1 /* 2 * This is an OpenSSL-compatible implementation of the RSA Data Security, Inc. 3 * MD4 Message-Digest Algorithm (RFC 1320). 4 * 5 * Homepage: 6 http://openwall.info/wiki/people/solar/software/public-domain-source-code/md4 7 * 8 * Author: 9 * Alexander Peslyak, better known as Solar Designer <solar at openwall.com> 10 * 11 * This software was written by Alexander Peslyak in 2001. No copyright is 12 * claimed, and the software is hereby placed in the public domain. In case 13 * this attempt to disclaim copyright and place the software in the public 14 * domain is deemed null and void, then the software is Copyright (c) 2001 15 * Alexander Peslyak and it is hereby released to the general public under the 16 * following terms: 17 * 18 * Redistribution and use in source and binary forms, with or without 19 * modification, are permitted. 20 * 21 * There's ABSOLUTELY NO WARRANTY, express or implied. 22 * 23 * (This is a heavily cut-down "BSD license".) 24 * 25 * This differs from Colin Plumb's older public domain implementation in that 26 * no exactly 32-bit integer data type is required (any 32-bit or wider 27 * unsigned integer data type will do), there's no compile-time endianness 28 * configuration, and the function prototypes match OpenSSL's. No code from 29 * Colin Plumb's implementation has been reused; this comment merely compares 30 * the properties of the two independent implementations. 31 * 32 * The primary goals of this implementation are portability and ease of use. 33 * It is meant to be fast, but not as fast as possible. Some known 34 * optimizations are not included to reduce source code size and avoid 35 * compile-time configuration. 36 */ 37 38 #include "curl_setup.h" 39 40 /* NSS and OS/400 crypto library do not provide the MD4 hash algorithm, so 41 * that we have a local implementation of it */ 42 #if defined(USE_NSS) || defined(USE_OS400CRYPTO) 43 44 #include "curl_md4.h" 45 #include "warnless.h" 46 47 #ifndef HAVE_OPENSSL 48 49 #include <string.h> 50 51 /* Any 32-bit or wider unsigned integer data type will do */ 52 typedef unsigned int MD4_u32plus; 53 54 typedef struct { 55 MD4_u32plus lo, hi; 56 MD4_u32plus a, b, c, d; 57 unsigned char buffer[64]; 58 MD4_u32plus block[16]; 59 } MD4_CTX; 60 61 static void MD4_Init(MD4_CTX *ctx); 62 static void MD4_Update(MD4_CTX *ctx, const void *data, unsigned long size); 63 static void MD4_Final(unsigned char *result, MD4_CTX *ctx); 64 65 /* 66 * The basic MD4 functions. 67 * 68 * F and G are optimized compared to their RFC 1320 definitions, with the 69 * optimization for F borrowed from Colin Plumb's MD5 implementation. 70 */ 71 #define F(x, y, z) ((z) ^ ((x) & ((y) ^ (z)))) 72 #define G(x, y, z) (((x) & ((y) | (z))) | ((y) & (z))) 73 #define H(x, y, z) ((x) ^ (y) ^ (z)) 74 75 /* 76 * The MD4 transformation for all three rounds. 77 */ 78 #define STEP(f, a, b, c, d, x, s) \ 79 (a) += f((b), (c), (d)) + (x); \ 80 (a) = (((a) << (s)) | (((a) & 0xffffffff) >> (32 - (s)))); 81 82 /* 83 * SET reads 4 input bytes in little-endian byte order and stores them 84 * in a properly aligned word in host byte order. 85 * 86 * The check for little-endian architectures that tolerate unaligned 87 * memory accesses is just an optimization. Nothing will break if it 88 * doesn't work. 89 */ 90 #if defined(__i386__) || defined(__x86_64__) || defined(__vax__) 91 #define SET(n) \ 92 (*(MD4_u32plus *)&ptr[(n) * 4]) 93 #define GET(n) \ 94 SET(n) 95 #else 96 #define SET(n) \ 97 (ctx->block[(n)] = \ 98 (MD4_u32plus)ptr[(n) * 4] | \ 99 ((MD4_u32plus)ptr[(n) * 4 + 1] << 8) | \ 100 ((MD4_u32plus)ptr[(n) * 4 + 2] << 16) | \ 101 ((MD4_u32plus)ptr[(n) * 4 + 3] << 24)) 102 #define GET(n) \ 103 (ctx->block[(n)]) 104 #endif 105 106 /* 107 * This processes one or more 64-byte data blocks, but does NOT update 108 * the bit counters. There are no alignment requirements. 109 */ 110 static const void *body(MD4_CTX *ctx, const void *data, unsigned long size) 111 { 112 const unsigned char *ptr; 113 MD4_u32plus a, b, c, d; 114 MD4_u32plus saved_a, saved_b, saved_c, saved_d; 115 116 ptr = (const unsigned char *)data; 117 118 a = ctx->a; 119 b = ctx->b; 120 c = ctx->c; 121 d = ctx->d; 122 123 do { 124 saved_a = a; 125 saved_b = b; 126 saved_c = c; 127 saved_d = d; 128 129 /* Round 1 */ 130 STEP(F, a, b, c, d, SET(0), 3) 131 STEP(F, d, a, b, c, SET(1), 7) 132 STEP(F, c, d, a, b, SET(2), 11) 133 STEP(F, b, c, d, a, SET(3), 19) 134 STEP(F, a, b, c, d, SET(4), 3) 135 STEP(F, d, a, b, c, SET(5), 7) 136 STEP(F, c, d, a, b, SET(6), 11) 137 STEP(F, b, c, d, a, SET(7), 19) 138 STEP(F, a, b, c, d, SET(8), 3) 139 STEP(F, d, a, b, c, SET(9), 7) 140 STEP(F, c, d, a, b, SET(10), 11) 141 STEP(F, b, c, d, a, SET(11), 19) 142 STEP(F, a, b, c, d, SET(12), 3) 143 STEP(F, d, a, b, c, SET(13), 7) 144 STEP(F, c, d, a, b, SET(14), 11) 145 STEP(F, b, c, d, a, SET(15), 19) 146 147 /* Round 2 */ 148 STEP(G, a, b, c, d, GET(0) + 0x5a827999, 3) 149 STEP(G, d, a, b, c, GET(4) + 0x5a827999, 5) 150 STEP(G, c, d, a, b, GET(8) + 0x5a827999, 9) 151 STEP(G, b, c, d, a, GET(12) + 0x5a827999, 13) 152 STEP(G, a, b, c, d, GET(1) + 0x5a827999, 3) 153 STEP(G, d, a, b, c, GET(5) + 0x5a827999, 5) 154 STEP(G, c, d, a, b, GET(9) + 0x5a827999, 9) 155 STEP(G, b, c, d, a, GET(13) + 0x5a827999, 13) 156 STEP(G, a, b, c, d, GET(2) + 0x5a827999, 3) 157 STEP(G, d, a, b, c, GET(6) + 0x5a827999, 5) 158 STEP(G, c, d, a, b, GET(10) + 0x5a827999, 9) 159 STEP(G, b, c, d, a, GET(14) + 0x5a827999, 13) 160 STEP(G, a, b, c, d, GET(3) + 0x5a827999, 3) 161 STEP(G, d, a, b, c, GET(7) + 0x5a827999, 5) 162 STEP(G, c, d, a, b, GET(11) + 0x5a827999, 9) 163 STEP(G, b, c, d, a, GET(15) + 0x5a827999, 13) 164 165 /* Round 3 */ 166 STEP(H, a, b, c, d, GET(0) + 0x6ed9eba1, 3) 167 STEP(H, d, a, b, c, GET(8) + 0x6ed9eba1, 9) 168 STEP(H, c, d, a, b, GET(4) + 0x6ed9eba1, 11) 169 STEP(H, b, c, d, a, GET(12) + 0x6ed9eba1, 15) 170 STEP(H, a, b, c, d, GET(2) + 0x6ed9eba1, 3) 171 STEP(H, d, a, b, c, GET(10) + 0x6ed9eba1, 9) 172 STEP(H, c, d, a, b, GET(6) + 0x6ed9eba1, 11) 173 STEP(H, b, c, d, a, GET(14) + 0x6ed9eba1, 15) 174 STEP(H, a, b, c, d, GET(1) + 0x6ed9eba1, 3) 175 STEP(H, d, a, b, c, GET(9) + 0x6ed9eba1, 9) 176 STEP(H, c, d, a, b, GET(5) + 0x6ed9eba1, 11) 177 STEP(H, b, c, d, a, GET(13) + 0x6ed9eba1, 15) 178 STEP(H, a, b, c, d, GET(3) + 0x6ed9eba1, 3) 179 STEP(H, d, a, b, c, GET(11) + 0x6ed9eba1, 9) 180 STEP(H, c, d, a, b, GET(7) + 0x6ed9eba1, 11) 181 STEP(H, b, c, d, a, GET(15) + 0x6ed9eba1, 15) 182 183 a += saved_a; 184 b += saved_b; 185 c += saved_c; 186 d += saved_d; 187 188 ptr += 64; 189 } while(size -= 64); 190 191 ctx->a = a; 192 ctx->b = b; 193 ctx->c = c; 194 ctx->d = d; 195 196 return ptr; 197 } 198 199 static void MD4_Init(MD4_CTX *ctx) 200 { 201 ctx->a = 0x67452301; 202 ctx->b = 0xefcdab89; 203 ctx->c = 0x98badcfe; 204 ctx->d = 0x10325476; 205 206 ctx->lo = 0; 207 ctx->hi = 0; 208 } 209 210 static void MD4_Update(MD4_CTX *ctx, const void *data, unsigned long size) 211 { 212 MD4_u32plus saved_lo; 213 unsigned long used, available; 214 215 saved_lo = ctx->lo; 216 if((ctx->lo = (saved_lo + size) & 0x1fffffff) < saved_lo) 217 ctx->hi++; 218 ctx->hi += (MD4_u32plus)size >> 29; 219 220 used = saved_lo & 0x3f; 221 222 if(used) { 223 available = 64 - used; 224 225 if(size < available) { 226 memcpy(&ctx->buffer[used], data, size); 227 return; 228 } 229 230 memcpy(&ctx->buffer[used], data, available); 231 data = (const unsigned char *)data + available; 232 size -= available; 233 body(ctx, ctx->buffer, 64); 234 } 235 236 if(size >= 64) { 237 data = body(ctx, data, size & ~(unsigned long)0x3f); 238 size &= 0x3f; 239 } 240 241 memcpy(ctx->buffer, data, size); 242 } 243 244 static void MD4_Final(unsigned char *result, MD4_CTX *ctx) 245 { 246 unsigned long used, available; 247 248 used = ctx->lo & 0x3f; 249 250 ctx->buffer[used++] = 0x80; 251 252 available = 64 - used; 253 254 if(available < 8) { 255 memset(&ctx->buffer[used], 0, available); 256 body(ctx, ctx->buffer, 64); 257 used = 0; 258 available = 64; 259 } 260 261 memset(&ctx->buffer[used], 0, available - 8); 262 263 ctx->lo <<= 3; 264 ctx->buffer[56] = curlx_ultouc((ctx->lo)&0xff); 265 ctx->buffer[57] = curlx_ultouc((ctx->lo >> 8)&0xff); 266 ctx->buffer[58] = curlx_ultouc((ctx->lo >> 16)&0xff); 267 ctx->buffer[59] = curlx_ultouc((ctx->lo >> 24)&0xff); 268 ctx->buffer[60] = curlx_ultouc((ctx->hi)&0xff); 269 ctx->buffer[61] = curlx_ultouc((ctx->hi >> 8)&0xff); 270 ctx->buffer[62] = curlx_ultouc((ctx->hi >> 16)&0xff); 271 ctx->buffer[63] = curlx_ultouc(ctx->hi >> 24); 272 273 body(ctx, ctx->buffer, 64); 274 275 result[0] = curlx_ultouc((ctx->a)&0xff); 276 result[1] = curlx_ultouc((ctx->a >> 8)&0xff); 277 result[2] = curlx_ultouc((ctx->a >> 16)&0xff); 278 result[3] = curlx_ultouc(ctx->a >> 24); 279 result[4] = curlx_ultouc((ctx->b)&0xff); 280 result[5] = curlx_ultouc((ctx->b >> 8)&0xff); 281 result[6] = curlx_ultouc((ctx->b >> 16)&0xff); 282 result[7] = curlx_ultouc(ctx->b >> 24); 283 result[8] = curlx_ultouc((ctx->c)&0xff); 284 result[9] = curlx_ultouc((ctx->c >> 8)&0xff); 285 result[10] = curlx_ultouc((ctx->c >> 16)&0xff); 286 result[11] = curlx_ultouc(ctx->c >> 24); 287 result[12] = curlx_ultouc((ctx->d)&0xff); 288 result[13] = curlx_ultouc((ctx->d >> 8)&0xff); 289 result[14] = curlx_ultouc((ctx->d >> 16)&0xff); 290 result[15] = curlx_ultouc(ctx->d >> 24); 291 292 memset(ctx, 0, sizeof(*ctx)); 293 } 294 295 #endif 296 297 void Curl_md4it(unsigned char *output, const unsigned char *input, size_t len) 298 { 299 MD4_CTX ctx; 300 MD4_Init(&ctx); 301 MD4_Update(&ctx, input, curlx_uztoui(len)); 302 MD4_Final(output, &ctx); 303 } 304 #endif /* defined(USE_NSS) || defined(USE_OS400CRYPTO) */ 305