.Identifier,
   6004                                  FirstTypeName.StartLocation,
   6005                                  S, &SS, true, false, ObjectTypePtrForLookup);
   6006       if (!T) {
   6007         Diag(FirstTypeName.StartLocation,
   6008              diag::err_pseudo_dtor_destructor_non_type)
   6009           << FirstTypeName.Identifier << ObjectType;
   6010 
   6011         if (isSFINAEContext())
   6012           return ExprError();
   6013 
   6014         // Just drop this type. It's unnecessary anyway.
   6015         ScopeType = QualType();
   6016       } else
   6017         ScopeType = GetTypeFromParser(T, &ScopeTypeInfo);
   6018     } else {
   6019       // Resolve the template-id to a type.
   6020       TemplateIdAnnotation *TemplateId = FirstTypeName.TemplateId;
   6021       ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(),
   6022                                          TemplateId->NumArgs);
   6023       TypeResult T = ActOnTemplateIdType(TemplateId->SS,
   6024                                          TemplateId->TemplateKWLoc,
   6025                                          TemplateId->Template,
   6026                                          TemplateId->TemplateNameLoc,
   6027                                          TemplateId->LAngleLoc,
   6028                                          TemplateArgsPtr,
   6029                                          TemplateId->RAngleLoc);
   6030       if (T.isInvalid() || !T.get()) {
   6031         // Recover by dropping this type.
   6032         ScopeType = QualType();
   6033       } else
   6034         ScopeType = GetTypeFromParser(T.get(), &ScopeTypeInfo);
   6035     }
   6036   }
   6037 
   6038   if (!ScopeType.isNull() && !ScopeTypeInfo)
   6039     ScopeTypeInfo = Context.getTrivialTypeSourceInfo(ScopeType,
   6040                                                   FirstTypeName.StartLocation);
   6041 
   6042 
   6043   return BuildPseudoDestructorExpr(Base, OpLoc, OpKind, SS,
   6044                                    ScopeTypeInfo, CCLoc, TildeLoc,
   6045                                    Destructed);
   6046 }
   6047 
   6048 ExprResult Sema::ActOnPseudoDestructorExpr(Scope *S, Expr *Base,
   6049                                            SourceLocation OpLoc,
   6050                                            tok::TokenKind OpKind,
   6051                                            SourceLocation TildeLoc,
   6052                                            const DeclSpec& DS) {
   6053   QualType ObjectType;
   6054   if (CheckArrow(*this, ObjectType, Base, OpKind, OpLoc))
   6055     return ExprError();
   6056 
   6057   QualType T = BuildDecltypeType(DS.getRepAsExpr(), DS.getTypeSpecTypeLoc(),
   6058                                  false);
   6059 
   6060   TypeLocBuilder TLB;
   6061   DecltypeTypeLoc DecltypeTL = TLB.push<DecltypeTypeLoc>(T);
   6062   DecltypeTL.setNameLoc(DS.getTypeSpecTypeLoc());
   6063   TypeSourceInfo *DestructedTypeInfo = TLB.getTypeSourceInfo(Context, T);
   6064   PseudoDestructorTypeStorage Destructed(DestructedTypeInfo);
   6065 
   6066   return BuildPseudoDestructorExpr(Base, OpLoc, OpKind, CXXScopeSpec(),
   6067                                    nullptr, SourceLocation(), TildeLoc,
   6068                                    Destructed);
   6069 }
   6070 
   6071 ExprResult Sema::BuildCXXMemberCallExpr(Expr *E, NamedDecl *FoundDecl,
   6072                                         CXXConversionDecl *Method,
   6073                                         bool HadMultipleCandidates) {
   6074   if (Method->getParent()->isLambda() &&
   6075       Method->getConversionType()->isBlockPointerType()) {
   6076     // This is a lambda coversion to block pointer; check if the argument
   6077     // is a LambdaExpr.
   6078     Expr *SubE = E;
   6079     CastExpr *CE = dyn_cast<CastExpr>(SubE);
   6080     if (CE && CE->getCastKind() == CK_NoOp)
   6081       SubE = CE->getSubExpr();
   6082     SubE = SubE->IgnoreParens();
   6083     if (CXXBindTemporaryExpr *BE = dyn_cast<CXXBindTemporaryExpr>(SubE))
   6084       SubE = BE->getSubExpr();
   6085     if (isa<LambdaExpr>(SubE)) {
   6086       // For the conversion to block pointer on a lambda expression, we
   6087       // construct a special BlockLiteral instead; this doesn't really make
   6088       // a difference in ARC, but outside of ARC the resulting block literal
   6089       // follows the normal lifetime rules for block literals instead of being
   6090       // autoreleased.
   6091       DiagnosticErrorTrap Trap(Diags);
   6092       ExprResult Exp = BuildBlockForLambdaConversion(E->getExprLoc(),
   6093                                                      E->getExprLoc(),
   6094                                                      Method, E);
   6095       if (Exp.isInvalid())
   6096         Diag(E->getExprLoc(), diag::note_lambda_to_block_conv);
   6097       return Exp;
   6098     }
   6099   }
   6100 
   6101   ExprResult Exp = PerformObjectArgumentInitialization(E, /*Qualifier=*/nullptr,
   6102                                           FoundDecl, Method);
   6103   if (Exp.isInvalid())
   6104     return true;
   6105 
   6106   MemberExpr *ME = new (Context) MemberExpr(
   6107       Exp.get(), /*IsArrow=*/false, SourceLocation(), Method, SourceLocation(),
   6108       Context.BoundMemberTy, VK_RValue, OK_Ordinary);
   6109   if (HadMultipleCandidates)
   6110     ME->setHadMultipleCandidates(true);
   6111   MarkMemberReferenced(ME);
   6112 
   6113   QualType ResultType = Method->getReturnType();
   6114   ExprValueKind VK = Expr::getValueKindForType(ResultType);
   6115   ResultType = ResultType.getNonLValueExprType(Context);
   6116 
   6117   CXXMemberCallExpr *CE =
   6118     new (Context) CXXMemberCallExpr(Context, ME, None, ResultType, VK,
   6119                                     Exp.get()->getLocEnd());
   6120   return CE;
   6121 }
   6122 
   6123 ExprResult Sema::BuildCXXNoexceptExpr(SourceLocation KeyLoc, Expr *Operand,
   6124                                       SourceLocation RParen) {
   6125   // If the operand is an unresolved lookup expression, the expression is ill-
   6126   // formed per [over.over]p1, because overloaded function names cannot be used
   6127   // without arguments except in explicit contexts.
   6128   ExprResult R = CheckPlaceholderExpr(Operand);
   6129   if (R.isInvalid())
   6130     return R;
   6131 
   6132   // The operand may have been modified when checking the placeholder type.
   6133   Operand = R.get();
   6134 
   6135   if (ActiveTemplateInstantiations.empty() &&
   6136       Operand->HasSideEffects(Context, false)) {
   6137     // The expression operand for noexcept is in an unevaluated expression
   6138     // context, so side effects could result in unintended consequences.
   6139     Diag(Operand->getExprLoc(), diag::warn_side_effects_unevaluated_context);
   6140   }
   6141 
   6142   CanThrowResult CanThrow = canThrow(Operand);
   6143   return new (Context)
   6144       CXXNoexceptExpr(Context.BoolTy, Operand, CanThrow, KeyLoc, RParen);
   6145 }
   6146 
   6147 ExprResult Sema::ActOnNoexceptExpr(SourceLocation KeyLoc, SourceLocation,
   6148                                    Expr *Operand, SourceLocation RParen) {
   6149   return BuildCXXNoexceptExpr(KeyLoc, Operand, RParen);
   6150 }
   6151 
   6152 static bool IsSpecialDiscardedValue(Expr *E) {
   6153   // In C++11, discarded-value expressions of a certain form are special,
   6154   // according to [expr]p10:
   6155   //   The lvalue-to-rvalue conversion (4.1) is applied only if the
   6156   //   expression is an lvalue of volatile-qualified type and it has
   6157   //   one of the following forms:
   6158   E = E->IgnoreParens();
   6159 
   6160   //   - id-expression (5.1.1),
   6161   if (isa<DeclRefExpr>(E))
   6162     return true;
   6163 
   6164   //   - subscripting (5.2.1),
   6165   if (isa<ArraySubscriptExpr>(E))
   6166     return true;
   6167 
   6168   //   - class member access (5.2.5),
   6169   if (isa<MemberExpr>(E))
   6170     return true;
   6171 
   6172   //   - indirection (5.3.1),
   6173   if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E))
   6174     if (UO->getOpcode() == UO_Deref)
   6175       return true;
   6176 
   6177   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
   6178     //   - pointer-to-member operation (5.5),
   6179     if (BO->isPtrMemOp())
   6180       return true;
   6181 
   6182     //   - comma expression (5.18) where the right operand is one of the above.
   6183     if (BO->getOpcode() == BO_Comma)
   6184       return IsSpecialDiscardedValue(BO->getRHS());
   6185   }
   6186 
   6187   //   - conditional expression (5.16) where both the second and the third
   6188   //     operands are one of the above, or
   6189   if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E))
   6190     return IsSpecialDiscardedValue(CO->getTrueExpr()) &&
   6191            IsSpecialDiscardedValue(CO->getFalseExpr());
   6192   // The related edge case of "*x ?: *x".
   6193   if (BinaryConditionalOperator *BCO =
   6194           dyn_cast<BinaryConditionalOperator>(E)) {
   6195     if (OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(BCO->getTrueExpr()))
   6196       return IsSpecialDiscardedValue(OVE->getSourceExpr()) &&
   6197              IsSpecialDiscardedValue(BCO->getFalseExpr());
   6198   }
   6199 
   6200   // Objective-C++ extensions to the rule.
   6201   if (isa<PseudoObjectExpr>(E) || isa<ObjCIvarRefExpr>(E))
   6202     return true;
   6203 
   6204   return false;
   6205 }
   6206 
   6207 /// Perform the conversions required for an expression used in a
   6208 /// context that ignores the result.
   6209 ExprResult Sema::IgnoredValueConversions(Expr *E) {
   6210   if (E->hasPlaceholderType()) {
   6211     ExprResult result = CheckPlaceholderExpr(E);
   6212     if (result.isInvalid()) return E;
   6213     E = result.get();
   6214   }
   6215 
   6216   // C99 6.3.2.1:
   6217   //   [Except in specific positions,] an lvalue that does not have
   6218   //   array type is converted to the value stored in the
   6219   //   designated object (and is no longer an lvalue).
   6220   if (E->isRValue()) {
   6221     // In C, function designators (i.e. expressions of function type)
   6222     // are r-values, but we still want to do function-to-pointer decay
   6223     // on them.  This is both technically correct and convenient for
   6224     // some clients.
   6225     if (!getLangOpts().CPlusPlus && E->getType()->isFunctionType())
   6226       return DefaultFunctionArrayConversion(E);
   6227 
   6228     return E;
   6229   }
   6230 
   6231   if (getLangOpts().CPlusPlus)  {
   6232     // The C++11 standard defines the notion of a discarded-value expression;
   6233     // normally, we don't need to do anything to handle it, but if it is a
   6234     // volatile lvalue with a special form, we perform an lvalue-to-rvalue
   6235     // conversion.
   6236     if (getLangOpts().CPlusPlus11 && E->isGLValue() &&
   6237         E->getType().isVolatileQualified() &&
   6238         IsSpecialDiscardedValue(E)) {
   6239       ExprResult Res = DefaultLvalueConversion(E);
   6240       if (Res.isInvalid())
   6241         return E;
   6242       E = Res.get();
   6243     }
   6244     return E;
   6245   }
   6246 
   6247   // GCC seems to also exclude expressions of incomplete enum type.
   6248   if (const EnumType *T = E->getType()->getAs<EnumType>()) {
   6249     if (!T->getDecl()->isComplete()) {
   6250       // FIXME: stupid workaround for a codegen bug!
   6251       E = ImpCastExprToType(E, Context.VoidTy, CK_ToVoid).get();
   6252       return E;
   6253     }
   6254   }
   6255 
   6256   ExprResult Res = DefaultFunctionArrayLvalueConversion(E);
   6257   if (Res.isInvalid())
   6258     return E;
   6259   E = Res.get();
   6260 
   6261   if (!E->getType()->isVoidType())
   6262     RequireCompleteType(E->getExprLoc(), E->getType(),
   6263                         diag::err_incomplete_type);
   6264   return E;
   6265 }
   6266 
   6267 // If we can unambiguously determine whether Var can never be used
   6268 // in a constant expression, return true.
   6269 //  - if the variable and its initializer are non-dependent, then
   6270 //    we can unambiguously check if the variable is a constant expression.
   6271 //  - if the initializer is not value dependent - we can determine whether
   6272 //    it can be used to initialize a constant expression.  If Init can not
   6273 //    be used to initialize a constant expression we conclude that Var can
   6274 //    never be a constant expression.
   6275 //  - FXIME: if the initializer is dependent, we can still do some analysis and
   6276 //    identify certain cases unambiguously as non-const by using a Visitor:
   6277 //      - such as those that involve odr-use of a ParmVarDecl, involve a new
   6278 //        delete, lambda-expr, dynamic-cast, reinterpret-cast etc...
   6279 static inline bool VariableCanNeverBeAConstantExpression(VarDecl *Var,
   6280     ASTContext &Context) {
   6281   if (isa<ParmVarDecl>(Var)) return true;
   6282   const VarDecl *DefVD = nullptr;
   6283 
   6284   // If there is no initializer - this can not be a constant expression.
   6285   if (!Var->getAnyInitializer(DefVD)) return true;
   6286   assert(DefVD);
   6287   if (DefVD->isWeak()) return false;
   6288   EvaluatedStmt *Eval = DefVD->ensureEvaluatedStmt();
   6289 
   6290   Expr *Init = cast<Expr>(Eval->Value);
   6291 
   6292   if (Var->getType()->isDependentType() || Init->isValueDependent()) {
   6293     // FIXME: Teach the constant evaluator to deal with the non-dependent parts
   6294     // of value-dependent expressions, and use it here to determine whether the
   6295     // initializer is a potential constant expression.
   6296     return false;
   6297   }
   6298 
   6299   return !IsVariableAConstantExpression(Var, Context);
   6300 }
   6301 
   6302 /// \brief Check if the current lambda has any potential captures
   6303 /// that must be captured by any of its enclosing lambdas that are ready to
   6304 /// capture. If there is a lambda that can capture a nested
   6305 /// potential-capture, go ahead and do so.  Also, check to see if any
   6306 /// variables are uncaptureable or do not involve an odr-use so do not
   6307 /// need to be captured.
   6308 
   6309 static void CheckIfAnyEnclosingLambdasMustCaptureAnyPotentialCaptures(
   6310     Expr *const FE, LambdaScopeInfo *const CurrentLSI, Sema &S) {
   6311 
   6312   assert(!S.isUnevaluatedContext());
   6313   assert(S.CurContext->isDependentContext());
   6314   assert(CurrentLSI->CallOperator == S.CurContext &&
   6315       "The current call operator must be synchronized with Sema's CurContext");
   6316 
   6317   const bool IsFullExprInstantiationDependent = FE->isInstantiationDependent();
   6318 
   6319   ArrayRef<const FunctionScopeInfo *> FunctionScopesArrayRef(
   6320       S.FunctionScopes.data(), S.FunctionScopes.size());
   6321 
   6322   // All the potentially captureable variables in the current nested
   6323   // lambda (within a generic outer lambda), must be captured by an
   6324   // outer lambda that is enclosed within a non-dependent context.
   6325   const unsigned NumPotentialCaptures =
   6326       CurrentLSI->getNumPotentialVariableCaptures();
   6327   for (unsigned I = 0; I != NumPotentialCaptures; ++I) {
   6328     Expr *VarExpr = nullptr;
   6329     VarDecl *Var = nullptr;
   6330     CurrentLSI->getPotentialVariableCapture(I, Var, VarExpr);
   6331     // If the variable is clearly identified as non-odr-used and the full
   6332     // expression is not instantiation dependent, only then do we not
   6333     // need to check enclosing lambda's for speculative captures.
   6334     // For e.g.:
   6335     // Even though 'x' is not odr-used, it should be captured.
   6336     // int test() {
   6337     //   const int x = 10;
   6338     //   auto L = [=](auto a) {
   6339     //     (void) +x + a;
   6340     //   };
   6341     // }
   6342     if (CurrentLSI->isVariableExprMarkedAsNonODRUsed(VarExpr) &&
   6343         !IsFullExprInstantiationDependent)
   6344       continue;
   6345 
   6346     // If we have a capture-capable lambda for the variable, go ahead and
   6347     // capture the variable in that lambda (and all its enclosing lambdas).
   6348     if (const Optional<unsigned> Index =
   6349             getStackIndexOfNearestEnclosingCaptureCapableLambda(
   6350                 FunctionScopesArrayRef, Var, S)) {
   6351       const unsigned FunctionScopeIndexOfCapturableLambda = Index.getValue();
   6352       MarkVarDeclODRUsed(Var, VarExpr->getExprLoc(), S,
   6353                          &FunctionScopeIndexOfCapturableLambda);
   6354     }
   6355     const bool IsVarNeverAConstantExpression =
   6356         VariableCanNeverBeAConstantExpression(Var, S.Context);
   6357     if (!IsFullExprInstantiationDependent || IsVarNeverAConstantExpression) {
   6358       // This full expression is not instantiation dependent or the variable
   6359       // can not be used in a constant expression - which means
   6360       // this variable must be odr-used here, so diagnose a
   6361       // capture violation early, if the variable is un-captureable.
   6362       // This is purely for diagnosing errors early.  Otherwise, this
   6363       // error would get diagnosed when the lambda becomes capture ready.
   6364       QualType CaptureType, DeclRefType;
   6365       SourceLocation ExprLoc = VarExpr->getExprLoc();
   6366       if (S.tryCaptureVariable(Var, ExprLoc, S.TryCapture_Implicit,
   6367                           /*EllipsisLoc*/ SourceLocation(),
   6368                           /*BuildAndDiagnose*/false, CaptureType,
   6369                           DeclRefType, nullptr)) {
   6370         // We will never be able to capture this variable, and we need
   6371         // to be able to in any and all instantiations, so diagnose it.
   6372         S.tryCaptureVariable(Var, ExprLoc, S.TryCapture_Implicit,
   6373                           /*EllipsisLoc*/ SourceLocation(),
   6374                           /*BuildAndDiagnose*/true, CaptureType,
   6375                           DeclRefType, nullptr);
   6376       }
   6377     }
   6378   }
   6379 
   6380   // Check if 'this' needs to be captured.
   6381   if (CurrentLSI->hasPotentialThisCapture()) {
   6382     // If we have a capture-capable lambda for 'this', go ahead and capture
   6383     // 'this' in that lambda (and all its enclosing lambdas).
   6384     if (const Optional<unsigned> Index =
   6385             getStackIndexOfNearestEnclosingCaptureCapableLambda(
   6386                 FunctionScopesArrayRef, /*0 is 'this'*/ nullptr, S)) {
   6387       const unsigned FunctionScopeIndexOfCapturableLambda = Index.getValue();
   6388       S.CheckCXXThisCapture(CurrentLSI->PotentialThisCaptureLocation,
   6389                             /*Explicit*/ false, /*BuildAndDiagnose*/ true,
   6390                             &FunctionScopeIndexOfCapturableLambda);
   6391     }
   6392   }
   6393 
   6394   // Reset all the potential captures at the end of each full-expression.
   6395   CurrentLSI->clearPotentialCaptures();
   6396 }
   6397 
   6398 static ExprResult attemptRecovery(Sema &SemaRef,
   6399                                   const TypoCorrectionConsumer &Consumer,
   6400                                   TypoCorrection TC) {
   6401   LookupResult R(SemaRef, Consumer.getLookupResult().getLookupNameInfo(),
   6402                  Consumer.getLookupResult().getLookupKind());
   6403   const CXXScopeSpec *SS = Consumer.getSS();
   6404   CXXScopeSpec NewSS;
   6405 
   6406   // Use an approprate CXXScopeSpec for building the expr.
   6407   if (auto *NNS = TC.getCorrectionSpecifier())
   6408     NewSS.MakeTrivial(SemaRef.Context, NNS, TC.getCorrectionRange());
   6409   else if (SS && !TC.WillReplaceSpecifier())
   6410     NewSS = *SS;
   6411 
   6412   if (auto *ND = TC.getCorrectionDecl()) {
   6413     R.setLookupName(ND->getDeclName());
   6414     R.addDecl(ND);
   6415     if (ND->isCXXClassMember()) {
   6416       // Figure out the correct naming class to add to the LookupResult.
   6417       CXXRecordDecl *Record = nullptr;
   6418       if (auto *NNS = TC.getCorrectionSpecifier())
   6419         Record = NNS->getAsType()->getAsCXXRecordDecl();
   6420       if (!Record)
   6421         Record =
   6422             dyn_cast<CXXRecordDecl>(ND->getDeclContext()->getRedeclContext());
   6423       if (Record)
   6424         R.setNamingClass(Record);
   6425 
   6426       // Detect and handle the case where the decl might be an implicit
   6427       // member.
   6428       bool MightBeImplicitMember;
   6429       if (!Consumer.isAddressOfOperand())
   6430         MightBeImplicitMember = true;
   6431       else if (!NewSS.isEmpty())
   6432         MightBeImplicitMember = false;
   6433       else if (R.isOverloadedResult())
   6434         MightBeImplicitMember = false;
   6435       else if (R.isUnresolvableResult())
   6436         MightBeImplicitMember = true;
   6437       else
   6438         MightBeImplicitMember = isa<FieldDecl>(ND) ||
   6439                                 isa<IndirectFieldDecl>(ND) ||
   6440                                 isa<MSPropertyDecl>(ND);
   6441 
   6442       if (MightBeImplicitMember)
   6443         return SemaRef.BuildPossibleImplicitMemberExpr(
   6444             NewSS, /*TemplateKWLoc*/ SourceLocation(), R,
   6445             /*TemplateArgs*/ nullptr, /*S*/ nullptr);
   6446     } else if (auto *Ivar = dyn_cast<ObjCIvarDecl>(ND)) {
   6447       return SemaRef.LookupInObjCMethod(R, Consumer.getScope(),
   6448                                         Ivar->getIdentifier());
   6449     }
   6450   }
   6451 
   6452   return SemaRef.BuildDeclarationNameExpr(NewSS, R, /*NeedsADL*/ false,
   6453                                           /*AcceptInvalidDecl*/ true);
   6454 }
   6455 
   6456 namespace {
   6457 class FindTypoExprs : public RecursiveASTVisitor<FindTypoExprs> {
   6458   llvm::SmallSetVector<TypoExpr *, 2> &TypoExprs;
   6459 
   6460 public:
   6461   explicit FindTypoExprs(llvm::SmallSetVector<TypoExpr *, 2> &TypoExprs)
   6462       : TypoExprs(TypoExprs) {}
   6463   bool VisitTypoExpr(TypoExpr *TE) {
   6464     TypoExprs.insert(TE);
   6465     return true;
   6466   }
   6467 };
   6468 
   6469 class TransformTypos : public TreeTransform<TransformTypos> {
   6470   typedef TreeTransform<TransformTypos> BaseTransform;
   6471 
   6472   VarDecl *InitDecl; // A decl to avoid as a correction because it is in the
   6473                      // process of being initialized.
   6474   llvm::function_ref<ExprResult(Expr *)> ExprFilter;
   6475   llvm::SmallSetVector<TypoExpr *, 2> TypoExprs, AmbiguousTypoExprs;
   6476   llvm::SmallDenseMap<TypoExpr *, ExprResult, 2> TransformCache;
   6477   llvm::SmallDenseMap<OverloadExpr *, Expr *, 4> OverloadResolution;
   6478 
   6479   /// \brief Emit diagnostics for all of the TypoExprs encountered.
   6480   /// If the TypoExprs were successfully corrected, then the diagnostics should
   6481   /// suggest the corrections. Otherwise the diagnostics will not suggest
   6482   /// anything (having been passed an empty TypoCorrection).
   6483   void EmitAllDiagnostics() {
   6484     for (auto E : TypoExprs) {
   6485       TypoExpr *TE = cast<TypoExpr>(E);
   6486       auto &State = SemaRef.getTypoExprState(TE);
   6487       if (State.DiagHandler) {
   6488         TypoCorrection TC = State.Consumer->getCurrentCorrection();
   6489         ExprResult Replacement = TransformCache[TE];
   6490 
   6491         // Extract the NamedDecl from the transformed TypoExpr and add it to the
   6492         // TypoCorrection, replacing the existing decls. This ensures the right
   6493         // NamedDecl is used in diagnostics e.g. in the case where overload
   6494         // resolution was used to select one from several possible decls that
   6495         // had been stored in the TypoCorrection.
   6496         if (auto *ND = getDeclFromExpr(
   6497                 Replacement.isInvalid() ? nullptr : Replacement.get()))
   6498           TC.setCorrectionDecl(ND);
   6499 
   6500         State.DiagHandler(TC);
   6501       }
   6502       SemaRef.clearDelayedTypo(TE);
   6503     }
   6504   }
   6505 
   6506   /// \brief If corrections for the first TypoExpr have been exhausted for a
   6507   /// given combination of the other TypoExprs, retry those corrections against
   6508   /// the next combination of substitutions for the other TypoExprs by advancing
   6509   /// to the next potential correction of the second TypoExpr. For the second
   6510   /// and subsequent TypoExprs, if its stream of corrections has been exhausted,
   6511   /// the stream is reset and the next TypoExpr's stream is advanced by one (a
   6512   /// TypoExpr's correction stream is advanced by removing the TypoExpr from the
   6513   /// TransformCache). Returns true if there is still any untried combinations
   6514   /// of corrections.
   6515   bool CheckAndAdvanceTypoExprCorrectionStreams() {
   6516     for (auto TE : TypoExprs) {
   6517       auto &State = SemaRef.getTypoExprState(TE);
   6518       TransformCache.erase(TE);
   6519       if (!State.Consumer->finished())
   6520         return true;
   6521       State.Consumer->resetCorrectionStream();
   6522     }
   6523     return false;
   6524   }
   6525 
   6526   NamedDecl *getDeclFromExpr(Expr *E) {
   6527     if (auto *OE = dyn_cast_or_null<OverloadExpr>(E))
   6528       E = OverloadResolution[OE];
   6529 
   6530     if (!E)
   6531       return nullptr;
   6532     if (auto *DRE = dyn_cast<DeclRefExpr>(E))
   6533       return DRE->getDecl();
   6534     if (auto *ME = dyn_cast<MemberExpr>(E))
   6535       return ME->getMemberDecl();
   6536     // FIXME: Add any other expr types that could be be seen by the delayed typo
   6537     // correction TreeTransform for which the corresponding TypoCorrection could
   6538     // contain multiple decls.
   6539     return nullptr;
   6540   }
   6541 
   6542   ExprResult TryTransform(Expr *E) {
   6543     Sema::SFINAETrap Trap(SemaRef);
   6544     ExprResult Res = TransformExpr(E);
   6545     if (Trap.hasErrorOccurred() || Res.isInvalid())
   6546       return ExprError();
   6547 
   6548     return ExprFilter(Res.get());
   6549   }
   6550 
   6551 public:
   6552   TransformTypos(Sema &SemaRef, VarDecl *InitDecl, llvm::function_ref<ExprResult(Expr *)> Filter)
   6553       : BaseTransform(SemaRef), InitDecl(InitDecl), ExprFilter(Filter) {}
   6554 
   6555   ExprResult RebuildCallExpr(Expr *Callee, SourceLocation LParenLoc,
   6556                                    MultiExprArg Args,
   6557                                    SourceLocation RParenLoc,
   6558                                    Expr *ExecConfig = nullptr) {
   6559     auto Result = BaseTransform::RebuildCallExpr(Callee, LParenLoc, Args,
   6560                                                  RParenLoc, ExecConfig);
   6561     if (auto *OE = dyn_cast<OverloadExpr>(Callee)) {
   6562       if (Result.isUsable()) {
   6563         Expr *ResultCall = Result.get();
   6564         if (auto *BE = dyn_cast<CXXBindTemporaryExpr>(ResultCall))
   6565           ResultCall = BE->getSubExpr();
   6566         if (auto *CE = dyn_cast<CallExpr>(ResultCall))
   6567           OverloadResolution[OE] = CE->getCallee();
   6568       }
   6569     }
   6570     return Result;
   6571   }
   6572 
   6573   ExprResult TransformLambdaExpr(LambdaExpr *E) { return Owned(E); }
   6574 
   6575   ExprResult TransformBlockExpr(BlockExpr *E) { return Owned(E); }
   6576 
   6577   ExprResult Transform(Expr *E) {
   6578     ExprResult Res;
   6579     while (true) {
   6580       Res = TryTransform(E);
   6581 
   6582       // Exit if either the transform was valid or if there were no TypoExprs
   6583       // to transform that still have any untried correction candidates..
   6584       if (!Res.isInvalid() ||
   6585           !CheckAndAdvanceTypoExprCorrectionStreams())
   6586         break;
   6587     }
   6588 
   6589     // Ensure none of the TypoExprs have multiple typo correction candidates
   6590     // with the same edit length that pass all the checks and filters.
   6591     // TODO: Properly handle various permutations of possible corrections when
   6592     // there is more than one potentially ambiguous typo correction.
   6593     // Also, disable typo correction while attempting the transform when
   6594     // handling potentially ambiguous typo corrections as any new TypoExprs will
   6595     // have been introduced by the application of one of the correction
   6596     // candidates and add little to no value if corrected.
   6597     SemaRef.DisableTypoCorrection = true;
   6598     while (!AmbiguousTypoExprs.empty()) {
   6599       auto TE  = AmbiguousTypoExprs.back();
   6600       auto Cached = TransformCache[TE];
   6601       auto &State = SemaRef.getTypoExprState(TE);
   6602       State.Consumer->saveCurrentPosition();
   6603       TransformCache.erase(TE);
   6604       if (!TryTransform(E).isInvalid()) {
   6605         State.Consumer->resetCorrectionStream();
   6606         TransformCache.erase(TE);
   6607         Res = ExprError();
   6608         break;
   6609       }
   6610       AmbiguousTypoExprs.remove(TE);
   6611       State.Consumer->restoreSavedPosition();
   6612       TransformCache[TE] = Cached;
   6613     }
   6614     SemaRef.DisableTypoCorrection = false;
   6615 
   6616     // Ensure that all of the TypoExprs within the current Expr have been found.
   6617     if (!Res.isUsable())
   6618       FindTypoExprs(TypoExprs).TraverseStmt(E);
   6619 
   6620     EmitAllDiagnostics();
   6621 
   6622     return Res;
   6623   }
   6624 
   6625   ExprResult TransformTypoExpr(TypoExpr *E) {
   6626     // If the TypoExpr hasn't been seen before, record it. Otherwise, return the
   6627     // cached transformation result if there is one and the TypoExpr isn't the
   6628     // first one that was encountered.
   6629     auto &CacheEntry = TransformCache[E];
   6630     if (!TypoExprs.insert(E) && !CacheEntry.isUnset()) {
   6631       return CacheEntry;
   6632     }
   6633 
   6634     auto &State = SemaRef.getTypoExprState(E);
   6635     assert(State.Consumer && "Cannot transform a cleared TypoExpr");
   6636 
   6637     // For the first TypoExpr and an uncached TypoExpr, find the next likely
   6638     // typo correction and return it.
   6639     while (TypoCorrection TC = State.Consumer->getNextCorrection()) {
   6640       if (InitDecl && TC.getCorrectionDecl() == InitDecl)
   6641         continue;
   6642       ExprResult NE = State.RecoveryHandler ?
   6643           State.RecoveryHandler(SemaRef, E, TC) :
   6644           attemptRecovery(SemaRef, *State.Consumer, TC);
   6645       if (!NE.isInvalid()) {
   6646         // Check whether there may be a second viable correction with the same
   6647         // edit distance; if so, remember this TypoExpr may have an ambiguous
   6648         // correction so it can be more thoroughly vetted later.
   6649         TypoCorrection Next;
   6650         if ((Next = State.Consumer->peekNextCorrection()) &&
   6651             Next.getEditDistance(false) == TC.getEditDistance(false)) {
   6652           AmbiguousTypoExprs.insert(E);
   6653         } else {
   6654           AmbiguousTypoExprs.remove(E);
   6655         }
   6656         assert(!NE.isUnset() &&
   6657                "Typo was transformed into a valid-but-null ExprResult");
   6658         return CacheEntry = NE;
   6659       }
   6660     }
   6661     return CacheEntry = ExprError();
   6662   }
   6663 };
   6664 }
   6665 
   6666 ExprResult
   6667 Sema::CorrectDelayedTyposInExpr(Expr *E, VarDecl *InitDecl,
   6668                                 llvm::function_ref<ExprResult(Expr *)> Filter) {
   6669   // If the current evaluation context indicates there are uncorrected typos
   6670   // and the current expression isn't guaranteed to not have typos, try to
   6671   // resolve any TypoExpr nodes that might be in the expression.
   6672   if (E && !ExprEvalContexts.empty() && ExprEvalContexts.back().NumTypos &&
   6673       (E->isTypeDependent() || E->isValueDependent() ||
   6674        E->isInstantiationDependent())) {
   6675     auto TyposInContext = ExprEvalContexts.back().NumTypos;
   6676     assert(TyposInContext < ~0U && "Recursive call of CorrectDelayedTyposInExpr");
   6677     ExprEvalContexts.back().NumTypos = ~0U;
   6678     auto TyposResolved = DelayedTypos.size();
   6679     auto Result = TransformTypos(*this, InitDecl, Filter).Transform(E);
   6680     ExprEvalContexts.back().NumTypos = TyposInContext;
   6681     TyposResolved -= DelayedTypos.size();
   6682     if (Result.isInvalid() || Result.get() != E) {
   6683       ExprEvalContexts.back().NumTypos -= TyposResolved;
   6684       return Result;
   6685     }
   6686     assert(TyposResolved == 0 && "Corrected typo but got same Expr back?");
   6687   }
   6688   return E;
   6689 }
   6690 
   6691 ExprResult Sema::ActOnFinishFullExpr(Expr *FE, SourceLocation CC,
   6692                                      bool DiscardedValue,
   6693                                      bool IsConstexpr,
   6694                                      bool IsLambdaInitCaptureInitializer) {
   6695   ExprResult FullExpr = FE;
   6696 
   6697   if (!FullExpr.get())
   6698     return ExprError();
   6699 
   6700   // If we are an init-expression in a lambdas init-capture, we should not
   6701   // diagnose an unexpanded pack now (will be diagnosed once lambda-expr
   6702   // containing full-expression is done).
   6703   // template<class ... Ts> void test(Ts ... t) {
   6704   //   test([&a(t)]() { <-- (t) is an init-expr that shouldn't be diagnosed now.
   6705   //     return a;
   6706   //   }() ...);
   6707   // }
   6708   // FIXME: This is a hack. It would be better if we pushed the lambda scope
   6709   // when we parse the lambda introducer, and teach capturing (but not
   6710   // unexpanded pack detection) to walk over LambdaScopeInfos which don't have a
   6711   // corresponding class yet (that is, have LambdaScopeInfo either represent a
   6712   // lambda where we've entered the introducer but not the body, or represent a
   6713   // lambda where we've entered the body, depending on where the
   6714   // parser/instantiation has got to).
   6715   if (!IsLambdaInitCaptureInitializer &&
   6716       DiagnoseUnexpandedParameterPack(FullExpr.get()))
   6717     return ExprError();
   6718 
   6719   // Top-level expressions default to 'id' when we're in a debugger.
   6720   if (DiscardedValue && getLangOpts().DebuggerCastResultToId &&
   6721       FullExpr.get()->getType() == Context.UnknownAnyTy) {
   6722     FullExpr = forceUnknownAnyToType(FullExpr.get(), Context.getObjCIdType());
   6723     if (FullExpr.isInvalid())
   6724       return ExprError();
   6725   }
   6726 
   6727   if (DiscardedValue) {
   6728     FullExpr = CheckPlaceholderExpr(FullExpr.get());
   6729     if (FullExpr.isInvalid())
   6730       return ExprError();
   6731 
   6732     FullExpr = IgnoredValueConversions(FullExpr.get());
   6733     if (FullExpr.isInvalid())
   6734       return ExprError();
   6735   }
   6736 
   6737   FullExpr = CorrectDelayedTyposInExpr(FullExpr.get());
   6738   if (FullExpr.isInvalid())
   6739     return ExprError();
   6740 
   6741   CheckCompletedExpr(FullExpr.get(), CC, IsConstexpr);
   6742 
   6743   // At the end of this full expression (which could be a deeply nested
   6744   // lambda), if there is a potential capture within the nested lambda,
   6745   // have the outer capture-able lambda try and capture it.
   6746   // Consider the following code:
   6747   // void f(int, int);
   6748   // void f(const int&, double);
   6749   // void foo() {
   6750   //  const int x = 10, y = 20;
   6751   //  auto L = [=](auto a) {
   6752   //      auto M = [=](auto b) {
   6753   //         f(x, b); <-- requires x to be captured by L and M
   6754   //         f(y, a); <-- requires y to be captured by L, but not all Ms
   6755   //      };
   6756   //   };
   6757   // }
   6758 
   6759   // FIXME: Also consider what happens for something like this that involves
   6760   // the gnu-extension statement-expressions or even lambda-init-captures:
   6761   //   void f() {
   6762   //     const int n = 0;
   6763   //     auto L =  [&](auto a) {
   6764   //       +n + ({ 0; a; });
   6765   //     };
   6766   //   }
   6767   //
   6768   // Here, we see +n, and then the full-expression 0; ends, so we don't
   6769   // capture n (and instead remove it from our list of potential captures),
   6770   // and then the full-expression +n + ({ 0; }); ends, but it's too late
   6771   // for us to see that we need to capture n after all.
   6772 
   6773   LambdaScopeInfo *const CurrentLSI = getCurLambda();
   6774   // FIXME: PR 17877 showed that getCurLambda() can return a valid pointer
   6775   // even if CurContext is not a lambda call operator. Refer to that Bug Report
   6776   // for an example of the code that might cause this asynchrony.
   6777   // By ensuring we are in the context of a lambda's call operator
   6778   // we can fix the bug (we only need to check whether we need to capture
   6779   // if we are within a lambda's body); but per the comments in that
   6780   // PR, a proper fix would entail :
   6781   //   "Alternative suggestion:
   6782   //   - Add to Sema an integer holding the smallest (outermost) scope
   6783   //     index that we are *lexically* within, and save/restore/set to
   6784   //     FunctionScopes.size() in InstantiatingTemplate's
   6785   //     constructor/destructor.
   6786   //  - Teach the handful of places that iterate over FunctionScopes to
   6787   //    stop at the outermost enclosing lexical scope."
   6788   const bool IsInLambdaDeclContext = isLambdaCallOperator(CurContext);
   6789   if (IsInLambdaDeclContext && CurrentLSI &&
   6790       CurrentLSI->hasPotentialCaptures() && !FullExpr.isInvalid())
   6791     CheckIfAnyEnclosingLambdasMustCaptureAnyPotentialCaptures(FE, CurrentLSI,
   6792                                                               *this);
   6793   return MaybeCreateExprWithCleanups(FullExpr);
   6794 }
   6795 
   6796 StmtResult Sema::ActOnFinishFullStmt(Stmt *FullStmt) {
   6797   if (!FullStmt) return StmtError();
   6798 
   6799   return MaybeCreateStmtWithCleanups(FullStmt);
   6800 }
   6801 
   6802 Sema::IfExistsResult
   6803 Sema::CheckMicrosoftIfExistsSymbol(Scope *S,
   6804                                    CXXScopeSpec &SS,
   6805                                    const DeclarationNameInfo &TargetNameInfo) {
   6806   DeclarationName TargetName = TargetNameInfo.getName();
   6807   if (!TargetName)
   6808     return IER_DoesNotExist;
   6809 
   6810   // If the name itself is dependent, then the result is dependent.
   6811   if (TargetName.isDependentName())
   6812     return IER_Dependent;
   6813 
   6814   // Do the redeclaration lookup in the current scope.
   6815   LookupResult R(*this, TargetNameInfo, Sema::LookupAnyName,
   6816                  Sema::NotForRedeclaration);
   6817   LookupParsedName(R, S, &SS);
   6818   R.suppressDiagnostics();
   6819 
   6820   switch (R.getResultKind()) {
   6821   case LookupResult::Found:
   6822   case LookupResult::FoundOverloaded:
   6823   case LookupResult::FoundUnresolvedValue:
   6824   case LookupResult::Ambiguous:
   6825     return IER_Exists;
   6826 
   6827   case LookupResult::NotFound:
   6828     return IER_DoesNotExist;
   6829 
   6830   case LookupResult::NotFoundInCurrentInstantiation:
   6831     return IER_Dependent;
   6832   }
   6833 
   6834   llvm_unreachable("Invalid LookupResult Kind!");
   6835 }
   6836 
   6837 Sema::IfExistsResult
   6838 Sema::CheckMicrosoftIfExistsSymbol(Scope *S, SourceLocation KeywordLoc,
   6839                                    bool IsIfExists, CXXScopeSpec &SS,
   6840                                    UnqualifiedId &Name) {
   6841   DeclarationNameInfo TargetNameInfo = GetNameFromUnqualifiedId(Name);
   6842 
   6843   // Check for unexpanded parameter packs.
   6844   SmallVector<UnexpandedParameterPack, 4> Unexpanded;
   6845   collectUnexpandedParameterPacks(SS, Unexpanded);
   6846   collectUnexpandedParameterPacks(TargetNameInfo, Unexpanded);
   6847   if (!Unexpanded.empty()) {
   6848     DiagnoseUnexpandedParameterPacks(KeywordLoc,
   6849                                      IsIfExists? UPPC_IfExists
   6850                                                : UPPC_IfNotExists,
   6851                                      Unexpanded);
   6852     return IER_Error;
   6853   }
   6854 
   6855   return CheckMicrosoftIfExistsSymbol(S, SS, TargetNameInfo);
   6856 }
   6857