Home | History | Annotate | Download | only in IR
      1 //===- llvm/IR/Metadata.h - Metadata definitions ----------------*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 /// @file
     11 /// This file contains the declarations for metadata subclasses.
     12 /// They represent the different flavors of metadata that live in LLVM.
     13 //
     14 //===----------------------------------------------------------------------===//
     15 
     16 #ifndef LLVM_IR_METADATA_H
     17 #define LLVM_IR_METADATA_H
     18 
     19 #include "llvm/ADT/ArrayRef.h"
     20 #include "llvm/ADT/DenseMap.h"
     21 #include "llvm/ADT/ilist_node.h"
     22 #include "llvm/ADT/iterator_range.h"
     23 #include "llvm/IR/Constant.h"
     24 #include "llvm/IR/MetadataTracking.h"
     25 #include "llvm/IR/Value.h"
     26 #include "llvm/Support/ErrorHandling.h"
     27 #include <type_traits>
     28 
     29 namespace llvm {
     30 
     31 class LLVMContext;
     32 class Module;
     33 class ModuleSlotTracker;
     34 
     35 enum LLVMConstants : uint32_t {
     36   DEBUG_METADATA_VERSION = 3 // Current debug info version number.
     37 };
     38 
     39 /// \brief Root of the metadata hierarchy.
     40 ///
     41 /// This is a root class for typeless data in the IR.
     42 class Metadata {
     43   friend class ReplaceableMetadataImpl;
     44 
     45   /// \brief RTTI.
     46   const unsigned char SubclassID;
     47 
     48 protected:
     49   /// \brief Active type of storage.
     50   enum StorageType { Uniqued, Distinct, Temporary };
     51 
     52   /// \brief Storage flag for non-uniqued, otherwise unowned, metadata.
     53   unsigned Storage : 2;
     54   // TODO: expose remaining bits to subclasses.
     55 
     56   unsigned short SubclassData16;
     57   unsigned SubclassData32;
     58 
     59 public:
     60   enum MetadataKind {
     61     MDTupleKind,
     62     DILocationKind,
     63     GenericDINodeKind,
     64     DISubrangeKind,
     65     DIEnumeratorKind,
     66     DIBasicTypeKind,
     67     DIDerivedTypeKind,
     68     DICompositeTypeKind,
     69     DISubroutineTypeKind,
     70     DIFileKind,
     71     DICompileUnitKind,
     72     DISubprogramKind,
     73     DILexicalBlockKind,
     74     DILexicalBlockFileKind,
     75     DINamespaceKind,
     76     DIModuleKind,
     77     DITemplateTypeParameterKind,
     78     DITemplateValueParameterKind,
     79     DIGlobalVariableKind,
     80     DILocalVariableKind,
     81     DIExpressionKind,
     82     DIObjCPropertyKind,
     83     DIImportedEntityKind,
     84     ConstantAsMetadataKind,
     85     LocalAsMetadataKind,
     86     MDStringKind,
     87     DIMacroKind,
     88     DIMacroFileKind
     89   };
     90 
     91 protected:
     92   Metadata(unsigned ID, StorageType Storage)
     93       : SubclassID(ID), Storage(Storage), SubclassData16(0), SubclassData32(0) {
     94   }
     95   ~Metadata() = default;
     96 
     97   /// \brief Default handling of a changed operand, which asserts.
     98   ///
     99   /// If subclasses pass themselves in as owners to a tracking node reference,
    100   /// they must provide an implementation of this method.
    101   void handleChangedOperand(void *, Metadata *) {
    102     llvm_unreachable("Unimplemented in Metadata subclass");
    103   }
    104 
    105 public:
    106   unsigned getMetadataID() const { return SubclassID; }
    107 
    108   /// \brief User-friendly dump.
    109   ///
    110   /// If \c M is provided, metadata nodes will be numbered canonically;
    111   /// otherwise, pointer addresses are substituted.
    112   ///
    113   /// Note: this uses an explicit overload instead of default arguments so that
    114   /// the nullptr version is easy to call from a debugger.
    115   ///
    116   /// @{
    117   void dump() const;
    118   void dump(const Module *M) const;
    119   /// @}
    120 
    121   /// \brief Print.
    122   ///
    123   /// Prints definition of \c this.
    124   ///
    125   /// If \c M is provided, metadata nodes will be numbered canonically;
    126   /// otherwise, pointer addresses are substituted.
    127   /// @{
    128   void print(raw_ostream &OS, const Module *M = nullptr,
    129              bool IsForDebug = false) const;
    130   void print(raw_ostream &OS, ModuleSlotTracker &MST, const Module *M = nullptr,
    131              bool IsForDebug = false) const;
    132   /// @}
    133 
    134   /// \brief Print as operand.
    135   ///
    136   /// Prints reference of \c this.
    137   ///
    138   /// If \c M is provided, metadata nodes will be numbered canonically;
    139   /// otherwise, pointer addresses are substituted.
    140   /// @{
    141   void printAsOperand(raw_ostream &OS, const Module *M = nullptr) const;
    142   void printAsOperand(raw_ostream &OS, ModuleSlotTracker &MST,
    143                       const Module *M = nullptr) const;
    144   /// @}
    145 };
    146 
    147 #define HANDLE_METADATA(CLASS) class CLASS;
    148 #include "llvm/IR/Metadata.def"
    149 
    150 // Provide specializations of isa so that we don't need definitions of
    151 // subclasses to see if the metadata is a subclass.
    152 #define HANDLE_METADATA_LEAF(CLASS)                                            \
    153   template <> struct isa_impl<CLASS, Metadata> {                               \
    154     static inline bool doit(const Metadata &MD) {                              \
    155       return MD.getMetadataID() == Metadata::CLASS##Kind;                      \
    156     }                                                                          \
    157   };
    158 #include "llvm/IR/Metadata.def"
    159 
    160 inline raw_ostream &operator<<(raw_ostream &OS, const Metadata &MD) {
    161   MD.print(OS);
    162   return OS;
    163 }
    164 
    165 /// \brief Metadata wrapper in the Value hierarchy.
    166 ///
    167 /// A member of the \a Value hierarchy to represent a reference to metadata.
    168 /// This allows, e.g., instrinsics to have metadata as operands.
    169 ///
    170 /// Notably, this is the only thing in either hierarchy that is allowed to
    171 /// reference \a LocalAsMetadata.
    172 class MetadataAsValue : public Value {
    173   friend class ReplaceableMetadataImpl;
    174   friend class LLVMContextImpl;
    175 
    176   Metadata *MD;
    177 
    178   MetadataAsValue(Type *Ty, Metadata *MD);
    179   ~MetadataAsValue() override;
    180 
    181   /// \brief Drop use of metadata (during teardown).
    182   void dropUse() { MD = nullptr; }
    183 
    184 public:
    185   static MetadataAsValue *get(LLVMContext &Context, Metadata *MD);
    186   static MetadataAsValue *getIfExists(LLVMContext &Context, Metadata *MD);
    187   Metadata *getMetadata() const { return MD; }
    188 
    189   static bool classof(const Value *V) {
    190     return V->getValueID() == MetadataAsValueVal;
    191   }
    192 
    193 private:
    194   void handleChangedMetadata(Metadata *MD);
    195   void track();
    196   void untrack();
    197 };
    198 
    199 /// \brief Shared implementation of use-lists for replaceable metadata.
    200 ///
    201 /// Most metadata cannot be RAUW'ed.  This is a shared implementation of
    202 /// use-lists and associated API for the two that support it (\a ValueAsMetadata
    203 /// and \a TempMDNode).
    204 class ReplaceableMetadataImpl {
    205   friend class MetadataTracking;
    206 
    207 public:
    208   typedef MetadataTracking::OwnerTy OwnerTy;
    209 
    210 private:
    211   LLVMContext &Context;
    212   uint64_t NextIndex;
    213   SmallDenseMap<void *, std::pair<OwnerTy, uint64_t>, 4> UseMap;
    214 
    215 public:
    216   ReplaceableMetadataImpl(LLVMContext &Context)
    217       : Context(Context), NextIndex(0) {}
    218   ~ReplaceableMetadataImpl() {
    219     assert(UseMap.empty() && "Cannot destroy in-use replaceable metadata");
    220   }
    221 
    222   LLVMContext &getContext() const { return Context; }
    223 
    224   /// \brief Replace all uses of this with MD.
    225   ///
    226   /// Replace all uses of this with \c MD, which is allowed to be null.
    227   void replaceAllUsesWith(Metadata *MD);
    228 
    229   /// \brief Resolve all uses of this.
    230   ///
    231   /// Resolve all uses of this, turning off RAUW permanently.  If \c
    232   /// ResolveUsers, call \a MDNode::resolve() on any users whose last operand
    233   /// is resolved.
    234   void resolveAllUses(bool ResolveUsers = true);
    235 
    236 private:
    237   void addRef(void *Ref, OwnerTy Owner);
    238   void dropRef(void *Ref);
    239   void moveRef(void *Ref, void *New, const Metadata &MD);
    240 
    241   static ReplaceableMetadataImpl *get(Metadata &MD);
    242 };
    243 
    244 /// \brief Value wrapper in the Metadata hierarchy.
    245 ///
    246 /// This is a custom value handle that allows other metadata to refer to
    247 /// classes in the Value hierarchy.
    248 ///
    249 /// Because of full uniquing support, each value is only wrapped by a single \a
    250 /// ValueAsMetadata object, so the lookup maps are far more efficient than
    251 /// those using ValueHandleBase.
    252 class ValueAsMetadata : public Metadata, ReplaceableMetadataImpl {
    253   friend class ReplaceableMetadataImpl;
    254   friend class LLVMContextImpl;
    255 
    256   Value *V;
    257 
    258   /// \brief Drop users without RAUW (during teardown).
    259   void dropUsers() {
    260     ReplaceableMetadataImpl::resolveAllUses(/* ResolveUsers */ false);
    261   }
    262 
    263 protected:
    264   ValueAsMetadata(unsigned ID, Value *V)
    265       : Metadata(ID, Uniqued), ReplaceableMetadataImpl(V->getContext()), V(V) {
    266     assert(V && "Expected valid value");
    267   }
    268   ~ValueAsMetadata() = default;
    269 
    270 public:
    271   static ValueAsMetadata *get(Value *V);
    272   static ConstantAsMetadata *getConstant(Value *C) {
    273     return cast<ConstantAsMetadata>(get(C));
    274   }
    275   static LocalAsMetadata *getLocal(Value *Local) {
    276     return cast<LocalAsMetadata>(get(Local));
    277   }
    278 
    279   static ValueAsMetadata *getIfExists(Value *V);
    280   static ConstantAsMetadata *getConstantIfExists(Value *C) {
    281     return cast_or_null<ConstantAsMetadata>(getIfExists(C));
    282   }
    283   static LocalAsMetadata *getLocalIfExists(Value *Local) {
    284     return cast_or_null<LocalAsMetadata>(getIfExists(Local));
    285   }
    286 
    287   Value *getValue() const { return V; }
    288   Type *getType() const { return V->getType(); }
    289   LLVMContext &getContext() const { return V->getContext(); }
    290 
    291   static void handleDeletion(Value *V);
    292   static void handleRAUW(Value *From, Value *To);
    293 
    294 protected:
    295   /// \brief Handle collisions after \a Value::replaceAllUsesWith().
    296   ///
    297   /// RAUW isn't supported directly for \a ValueAsMetadata, but if the wrapped
    298   /// \a Value gets RAUW'ed and the target already exists, this is used to
    299   /// merge the two metadata nodes.
    300   void replaceAllUsesWith(Metadata *MD) {
    301     ReplaceableMetadataImpl::replaceAllUsesWith(MD);
    302   }
    303 
    304 public:
    305   static bool classof(const Metadata *MD) {
    306     return MD->getMetadataID() == LocalAsMetadataKind ||
    307            MD->getMetadataID() == ConstantAsMetadataKind;
    308   }
    309 };
    310 
    311 class ConstantAsMetadata : public ValueAsMetadata {
    312   friend class ValueAsMetadata;
    313 
    314   ConstantAsMetadata(Constant *C)
    315       : ValueAsMetadata(ConstantAsMetadataKind, C) {}
    316 
    317 public:
    318   static ConstantAsMetadata *get(Constant *C) {
    319     return ValueAsMetadata::getConstant(C);
    320   }
    321   static ConstantAsMetadata *getIfExists(Constant *C) {
    322     return ValueAsMetadata::getConstantIfExists(C);
    323   }
    324 
    325   Constant *getValue() const {
    326     return cast<Constant>(ValueAsMetadata::getValue());
    327   }
    328 
    329   static bool classof(const Metadata *MD) {
    330     return MD->getMetadataID() == ConstantAsMetadataKind;
    331   }
    332 };
    333 
    334 class LocalAsMetadata : public ValueAsMetadata {
    335   friend class ValueAsMetadata;
    336 
    337   LocalAsMetadata(Value *Local)
    338       : ValueAsMetadata(LocalAsMetadataKind, Local) {
    339     assert(!isa<Constant>(Local) && "Expected local value");
    340   }
    341 
    342 public:
    343   static LocalAsMetadata *get(Value *Local) {
    344     return ValueAsMetadata::getLocal(Local);
    345   }
    346   static LocalAsMetadata *getIfExists(Value *Local) {
    347     return ValueAsMetadata::getLocalIfExists(Local);
    348   }
    349 
    350   static bool classof(const Metadata *MD) {
    351     return MD->getMetadataID() == LocalAsMetadataKind;
    352   }
    353 };
    354 
    355 /// \brief Transitional API for extracting constants from Metadata.
    356 ///
    357 /// This namespace contains transitional functions for metadata that points to
    358 /// \a Constants.
    359 ///
    360 /// In prehistory -- when metadata was a subclass of \a Value -- \a MDNode
    361 /// operands could refer to any \a Value.  There's was a lot of code like this:
    362 ///
    363 /// \code
    364 ///     MDNode *N = ...;
    365 ///     auto *CI = dyn_cast<ConstantInt>(N->getOperand(2));
    366 /// \endcode
    367 ///
    368 /// Now that \a Value and \a Metadata are in separate hierarchies, maintaining
    369 /// the semantics for \a isa(), \a cast(), \a dyn_cast() (etc.) requires three
    370 /// steps: cast in the \a Metadata hierarchy, extraction of the \a Value, and
    371 /// cast in the \a Value hierarchy.  Besides creating boiler-plate, this
    372 /// requires subtle control flow changes.
    373 ///
    374 /// The end-goal is to create a new type of metadata, called (e.g.) \a MDInt,
    375 /// so that metadata can refer to numbers without traversing a bridge to the \a
    376 /// Value hierarchy.  In this final state, the code above would look like this:
    377 ///
    378 /// \code
    379 ///     MDNode *N = ...;
    380 ///     auto *MI = dyn_cast<MDInt>(N->getOperand(2));
    381 /// \endcode
    382 ///
    383 /// The API in this namespace supports the transition.  \a MDInt doesn't exist
    384 /// yet, and even once it does, changing each metadata schema to use it is its
    385 /// own mini-project.  In the meantime this API prevents us from introducing
    386 /// complex and bug-prone control flow that will disappear in the end.  In
    387 /// particular, the above code looks like this:
    388 ///
    389 /// \code
    390 ///     MDNode *N = ...;
    391 ///     auto *CI = mdconst::dyn_extract<ConstantInt>(N->getOperand(2));
    392 /// \endcode
    393 ///
    394 /// The full set of provided functions includes:
    395 ///
    396 ///   mdconst::hasa                <=> isa
    397 ///   mdconst::extract             <=> cast
    398 ///   mdconst::extract_or_null     <=> cast_or_null
    399 ///   mdconst::dyn_extract         <=> dyn_cast
    400 ///   mdconst::dyn_extract_or_null <=> dyn_cast_or_null
    401 ///
    402 /// The target of the cast must be a subclass of \a Constant.
    403 namespace mdconst {
    404 
    405 namespace detail {
    406 template <class T> T &make();
    407 template <class T, class Result> struct HasDereference {
    408   typedef char Yes[1];
    409   typedef char No[2];
    410   template <size_t N> struct SFINAE {};
    411 
    412   template <class U, class V>
    413   static Yes &hasDereference(SFINAE<sizeof(static_cast<V>(*make<U>()))> * = 0);
    414   template <class U, class V> static No &hasDereference(...);
    415 
    416   static const bool value =
    417       sizeof(hasDereference<T, Result>(nullptr)) == sizeof(Yes);
    418 };
    419 template <class V, class M> struct IsValidPointer {
    420   static const bool value = std::is_base_of<Constant, V>::value &&
    421                             HasDereference<M, const Metadata &>::value;
    422 };
    423 template <class V, class M> struct IsValidReference {
    424   static const bool value = std::is_base_of<Constant, V>::value &&
    425                             std::is_convertible<M, const Metadata &>::value;
    426 };
    427 } // end namespace detail
    428 
    429 /// \brief Check whether Metadata has a Value.
    430 ///
    431 /// As an analogue to \a isa(), check whether \c MD has an \a Value inside of
    432 /// type \c X.
    433 template <class X, class Y>
    434 inline typename std::enable_if<detail::IsValidPointer<X, Y>::value, bool>::type
    435 hasa(Y &&MD) {
    436   assert(MD && "Null pointer sent into hasa");
    437   if (auto *V = dyn_cast<ConstantAsMetadata>(MD))
    438     return isa<X>(V->getValue());
    439   return false;
    440 }
    441 template <class X, class Y>
    442 inline
    443     typename std::enable_if<detail::IsValidReference<X, Y &>::value, bool>::type
    444     hasa(Y &MD) {
    445   return hasa(&MD);
    446 }
    447 
    448 /// \brief Extract a Value from Metadata.
    449 ///
    450 /// As an analogue to \a cast(), extract the \a Value subclass \c X from \c MD.
    451 template <class X, class Y>
    452 inline typename std::enable_if<detail::IsValidPointer<X, Y>::value, X *>::type
    453 extract(Y &&MD) {
    454   return cast<X>(cast<ConstantAsMetadata>(MD)->getValue());
    455 }
    456 template <class X, class Y>
    457 inline
    458     typename std::enable_if<detail::IsValidReference<X, Y &>::value, X *>::type
    459     extract(Y &MD) {
    460   return extract(&MD);
    461 }
    462 
    463 /// \brief Extract a Value from Metadata, allowing null.
    464 ///
    465 /// As an analogue to \a cast_or_null(), extract the \a Value subclass \c X
    466 /// from \c MD, allowing \c MD to be null.
    467 template <class X, class Y>
    468 inline typename std::enable_if<detail::IsValidPointer<X, Y>::value, X *>::type
    469 extract_or_null(Y &&MD) {
    470   if (auto *V = cast_or_null<ConstantAsMetadata>(MD))
    471     return cast<X>(V->getValue());
    472   return nullptr;
    473 }
    474 
    475 /// \brief Extract a Value from Metadata, if any.
    476 ///
    477 /// As an analogue to \a dyn_cast_or_null(), extract the \a Value subclass \c X
    478 /// from \c MD, return null if \c MD doesn't contain a \a Value or if the \a
    479 /// Value it does contain is of the wrong subclass.
    480 template <class X, class Y>
    481 inline typename std::enable_if<detail::IsValidPointer<X, Y>::value, X *>::type
    482 dyn_extract(Y &&MD) {
    483   if (auto *V = dyn_cast<ConstantAsMetadata>(MD))
    484     return dyn_cast<X>(V->getValue());
    485   return nullptr;
    486 }
    487 
    488 /// \brief Extract a Value from Metadata, if any, allowing null.
    489 ///
    490 /// As an analogue to \a dyn_cast_or_null(), extract the \a Value subclass \c X
    491 /// from \c MD, return null if \c MD doesn't contain a \a Value or if the \a
    492 /// Value it does contain is of the wrong subclass, allowing \c MD to be null.
    493 template <class X, class Y>
    494 inline typename std::enable_if<detail::IsValidPointer<X, Y>::value, X *>::type
    495 dyn_extract_or_null(Y &&MD) {
    496   if (auto *V = dyn_cast_or_null<ConstantAsMetadata>(MD))
    497     return dyn_cast<X>(V->getValue());
    498   return nullptr;
    499 }
    500 
    501 } // end namespace mdconst
    502 
    503 //===----------------------------------------------------------------------===//
    504 /// \brief A single uniqued string.
    505 ///
    506 /// These are used to efficiently contain a byte sequence for metadata.
    507 /// MDString is always unnamed.
    508 class MDString : public Metadata {
    509   friend class StringMapEntry<MDString>;
    510 
    511   MDString(const MDString &) = delete;
    512   MDString &operator=(MDString &&) = delete;
    513   MDString &operator=(const MDString &) = delete;
    514 
    515   StringMapEntry<MDString> *Entry;
    516   MDString() : Metadata(MDStringKind, Uniqued), Entry(nullptr) {}
    517   MDString(MDString &&) : Metadata(MDStringKind, Uniqued) {}
    518 
    519 public:
    520   static MDString *get(LLVMContext &Context, StringRef Str);
    521   static MDString *get(LLVMContext &Context, const char *Str) {
    522     return get(Context, Str ? StringRef(Str) : StringRef());
    523   }
    524 
    525   StringRef getString() const;
    526 
    527   unsigned getLength() const { return (unsigned)getString().size(); }
    528 
    529   typedef StringRef::iterator iterator;
    530 
    531   /// \brief Pointer to the first byte of the string.
    532   iterator begin() const { return getString().begin(); }
    533 
    534   /// \brief Pointer to one byte past the end of the string.
    535   iterator end() const { return getString().end(); }
    536 
    537   const unsigned char *bytes_begin() const { return getString().bytes_begin(); }
    538   const unsigned char *bytes_end() const { return getString().bytes_end(); }
    539 
    540   /// \brief Methods for support type inquiry through isa, cast, and dyn_cast.
    541   static bool classof(const Metadata *MD) {
    542     return MD->getMetadataID() == MDStringKind;
    543   }
    544 };
    545 
    546 /// \brief A collection of metadata nodes that might be associated with a
    547 /// memory access used by the alias-analysis infrastructure.
    548 struct AAMDNodes {
    549   explicit AAMDNodes(MDNode *T = nullptr, MDNode *S = nullptr,
    550                      MDNode *N = nullptr)
    551       : TBAA(T), Scope(S), NoAlias(N) {}
    552 
    553   bool operator==(const AAMDNodes &A) const {
    554     return TBAA == A.TBAA && Scope == A.Scope && NoAlias == A.NoAlias;
    555   }
    556 
    557   bool operator!=(const AAMDNodes &A) const { return !(*this == A); }
    558 
    559   explicit operator bool() const { return TBAA || Scope || NoAlias; }
    560 
    561   /// \brief The tag for type-based alias analysis.
    562   MDNode *TBAA;
    563 
    564   /// \brief The tag for alias scope specification (used with noalias).
    565   MDNode *Scope;
    566 
    567   /// \brief The tag specifying the noalias scope.
    568   MDNode *NoAlias;
    569 };
    570 
    571 // Specialize DenseMapInfo for AAMDNodes.
    572 template<>
    573 struct DenseMapInfo<AAMDNodes> {
    574   static inline AAMDNodes getEmptyKey() {
    575     return AAMDNodes(DenseMapInfo<MDNode *>::getEmptyKey(),
    576                      nullptr, nullptr);
    577   }
    578   static inline AAMDNodes getTombstoneKey() {
    579     return AAMDNodes(DenseMapInfo<MDNode *>::getTombstoneKey(),
    580                      nullptr, nullptr);
    581   }
    582   static unsigned getHashValue(const AAMDNodes &Val) {
    583     return DenseMapInfo<MDNode *>::getHashValue(Val.TBAA) ^
    584            DenseMapInfo<MDNode *>::getHashValue(Val.Scope) ^
    585            DenseMapInfo<MDNode *>::getHashValue(Val.NoAlias);
    586   }
    587   static bool isEqual(const AAMDNodes &LHS, const AAMDNodes &RHS) {
    588     return LHS == RHS;
    589   }
    590 };
    591 
    592 /// \brief Tracking metadata reference owned by Metadata.
    593 ///
    594 /// Similar to \a TrackingMDRef, but it's expected to be owned by an instance
    595 /// of \a Metadata, which has the option of registering itself for callbacks to
    596 /// re-unique itself.
    597 ///
    598 /// In particular, this is used by \a MDNode.
    599 class MDOperand {
    600   MDOperand(MDOperand &&) = delete;
    601   MDOperand(const MDOperand &) = delete;
    602   MDOperand &operator=(MDOperand &&) = delete;
    603   MDOperand &operator=(const MDOperand &) = delete;
    604 
    605   Metadata *MD;
    606 
    607 public:
    608   MDOperand() : MD(nullptr) {}
    609   ~MDOperand() { untrack(); }
    610 
    611   Metadata *get() const { return MD; }
    612   operator Metadata *() const { return get(); }
    613   Metadata *operator->() const { return get(); }
    614   Metadata &operator*() const { return *get(); }
    615 
    616   void reset() {
    617     untrack();
    618     MD = nullptr;
    619   }
    620   void reset(Metadata *MD, Metadata *Owner) {
    621     untrack();
    622     this->MD = MD;
    623     track(Owner);
    624   }
    625 
    626 private:
    627   void track(Metadata *Owner) {
    628     if (MD) {
    629       if (Owner)
    630         MetadataTracking::track(this, *MD, *Owner);
    631       else
    632         MetadataTracking::track(MD);
    633     }
    634   }
    635   void untrack() {
    636     assert(static_cast<void *>(this) == &MD && "Expected same address");
    637     if (MD)
    638       MetadataTracking::untrack(MD);
    639   }
    640 };
    641 
    642 template <> struct simplify_type<MDOperand> {
    643   typedef Metadata *SimpleType;
    644   static SimpleType getSimplifiedValue(MDOperand &MD) { return MD.get(); }
    645 };
    646 
    647 template <> struct simplify_type<const MDOperand> {
    648   typedef Metadata *SimpleType;
    649   static SimpleType getSimplifiedValue(const MDOperand &MD) { return MD.get(); }
    650 };
    651 
    652 /// \brief Pointer to the context, with optional RAUW support.
    653 ///
    654 /// Either a raw (non-null) pointer to the \a LLVMContext, or an owned pointer
    655 /// to \a ReplaceableMetadataImpl (which has a reference to \a LLVMContext).
    656 class ContextAndReplaceableUses {
    657   PointerUnion<LLVMContext *, ReplaceableMetadataImpl *> Ptr;
    658 
    659   ContextAndReplaceableUses() = delete;
    660   ContextAndReplaceableUses(ContextAndReplaceableUses &&) = delete;
    661   ContextAndReplaceableUses(const ContextAndReplaceableUses &) = delete;
    662   ContextAndReplaceableUses &operator=(ContextAndReplaceableUses &&) = delete;
    663   ContextAndReplaceableUses &
    664   operator=(const ContextAndReplaceableUses &) = delete;
    665 
    666 public:
    667   ContextAndReplaceableUses(LLVMContext &Context) : Ptr(&Context) {}
    668   ContextAndReplaceableUses(
    669       std::unique_ptr<ReplaceableMetadataImpl> ReplaceableUses)
    670       : Ptr(ReplaceableUses.release()) {
    671     assert(getReplaceableUses() && "Expected non-null replaceable uses");
    672   }
    673   ~ContextAndReplaceableUses() { delete getReplaceableUses(); }
    674 
    675   operator LLVMContext &() { return getContext(); }
    676 
    677   /// \brief Whether this contains RAUW support.
    678   bool hasReplaceableUses() const {
    679     return Ptr.is<ReplaceableMetadataImpl *>();
    680   }
    681   LLVMContext &getContext() const {
    682     if (hasReplaceableUses())
    683       return getReplaceableUses()->getContext();
    684     return *Ptr.get<LLVMContext *>();
    685   }
    686   ReplaceableMetadataImpl *getReplaceableUses() const {
    687     if (hasReplaceableUses())
    688       return Ptr.get<ReplaceableMetadataImpl *>();
    689     return nullptr;
    690   }
    691 
    692   /// \brief Assign RAUW support to this.
    693   ///
    694   /// Make this replaceable, taking ownership of \c ReplaceableUses (which must
    695   /// not be null).
    696   void
    697   makeReplaceable(std::unique_ptr<ReplaceableMetadataImpl> ReplaceableUses) {
    698     assert(ReplaceableUses && "Expected non-null replaceable uses");
    699     assert(&ReplaceableUses->getContext() == &getContext() &&
    700            "Expected same context");
    701     delete getReplaceableUses();
    702     Ptr = ReplaceableUses.release();
    703   }
    704 
    705   /// \brief Drop RAUW support.
    706   ///
    707   /// Cede ownership of RAUW support, returning it.
    708   std::unique_ptr<ReplaceableMetadataImpl> takeReplaceableUses() {
    709     assert(hasReplaceableUses() && "Expected to own replaceable uses");
    710     std::unique_ptr<ReplaceableMetadataImpl> ReplaceableUses(
    711         getReplaceableUses());
    712     Ptr = &ReplaceableUses->getContext();
    713     return ReplaceableUses;
    714   }
    715 };
    716 
    717 struct TempMDNodeDeleter {
    718   inline void operator()(MDNode *Node) const;
    719 };
    720 
    721 #define HANDLE_MDNODE_LEAF(CLASS)                                              \
    722   typedef std::unique_ptr<CLASS, TempMDNodeDeleter> Temp##CLASS;
    723 #define HANDLE_MDNODE_BRANCH(CLASS) HANDLE_MDNODE_LEAF(CLASS)
    724 #include "llvm/IR/Metadata.def"
    725 
    726 /// \brief Metadata node.
    727 ///
    728 /// Metadata nodes can be uniqued, like constants, or distinct.  Temporary
    729 /// metadata nodes (with full support for RAUW) can be used to delay uniquing
    730 /// until forward references are known.  The basic metadata node is an \a
    731 /// MDTuple.
    732 ///
    733 /// There is limited support for RAUW at construction time.  At construction
    734 /// time, if any operand is a temporary node (or an unresolved uniqued node,
    735 /// which indicates a transitive temporary operand), the node itself will be
    736 /// unresolved.  As soon as all operands become resolved, it will drop RAUW
    737 /// support permanently.
    738 ///
    739 /// If an unresolved node is part of a cycle, \a resolveCycles() needs
    740 /// to be called on some member of the cycle once all temporary nodes have been
    741 /// replaced.
    742 class MDNode : public Metadata {
    743   friend class ReplaceableMetadataImpl;
    744   friend class LLVMContextImpl;
    745 
    746   MDNode(const MDNode &) = delete;
    747   void operator=(const MDNode &) = delete;
    748   void *operator new(size_t) = delete;
    749 
    750   unsigned NumOperands;
    751   unsigned NumUnresolved;
    752 
    753 protected:
    754   ContextAndReplaceableUses Context;
    755 
    756   void *operator new(size_t Size, unsigned NumOps);
    757   void operator delete(void *Mem);
    758 
    759   /// \brief Required by std, but never called.
    760   void operator delete(void *, unsigned) {
    761     llvm_unreachable("Constructor throws?");
    762   }
    763 
    764   /// \brief Required by std, but never called.
    765   void operator delete(void *, unsigned, bool) {
    766     llvm_unreachable("Constructor throws?");
    767   }
    768 
    769   MDNode(LLVMContext &Context, unsigned ID, StorageType Storage,
    770          ArrayRef<Metadata *> Ops1, ArrayRef<Metadata *> Ops2 = None);
    771   ~MDNode() = default;
    772 
    773   void dropAllReferences();
    774 
    775   MDOperand *mutable_begin() { return mutable_end() - NumOperands; }
    776   MDOperand *mutable_end() { return reinterpret_cast<MDOperand *>(this); }
    777 
    778   typedef iterator_range<MDOperand *> mutable_op_range;
    779   mutable_op_range mutable_operands() {
    780     return mutable_op_range(mutable_begin(), mutable_end());
    781   }
    782 
    783 public:
    784   static inline MDTuple *get(LLVMContext &Context, ArrayRef<Metadata *> MDs);
    785   static inline MDTuple *getIfExists(LLVMContext &Context,
    786                                      ArrayRef<Metadata *> MDs);
    787   static inline MDTuple *getDistinct(LLVMContext &Context,
    788                                      ArrayRef<Metadata *> MDs);
    789   static inline TempMDTuple getTemporary(LLVMContext &Context,
    790                                          ArrayRef<Metadata *> MDs);
    791 
    792   /// \brief Create a (temporary) clone of this.
    793   TempMDNode clone() const;
    794 
    795   /// \brief Deallocate a node created by getTemporary.
    796   ///
    797   /// Calls \c replaceAllUsesWith(nullptr) before deleting, so any remaining
    798   /// references will be reset.
    799   static void deleteTemporary(MDNode *N);
    800 
    801   LLVMContext &getContext() const { return Context.getContext(); }
    802 
    803   /// \brief Replace a specific operand.
    804   void replaceOperandWith(unsigned I, Metadata *New);
    805 
    806   /// \brief Check if node is fully resolved.
    807   ///
    808   /// If \a isTemporary(), this always returns \c false; if \a isDistinct(),
    809   /// this always returns \c true.
    810   ///
    811   /// If \a isUniqued(), returns \c true if this has already dropped RAUW
    812   /// support (because all operands are resolved).
    813   ///
    814   /// As forward declarations are resolved, their containers should get
    815   /// resolved automatically.  However, if this (or one of its operands) is
    816   /// involved in a cycle, \a resolveCycles() needs to be called explicitly.
    817   bool isResolved() const { return !Context.hasReplaceableUses(); }
    818 
    819   bool isUniqued() const { return Storage == Uniqued; }
    820   bool isDistinct() const { return Storage == Distinct; }
    821   bool isTemporary() const { return Storage == Temporary; }
    822 
    823   /// \brief RAUW a temporary.
    824   ///
    825   /// \pre \a isTemporary() must be \c true.
    826   void replaceAllUsesWith(Metadata *MD) {
    827     assert(isTemporary() && "Expected temporary node");
    828     assert(!isResolved() && "Expected RAUW support");
    829     Context.getReplaceableUses()->replaceAllUsesWith(MD);
    830   }
    831 
    832   /// \brief Resolve cycles.
    833   ///
    834   /// Once all forward declarations have been resolved, force cycles to be
    835   /// resolved. If \p MDMaterialized is true, then any temporary metadata
    836   /// is ignored, otherwise it asserts when encountering temporary metadata.
    837   ///
    838   /// \pre No operands (or operands' operands, etc.) have \a isTemporary().
    839   void resolveCycles(bool MDMaterialized = true);
    840 
    841   /// \brief Replace a temporary node with a permanent one.
    842   ///
    843   /// Try to create a uniqued version of \c N -- in place, if possible -- and
    844   /// return it.  If \c N cannot be uniqued, return a distinct node instead.
    845   template <class T>
    846   static typename std::enable_if<std::is_base_of<MDNode, T>::value, T *>::type
    847   replaceWithPermanent(std::unique_ptr<T, TempMDNodeDeleter> N) {
    848     return cast<T>(N.release()->replaceWithPermanentImpl());
    849   }
    850 
    851   /// \brief Replace a temporary node with a uniqued one.
    852   ///
    853   /// Create a uniqued version of \c N -- in place, if possible -- and return
    854   /// it.  Takes ownership of the temporary node.
    855   ///
    856   /// \pre N does not self-reference.
    857   template <class T>
    858   static typename std::enable_if<std::is_base_of<MDNode, T>::value, T *>::type
    859   replaceWithUniqued(std::unique_ptr<T, TempMDNodeDeleter> N) {
    860     return cast<T>(N.release()->replaceWithUniquedImpl());
    861   }
    862 
    863   /// \brief Replace a temporary node with a distinct one.
    864   ///
    865   /// Create a distinct version of \c N -- in place, if possible -- and return
    866   /// it.  Takes ownership of the temporary node.
    867   template <class T>
    868   static typename std::enable_if<std::is_base_of<MDNode, T>::value, T *>::type
    869   replaceWithDistinct(std::unique_ptr<T, TempMDNodeDeleter> N) {
    870     return cast<T>(N.release()->replaceWithDistinctImpl());
    871   }
    872 
    873 private:
    874   MDNode *replaceWithPermanentImpl();
    875   MDNode *replaceWithUniquedImpl();
    876   MDNode *replaceWithDistinctImpl();
    877 
    878 protected:
    879   /// \brief Set an operand.
    880   ///
    881   /// Sets the operand directly, without worrying about uniquing.
    882   void setOperand(unsigned I, Metadata *New);
    883 
    884   void storeDistinctInContext();
    885   template <class T, class StoreT>
    886   static T *storeImpl(T *N, StorageType Storage, StoreT &Store);
    887   template <class T> static T *storeImpl(T *N, StorageType Storage);
    888 
    889 private:
    890   void handleChangedOperand(void *Ref, Metadata *New);
    891 
    892   void resolve();
    893   void resolveAfterOperandChange(Metadata *Old, Metadata *New);
    894   void decrementUnresolvedOperandCount();
    895   unsigned countUnresolvedOperands();
    896 
    897   /// \brief Mutate this to be "uniqued".
    898   ///
    899   /// Mutate this so that \a isUniqued().
    900   /// \pre \a isTemporary().
    901   /// \pre already added to uniquing set.
    902   void makeUniqued();
    903 
    904   /// \brief Mutate this to be "distinct".
    905   ///
    906   /// Mutate this so that \a isDistinct().
    907   /// \pre \a isTemporary().
    908   void makeDistinct();
    909 
    910   void deleteAsSubclass();
    911   MDNode *uniquify();
    912   void eraseFromStore();
    913 
    914   template <class NodeTy> struct HasCachedHash;
    915   template <class NodeTy>
    916   static void dispatchRecalculateHash(NodeTy *N, std::true_type) {
    917     N->recalculateHash();
    918   }
    919   template <class NodeTy>
    920   static void dispatchRecalculateHash(NodeTy *, std::false_type) {}
    921   template <class NodeTy>
    922   static void dispatchResetHash(NodeTy *N, std::true_type) {
    923     N->setHash(0);
    924   }
    925   template <class NodeTy>
    926   static void dispatchResetHash(NodeTy *, std::false_type) {}
    927 
    928 public:
    929   typedef const MDOperand *op_iterator;
    930   typedef iterator_range<op_iterator> op_range;
    931 
    932   op_iterator op_begin() const {
    933     return const_cast<MDNode *>(this)->mutable_begin();
    934   }
    935   op_iterator op_end() const {
    936     return const_cast<MDNode *>(this)->mutable_end();
    937   }
    938   op_range operands() const { return op_range(op_begin(), op_end()); }
    939 
    940   const MDOperand &getOperand(unsigned I) const {
    941     assert(I < NumOperands && "Out of range");
    942     return op_begin()[I];
    943   }
    944 
    945   /// \brief Return number of MDNode operands.
    946   unsigned getNumOperands() const { return NumOperands; }
    947 
    948   /// \brief Methods for support type inquiry through isa, cast, and dyn_cast:
    949   static bool classof(const Metadata *MD) {
    950     switch (MD->getMetadataID()) {
    951     default:
    952       return false;
    953 #define HANDLE_MDNODE_LEAF(CLASS)                                              \
    954   case CLASS##Kind:                                                            \
    955     return true;
    956 #include "llvm/IR/Metadata.def"
    957     }
    958   }
    959 
    960   /// \brief Check whether MDNode is a vtable access.
    961   bool isTBAAVtableAccess() const;
    962 
    963   /// \brief Methods for metadata merging.
    964   static MDNode *concatenate(MDNode *A, MDNode *B);
    965   static MDNode *intersect(MDNode *A, MDNode *B);
    966   static MDNode *getMostGenericTBAA(MDNode *A, MDNode *B);
    967   static MDNode *getMostGenericFPMath(MDNode *A, MDNode *B);
    968   static MDNode *getMostGenericRange(MDNode *A, MDNode *B);
    969   static MDNode *getMostGenericAliasScope(MDNode *A, MDNode *B);
    970   static MDNode *getMostGenericAlignmentOrDereferenceable(MDNode *A, MDNode *B);
    971 
    972 };
    973 
    974 /// \brief Tuple of metadata.
    975 ///
    976 /// This is the simple \a MDNode arbitrary tuple.  Nodes are uniqued by
    977 /// default based on their operands.
    978 class MDTuple : public MDNode {
    979   friend class LLVMContextImpl;
    980   friend class MDNode;
    981 
    982   MDTuple(LLVMContext &C, StorageType Storage, unsigned Hash,
    983           ArrayRef<Metadata *> Vals)
    984       : MDNode(C, MDTupleKind, Storage, Vals) {
    985     setHash(Hash);
    986   }
    987   ~MDTuple() { dropAllReferences(); }
    988 
    989   void setHash(unsigned Hash) { SubclassData32 = Hash; }
    990   void recalculateHash();
    991 
    992   static MDTuple *getImpl(LLVMContext &Context, ArrayRef<Metadata *> MDs,
    993                           StorageType Storage, bool ShouldCreate = true);
    994 
    995   TempMDTuple cloneImpl() const {
    996     return getTemporary(getContext(),
    997                         SmallVector<Metadata *, 4>(op_begin(), op_end()));
    998   }
    999 
   1000 public:
   1001   /// \brief Get the hash, if any.
   1002   unsigned getHash() const { return SubclassData32; }
   1003 
   1004   static MDTuple *get(LLVMContext &Context, ArrayRef<Metadata *> MDs) {
   1005     return getImpl(Context, MDs, Uniqued);
   1006   }
   1007   static MDTuple *getIfExists(LLVMContext &Context, ArrayRef<Metadata *> MDs) {
   1008     return getImpl(Context, MDs, Uniqued, /* ShouldCreate */ false);
   1009   }
   1010 
   1011   /// \brief Return a distinct node.
   1012   ///
   1013   /// Return a distinct node -- i.e., a node that is not uniqued.
   1014   static MDTuple *getDistinct(LLVMContext &Context, ArrayRef<Metadata *> MDs) {
   1015     return getImpl(Context, MDs, Distinct);
   1016   }
   1017 
   1018   /// \brief Return a temporary node.
   1019   ///
   1020   /// For use in constructing cyclic MDNode structures. A temporary MDNode is
   1021   /// not uniqued, may be RAUW'd, and must be manually deleted with
   1022   /// deleteTemporary.
   1023   static TempMDTuple getTemporary(LLVMContext &Context,
   1024                                   ArrayRef<Metadata *> MDs) {
   1025     return TempMDTuple(getImpl(Context, MDs, Temporary));
   1026   }
   1027 
   1028   /// \brief Return a (temporary) clone of this.
   1029   TempMDTuple clone() const { return cloneImpl(); }
   1030 
   1031   static bool classof(const Metadata *MD) {
   1032     return MD->getMetadataID() == MDTupleKind;
   1033   }
   1034 };
   1035 
   1036 MDTuple *MDNode::get(LLVMContext &Context, ArrayRef<Metadata *> MDs) {
   1037   return MDTuple::get(Context, MDs);
   1038 }
   1039 MDTuple *MDNode::getIfExists(LLVMContext &Context, ArrayRef<Metadata *> MDs) {
   1040   return MDTuple::getIfExists(Context, MDs);
   1041 }
   1042 MDTuple *MDNode::getDistinct(LLVMContext &Context, ArrayRef<Metadata *> MDs) {
   1043   return MDTuple::getDistinct(Context, MDs);
   1044 }
   1045 TempMDTuple MDNode::getTemporary(LLVMContext &Context,
   1046                                  ArrayRef<Metadata *> MDs) {
   1047   return MDTuple::getTemporary(Context, MDs);
   1048 }
   1049 
   1050 void TempMDNodeDeleter::operator()(MDNode *Node) const {
   1051   MDNode::deleteTemporary(Node);
   1052 }
   1053 
   1054 /// \brief Typed iterator through MDNode operands.
   1055 ///
   1056 /// An iterator that transforms an \a MDNode::iterator into an iterator over a
   1057 /// particular Metadata subclass.
   1058 template <class T>
   1059 class TypedMDOperandIterator
   1060     : std::iterator<std::input_iterator_tag, T *, std::ptrdiff_t, void, T *> {
   1061   MDNode::op_iterator I = nullptr;
   1062 
   1063 public:
   1064   TypedMDOperandIterator() = default;
   1065   explicit TypedMDOperandIterator(MDNode::op_iterator I) : I(I) {}
   1066   T *operator*() const { return cast_or_null<T>(*I); }
   1067   TypedMDOperandIterator &operator++() {
   1068     ++I;
   1069     return *this;
   1070   }
   1071   TypedMDOperandIterator operator++(int) {
   1072     TypedMDOperandIterator Temp(*this);
   1073     ++I;
   1074     return Temp;
   1075   }
   1076   bool operator==(const TypedMDOperandIterator &X) const { return I == X.I; }
   1077   bool operator!=(const TypedMDOperandIterator &X) const { return I != X.I; }
   1078 };
   1079 
   1080 /// \brief Typed, array-like tuple of metadata.
   1081 ///
   1082 /// This is a wrapper for \a MDTuple that makes it act like an array holding a
   1083 /// particular type of metadata.
   1084 template <class T> class MDTupleTypedArrayWrapper {
   1085   const MDTuple *N = nullptr;
   1086 
   1087 public:
   1088   MDTupleTypedArrayWrapper() = default;
   1089   MDTupleTypedArrayWrapper(const MDTuple *N) : N(N) {}
   1090 
   1091   template <class U>
   1092   MDTupleTypedArrayWrapper(
   1093       const MDTupleTypedArrayWrapper<U> &Other,
   1094       typename std::enable_if<std::is_convertible<U *, T *>::value>::type * =
   1095           nullptr)
   1096       : N(Other.get()) {}
   1097 
   1098   template <class U>
   1099   explicit MDTupleTypedArrayWrapper(
   1100       const MDTupleTypedArrayWrapper<U> &Other,
   1101       typename std::enable_if<!std::is_convertible<U *, T *>::value>::type * =
   1102           nullptr)
   1103       : N(Other.get()) {}
   1104 
   1105   explicit operator bool() const { return get(); }
   1106   explicit operator MDTuple *() const { return get(); }
   1107 
   1108   MDTuple *get() const { return const_cast<MDTuple *>(N); }
   1109   MDTuple *operator->() const { return get(); }
   1110   MDTuple &operator*() const { return *get(); }
   1111 
   1112   // FIXME: Fix callers and remove condition on N.
   1113   unsigned size() const { return N ? N->getNumOperands() : 0u; }
   1114   T *operator[](unsigned I) const { return cast_or_null<T>(N->getOperand(I)); }
   1115 
   1116   // FIXME: Fix callers and remove condition on N.
   1117   typedef TypedMDOperandIterator<T> iterator;
   1118   iterator begin() const { return N ? iterator(N->op_begin()) : iterator(); }
   1119   iterator end() const { return N ? iterator(N->op_end()) : iterator(); }
   1120 };
   1121 
   1122 #define HANDLE_METADATA(CLASS)                                                 \
   1123   typedef MDTupleTypedArrayWrapper<CLASS> CLASS##Array;
   1124 #include "llvm/IR/Metadata.def"
   1125 
   1126 //===----------------------------------------------------------------------===//
   1127 /// \brief A tuple of MDNodes.
   1128 ///
   1129 /// Despite its name, a NamedMDNode isn't itself an MDNode. NamedMDNodes belong
   1130 /// to modules, have names, and contain lists of MDNodes.
   1131 ///
   1132 /// TODO: Inherit from Metadata.
   1133 class NamedMDNode : public ilist_node<NamedMDNode> {
   1134   friend struct ilist_traits<NamedMDNode>;
   1135   friend class LLVMContextImpl;
   1136   friend class Module;
   1137   NamedMDNode(const NamedMDNode &) = delete;
   1138 
   1139   std::string Name;
   1140   Module *Parent;
   1141   void *Operands; // SmallVector<TrackingMDRef, 4>
   1142 
   1143   void setParent(Module *M) { Parent = M; }
   1144 
   1145   explicit NamedMDNode(const Twine &N);
   1146 
   1147   template<class T1, class T2>
   1148   class op_iterator_impl :
   1149       public std::iterator<std::bidirectional_iterator_tag, T2> {
   1150     const NamedMDNode *Node;
   1151     unsigned Idx;
   1152     op_iterator_impl(const NamedMDNode *N, unsigned i) : Node(N), Idx(i) { }
   1153 
   1154     friend class NamedMDNode;
   1155 
   1156   public:
   1157     op_iterator_impl() : Node(nullptr), Idx(0) { }
   1158 
   1159     bool operator==(const op_iterator_impl &o) const { return Idx == o.Idx; }
   1160     bool operator!=(const op_iterator_impl &o) const { return Idx != o.Idx; }
   1161     op_iterator_impl &operator++() {
   1162       ++Idx;
   1163       return *this;
   1164     }
   1165     op_iterator_impl operator++(int) {
   1166       op_iterator_impl tmp(*this);
   1167       operator++();
   1168       return tmp;
   1169     }
   1170     op_iterator_impl &operator--() {
   1171       --Idx;
   1172       return *this;
   1173     }
   1174     op_iterator_impl operator--(int) {
   1175       op_iterator_impl tmp(*this);
   1176       operator--();
   1177       return tmp;
   1178     }
   1179 
   1180     T1 operator*() const { return Node->getOperand(Idx); }
   1181   };
   1182 
   1183 public:
   1184   /// \brief Drop all references and remove the node from parent module.
   1185   void eraseFromParent();
   1186 
   1187   /// \brief Remove all uses and clear node vector.
   1188   void dropAllReferences();
   1189 
   1190   ~NamedMDNode();
   1191 
   1192   /// \brief Get the module that holds this named metadata collection.
   1193   inline Module *getParent() { return Parent; }
   1194   inline const Module *getParent() const { return Parent; }
   1195 
   1196   MDNode *getOperand(unsigned i) const;
   1197   unsigned getNumOperands() const;
   1198   void addOperand(MDNode *M);
   1199   void setOperand(unsigned I, MDNode *New);
   1200   StringRef getName() const;
   1201   void print(raw_ostream &ROS, bool IsForDebug = false) const;
   1202   void dump() const;
   1203 
   1204   // ---------------------------------------------------------------------------
   1205   // Operand Iterator interface...
   1206   //
   1207   typedef op_iterator_impl<MDNode *, MDNode> op_iterator;
   1208   op_iterator op_begin() { return op_iterator(this, 0); }
   1209   op_iterator op_end()   { return op_iterator(this, getNumOperands()); }
   1210 
   1211   typedef op_iterator_impl<const MDNode *, MDNode> const_op_iterator;
   1212   const_op_iterator op_begin() const { return const_op_iterator(this, 0); }
   1213   const_op_iterator op_end()   const { return const_op_iterator(this, getNumOperands()); }
   1214 
   1215   inline iterator_range<op_iterator>  operands() {
   1216     return make_range(op_begin(), op_end());
   1217   }
   1218   inline iterator_range<const_op_iterator> operands() const {
   1219     return make_range(op_begin(), op_end());
   1220   }
   1221 };
   1222 
   1223 } // end llvm namespace
   1224 
   1225 #endif // LLVM_IR_METADATA_H
   1226