Home | History | Annotate | Download | only in Utils
      1 //===- CloneFunction.cpp - Clone a function into another function ---------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements the CloneFunctionInto interface, which is used as the
     11 // low-level function cloner.  This is used by the CloneFunction and function
     12 // inliner to do the dirty work of copying the body of a function around.
     13 //
     14 //===----------------------------------------------------------------------===//
     15 
     16 #include "llvm/Transforms/Utils/Cloning.h"
     17 #include "llvm/ADT/SmallVector.h"
     18 #include "llvm/Analysis/ConstantFolding.h"
     19 #include "llvm/Analysis/InstructionSimplify.h"
     20 #include "llvm/Analysis/LoopInfo.h"
     21 #include "llvm/IR/CFG.h"
     22 #include "llvm/IR/Constants.h"
     23 #include "llvm/IR/DebugInfo.h"
     24 #include "llvm/IR/DerivedTypes.h"
     25 #include "llvm/IR/Function.h"
     26 #include "llvm/IR/GlobalVariable.h"
     27 #include "llvm/IR/Instructions.h"
     28 #include "llvm/IR/IntrinsicInst.h"
     29 #include "llvm/IR/LLVMContext.h"
     30 #include "llvm/IR/Metadata.h"
     31 #include "llvm/IR/Module.h"
     32 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
     33 #include "llvm/Transforms/Utils/Local.h"
     34 #include "llvm/Transforms/Utils/ValueMapper.h"
     35 #include <map>
     36 using namespace llvm;
     37 
     38 /// See comments in Cloning.h.
     39 BasicBlock *llvm::CloneBasicBlock(const BasicBlock *BB,
     40                                   ValueToValueMapTy &VMap,
     41                                   const Twine &NameSuffix, Function *F,
     42                                   ClonedCodeInfo *CodeInfo) {
     43   BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "", F);
     44   if (BB->hasName()) NewBB->setName(BB->getName()+NameSuffix);
     45 
     46   bool hasCalls = false, hasDynamicAllocas = false, hasStaticAllocas = false;
     47 
     48   // Loop over all instructions, and copy them over.
     49   for (BasicBlock::const_iterator II = BB->begin(), IE = BB->end();
     50        II != IE; ++II) {
     51     Instruction *NewInst = II->clone();
     52     if (II->hasName())
     53       NewInst->setName(II->getName()+NameSuffix);
     54     NewBB->getInstList().push_back(NewInst);
     55     VMap[&*II] = NewInst; // Add instruction map to value.
     56 
     57     hasCalls |= (isa<CallInst>(II) && !isa<DbgInfoIntrinsic>(II));
     58     if (const AllocaInst *AI = dyn_cast<AllocaInst>(II)) {
     59       if (isa<ConstantInt>(AI->getArraySize()))
     60         hasStaticAllocas = true;
     61       else
     62         hasDynamicAllocas = true;
     63     }
     64   }
     65 
     66   if (CodeInfo) {
     67     CodeInfo->ContainsCalls          |= hasCalls;
     68     CodeInfo->ContainsDynamicAllocas |= hasDynamicAllocas;
     69     CodeInfo->ContainsDynamicAllocas |= hasStaticAllocas &&
     70                                         BB != &BB->getParent()->getEntryBlock();
     71   }
     72   return NewBB;
     73 }
     74 
     75 // Clone OldFunc into NewFunc, transforming the old arguments into references to
     76 // VMap values.
     77 //
     78 void llvm::CloneFunctionInto(Function *NewFunc, const Function *OldFunc,
     79                              ValueToValueMapTy &VMap,
     80                              bool ModuleLevelChanges,
     81                              SmallVectorImpl<ReturnInst*> &Returns,
     82                              const char *NameSuffix, ClonedCodeInfo *CodeInfo,
     83                              ValueMapTypeRemapper *TypeMapper,
     84                              ValueMaterializer *Materializer) {
     85   assert(NameSuffix && "NameSuffix cannot be null!");
     86 
     87 #ifndef NDEBUG
     88   for (const Argument &I : OldFunc->args())
     89     assert(VMap.count(&I) && "No mapping from source argument specified!");
     90 #endif
     91 
     92   // Copy all attributes other than those stored in the AttributeSet.  We need
     93   // to remap the parameter indices of the AttributeSet.
     94   AttributeSet NewAttrs = NewFunc->getAttributes();
     95   NewFunc->copyAttributesFrom(OldFunc);
     96   NewFunc->setAttributes(NewAttrs);
     97 
     98   // Fix up the personality function that got copied over.
     99   if (OldFunc->hasPersonalityFn())
    100     NewFunc->setPersonalityFn(
    101         MapValue(OldFunc->getPersonalityFn(), VMap,
    102                  ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges,
    103                  TypeMapper, Materializer));
    104 
    105   AttributeSet OldAttrs = OldFunc->getAttributes();
    106   // Clone any argument attributes that are present in the VMap.
    107   for (const Argument &OldArg : OldFunc->args())
    108     if (Argument *NewArg = dyn_cast<Argument>(VMap[&OldArg])) {
    109       AttributeSet attrs =
    110           OldAttrs.getParamAttributes(OldArg.getArgNo() + 1);
    111       if (attrs.getNumSlots() > 0)
    112         NewArg->addAttr(attrs);
    113     }
    114 
    115   NewFunc->setAttributes(
    116       NewFunc->getAttributes()
    117           .addAttributes(NewFunc->getContext(), AttributeSet::ReturnIndex,
    118                          OldAttrs.getRetAttributes())
    119           .addAttributes(NewFunc->getContext(), AttributeSet::FunctionIndex,
    120                          OldAttrs.getFnAttributes()));
    121 
    122   // Loop over all of the basic blocks in the function, cloning them as
    123   // appropriate.  Note that we save BE this way in order to handle cloning of
    124   // recursive functions into themselves.
    125   //
    126   for (Function::const_iterator BI = OldFunc->begin(), BE = OldFunc->end();
    127        BI != BE; ++BI) {
    128     const BasicBlock &BB = *BI;
    129 
    130     // Create a new basic block and copy instructions into it!
    131     BasicBlock *CBB = CloneBasicBlock(&BB, VMap, NameSuffix, NewFunc, CodeInfo);
    132 
    133     // Add basic block mapping.
    134     VMap[&BB] = CBB;
    135 
    136     // It is only legal to clone a function if a block address within that
    137     // function is never referenced outside of the function.  Given that, we
    138     // want to map block addresses from the old function to block addresses in
    139     // the clone. (This is different from the generic ValueMapper
    140     // implementation, which generates an invalid blockaddress when
    141     // cloning a function.)
    142     if (BB.hasAddressTaken()) {
    143       Constant *OldBBAddr = BlockAddress::get(const_cast<Function*>(OldFunc),
    144                                               const_cast<BasicBlock*>(&BB));
    145       VMap[OldBBAddr] = BlockAddress::get(NewFunc, CBB);
    146     }
    147 
    148     // Note return instructions for the caller.
    149     if (ReturnInst *RI = dyn_cast<ReturnInst>(CBB->getTerminator()))
    150       Returns.push_back(RI);
    151   }
    152 
    153   // Loop over all of the instructions in the function, fixing up operand
    154   // references as we go.  This uses VMap to do all the hard work.
    155   for (Function::iterator BB =
    156            cast<BasicBlock>(VMap[&OldFunc->front()])->getIterator(),
    157                           BE = NewFunc->end();
    158        BB != BE; ++BB)
    159     // Loop over all instructions, fixing each one as we find it...
    160     for (Instruction &II : *BB)
    161       RemapInstruction(&II, VMap,
    162                        ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges,
    163                        TypeMapper, Materializer);
    164 }
    165 
    166 // Find the MDNode which corresponds to the subprogram data that described F.
    167 static DISubprogram *FindSubprogram(const Function *F,
    168                                     DebugInfoFinder &Finder) {
    169   for (DISubprogram *Subprogram : Finder.subprograms()) {
    170     if (Subprogram->describes(F))
    171       return Subprogram;
    172   }
    173   return nullptr;
    174 }
    175 
    176 // Add an operand to an existing MDNode. The new operand will be added at the
    177 // back of the operand list.
    178 static void AddOperand(DICompileUnit *CU, DISubprogramArray SPs,
    179                        Metadata *NewSP) {
    180   SmallVector<Metadata *, 16> NewSPs;
    181   NewSPs.reserve(SPs.size() + 1);
    182   for (auto *SP : SPs)
    183     NewSPs.push_back(SP);
    184   NewSPs.push_back(NewSP);
    185   CU->replaceSubprograms(MDTuple::get(CU->getContext(), NewSPs));
    186 }
    187 
    188 // Clone the module-level debug info associated with OldFunc. The cloned data
    189 // will point to NewFunc instead.
    190 static void CloneDebugInfoMetadata(Function *NewFunc, const Function *OldFunc,
    191                             ValueToValueMapTy &VMap) {
    192   DebugInfoFinder Finder;
    193   Finder.processModule(*OldFunc->getParent());
    194 
    195   const DISubprogram *OldSubprogramMDNode = FindSubprogram(OldFunc, Finder);
    196   if (!OldSubprogramMDNode) return;
    197 
    198   auto *NewSubprogram =
    199       cast<DISubprogram>(MapMetadata(OldSubprogramMDNode, VMap));
    200   NewFunc->setSubprogram(NewSubprogram);
    201 
    202   for (auto *CU : Finder.compile_units()) {
    203     auto Subprograms = CU->getSubprograms();
    204     // If the compile unit's function list contains the old function, it should
    205     // also contain the new one.
    206     for (auto *SP : Subprograms) {
    207       if (SP == OldSubprogramMDNode) {
    208         AddOperand(CU, Subprograms, NewSubprogram);
    209         break;
    210       }
    211     }
    212   }
    213 }
    214 
    215 /// Return a copy of the specified function, but without
    216 /// embedding the function into another module.  Also, any references specified
    217 /// in the VMap are changed to refer to their mapped value instead of the
    218 /// original one.  If any of the arguments to the function are in the VMap,
    219 /// the arguments are deleted from the resultant function.  The VMap is
    220 /// updated to include mappings from all of the instructions and basicblocks in
    221 /// the function from their old to new values.
    222 ///
    223 Function *llvm::CloneFunction(const Function *F, ValueToValueMapTy &VMap,
    224                               bool ModuleLevelChanges,
    225                               ClonedCodeInfo *CodeInfo) {
    226   std::vector<Type*> ArgTypes;
    227 
    228   // The user might be deleting arguments to the function by specifying them in
    229   // the VMap.  If so, we need to not add the arguments to the arg ty vector
    230   //
    231   for (const Argument &I : F->args())
    232     if (VMap.count(&I) == 0) // Haven't mapped the argument to anything yet?
    233       ArgTypes.push_back(I.getType());
    234 
    235   // Create a new function type...
    236   FunctionType *FTy = FunctionType::get(F->getFunctionType()->getReturnType(),
    237                                     ArgTypes, F->getFunctionType()->isVarArg());
    238 
    239   // Create the new function...
    240   Function *NewF = Function::Create(FTy, F->getLinkage(), F->getName());
    241 
    242   // Loop over the arguments, copying the names of the mapped arguments over...
    243   Function::arg_iterator DestI = NewF->arg_begin();
    244   for (const Argument & I : F->args())
    245     if (VMap.count(&I) == 0) {     // Is this argument preserved?
    246       DestI->setName(I.getName()); // Copy the name over...
    247       VMap[&I] = &*DestI++;        // Add mapping to VMap
    248     }
    249 
    250   if (ModuleLevelChanges)
    251     CloneDebugInfoMetadata(NewF, F, VMap);
    252 
    253   SmallVector<ReturnInst*, 8> Returns;  // Ignore returns cloned.
    254   CloneFunctionInto(NewF, F, VMap, ModuleLevelChanges, Returns, "", CodeInfo);
    255   return NewF;
    256 }
    257 
    258 
    259 
    260 namespace {
    261   /// This is a private class used to implement CloneAndPruneFunctionInto.
    262   struct PruningFunctionCloner {
    263     Function *NewFunc;
    264     const Function *OldFunc;
    265     ValueToValueMapTy &VMap;
    266     bool ModuleLevelChanges;
    267     const char *NameSuffix;
    268     ClonedCodeInfo *CodeInfo;
    269     CloningDirector *Director;
    270     ValueMapTypeRemapper *TypeMapper;
    271     ValueMaterializer *Materializer;
    272 
    273   public:
    274     PruningFunctionCloner(Function *newFunc, const Function *oldFunc,
    275                           ValueToValueMapTy &valueMap, bool moduleLevelChanges,
    276                           const char *nameSuffix, ClonedCodeInfo *codeInfo,
    277                           CloningDirector *Director)
    278         : NewFunc(newFunc), OldFunc(oldFunc), VMap(valueMap),
    279           ModuleLevelChanges(moduleLevelChanges), NameSuffix(nameSuffix),
    280           CodeInfo(codeInfo), Director(Director) {
    281       // These are optional components.  The Director may return null.
    282       if (Director) {
    283         TypeMapper = Director->getTypeRemapper();
    284         Materializer = Director->getValueMaterializer();
    285       } else {
    286         TypeMapper = nullptr;
    287         Materializer = nullptr;
    288       }
    289     }
    290 
    291     /// The specified block is found to be reachable, clone it and
    292     /// anything that it can reach.
    293     void CloneBlock(const BasicBlock *BB,
    294                     BasicBlock::const_iterator StartingInst,
    295                     std::vector<const BasicBlock*> &ToClone);
    296   };
    297 }
    298 
    299 /// The specified block is found to be reachable, clone it and
    300 /// anything that it can reach.
    301 void PruningFunctionCloner::CloneBlock(const BasicBlock *BB,
    302                                        BasicBlock::const_iterator StartingInst,
    303                                        std::vector<const BasicBlock*> &ToClone){
    304   WeakVH &BBEntry = VMap[BB];
    305 
    306   // Have we already cloned this block?
    307   if (BBEntry) return;
    308 
    309   // Nope, clone it now.
    310   BasicBlock *NewBB;
    311   BBEntry = NewBB = BasicBlock::Create(BB->getContext());
    312   if (BB->hasName()) NewBB->setName(BB->getName()+NameSuffix);
    313 
    314   // It is only legal to clone a function if a block address within that
    315   // function is never referenced outside of the function.  Given that, we
    316   // want to map block addresses from the old function to block addresses in
    317   // the clone. (This is different from the generic ValueMapper
    318   // implementation, which generates an invalid blockaddress when
    319   // cloning a function.)
    320   //
    321   // Note that we don't need to fix the mapping for unreachable blocks;
    322   // the default mapping there is safe.
    323   if (BB->hasAddressTaken()) {
    324     Constant *OldBBAddr = BlockAddress::get(const_cast<Function*>(OldFunc),
    325                                             const_cast<BasicBlock*>(BB));
    326     VMap[OldBBAddr] = BlockAddress::get(NewFunc, NewBB);
    327   }
    328 
    329   bool hasCalls = false, hasDynamicAllocas = false, hasStaticAllocas = false;
    330 
    331   // Loop over all instructions, and copy them over, DCE'ing as we go.  This
    332   // loop doesn't include the terminator.
    333   for (BasicBlock::const_iterator II = StartingInst, IE = --BB->end();
    334        II != IE; ++II) {
    335     // If the "Director" remaps the instruction, don't clone it.
    336     if (Director) {
    337       CloningDirector::CloningAction Action =
    338           Director->handleInstruction(VMap, &*II, NewBB);
    339       // If the cloning director says stop, we want to stop everything, not
    340       // just break out of the loop (which would cause the terminator to be
    341       // cloned).  The cloning director is responsible for inserting a proper
    342       // terminator into the new basic block in this case.
    343       if (Action == CloningDirector::StopCloningBB)
    344         return;
    345       // If the cloning director says skip, continue to the next instruction.
    346       // In this case, the cloning director is responsible for mapping the
    347       // skipped instruction to some value that is defined in the new
    348       // basic block.
    349       if (Action == CloningDirector::SkipInstruction)
    350         continue;
    351     }
    352 
    353     Instruction *NewInst = II->clone();
    354 
    355     // Eagerly remap operands to the newly cloned instruction, except for PHI
    356     // nodes for which we defer processing until we update the CFG.
    357     if (!isa<PHINode>(NewInst)) {
    358       RemapInstruction(NewInst, VMap,
    359                        ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges,
    360                        TypeMapper, Materializer);
    361 
    362       // If we can simplify this instruction to some other value, simply add
    363       // a mapping to that value rather than inserting a new instruction into
    364       // the basic block.
    365       if (Value *V =
    366               SimplifyInstruction(NewInst, BB->getModule()->getDataLayout())) {
    367         // On the off-chance that this simplifies to an instruction in the old
    368         // function, map it back into the new function.
    369         if (Value *MappedV = VMap.lookup(V))
    370           V = MappedV;
    371 
    372         VMap[&*II] = V;
    373         delete NewInst;
    374         continue;
    375       }
    376     }
    377 
    378     if (II->hasName())
    379       NewInst->setName(II->getName()+NameSuffix);
    380     VMap[&*II] = NewInst; // Add instruction map to value.
    381     NewBB->getInstList().push_back(NewInst);
    382     hasCalls |= (isa<CallInst>(II) && !isa<DbgInfoIntrinsic>(II));
    383 
    384     if (CodeInfo)
    385       if (auto CS = ImmutableCallSite(&*II))
    386         if (CS.hasOperandBundles())
    387           CodeInfo->OperandBundleCallSites.push_back(NewInst);
    388 
    389     if (const AllocaInst *AI = dyn_cast<AllocaInst>(II)) {
    390       if (isa<ConstantInt>(AI->getArraySize()))
    391         hasStaticAllocas = true;
    392       else
    393         hasDynamicAllocas = true;
    394     }
    395   }
    396 
    397   // Finally, clone over the terminator.
    398   const TerminatorInst *OldTI = BB->getTerminator();
    399   bool TerminatorDone = false;
    400   if (Director) {
    401     CloningDirector::CloningAction Action
    402                            = Director->handleInstruction(VMap, OldTI, NewBB);
    403     // If the cloning director says stop, we want to stop everything, not
    404     // just break out of the loop (which would cause the terminator to be
    405     // cloned).  The cloning director is responsible for inserting a proper
    406     // terminator into the new basic block in this case.
    407     if (Action == CloningDirector::StopCloningBB)
    408       return;
    409     if (Action == CloningDirector::CloneSuccessors) {
    410       // If the director says to skip with a terminate instruction, we still
    411       // need to clone this block's successors.
    412       const TerminatorInst *TI = NewBB->getTerminator();
    413       for (const BasicBlock *Succ : TI->successors())
    414         ToClone.push_back(Succ);
    415       return;
    416     }
    417     assert(Action != CloningDirector::SkipInstruction &&
    418            "SkipInstruction is not valid for terminators.");
    419   }
    420   if (const BranchInst *BI = dyn_cast<BranchInst>(OldTI)) {
    421     if (BI->isConditional()) {
    422       // If the condition was a known constant in the callee...
    423       ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition());
    424       // Or is a known constant in the caller...
    425       if (!Cond) {
    426         Value *V = VMap[BI->getCondition()];
    427         Cond = dyn_cast_or_null<ConstantInt>(V);
    428       }
    429 
    430       // Constant fold to uncond branch!
    431       if (Cond) {
    432         BasicBlock *Dest = BI->getSuccessor(!Cond->getZExtValue());
    433         VMap[OldTI] = BranchInst::Create(Dest, NewBB);
    434         ToClone.push_back(Dest);
    435         TerminatorDone = true;
    436       }
    437     }
    438   } else if (const SwitchInst *SI = dyn_cast<SwitchInst>(OldTI)) {
    439     // If switching on a value known constant in the caller.
    440     ConstantInt *Cond = dyn_cast<ConstantInt>(SI->getCondition());
    441     if (!Cond) { // Or known constant after constant prop in the callee...
    442       Value *V = VMap[SI->getCondition()];
    443       Cond = dyn_cast_or_null<ConstantInt>(V);
    444     }
    445     if (Cond) {     // Constant fold to uncond branch!
    446       SwitchInst::ConstCaseIt Case = SI->findCaseValue(Cond);
    447       BasicBlock *Dest = const_cast<BasicBlock*>(Case.getCaseSuccessor());
    448       VMap[OldTI] = BranchInst::Create(Dest, NewBB);
    449       ToClone.push_back(Dest);
    450       TerminatorDone = true;
    451     }
    452   }
    453 
    454   if (!TerminatorDone) {
    455     Instruction *NewInst = OldTI->clone();
    456     if (OldTI->hasName())
    457       NewInst->setName(OldTI->getName()+NameSuffix);
    458     NewBB->getInstList().push_back(NewInst);
    459     VMap[OldTI] = NewInst;             // Add instruction map to value.
    460 
    461     if (CodeInfo)
    462       if (auto CS = ImmutableCallSite(OldTI))
    463         if (CS.hasOperandBundles())
    464           CodeInfo->OperandBundleCallSites.push_back(NewInst);
    465 
    466     // Recursively clone any reachable successor blocks.
    467     const TerminatorInst *TI = BB->getTerminator();
    468     for (const BasicBlock *Succ : TI->successors())
    469       ToClone.push_back(Succ);
    470   }
    471 
    472   if (CodeInfo) {
    473     CodeInfo->ContainsCalls          |= hasCalls;
    474     CodeInfo->ContainsDynamicAllocas |= hasDynamicAllocas;
    475     CodeInfo->ContainsDynamicAllocas |= hasStaticAllocas &&
    476       BB != &BB->getParent()->front();
    477   }
    478 }
    479 
    480 /// This works like CloneAndPruneFunctionInto, except that it does not clone the
    481 /// entire function. Instead it starts at an instruction provided by the caller
    482 /// and copies (and prunes) only the code reachable from that instruction.
    483 void llvm::CloneAndPruneIntoFromInst(Function *NewFunc, const Function *OldFunc,
    484                                      const Instruction *StartingInst,
    485                                      ValueToValueMapTy &VMap,
    486                                      bool ModuleLevelChanges,
    487                                      SmallVectorImpl<ReturnInst *> &Returns,
    488                                      const char *NameSuffix,
    489                                      ClonedCodeInfo *CodeInfo,
    490                                      CloningDirector *Director) {
    491   assert(NameSuffix && "NameSuffix cannot be null!");
    492 
    493   ValueMapTypeRemapper *TypeMapper = nullptr;
    494   ValueMaterializer *Materializer = nullptr;
    495 
    496   if (Director) {
    497     TypeMapper = Director->getTypeRemapper();
    498     Materializer = Director->getValueMaterializer();
    499   }
    500 
    501 #ifndef NDEBUG
    502   // If the cloning starts at the beginning of the function, verify that
    503   // the function arguments are mapped.
    504   if (!StartingInst)
    505     for (const Argument &II : OldFunc->args())
    506       assert(VMap.count(&II) && "No mapping from source argument specified!");
    507 #endif
    508 
    509   PruningFunctionCloner PFC(NewFunc, OldFunc, VMap, ModuleLevelChanges,
    510                             NameSuffix, CodeInfo, Director);
    511   const BasicBlock *StartingBB;
    512   if (StartingInst)
    513     StartingBB = StartingInst->getParent();
    514   else {
    515     StartingBB = &OldFunc->getEntryBlock();
    516     StartingInst = &StartingBB->front();
    517   }
    518 
    519   // Clone the entry block, and anything recursively reachable from it.
    520   std::vector<const BasicBlock*> CloneWorklist;
    521   PFC.CloneBlock(StartingBB, StartingInst->getIterator(), CloneWorklist);
    522   while (!CloneWorklist.empty()) {
    523     const BasicBlock *BB = CloneWorklist.back();
    524     CloneWorklist.pop_back();
    525     PFC.CloneBlock(BB, BB->begin(), CloneWorklist);
    526   }
    527 
    528   // Loop over all of the basic blocks in the old function.  If the block was
    529   // reachable, we have cloned it and the old block is now in the value map:
    530   // insert it into the new function in the right order.  If not, ignore it.
    531   //
    532   // Defer PHI resolution until rest of function is resolved.
    533   SmallVector<const PHINode*, 16> PHIToResolve;
    534   for (const BasicBlock &BI : *OldFunc) {
    535     Value *V = VMap[&BI];
    536     BasicBlock *NewBB = cast_or_null<BasicBlock>(V);
    537     if (!NewBB) continue;  // Dead block.
    538 
    539     // Add the new block to the new function.
    540     NewFunc->getBasicBlockList().push_back(NewBB);
    541 
    542     // Handle PHI nodes specially, as we have to remove references to dead
    543     // blocks.
    544     for (BasicBlock::const_iterator I = BI.begin(), E = BI.end(); I != E; ++I) {
    545       // PHI nodes may have been remapped to non-PHI nodes by the caller or
    546       // during the cloning process.
    547       if (const PHINode *PN = dyn_cast<PHINode>(I)) {
    548         if (isa<PHINode>(VMap[PN]))
    549           PHIToResolve.push_back(PN);
    550         else
    551           break;
    552       } else {
    553         break;
    554       }
    555     }
    556 
    557     // Finally, remap the terminator instructions, as those can't be remapped
    558     // until all BBs are mapped.
    559     RemapInstruction(NewBB->getTerminator(), VMap,
    560                      ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges,
    561                      TypeMapper, Materializer);
    562   }
    563 
    564   // Defer PHI resolution until rest of function is resolved, PHI resolution
    565   // requires the CFG to be up-to-date.
    566   for (unsigned phino = 0, e = PHIToResolve.size(); phino != e; ) {
    567     const PHINode *OPN = PHIToResolve[phino];
    568     unsigned NumPreds = OPN->getNumIncomingValues();
    569     const BasicBlock *OldBB = OPN->getParent();
    570     BasicBlock *NewBB = cast<BasicBlock>(VMap[OldBB]);
    571 
    572     // Map operands for blocks that are live and remove operands for blocks
    573     // that are dead.
    574     for (; phino != PHIToResolve.size() &&
    575          PHIToResolve[phino]->getParent() == OldBB; ++phino) {
    576       OPN = PHIToResolve[phino];
    577       PHINode *PN = cast<PHINode>(VMap[OPN]);
    578       for (unsigned pred = 0, e = NumPreds; pred != e; ++pred) {
    579         Value *V = VMap[PN->getIncomingBlock(pred)];
    580         if (BasicBlock *MappedBlock = cast_or_null<BasicBlock>(V)) {
    581           Value *InVal = MapValue(PN->getIncomingValue(pred),
    582                                   VMap,
    583                         ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges);
    584           assert(InVal && "Unknown input value?");
    585           PN->setIncomingValue(pred, InVal);
    586           PN->setIncomingBlock(pred, MappedBlock);
    587         } else {
    588           PN->removeIncomingValue(pred, false);
    589           --pred, --e;  // Revisit the next entry.
    590         }
    591       }
    592     }
    593 
    594     // The loop above has removed PHI entries for those blocks that are dead
    595     // and has updated others.  However, if a block is live (i.e. copied over)
    596     // but its terminator has been changed to not go to this block, then our
    597     // phi nodes will have invalid entries.  Update the PHI nodes in this
    598     // case.
    599     PHINode *PN = cast<PHINode>(NewBB->begin());
    600     NumPreds = std::distance(pred_begin(NewBB), pred_end(NewBB));
    601     if (NumPreds != PN->getNumIncomingValues()) {
    602       assert(NumPreds < PN->getNumIncomingValues());
    603       // Count how many times each predecessor comes to this block.
    604       std::map<BasicBlock*, unsigned> PredCount;
    605       for (pred_iterator PI = pred_begin(NewBB), E = pred_end(NewBB);
    606            PI != E; ++PI)
    607         --PredCount[*PI];
    608 
    609       // Figure out how many entries to remove from each PHI.
    610       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
    611         ++PredCount[PN->getIncomingBlock(i)];
    612 
    613       // At this point, the excess predecessor entries are positive in the
    614       // map.  Loop over all of the PHIs and remove excess predecessor
    615       // entries.
    616       BasicBlock::iterator I = NewBB->begin();
    617       for (; (PN = dyn_cast<PHINode>(I)); ++I) {
    618         for (std::map<BasicBlock*, unsigned>::iterator PCI =PredCount.begin(),
    619              E = PredCount.end(); PCI != E; ++PCI) {
    620           BasicBlock *Pred     = PCI->first;
    621           for (unsigned NumToRemove = PCI->second; NumToRemove; --NumToRemove)
    622             PN->removeIncomingValue(Pred, false);
    623         }
    624       }
    625     }
    626 
    627     // If the loops above have made these phi nodes have 0 or 1 operand,
    628     // replace them with undef or the input value.  We must do this for
    629     // correctness, because 0-operand phis are not valid.
    630     PN = cast<PHINode>(NewBB->begin());
    631     if (PN->getNumIncomingValues() == 0) {
    632       BasicBlock::iterator I = NewBB->begin();
    633       BasicBlock::const_iterator OldI = OldBB->begin();
    634       while ((PN = dyn_cast<PHINode>(I++))) {
    635         Value *NV = UndefValue::get(PN->getType());
    636         PN->replaceAllUsesWith(NV);
    637         assert(VMap[&*OldI] == PN && "VMap mismatch");
    638         VMap[&*OldI] = NV;
    639         PN->eraseFromParent();
    640         ++OldI;
    641       }
    642     }
    643   }
    644 
    645   // Make a second pass over the PHINodes now that all of them have been
    646   // remapped into the new function, simplifying the PHINode and performing any
    647   // recursive simplifications exposed. This will transparently update the
    648   // WeakVH in the VMap. Notably, we rely on that so that if we coalesce
    649   // two PHINodes, the iteration over the old PHIs remains valid, and the
    650   // mapping will just map us to the new node (which may not even be a PHI
    651   // node).
    652   for (unsigned Idx = 0, Size = PHIToResolve.size(); Idx != Size; ++Idx)
    653     if (PHINode *PN = dyn_cast<PHINode>(VMap[PHIToResolve[Idx]]))
    654       recursivelySimplifyInstruction(PN);
    655 
    656   // Now that the inlined function body has been fully constructed, go through
    657   // and zap unconditional fall-through branches. This happens all the time when
    658   // specializing code: code specialization turns conditional branches into
    659   // uncond branches, and this code folds them.
    660   Function::iterator Begin = cast<BasicBlock>(VMap[StartingBB])->getIterator();
    661   Function::iterator I = Begin;
    662   while (I != NewFunc->end()) {
    663     // Check if this block has become dead during inlining or other
    664     // simplifications. Note that the first block will appear dead, as it has
    665     // not yet been wired up properly.
    666     if (I != Begin && (pred_begin(&*I) == pred_end(&*I) ||
    667                        I->getSinglePredecessor() == &*I)) {
    668       BasicBlock *DeadBB = &*I++;
    669       DeleteDeadBlock(DeadBB);
    670       continue;
    671     }
    672 
    673     // We need to simplify conditional branches and switches with a constant
    674     // operand. We try to prune these out when cloning, but if the
    675     // simplification required looking through PHI nodes, those are only
    676     // available after forming the full basic block. That may leave some here,
    677     // and we still want to prune the dead code as early as possible.
    678     ConstantFoldTerminator(&*I);
    679 
    680     BranchInst *BI = dyn_cast<BranchInst>(I->getTerminator());
    681     if (!BI || BI->isConditional()) { ++I; continue; }
    682 
    683     BasicBlock *Dest = BI->getSuccessor(0);
    684     if (!Dest->getSinglePredecessor()) {
    685       ++I; continue;
    686     }
    687 
    688     // We shouldn't be able to get single-entry PHI nodes here, as instsimplify
    689     // above should have zapped all of them..
    690     assert(!isa<PHINode>(Dest->begin()));
    691 
    692     // We know all single-entry PHI nodes in the inlined function have been
    693     // removed, so we just need to splice the blocks.
    694     BI->eraseFromParent();
    695 
    696     // Make all PHI nodes that referred to Dest now refer to I as their source.
    697     Dest->replaceAllUsesWith(&*I);
    698 
    699     // Move all the instructions in the succ to the pred.
    700     I->getInstList().splice(I->end(), Dest->getInstList());
    701 
    702     // Remove the dest block.
    703     Dest->eraseFromParent();
    704 
    705     // Do not increment I, iteratively merge all things this block branches to.
    706   }
    707 
    708   // Make a final pass over the basic blocks from the old function to gather
    709   // any return instructions which survived folding. We have to do this here
    710   // because we can iteratively remove and merge returns above.
    711   for (Function::iterator I = cast<BasicBlock>(VMap[StartingBB])->getIterator(),
    712                           E = NewFunc->end();
    713        I != E; ++I)
    714     if (ReturnInst *RI = dyn_cast<ReturnInst>(I->getTerminator()))
    715       Returns.push_back(RI);
    716 }
    717 
    718 
    719 /// This works exactly like CloneFunctionInto,
    720 /// except that it does some simple constant prop and DCE on the fly.  The
    721 /// effect of this is to copy significantly less code in cases where (for
    722 /// example) a function call with constant arguments is inlined, and those
    723 /// constant arguments cause a significant amount of code in the callee to be
    724 /// dead.  Since this doesn't produce an exact copy of the input, it can't be
    725 /// used for things like CloneFunction or CloneModule.
    726 void llvm::CloneAndPruneFunctionInto(Function *NewFunc, const Function *OldFunc,
    727                                      ValueToValueMapTy &VMap,
    728                                      bool ModuleLevelChanges,
    729                                      SmallVectorImpl<ReturnInst*> &Returns,
    730                                      const char *NameSuffix,
    731                                      ClonedCodeInfo *CodeInfo,
    732                                      Instruction *TheCall) {
    733   CloneAndPruneIntoFromInst(NewFunc, OldFunc, &OldFunc->front().front(), VMap,
    734                             ModuleLevelChanges, Returns, NameSuffix, CodeInfo,
    735                             nullptr);
    736 }
    737 
    738 /// \brief Remaps instructions in \p Blocks using the mapping in \p VMap.
    739 void llvm::remapInstructionsInBlocks(
    740     const SmallVectorImpl<BasicBlock *> &Blocks, ValueToValueMapTy &VMap) {
    741   // Rewrite the code to refer to itself.
    742   for (auto *BB : Blocks)
    743     for (auto &Inst : *BB)
    744       RemapInstruction(&Inst, VMap,
    745                        RF_NoModuleLevelChanges | RF_IgnoreMissingEntries);
    746 }
    747 
    748 /// \brief Clones a loop \p OrigLoop.  Returns the loop and the blocks in \p
    749 /// Blocks.
    750 ///
    751 /// Updates LoopInfo and DominatorTree assuming the loop is dominated by block
    752 /// \p LoopDomBB.  Insert the new blocks before block specified in \p Before.
    753 Loop *llvm::cloneLoopWithPreheader(BasicBlock *Before, BasicBlock *LoopDomBB,
    754                                    Loop *OrigLoop, ValueToValueMapTy &VMap,
    755                                    const Twine &NameSuffix, LoopInfo *LI,
    756                                    DominatorTree *DT,
    757                                    SmallVectorImpl<BasicBlock *> &Blocks) {
    758   Function *F = OrigLoop->getHeader()->getParent();
    759   Loop *ParentLoop = OrigLoop->getParentLoop();
    760 
    761   Loop *NewLoop = new Loop();
    762   if (ParentLoop)
    763     ParentLoop->addChildLoop(NewLoop);
    764   else
    765     LI->addTopLevelLoop(NewLoop);
    766 
    767   BasicBlock *OrigPH = OrigLoop->getLoopPreheader();
    768   assert(OrigPH && "No preheader");
    769   BasicBlock *NewPH = CloneBasicBlock(OrigPH, VMap, NameSuffix, F);
    770   // To rename the loop PHIs.
    771   VMap[OrigPH] = NewPH;
    772   Blocks.push_back(NewPH);
    773 
    774   // Update LoopInfo.
    775   if (ParentLoop)
    776     ParentLoop->addBasicBlockToLoop(NewPH, *LI);
    777 
    778   // Update DominatorTree.
    779   DT->addNewBlock(NewPH, LoopDomBB);
    780 
    781   for (BasicBlock *BB : OrigLoop->getBlocks()) {
    782     BasicBlock *NewBB = CloneBasicBlock(BB, VMap, NameSuffix, F);
    783     VMap[BB] = NewBB;
    784 
    785     // Update LoopInfo.
    786     NewLoop->addBasicBlockToLoop(NewBB, *LI);
    787 
    788     // Update DominatorTree.
    789     BasicBlock *IDomBB = DT->getNode(BB)->getIDom()->getBlock();
    790     DT->addNewBlock(NewBB, cast<BasicBlock>(VMap[IDomBB]));
    791 
    792     Blocks.push_back(NewBB);
    793   }
    794 
    795   // Move them physically from the end of the block list.
    796   F->getBasicBlockList().splice(Before->getIterator(), F->getBasicBlockList(),
    797                                 NewPH);
    798   F->getBasicBlockList().splice(Before->getIterator(), F->getBasicBlockList(),
    799                                 NewLoop->getHeader()->getIterator(), F->end());
    800 
    801   return NewLoop;
    802 }
    803