1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-module state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenModule.h" 15 #include "CGBlocks.h" 16 #include "CGCUDARuntime.h" 17 #include "CGCXXABI.h" 18 #include "CGCall.h" 19 #include "CGDebugInfo.h" 20 #include "CGObjCRuntime.h" 21 #include "CGOpenCLRuntime.h" 22 #include "CGOpenMPRuntime.h" 23 #include "CodeGenFunction.h" 24 #include "CodeGenPGO.h" 25 #include "CodeGenTBAA.h" 26 #include "CoverageMappingGen.h" 27 #include "TargetInfo.h" 28 #include "clang/AST/ASTContext.h" 29 #include "clang/AST/CharUnits.h" 30 #include "clang/AST/DeclCXX.h" 31 #include "clang/AST/DeclObjC.h" 32 #include "clang/AST/DeclTemplate.h" 33 #include "clang/AST/Mangle.h" 34 #include "clang/AST/RecordLayout.h" 35 #include "clang/AST/RecursiveASTVisitor.h" 36 #include "clang/Basic/Builtins.h" 37 #include "clang/Basic/CharInfo.h" 38 #include "clang/Basic/Diagnostic.h" 39 #include "clang/Basic/Module.h" 40 #include "clang/Basic/SourceManager.h" 41 #include "clang/Basic/TargetInfo.h" 42 #include "clang/Basic/Version.h" 43 #include "clang/Frontend/CodeGenOptions.h" 44 #include "clang/Sema/SemaDiagnostic.h" 45 #include "llvm/ADT/APSInt.h" 46 #include "llvm/ADT/Triple.h" 47 #include "llvm/IR/CallSite.h" 48 #include "llvm/IR/CallingConv.h" 49 #include "llvm/IR/DataLayout.h" 50 #include "llvm/IR/Intrinsics.h" 51 #include "llvm/IR/LLVMContext.h" 52 #include "llvm/IR/Module.h" 53 #include "llvm/ProfileData/InstrProfReader.h" 54 #include "llvm/Support/ConvertUTF.h" 55 #include "llvm/Support/ErrorHandling.h" 56 #include "llvm/Support/MD5.h" 57 58 using namespace clang; 59 using namespace CodeGen; 60 61 static const char AnnotationSection[] = "llvm.metadata"; 62 63 static CGCXXABI *createCXXABI(CodeGenModule &CGM) { 64 switch (CGM.getTarget().getCXXABI().getKind()) { 65 case TargetCXXABI::GenericAArch64: 66 case TargetCXXABI::GenericARM: 67 case TargetCXXABI::iOS: 68 case TargetCXXABI::iOS64: 69 case TargetCXXABI::WatchOS: 70 case TargetCXXABI::GenericMIPS: 71 case TargetCXXABI::GenericItanium: 72 case TargetCXXABI::WebAssembly: 73 return CreateItaniumCXXABI(CGM); 74 case TargetCXXABI::Microsoft: 75 return CreateMicrosoftCXXABI(CGM); 76 } 77 78 llvm_unreachable("invalid C++ ABI kind"); 79 } 80 81 CodeGenModule::CodeGenModule(ASTContext &C, const HeaderSearchOptions &HSO, 82 const PreprocessorOptions &PPO, 83 const CodeGenOptions &CGO, llvm::Module &M, 84 DiagnosticsEngine &diags, 85 CoverageSourceInfo *CoverageInfo) 86 : Context(C), LangOpts(C.getLangOpts()), HeaderSearchOpts(HSO), 87 PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags), 88 Target(C.getTargetInfo()), ABI(createCXXABI(*this)), 89 VMContext(M.getContext()), TBAA(nullptr), TheTargetCodeGenInfo(nullptr), 90 Types(*this), VTables(*this), ObjCRuntime(nullptr), 91 OpenCLRuntime(nullptr), OpenMPRuntime(nullptr), CUDARuntime(nullptr), 92 DebugInfo(nullptr), ObjCData(nullptr), 93 NoObjCARCExceptionsMetadata(nullptr), PGOReader(nullptr), 94 CFConstantStringClassRef(nullptr), ConstantStringClassRef(nullptr), 95 NSConstantStringType(nullptr), NSConcreteGlobalBlock(nullptr), 96 NSConcreteStackBlock(nullptr), BlockObjectAssign(nullptr), 97 BlockObjectDispose(nullptr), BlockDescriptorType(nullptr), 98 GenericBlockLiteralType(nullptr), LifetimeStartFn(nullptr), 99 LifetimeEndFn(nullptr), SanitizerMD(new SanitizerMetadata(*this)) { 100 101 // Initialize the type cache. 102 llvm::LLVMContext &LLVMContext = M.getContext(); 103 VoidTy = llvm::Type::getVoidTy(LLVMContext); 104 Int8Ty = llvm::Type::getInt8Ty(LLVMContext); 105 Int16Ty = llvm::Type::getInt16Ty(LLVMContext); 106 Int32Ty = llvm::Type::getInt32Ty(LLVMContext); 107 Int64Ty = llvm::Type::getInt64Ty(LLVMContext); 108 FloatTy = llvm::Type::getFloatTy(LLVMContext); 109 DoubleTy = llvm::Type::getDoubleTy(LLVMContext); 110 PointerWidthInBits = C.getTargetInfo().getPointerWidth(0); 111 PointerAlignInBytes = 112 C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity(); 113 IntAlignInBytes = 114 C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity(); 115 IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth()); 116 IntPtrTy = llvm::IntegerType::get(LLVMContext, PointerWidthInBits); 117 Int8PtrTy = Int8Ty->getPointerTo(0); 118 Int8PtrPtrTy = Int8PtrTy->getPointerTo(0); 119 120 RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC(); 121 BuiltinCC = getTargetCodeGenInfo().getABIInfo().getBuiltinCC(); 122 123 if (LangOpts.ObjC1) 124 createObjCRuntime(); 125 if (LangOpts.OpenCL) 126 createOpenCLRuntime(); 127 if (LangOpts.OpenMP) 128 createOpenMPRuntime(); 129 if (LangOpts.CUDA) 130 createCUDARuntime(); 131 132 // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0. 133 if (LangOpts.Sanitize.has(SanitizerKind::Thread) || 134 (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0)) 135 TBAA = new CodeGenTBAA(Context, VMContext, CodeGenOpts, getLangOpts(), 136 getCXXABI().getMangleContext()); 137 138 // If debug info or coverage generation is enabled, create the CGDebugInfo 139 // object. 140 if (CodeGenOpts.getDebugInfo() != CodeGenOptions::NoDebugInfo || 141 CodeGenOpts.EmitGcovArcs || 142 CodeGenOpts.EmitGcovNotes) 143 DebugInfo = new CGDebugInfo(*this); 144 145 Block.GlobalUniqueCount = 0; 146 147 if (C.getLangOpts().ObjC1) 148 ObjCData = new ObjCEntrypoints(); 149 150 if (!CodeGenOpts.InstrProfileInput.empty()) { 151 auto ReaderOrErr = 152 llvm::IndexedInstrProfReader::create(CodeGenOpts.InstrProfileInput); 153 if (std::error_code EC = ReaderOrErr.getError()) { 154 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 155 "Could not read profile %0: %1"); 156 getDiags().Report(DiagID) << CodeGenOpts.InstrProfileInput 157 << EC.message(); 158 } else 159 PGOReader = std::move(ReaderOrErr.get()); 160 } 161 162 // If coverage mapping generation is enabled, create the 163 // CoverageMappingModuleGen object. 164 if (CodeGenOpts.CoverageMapping) 165 CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo)); 166 } 167 168 CodeGenModule::~CodeGenModule() { 169 delete ObjCRuntime; 170 delete OpenCLRuntime; 171 delete OpenMPRuntime; 172 delete CUDARuntime; 173 delete TheTargetCodeGenInfo; 174 delete TBAA; 175 delete DebugInfo; 176 delete ObjCData; 177 } 178 179 void CodeGenModule::createObjCRuntime() { 180 // This is just isGNUFamily(), but we want to force implementors of 181 // new ABIs to decide how best to do this. 182 switch (LangOpts.ObjCRuntime.getKind()) { 183 case ObjCRuntime::GNUstep: 184 case ObjCRuntime::GCC: 185 case ObjCRuntime::ObjFW: 186 ObjCRuntime = CreateGNUObjCRuntime(*this); 187 return; 188 189 case ObjCRuntime::FragileMacOSX: 190 case ObjCRuntime::MacOSX: 191 case ObjCRuntime::iOS: 192 case ObjCRuntime::WatchOS: 193 ObjCRuntime = CreateMacObjCRuntime(*this); 194 return; 195 } 196 llvm_unreachable("bad runtime kind"); 197 } 198 199 void CodeGenModule::createOpenCLRuntime() { 200 OpenCLRuntime = new CGOpenCLRuntime(*this); 201 } 202 203 void CodeGenModule::createOpenMPRuntime() { 204 OpenMPRuntime = new CGOpenMPRuntime(*this); 205 } 206 207 void CodeGenModule::createCUDARuntime() { 208 CUDARuntime = CreateNVCUDARuntime(*this); 209 } 210 211 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) { 212 Replacements[Name] = C; 213 } 214 215 void CodeGenModule::applyReplacements() { 216 for (auto &I : Replacements) { 217 StringRef MangledName = I.first(); 218 llvm::Constant *Replacement = I.second; 219 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 220 if (!Entry) 221 continue; 222 auto *OldF = cast<llvm::Function>(Entry); 223 auto *NewF = dyn_cast<llvm::Function>(Replacement); 224 if (!NewF) { 225 if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) { 226 NewF = dyn_cast<llvm::Function>(Alias->getAliasee()); 227 } else { 228 auto *CE = cast<llvm::ConstantExpr>(Replacement); 229 assert(CE->getOpcode() == llvm::Instruction::BitCast || 230 CE->getOpcode() == llvm::Instruction::GetElementPtr); 231 NewF = dyn_cast<llvm::Function>(CE->getOperand(0)); 232 } 233 } 234 235 // Replace old with new, but keep the old order. 236 OldF->replaceAllUsesWith(Replacement); 237 if (NewF) { 238 NewF->removeFromParent(); 239 OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(), 240 NewF); 241 } 242 OldF->eraseFromParent(); 243 } 244 } 245 246 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) { 247 GlobalValReplacements.push_back(std::make_pair(GV, C)); 248 } 249 250 void CodeGenModule::applyGlobalValReplacements() { 251 for (auto &I : GlobalValReplacements) { 252 llvm::GlobalValue *GV = I.first; 253 llvm::Constant *C = I.second; 254 255 GV->replaceAllUsesWith(C); 256 GV->eraseFromParent(); 257 } 258 } 259 260 // This is only used in aliases that we created and we know they have a 261 // linear structure. 262 static const llvm::GlobalObject *getAliasedGlobal(const llvm::GlobalAlias &GA) { 263 llvm::SmallPtrSet<const llvm::GlobalAlias*, 4> Visited; 264 const llvm::Constant *C = &GA; 265 for (;;) { 266 C = C->stripPointerCasts(); 267 if (auto *GO = dyn_cast<llvm::GlobalObject>(C)) 268 return GO; 269 // stripPointerCasts will not walk over weak aliases. 270 auto *GA2 = dyn_cast<llvm::GlobalAlias>(C); 271 if (!GA2) 272 return nullptr; 273 if (!Visited.insert(GA2).second) 274 return nullptr; 275 C = GA2->getAliasee(); 276 } 277 } 278 279 void CodeGenModule::checkAliases() { 280 // Check if the constructed aliases are well formed. It is really unfortunate 281 // that we have to do this in CodeGen, but we only construct mangled names 282 // and aliases during codegen. 283 bool Error = false; 284 DiagnosticsEngine &Diags = getDiags(); 285 for (const GlobalDecl &GD : Aliases) { 286 const auto *D = cast<ValueDecl>(GD.getDecl()); 287 const AliasAttr *AA = D->getAttr<AliasAttr>(); 288 StringRef MangledName = getMangledName(GD); 289 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 290 auto *Alias = cast<llvm::GlobalAlias>(Entry); 291 const llvm::GlobalValue *GV = getAliasedGlobal(*Alias); 292 if (!GV) { 293 Error = true; 294 Diags.Report(AA->getLocation(), diag::err_cyclic_alias); 295 } else if (GV->isDeclaration()) { 296 Error = true; 297 Diags.Report(AA->getLocation(), diag::err_alias_to_undefined); 298 } 299 300 llvm::Constant *Aliasee = Alias->getAliasee(); 301 llvm::GlobalValue *AliaseeGV; 302 if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee)) 303 AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0)); 304 else 305 AliaseeGV = cast<llvm::GlobalValue>(Aliasee); 306 307 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 308 StringRef AliasSection = SA->getName(); 309 if (AliasSection != AliaseeGV->getSection()) 310 Diags.Report(SA->getLocation(), diag::warn_alias_with_section) 311 << AliasSection; 312 } 313 314 // We have to handle alias to weak aliases in here. LLVM itself disallows 315 // this since the object semantics would not match the IL one. For 316 // compatibility with gcc we implement it by just pointing the alias 317 // to its aliasee's aliasee. We also warn, since the user is probably 318 // expecting the link to be weak. 319 if (auto GA = dyn_cast<llvm::GlobalAlias>(AliaseeGV)) { 320 if (GA->mayBeOverridden()) { 321 Diags.Report(AA->getLocation(), diag::warn_alias_to_weak_alias) 322 << GV->getName() << GA->getName(); 323 Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 324 GA->getAliasee(), Alias->getType()); 325 Alias->setAliasee(Aliasee); 326 } 327 } 328 } 329 if (!Error) 330 return; 331 332 for (const GlobalDecl &GD : Aliases) { 333 StringRef MangledName = getMangledName(GD); 334 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 335 auto *Alias = cast<llvm::GlobalAlias>(Entry); 336 Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType())); 337 Alias->eraseFromParent(); 338 } 339 } 340 341 void CodeGenModule::clear() { 342 DeferredDeclsToEmit.clear(); 343 if (OpenMPRuntime) 344 OpenMPRuntime->clear(); 345 } 346 347 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags, 348 StringRef MainFile) { 349 if (!hasDiagnostics()) 350 return; 351 if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) { 352 if (MainFile.empty()) 353 MainFile = "<stdin>"; 354 Diags.Report(diag::warn_profile_data_unprofiled) << MainFile; 355 } else 356 Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Missing 357 << Mismatched; 358 } 359 360 void CodeGenModule::Release() { 361 EmitDeferred(); 362 applyGlobalValReplacements(); 363 applyReplacements(); 364 checkAliases(); 365 EmitCXXGlobalInitFunc(); 366 EmitCXXGlobalDtorFunc(); 367 EmitCXXThreadLocalInitFunc(); 368 if (ObjCRuntime) 369 if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction()) 370 AddGlobalCtor(ObjCInitFunction); 371 if (Context.getLangOpts().CUDA && !Context.getLangOpts().CUDAIsDevice && 372 CUDARuntime) { 373 if (llvm::Function *CudaCtorFunction = CUDARuntime->makeModuleCtorFunction()) 374 AddGlobalCtor(CudaCtorFunction); 375 if (llvm::Function *CudaDtorFunction = CUDARuntime->makeModuleDtorFunction()) 376 AddGlobalDtor(CudaDtorFunction); 377 } 378 if (PGOReader) { 379 getModule().setMaximumFunctionCount(PGOReader->getMaximumFunctionCount()); 380 if (PGOStats.hasDiagnostics()) 381 PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName); 382 } 383 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 384 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 385 EmitGlobalAnnotations(); 386 EmitStaticExternCAliases(); 387 EmitDeferredUnusedCoverageMappings(); 388 if (CoverageMapping) 389 CoverageMapping->emit(); 390 emitLLVMUsed(); 391 392 if (CodeGenOpts.Autolink && 393 (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) { 394 EmitModuleLinkOptions(); 395 } 396 if (CodeGenOpts.DwarfVersion) { 397 // We actually want the latest version when there are conflicts. 398 // We can change from Warning to Latest if such mode is supported. 399 getModule().addModuleFlag(llvm::Module::Warning, "Dwarf Version", 400 CodeGenOpts.DwarfVersion); 401 } 402 if (CodeGenOpts.EmitCodeView) { 403 // Indicate that we want CodeView in the metadata. 404 getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1); 405 } 406 if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) { 407 // We don't support LTO with 2 with different StrictVTablePointers 408 // FIXME: we could support it by stripping all the information introduced 409 // by StrictVTablePointers. 410 411 getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1); 412 413 llvm::Metadata *Ops[2] = { 414 llvm::MDString::get(VMContext, "StrictVTablePointers"), 415 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 416 llvm::Type::getInt32Ty(VMContext), 1))}; 417 418 getModule().addModuleFlag(llvm::Module::Require, 419 "StrictVTablePointersRequirement", 420 llvm::MDNode::get(VMContext, Ops)); 421 } 422 if (DebugInfo) 423 // We support a single version in the linked module. The LLVM 424 // parser will drop debug info with a different version number 425 // (and warn about it, too). 426 getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version", 427 llvm::DEBUG_METADATA_VERSION); 428 429 // We need to record the widths of enums and wchar_t, so that we can generate 430 // the correct build attributes in the ARM backend. 431 llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch(); 432 if ( Arch == llvm::Triple::arm 433 || Arch == llvm::Triple::armeb 434 || Arch == llvm::Triple::thumb 435 || Arch == llvm::Triple::thumbeb) { 436 // Width of wchar_t in bytes 437 uint64_t WCharWidth = 438 Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity(); 439 getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth); 440 441 // The minimum width of an enum in bytes 442 uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4; 443 getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth); 444 } 445 446 if (CodeGenOpts.SanitizeCfiCrossDso) { 447 // Indicate that we want cross-DSO control flow integrity checks. 448 getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1); 449 } 450 451 if (uint32_t PLevel = Context.getLangOpts().PICLevel) { 452 llvm::PICLevel::Level PL = llvm::PICLevel::Default; 453 switch (PLevel) { 454 case 0: break; 455 case 1: PL = llvm::PICLevel::Small; break; 456 case 2: PL = llvm::PICLevel::Large; break; 457 default: llvm_unreachable("Invalid PIC Level"); 458 } 459 460 getModule().setPICLevel(PL); 461 } 462 463 SimplifyPersonality(); 464 465 if (getCodeGenOpts().EmitDeclMetadata) 466 EmitDeclMetadata(); 467 468 if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes) 469 EmitCoverageFile(); 470 471 if (DebugInfo) 472 DebugInfo->finalize(); 473 474 EmitVersionIdentMetadata(); 475 476 EmitTargetMetadata(); 477 } 478 479 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) { 480 // Make sure that this type is translated. 481 Types.UpdateCompletedType(TD); 482 } 483 484 llvm::MDNode *CodeGenModule::getTBAAInfo(QualType QTy) { 485 if (!TBAA) 486 return nullptr; 487 return TBAA->getTBAAInfo(QTy); 488 } 489 490 llvm::MDNode *CodeGenModule::getTBAAInfoForVTablePtr() { 491 if (!TBAA) 492 return nullptr; 493 return TBAA->getTBAAInfoForVTablePtr(); 494 } 495 496 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) { 497 if (!TBAA) 498 return nullptr; 499 return TBAA->getTBAAStructInfo(QTy); 500 } 501 502 llvm::MDNode *CodeGenModule::getTBAAStructTagInfo(QualType BaseTy, 503 llvm::MDNode *AccessN, 504 uint64_t O) { 505 if (!TBAA) 506 return nullptr; 507 return TBAA->getTBAAStructTagInfo(BaseTy, AccessN, O); 508 } 509 510 /// Decorate the instruction with a TBAA tag. For both scalar TBAA 511 /// and struct-path aware TBAA, the tag has the same format: 512 /// base type, access type and offset. 513 /// When ConvertTypeToTag is true, we create a tag based on the scalar type. 514 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst, 515 llvm::MDNode *TBAAInfo, 516 bool ConvertTypeToTag) { 517 if (ConvertTypeToTag && TBAA) 518 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, 519 TBAA->getTBAAScalarTagInfo(TBAAInfo)); 520 else 521 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo); 522 } 523 524 void CodeGenModule::DecorateInstructionWithInvariantGroup( 525 llvm::Instruction *I, const CXXRecordDecl *RD) { 526 llvm::Metadata *MD = CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0)); 527 auto *MetaDataNode = dyn_cast<llvm::MDNode>(MD); 528 // Check if we have to wrap MDString in MDNode. 529 if (!MetaDataNode) 530 MetaDataNode = llvm::MDNode::get(getLLVMContext(), MD); 531 I->setMetadata(llvm::LLVMContext::MD_invariant_group, MetaDataNode); 532 } 533 534 void CodeGenModule::Error(SourceLocation loc, StringRef message) { 535 unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0"); 536 getDiags().Report(Context.getFullLoc(loc), diagID) << message; 537 } 538 539 /// ErrorUnsupported - Print out an error that codegen doesn't support the 540 /// specified stmt yet. 541 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) { 542 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 543 "cannot compile this %0 yet"); 544 std::string Msg = Type; 545 getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID) 546 << Msg << S->getSourceRange(); 547 } 548 549 /// ErrorUnsupported - Print out an error that codegen doesn't support the 550 /// specified decl yet. 551 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) { 552 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 553 "cannot compile this %0 yet"); 554 std::string Msg = Type; 555 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 556 } 557 558 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) { 559 return llvm::ConstantInt::get(SizeTy, size.getQuantity()); 560 } 561 562 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 563 const NamedDecl *D) const { 564 // Internal definitions always have default visibility. 565 if (GV->hasLocalLinkage()) { 566 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 567 return; 568 } 569 570 // Set visibility for definitions. 571 LinkageInfo LV = D->getLinkageAndVisibility(); 572 if (LV.isVisibilityExplicit() || !GV->hasAvailableExternallyLinkage()) 573 GV->setVisibility(GetLLVMVisibility(LV.getVisibility())); 574 } 575 576 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) { 577 return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S) 578 .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel) 579 .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel) 580 .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel) 581 .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel); 582 } 583 584 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel( 585 CodeGenOptions::TLSModel M) { 586 switch (M) { 587 case CodeGenOptions::GeneralDynamicTLSModel: 588 return llvm::GlobalVariable::GeneralDynamicTLSModel; 589 case CodeGenOptions::LocalDynamicTLSModel: 590 return llvm::GlobalVariable::LocalDynamicTLSModel; 591 case CodeGenOptions::InitialExecTLSModel: 592 return llvm::GlobalVariable::InitialExecTLSModel; 593 case CodeGenOptions::LocalExecTLSModel: 594 return llvm::GlobalVariable::LocalExecTLSModel; 595 } 596 llvm_unreachable("Invalid TLS model!"); 597 } 598 599 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const { 600 assert(D.getTLSKind() && "setting TLS mode on non-TLS var!"); 601 602 llvm::GlobalValue::ThreadLocalMode TLM; 603 TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel()); 604 605 // Override the TLS model if it is explicitly specified. 606 if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) { 607 TLM = GetLLVMTLSModel(Attr->getModel()); 608 } 609 610 GV->setThreadLocalMode(TLM); 611 } 612 613 StringRef CodeGenModule::getMangledName(GlobalDecl GD) { 614 StringRef &FoundStr = MangledDeclNames[GD.getCanonicalDecl()]; 615 if (!FoundStr.empty()) 616 return FoundStr; 617 618 const auto *ND = cast<NamedDecl>(GD.getDecl()); 619 SmallString<256> Buffer; 620 StringRef Str; 621 if (getCXXABI().getMangleContext().shouldMangleDeclName(ND)) { 622 llvm::raw_svector_ostream Out(Buffer); 623 if (const auto *D = dyn_cast<CXXConstructorDecl>(ND)) 624 getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Out); 625 else if (const auto *D = dyn_cast<CXXDestructorDecl>(ND)) 626 getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Out); 627 else 628 getCXXABI().getMangleContext().mangleName(ND, Out); 629 Str = Out.str(); 630 } else { 631 IdentifierInfo *II = ND->getIdentifier(); 632 assert(II && "Attempt to mangle unnamed decl."); 633 Str = II->getName(); 634 } 635 636 // Keep the first result in the case of a mangling collision. 637 auto Result = Manglings.insert(std::make_pair(Str, GD)); 638 return FoundStr = Result.first->first(); 639 } 640 641 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD, 642 const BlockDecl *BD) { 643 MangleContext &MangleCtx = getCXXABI().getMangleContext(); 644 const Decl *D = GD.getDecl(); 645 646 SmallString<256> Buffer; 647 llvm::raw_svector_ostream Out(Buffer); 648 if (!D) 649 MangleCtx.mangleGlobalBlock(BD, 650 dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out); 651 else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D)) 652 MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out); 653 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D)) 654 MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out); 655 else 656 MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out); 657 658 auto Result = Manglings.insert(std::make_pair(Out.str(), BD)); 659 return Result.first->first(); 660 } 661 662 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) { 663 return getModule().getNamedValue(Name); 664 } 665 666 /// AddGlobalCtor - Add a function to the list that will be called before 667 /// main() runs. 668 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority, 669 llvm::Constant *AssociatedData) { 670 // FIXME: Type coercion of void()* types. 671 GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData)); 672 } 673 674 /// AddGlobalDtor - Add a function to the list that will be called 675 /// when the module is unloaded. 676 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority) { 677 // FIXME: Type coercion of void()* types. 678 GlobalDtors.push_back(Structor(Priority, Dtor, nullptr)); 679 } 680 681 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) { 682 // Ctor function type is void()*. 683 llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false); 684 llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy); 685 686 // Get the type of a ctor entry, { i32, void ()*, i8* }. 687 llvm::StructType *CtorStructTy = llvm::StructType::get( 688 Int32Ty, llvm::PointerType::getUnqual(CtorFTy), VoidPtrTy, nullptr); 689 690 // Construct the constructor and destructor arrays. 691 SmallVector<llvm::Constant *, 8> Ctors; 692 for (const auto &I : Fns) { 693 llvm::Constant *S[] = { 694 llvm::ConstantInt::get(Int32Ty, I.Priority, false), 695 llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy), 696 (I.AssociatedData 697 ? llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy) 698 : llvm::Constant::getNullValue(VoidPtrTy))}; 699 Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S)); 700 } 701 702 if (!Ctors.empty()) { 703 llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size()); 704 new llvm::GlobalVariable(TheModule, AT, false, 705 llvm::GlobalValue::AppendingLinkage, 706 llvm::ConstantArray::get(AT, Ctors), 707 GlobalName); 708 } 709 } 710 711 llvm::GlobalValue::LinkageTypes 712 CodeGenModule::getFunctionLinkage(GlobalDecl GD) { 713 const auto *D = cast<FunctionDecl>(GD.getDecl()); 714 715 GVALinkage Linkage = getContext().GetGVALinkageForFunction(D); 716 717 if (isa<CXXDestructorDecl>(D) && 718 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 719 GD.getDtorType())) { 720 // Destructor variants in the Microsoft C++ ABI are always internal or 721 // linkonce_odr thunks emitted on an as-needed basis. 722 return Linkage == GVA_Internal ? llvm::GlobalValue::InternalLinkage 723 : llvm::GlobalValue::LinkOnceODRLinkage; 724 } 725 726 return getLLVMLinkageForDeclarator(D, Linkage, /*isConstantVariable=*/false); 727 } 728 729 void CodeGenModule::setFunctionDLLStorageClass(GlobalDecl GD, llvm::Function *F) { 730 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 731 732 if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(FD)) { 733 if (getCXXABI().useThunkForDtorVariant(Dtor, GD.getDtorType())) { 734 // Don't dllexport/import destructor thunks. 735 F->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 736 return; 737 } 738 } 739 740 if (FD->hasAttr<DLLImportAttr>()) 741 F->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 742 else if (FD->hasAttr<DLLExportAttr>()) 743 F->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 744 else 745 F->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 746 } 747 748 llvm::ConstantInt * 749 CodeGenModule::CreateCfiIdForTypeMetadata(llvm::Metadata *MD) { 750 llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD); 751 if (!MDS) return nullptr; 752 753 llvm::MD5 md5; 754 llvm::MD5::MD5Result result; 755 md5.update(MDS->getString()); 756 md5.final(result); 757 uint64_t id = 0; 758 for (int i = 0; i < 8; ++i) 759 id |= static_cast<uint64_t>(result[i]) << (i * 8); 760 return llvm::ConstantInt::get(Int64Ty, id); 761 } 762 763 void CodeGenModule::setFunctionDefinitionAttributes(const FunctionDecl *D, 764 llvm::Function *F) { 765 setNonAliasAttributes(D, F); 766 } 767 768 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D, 769 const CGFunctionInfo &Info, 770 llvm::Function *F) { 771 unsigned CallingConv; 772 AttributeListType AttributeList; 773 ConstructAttributeList(Info, D, AttributeList, CallingConv, false); 774 F->setAttributes(llvm::AttributeSet::get(getLLVMContext(), AttributeList)); 775 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 776 } 777 778 /// Determines whether the language options require us to model 779 /// unwind exceptions. We treat -fexceptions as mandating this 780 /// except under the fragile ObjC ABI with only ObjC exceptions 781 /// enabled. This means, for example, that C with -fexceptions 782 /// enables this. 783 static bool hasUnwindExceptions(const LangOptions &LangOpts) { 784 // If exceptions are completely disabled, obviously this is false. 785 if (!LangOpts.Exceptions) return false; 786 787 // If C++ exceptions are enabled, this is true. 788 if (LangOpts.CXXExceptions) return true; 789 790 // If ObjC exceptions are enabled, this depends on the ABI. 791 if (LangOpts.ObjCExceptions) { 792 return LangOpts.ObjCRuntime.hasUnwindExceptions(); 793 } 794 795 return true; 796 } 797 798 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 799 llvm::Function *F) { 800 llvm::AttrBuilder B; 801 802 if (CodeGenOpts.UnwindTables) 803 B.addAttribute(llvm::Attribute::UWTable); 804 805 if (!hasUnwindExceptions(LangOpts)) 806 B.addAttribute(llvm::Attribute::NoUnwind); 807 808 if (LangOpts.getStackProtector() == LangOptions::SSPOn) 809 B.addAttribute(llvm::Attribute::StackProtect); 810 else if (LangOpts.getStackProtector() == LangOptions::SSPStrong) 811 B.addAttribute(llvm::Attribute::StackProtectStrong); 812 else if (LangOpts.getStackProtector() == LangOptions::SSPReq) 813 B.addAttribute(llvm::Attribute::StackProtectReq); 814 815 if (!D) { 816 F->addAttributes(llvm::AttributeSet::FunctionIndex, 817 llvm::AttributeSet::get( 818 F->getContext(), 819 llvm::AttributeSet::FunctionIndex, B)); 820 return; 821 } 822 823 if (D->hasAttr<NakedAttr>()) { 824 // Naked implies noinline: we should not be inlining such functions. 825 B.addAttribute(llvm::Attribute::Naked); 826 B.addAttribute(llvm::Attribute::NoInline); 827 } else if (D->hasAttr<NoDuplicateAttr>()) { 828 B.addAttribute(llvm::Attribute::NoDuplicate); 829 } else if (D->hasAttr<NoInlineAttr>()) { 830 B.addAttribute(llvm::Attribute::NoInline); 831 } else if (D->hasAttr<AlwaysInlineAttr>() && 832 !F->getAttributes().hasAttribute(llvm::AttributeSet::FunctionIndex, 833 llvm::Attribute::NoInline)) { 834 // (noinline wins over always_inline, and we can't specify both in IR) 835 B.addAttribute(llvm::Attribute::AlwaysInline); 836 } 837 838 if (D->hasAttr<ColdAttr>()) { 839 if (!D->hasAttr<OptimizeNoneAttr>()) 840 B.addAttribute(llvm::Attribute::OptimizeForSize); 841 B.addAttribute(llvm::Attribute::Cold); 842 } 843 844 if (D->hasAttr<MinSizeAttr>()) 845 B.addAttribute(llvm::Attribute::MinSize); 846 847 F->addAttributes(llvm::AttributeSet::FunctionIndex, 848 llvm::AttributeSet::get( 849 F->getContext(), llvm::AttributeSet::FunctionIndex, B)); 850 851 if (D->hasAttr<OptimizeNoneAttr>()) { 852 // OptimizeNone implies noinline; we should not be inlining such functions. 853 F->addFnAttr(llvm::Attribute::OptimizeNone); 854 F->addFnAttr(llvm::Attribute::NoInline); 855 856 // OptimizeNone wins over OptimizeForSize, MinSize, AlwaysInline. 857 F->removeFnAttr(llvm::Attribute::OptimizeForSize); 858 F->removeFnAttr(llvm::Attribute::MinSize); 859 assert(!F->hasFnAttribute(llvm::Attribute::AlwaysInline) && 860 "OptimizeNone and AlwaysInline on same function!"); 861 862 // Attribute 'inlinehint' has no effect on 'optnone' functions. 863 // Explicitly remove it from the set of function attributes. 864 F->removeFnAttr(llvm::Attribute::InlineHint); 865 } 866 867 if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D)) 868 F->setUnnamedAddr(true); 869 else if (const auto *MD = dyn_cast<CXXMethodDecl>(D)) 870 if (MD->isVirtual()) 871 F->setUnnamedAddr(true); 872 873 unsigned alignment = D->getMaxAlignment() / Context.getCharWidth(); 874 if (alignment) 875 F->setAlignment(alignment); 876 877 // Some C++ ABIs require 2-byte alignment for member functions, in order to 878 // reserve a bit for differentiating between virtual and non-virtual member 879 // functions. If the current target's C++ ABI requires this and this is a 880 // member function, set its alignment accordingly. 881 if (getTarget().getCXXABI().areMemberFunctionsAligned()) { 882 if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D)) 883 F->setAlignment(2); 884 } 885 } 886 887 void CodeGenModule::SetCommonAttributes(const Decl *D, 888 llvm::GlobalValue *GV) { 889 if (const auto *ND = dyn_cast_or_null<NamedDecl>(D)) 890 setGlobalVisibility(GV, ND); 891 else 892 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 893 894 if (D && D->hasAttr<UsedAttr>()) 895 addUsedGlobal(GV); 896 } 897 898 void CodeGenModule::setAliasAttributes(const Decl *D, 899 llvm::GlobalValue *GV) { 900 SetCommonAttributes(D, GV); 901 902 // Process the dllexport attribute based on whether the original definition 903 // (not necessarily the aliasee) was exported. 904 if (D->hasAttr<DLLExportAttr>()) 905 GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 906 } 907 908 void CodeGenModule::setNonAliasAttributes(const Decl *D, 909 llvm::GlobalObject *GO) { 910 SetCommonAttributes(D, GO); 911 912 if (D) 913 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 914 GO->setSection(SA->getName()); 915 916 getTargetCodeGenInfo().setTargetAttributes(D, GO, *this); 917 } 918 919 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D, 920 llvm::Function *F, 921 const CGFunctionInfo &FI) { 922 SetLLVMFunctionAttributes(D, FI, F); 923 SetLLVMFunctionAttributesForDefinition(D, F); 924 925 F->setLinkage(llvm::Function::InternalLinkage); 926 927 setNonAliasAttributes(D, F); 928 } 929 930 static void setLinkageAndVisibilityForGV(llvm::GlobalValue *GV, 931 const NamedDecl *ND) { 932 // Set linkage and visibility in case we never see a definition. 933 LinkageInfo LV = ND->getLinkageAndVisibility(); 934 if (LV.getLinkage() != ExternalLinkage) { 935 // Don't set internal linkage on declarations. 936 } else { 937 if (ND->hasAttr<DLLImportAttr>()) { 938 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 939 GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 940 } else if (ND->hasAttr<DLLExportAttr>()) { 941 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 942 GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 943 } else if (ND->hasAttr<WeakAttr>() || ND->isWeakImported()) { 944 // "extern_weak" is overloaded in LLVM; we probably should have 945 // separate linkage types for this. 946 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 947 } 948 949 // Set visibility on a declaration only if it's explicit. 950 if (LV.isVisibilityExplicit()) 951 GV->setVisibility(CodeGenModule::GetLLVMVisibility(LV.getVisibility())); 952 } 953 } 954 955 void CodeGenModule::CreateFunctionBitSetEntry(const FunctionDecl *FD, 956 llvm::Function *F) { 957 // Only if we are checking indirect calls. 958 if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall)) 959 return; 960 961 // Non-static class methods are handled via vtable pointer checks elsewhere. 962 if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic()) 963 return; 964 965 // Additionally, if building with cross-DSO support... 966 if (CodeGenOpts.SanitizeCfiCrossDso) { 967 // Don't emit entries for function declarations. In cross-DSO mode these are 968 // handled with better precision at run time. 969 if (!FD->hasBody()) 970 return; 971 // Skip available_externally functions. They won't be codegen'ed in the 972 // current module anyway. 973 if (getContext().GetGVALinkageForFunction(FD) == GVA_AvailableExternally) 974 return; 975 } 976 977 llvm::NamedMDNode *BitsetsMD = 978 getModule().getOrInsertNamedMetadata("llvm.bitsets"); 979 980 llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType()); 981 llvm::Metadata *BitsetOps[] = { 982 MD, llvm::ConstantAsMetadata::get(F), 983 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(Int64Ty, 0))}; 984 BitsetsMD->addOperand(llvm::MDTuple::get(getLLVMContext(), BitsetOps)); 985 986 // Emit a hash-based bit set entry for cross-DSO calls. 987 if (CodeGenOpts.SanitizeCfiCrossDso) { 988 if (auto TypeId = CreateCfiIdForTypeMetadata(MD)) { 989 llvm::Metadata *BitsetOps2[] = { 990 llvm::ConstantAsMetadata::get(TypeId), 991 llvm::ConstantAsMetadata::get(F), 992 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(Int64Ty, 0))}; 993 BitsetsMD->addOperand(llvm::MDTuple::get(getLLVMContext(), BitsetOps2)); 994 } 995 } 996 } 997 998 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F, 999 bool IsIncompleteFunction, 1000 bool IsThunk) { 1001 if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) { 1002 // If this is an intrinsic function, set the function's attributes 1003 // to the intrinsic's attributes. 1004 F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID)); 1005 return; 1006 } 1007 1008 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 1009 1010 if (!IsIncompleteFunction) 1011 SetLLVMFunctionAttributes(FD, getTypes().arrangeGlobalDeclaration(GD), F); 1012 1013 // Add the Returned attribute for "this", except for iOS 5 and earlier 1014 // where substantial code, including the libstdc++ dylib, was compiled with 1015 // GCC and does not actually return "this". 1016 if (!IsThunk && getCXXABI().HasThisReturn(GD) && 1017 !(getTarget().getTriple().isiOS() && 1018 getTarget().getTriple().isOSVersionLT(6))) { 1019 assert(!F->arg_empty() && 1020 F->arg_begin()->getType() 1021 ->canLosslesslyBitCastTo(F->getReturnType()) && 1022 "unexpected this return"); 1023 F->addAttribute(1, llvm::Attribute::Returned); 1024 } 1025 1026 // Only a few attributes are set on declarations; these may later be 1027 // overridden by a definition. 1028 1029 setLinkageAndVisibilityForGV(F, FD); 1030 1031 if (const SectionAttr *SA = FD->getAttr<SectionAttr>()) 1032 F->setSection(SA->getName()); 1033 1034 // A replaceable global allocation function does not act like a builtin by 1035 // default, only if it is invoked by a new-expression or delete-expression. 1036 if (FD->isReplaceableGlobalAllocationFunction()) 1037 F->addAttribute(llvm::AttributeSet::FunctionIndex, 1038 llvm::Attribute::NoBuiltin); 1039 1040 CreateFunctionBitSetEntry(FD, F); 1041 } 1042 1043 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) { 1044 assert(!GV->isDeclaration() && 1045 "Only globals with definition can force usage."); 1046 LLVMUsed.emplace_back(GV); 1047 } 1048 1049 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) { 1050 assert(!GV->isDeclaration() && 1051 "Only globals with definition can force usage."); 1052 LLVMCompilerUsed.emplace_back(GV); 1053 } 1054 1055 static void emitUsed(CodeGenModule &CGM, StringRef Name, 1056 std::vector<llvm::WeakVH> &List) { 1057 // Don't create llvm.used if there is no need. 1058 if (List.empty()) 1059 return; 1060 1061 // Convert List to what ConstantArray needs. 1062 SmallVector<llvm::Constant*, 8> UsedArray; 1063 UsedArray.resize(List.size()); 1064 for (unsigned i = 0, e = List.size(); i != e; ++i) { 1065 UsedArray[i] = 1066 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 1067 cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy); 1068 } 1069 1070 if (UsedArray.empty()) 1071 return; 1072 llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size()); 1073 1074 auto *GV = new llvm::GlobalVariable( 1075 CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage, 1076 llvm::ConstantArray::get(ATy, UsedArray), Name); 1077 1078 GV->setSection("llvm.metadata"); 1079 } 1080 1081 void CodeGenModule::emitLLVMUsed() { 1082 emitUsed(*this, "llvm.used", LLVMUsed); 1083 emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed); 1084 } 1085 1086 void CodeGenModule::AppendLinkerOptions(StringRef Opts) { 1087 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts); 1088 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 1089 } 1090 1091 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) { 1092 llvm::SmallString<32> Opt; 1093 getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt); 1094 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 1095 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 1096 } 1097 1098 void CodeGenModule::AddDependentLib(StringRef Lib) { 1099 llvm::SmallString<24> Opt; 1100 getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt); 1101 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 1102 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 1103 } 1104 1105 /// \brief Add link options implied by the given module, including modules 1106 /// it depends on, using a postorder walk. 1107 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod, 1108 SmallVectorImpl<llvm::Metadata *> &Metadata, 1109 llvm::SmallPtrSet<Module *, 16> &Visited) { 1110 // Import this module's parent. 1111 if (Mod->Parent && Visited.insert(Mod->Parent).second) { 1112 addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited); 1113 } 1114 1115 // Import this module's dependencies. 1116 for (unsigned I = Mod->Imports.size(); I > 0; --I) { 1117 if (Visited.insert(Mod->Imports[I - 1]).second) 1118 addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited); 1119 } 1120 1121 // Add linker options to link against the libraries/frameworks 1122 // described by this module. 1123 llvm::LLVMContext &Context = CGM.getLLVMContext(); 1124 for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) { 1125 // Link against a framework. Frameworks are currently Darwin only, so we 1126 // don't to ask TargetCodeGenInfo for the spelling of the linker option. 1127 if (Mod->LinkLibraries[I-1].IsFramework) { 1128 llvm::Metadata *Args[2] = { 1129 llvm::MDString::get(Context, "-framework"), 1130 llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library)}; 1131 1132 Metadata.push_back(llvm::MDNode::get(Context, Args)); 1133 continue; 1134 } 1135 1136 // Link against a library. 1137 llvm::SmallString<24> Opt; 1138 CGM.getTargetCodeGenInfo().getDependentLibraryOption( 1139 Mod->LinkLibraries[I-1].Library, Opt); 1140 auto *OptString = llvm::MDString::get(Context, Opt); 1141 Metadata.push_back(llvm::MDNode::get(Context, OptString)); 1142 } 1143 } 1144 1145 void CodeGenModule::EmitModuleLinkOptions() { 1146 // Collect the set of all of the modules we want to visit to emit link 1147 // options, which is essentially the imported modules and all of their 1148 // non-explicit child modules. 1149 llvm::SetVector<clang::Module *> LinkModules; 1150 llvm::SmallPtrSet<clang::Module *, 16> Visited; 1151 SmallVector<clang::Module *, 16> Stack; 1152 1153 // Seed the stack with imported modules. 1154 for (Module *M : ImportedModules) 1155 if (Visited.insert(M).second) 1156 Stack.push_back(M); 1157 1158 // Find all of the modules to import, making a little effort to prune 1159 // non-leaf modules. 1160 while (!Stack.empty()) { 1161 clang::Module *Mod = Stack.pop_back_val(); 1162 1163 bool AnyChildren = false; 1164 1165 // Visit the submodules of this module. 1166 for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(), 1167 SubEnd = Mod->submodule_end(); 1168 Sub != SubEnd; ++Sub) { 1169 // Skip explicit children; they need to be explicitly imported to be 1170 // linked against. 1171 if ((*Sub)->IsExplicit) 1172 continue; 1173 1174 if (Visited.insert(*Sub).second) { 1175 Stack.push_back(*Sub); 1176 AnyChildren = true; 1177 } 1178 } 1179 1180 // We didn't find any children, so add this module to the list of 1181 // modules to link against. 1182 if (!AnyChildren) { 1183 LinkModules.insert(Mod); 1184 } 1185 } 1186 1187 // Add link options for all of the imported modules in reverse topological 1188 // order. We don't do anything to try to order import link flags with respect 1189 // to linker options inserted by things like #pragma comment(). 1190 SmallVector<llvm::Metadata *, 16> MetadataArgs; 1191 Visited.clear(); 1192 for (Module *M : LinkModules) 1193 if (Visited.insert(M).second) 1194 addLinkOptionsPostorder(*this, M, MetadataArgs, Visited); 1195 std::reverse(MetadataArgs.begin(), MetadataArgs.end()); 1196 LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end()); 1197 1198 // Add the linker options metadata flag. 1199 getModule().addModuleFlag(llvm::Module::AppendUnique, "Linker Options", 1200 llvm::MDNode::get(getLLVMContext(), 1201 LinkerOptionsMetadata)); 1202 } 1203 1204 void CodeGenModule::EmitDeferred() { 1205 // Emit code for any potentially referenced deferred decls. Since a 1206 // previously unused static decl may become used during the generation of code 1207 // for a static function, iterate until no changes are made. 1208 1209 if (!DeferredVTables.empty()) { 1210 EmitDeferredVTables(); 1211 1212 // Emitting a v-table doesn't directly cause more v-tables to 1213 // become deferred, although it can cause functions to be 1214 // emitted that then need those v-tables. 1215 assert(DeferredVTables.empty()); 1216 } 1217 1218 // Stop if we're out of both deferred v-tables and deferred declarations. 1219 if (DeferredDeclsToEmit.empty()) 1220 return; 1221 1222 // Grab the list of decls to emit. If EmitGlobalDefinition schedules more 1223 // work, it will not interfere with this. 1224 std::vector<DeferredGlobal> CurDeclsToEmit; 1225 CurDeclsToEmit.swap(DeferredDeclsToEmit); 1226 1227 for (DeferredGlobal &G : CurDeclsToEmit) { 1228 GlobalDecl D = G.GD; 1229 llvm::GlobalValue *GV = G.GV; 1230 G.GV = nullptr; 1231 1232 // We should call GetAddrOfGlobal with IsForDefinition set to true in order 1233 // to get GlobalValue with exactly the type we need, not something that 1234 // might had been created for another decl with the same mangled name but 1235 // different type. 1236 // FIXME: Support for variables is not implemented yet. 1237 if (isa<FunctionDecl>(D.getDecl())) 1238 GV = cast<llvm::GlobalValue>(GetAddrOfGlobal(D, /*IsForDefinition=*/true)); 1239 else 1240 if (!GV) 1241 GV = GetGlobalValue(getMangledName(D)); 1242 1243 // Check to see if we've already emitted this. This is necessary 1244 // for a couple of reasons: first, decls can end up in the 1245 // deferred-decls queue multiple times, and second, decls can end 1246 // up with definitions in unusual ways (e.g. by an extern inline 1247 // function acquiring a strong function redefinition). Just 1248 // ignore these cases. 1249 if (GV && !GV->isDeclaration()) 1250 continue; 1251 1252 // Otherwise, emit the definition and move on to the next one. 1253 EmitGlobalDefinition(D, GV); 1254 1255 // If we found out that we need to emit more decls, do that recursively. 1256 // This has the advantage that the decls are emitted in a DFS and related 1257 // ones are close together, which is convenient for testing. 1258 if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) { 1259 EmitDeferred(); 1260 assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty()); 1261 } 1262 } 1263 } 1264 1265 void CodeGenModule::EmitGlobalAnnotations() { 1266 if (Annotations.empty()) 1267 return; 1268 1269 // Create a new global variable for the ConstantStruct in the Module. 1270 llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get( 1271 Annotations[0]->getType(), Annotations.size()), Annotations); 1272 auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false, 1273 llvm::GlobalValue::AppendingLinkage, 1274 Array, "llvm.global.annotations"); 1275 gv->setSection(AnnotationSection); 1276 } 1277 1278 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) { 1279 llvm::Constant *&AStr = AnnotationStrings[Str]; 1280 if (AStr) 1281 return AStr; 1282 1283 // Not found yet, create a new global. 1284 llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str); 1285 auto *gv = 1286 new llvm::GlobalVariable(getModule(), s->getType(), true, 1287 llvm::GlobalValue::PrivateLinkage, s, ".str"); 1288 gv->setSection(AnnotationSection); 1289 gv->setUnnamedAddr(true); 1290 AStr = gv; 1291 return gv; 1292 } 1293 1294 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) { 1295 SourceManager &SM = getContext().getSourceManager(); 1296 PresumedLoc PLoc = SM.getPresumedLoc(Loc); 1297 if (PLoc.isValid()) 1298 return EmitAnnotationString(PLoc.getFilename()); 1299 return EmitAnnotationString(SM.getBufferName(Loc)); 1300 } 1301 1302 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) { 1303 SourceManager &SM = getContext().getSourceManager(); 1304 PresumedLoc PLoc = SM.getPresumedLoc(L); 1305 unsigned LineNo = PLoc.isValid() ? PLoc.getLine() : 1306 SM.getExpansionLineNumber(L); 1307 return llvm::ConstantInt::get(Int32Ty, LineNo); 1308 } 1309 1310 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 1311 const AnnotateAttr *AA, 1312 SourceLocation L) { 1313 // Get the globals for file name, annotation, and the line number. 1314 llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()), 1315 *UnitGV = EmitAnnotationUnit(L), 1316 *LineNoCst = EmitAnnotationLineNo(L); 1317 1318 // Create the ConstantStruct for the global annotation. 1319 llvm::Constant *Fields[4] = { 1320 llvm::ConstantExpr::getBitCast(GV, Int8PtrTy), 1321 llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy), 1322 llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy), 1323 LineNoCst 1324 }; 1325 return llvm::ConstantStruct::getAnon(Fields); 1326 } 1327 1328 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D, 1329 llvm::GlobalValue *GV) { 1330 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 1331 // Get the struct elements for these annotations. 1332 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 1333 Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation())); 1334 } 1335 1336 bool CodeGenModule::isInSanitizerBlacklist(llvm::Function *Fn, 1337 SourceLocation Loc) const { 1338 const auto &SanitizerBL = getContext().getSanitizerBlacklist(); 1339 // Blacklist by function name. 1340 if (SanitizerBL.isBlacklistedFunction(Fn->getName())) 1341 return true; 1342 // Blacklist by location. 1343 if (Loc.isValid()) 1344 return SanitizerBL.isBlacklistedLocation(Loc); 1345 // If location is unknown, this may be a compiler-generated function. Assume 1346 // it's located in the main file. 1347 auto &SM = Context.getSourceManager(); 1348 if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) { 1349 return SanitizerBL.isBlacklistedFile(MainFile->getName()); 1350 } 1351 return false; 1352 } 1353 1354 bool CodeGenModule::isInSanitizerBlacklist(llvm::GlobalVariable *GV, 1355 SourceLocation Loc, QualType Ty, 1356 StringRef Category) const { 1357 // For now globals can be blacklisted only in ASan and KASan. 1358 if (!LangOpts.Sanitize.hasOneOf( 1359 SanitizerKind::Address | SanitizerKind::KernelAddress)) 1360 return false; 1361 const auto &SanitizerBL = getContext().getSanitizerBlacklist(); 1362 if (SanitizerBL.isBlacklistedGlobal(GV->getName(), Category)) 1363 return true; 1364 if (SanitizerBL.isBlacklistedLocation(Loc, Category)) 1365 return true; 1366 // Check global type. 1367 if (!Ty.isNull()) { 1368 // Drill down the array types: if global variable of a fixed type is 1369 // blacklisted, we also don't instrument arrays of them. 1370 while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr())) 1371 Ty = AT->getElementType(); 1372 Ty = Ty.getCanonicalType().getUnqualifiedType(); 1373 // We allow to blacklist only record types (classes, structs etc.) 1374 if (Ty->isRecordType()) { 1375 std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy()); 1376 if (SanitizerBL.isBlacklistedType(TypeStr, Category)) 1377 return true; 1378 } 1379 } 1380 return false; 1381 } 1382 1383 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) { 1384 // Never defer when EmitAllDecls is specified. 1385 if (LangOpts.EmitAllDecls) 1386 return true; 1387 1388 return getContext().DeclMustBeEmitted(Global); 1389 } 1390 1391 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) { 1392 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) 1393 if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) 1394 // Implicit template instantiations may change linkage if they are later 1395 // explicitly instantiated, so they should not be emitted eagerly. 1396 return false; 1397 // If OpenMP is enabled and threadprivates must be generated like TLS, delay 1398 // codegen for global variables, because they may be marked as threadprivate. 1399 if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS && 1400 getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global)) 1401 return false; 1402 1403 return true; 1404 } 1405 1406 ConstantAddress CodeGenModule::GetAddrOfUuidDescriptor( 1407 const CXXUuidofExpr* E) { 1408 // Sema has verified that IIDSource has a __declspec(uuid()), and that its 1409 // well-formed. 1410 StringRef Uuid = E->getUuidAsStringRef(Context); 1411 std::string Name = "_GUID_" + Uuid.lower(); 1412 std::replace(Name.begin(), Name.end(), '-', '_'); 1413 1414 // Contains a 32-bit field. 1415 CharUnits Alignment = CharUnits::fromQuantity(4); 1416 1417 // Look for an existing global. 1418 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name)) 1419 return ConstantAddress(GV, Alignment); 1420 1421 llvm::Constant *Init = EmitUuidofInitializer(Uuid); 1422 assert(Init && "failed to initialize as constant"); 1423 1424 auto *GV = new llvm::GlobalVariable( 1425 getModule(), Init->getType(), 1426 /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name); 1427 if (supportsCOMDAT()) 1428 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 1429 return ConstantAddress(GV, Alignment); 1430 } 1431 1432 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) { 1433 const AliasAttr *AA = VD->getAttr<AliasAttr>(); 1434 assert(AA && "No alias?"); 1435 1436 CharUnits Alignment = getContext().getDeclAlign(VD); 1437 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType()); 1438 1439 // See if there is already something with the target's name in the module. 1440 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee()); 1441 if (Entry) { 1442 unsigned AS = getContext().getTargetAddressSpace(VD->getType()); 1443 auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS)); 1444 return ConstantAddress(Ptr, Alignment); 1445 } 1446 1447 llvm::Constant *Aliasee; 1448 if (isa<llvm::FunctionType>(DeclTy)) 1449 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, 1450 GlobalDecl(cast<FunctionDecl>(VD)), 1451 /*ForVTable=*/false); 1452 else 1453 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 1454 llvm::PointerType::getUnqual(DeclTy), 1455 nullptr); 1456 1457 auto *F = cast<llvm::GlobalValue>(Aliasee); 1458 F->setLinkage(llvm::Function::ExternalWeakLinkage); 1459 WeakRefReferences.insert(F); 1460 1461 return ConstantAddress(Aliasee, Alignment); 1462 } 1463 1464 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 1465 const auto *Global = cast<ValueDecl>(GD.getDecl()); 1466 1467 // Weak references don't produce any output by themselves. 1468 if (Global->hasAttr<WeakRefAttr>()) 1469 return; 1470 1471 // If this is an alias definition (which otherwise looks like a declaration) 1472 // emit it now. 1473 if (Global->hasAttr<AliasAttr>()) 1474 return EmitAliasDefinition(GD); 1475 1476 // If this is CUDA, be selective about which declarations we emit. 1477 if (LangOpts.CUDA) { 1478 if (LangOpts.CUDAIsDevice) { 1479 if (!Global->hasAttr<CUDADeviceAttr>() && 1480 !Global->hasAttr<CUDAGlobalAttr>() && 1481 !Global->hasAttr<CUDAConstantAttr>() && 1482 !Global->hasAttr<CUDASharedAttr>()) 1483 return; 1484 } else { 1485 if (!Global->hasAttr<CUDAHostAttr>() && ( 1486 Global->hasAttr<CUDADeviceAttr>() || 1487 Global->hasAttr<CUDAConstantAttr>() || 1488 Global->hasAttr<CUDASharedAttr>())) 1489 return; 1490 } 1491 } 1492 1493 // Ignore declarations, they will be emitted on their first use. 1494 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) { 1495 // Forward declarations are emitted lazily on first use. 1496 if (!FD->doesThisDeclarationHaveABody()) { 1497 if (!FD->doesDeclarationForceExternallyVisibleDefinition()) 1498 return; 1499 1500 StringRef MangledName = getMangledName(GD); 1501 1502 // Compute the function info and LLVM type. 1503 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 1504 llvm::Type *Ty = getTypes().GetFunctionType(FI); 1505 1506 GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false, 1507 /*DontDefer=*/false); 1508 return; 1509 } 1510 } else { 1511 const auto *VD = cast<VarDecl>(Global); 1512 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 1513 1514 if (VD->isThisDeclarationADefinition() != VarDecl::Definition && 1515 !Context.isMSStaticDataMemberInlineDefinition(VD)) 1516 return; 1517 } 1518 1519 // Defer code generation to first use when possible, e.g. if this is an inline 1520 // function. If the global must always be emitted, do it eagerly if possible 1521 // to benefit from cache locality. 1522 if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) { 1523 // Emit the definition if it can't be deferred. 1524 EmitGlobalDefinition(GD); 1525 return; 1526 } 1527 1528 // If we're deferring emission of a C++ variable with an 1529 // initializer, remember the order in which it appeared in the file. 1530 if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) && 1531 cast<VarDecl>(Global)->hasInit()) { 1532 DelayedCXXInitPosition[Global] = CXXGlobalInits.size(); 1533 CXXGlobalInits.push_back(nullptr); 1534 } 1535 1536 StringRef MangledName = getMangledName(GD); 1537 if (llvm::GlobalValue *GV = GetGlobalValue(MangledName)) { 1538 // The value has already been used and should therefore be emitted. 1539 addDeferredDeclToEmit(GV, GD); 1540 } else if (MustBeEmitted(Global)) { 1541 // The value must be emitted, but cannot be emitted eagerly. 1542 assert(!MayBeEmittedEagerly(Global)); 1543 addDeferredDeclToEmit(/*GV=*/nullptr, GD); 1544 } else { 1545 // Otherwise, remember that we saw a deferred decl with this name. The 1546 // first use of the mangled name will cause it to move into 1547 // DeferredDeclsToEmit. 1548 DeferredDecls[MangledName] = GD; 1549 } 1550 } 1551 1552 namespace { 1553 struct FunctionIsDirectlyRecursive : 1554 public RecursiveASTVisitor<FunctionIsDirectlyRecursive> { 1555 const StringRef Name; 1556 const Builtin::Context &BI; 1557 bool Result; 1558 FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) : 1559 Name(N), BI(C), Result(false) { 1560 } 1561 typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base; 1562 1563 bool TraverseCallExpr(CallExpr *E) { 1564 const FunctionDecl *FD = E->getDirectCallee(); 1565 if (!FD) 1566 return true; 1567 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 1568 if (Attr && Name == Attr->getLabel()) { 1569 Result = true; 1570 return false; 1571 } 1572 unsigned BuiltinID = FD->getBuiltinID(); 1573 if (!BuiltinID || !BI.isLibFunction(BuiltinID)) 1574 return true; 1575 StringRef BuiltinName = BI.getName(BuiltinID); 1576 if (BuiltinName.startswith("__builtin_") && 1577 Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) { 1578 Result = true; 1579 return false; 1580 } 1581 return true; 1582 } 1583 }; 1584 1585 struct DLLImportFunctionVisitor 1586 : public RecursiveASTVisitor<DLLImportFunctionVisitor> { 1587 bool SafeToInline = true; 1588 1589 bool VisitVarDecl(VarDecl *VD) { 1590 // A thread-local variable cannot be imported. 1591 SafeToInline = !VD->getTLSKind(); 1592 return SafeToInline; 1593 } 1594 1595 // Make sure we're not referencing non-imported vars or functions. 1596 bool VisitDeclRefExpr(DeclRefExpr *E) { 1597 ValueDecl *VD = E->getDecl(); 1598 if (isa<FunctionDecl>(VD)) 1599 SafeToInline = VD->hasAttr<DLLImportAttr>(); 1600 else if (VarDecl *V = dyn_cast<VarDecl>(VD)) 1601 SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>(); 1602 return SafeToInline; 1603 } 1604 bool VisitCXXDeleteExpr(CXXDeleteExpr *E) { 1605 SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>(); 1606 return SafeToInline; 1607 } 1608 bool VisitCXXNewExpr(CXXNewExpr *E) { 1609 SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>(); 1610 return SafeToInline; 1611 } 1612 }; 1613 } 1614 1615 // isTriviallyRecursive - Check if this function calls another 1616 // decl that, because of the asm attribute or the other decl being a builtin, 1617 // ends up pointing to itself. 1618 bool 1619 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) { 1620 StringRef Name; 1621 if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) { 1622 // asm labels are a special kind of mangling we have to support. 1623 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 1624 if (!Attr) 1625 return false; 1626 Name = Attr->getLabel(); 1627 } else { 1628 Name = FD->getName(); 1629 } 1630 1631 FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo); 1632 Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD)); 1633 return Walker.Result; 1634 } 1635 1636 bool 1637 CodeGenModule::shouldEmitFunction(GlobalDecl GD) { 1638 if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage) 1639 return true; 1640 const auto *F = cast<FunctionDecl>(GD.getDecl()); 1641 if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>()) 1642 return false; 1643 1644 if (F->hasAttr<DLLImportAttr>()) { 1645 // Check whether it would be safe to inline this dllimport function. 1646 DLLImportFunctionVisitor Visitor; 1647 Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F)); 1648 if (!Visitor.SafeToInline) 1649 return false; 1650 } 1651 1652 // PR9614. Avoid cases where the source code is lying to us. An available 1653 // externally function should have an equivalent function somewhere else, 1654 // but a function that calls itself is clearly not equivalent to the real 1655 // implementation. 1656 // This happens in glibc's btowc and in some configure checks. 1657 return !isTriviallyRecursive(F); 1658 } 1659 1660 /// If the type for the method's class was generated by 1661 /// CGDebugInfo::createContextChain(), the cache contains only a 1662 /// limited DIType without any declarations. Since EmitFunctionStart() 1663 /// needs to find the canonical declaration for each method, we need 1664 /// to construct the complete type prior to emitting the method. 1665 void CodeGenModule::CompleteDIClassType(const CXXMethodDecl* D) { 1666 if (!D->isInstance()) 1667 return; 1668 1669 if (CGDebugInfo *DI = getModuleDebugInfo()) 1670 if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) { 1671 const auto *ThisPtr = cast<PointerType>(D->getThisType(getContext())); 1672 DI->getOrCreateRecordType(ThisPtr->getPointeeType(), D->getLocation()); 1673 } 1674 } 1675 1676 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) { 1677 const auto *D = cast<ValueDecl>(GD.getDecl()); 1678 1679 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(), 1680 Context.getSourceManager(), 1681 "Generating code for declaration"); 1682 1683 if (isa<FunctionDecl>(D)) { 1684 // At -O0, don't generate IR for functions with available_externally 1685 // linkage. 1686 if (!shouldEmitFunction(GD)) 1687 return; 1688 1689 if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) { 1690 CompleteDIClassType(Method); 1691 // Make sure to emit the definition(s) before we emit the thunks. 1692 // This is necessary for the generation of certain thunks. 1693 if (const auto *CD = dyn_cast<CXXConstructorDecl>(Method)) 1694 ABI->emitCXXStructor(CD, getFromCtorType(GD.getCtorType())); 1695 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(Method)) 1696 ABI->emitCXXStructor(DD, getFromDtorType(GD.getDtorType())); 1697 else 1698 EmitGlobalFunctionDefinition(GD, GV); 1699 1700 if (Method->isVirtual()) 1701 getVTables().EmitThunks(GD); 1702 1703 return; 1704 } 1705 1706 return EmitGlobalFunctionDefinition(GD, GV); 1707 } 1708 1709 if (const auto *VD = dyn_cast<VarDecl>(D)) 1710 return EmitGlobalVarDefinition(VD); 1711 1712 llvm_unreachable("Invalid argument to EmitGlobalDefinition()"); 1713 } 1714 1715 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 1716 llvm::Function *NewFn); 1717 1718 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 1719 /// module, create and return an llvm Function with the specified type. If there 1720 /// is something in the module with the specified name, return it potentially 1721 /// bitcasted to the right type. 1722 /// 1723 /// If D is non-null, it specifies a decl that correspond to this. This is used 1724 /// to set the attributes on the function when it is first created. 1725 llvm::Constant * 1726 CodeGenModule::GetOrCreateLLVMFunction(StringRef MangledName, 1727 llvm::Type *Ty, 1728 GlobalDecl GD, bool ForVTable, 1729 bool DontDefer, bool IsThunk, 1730 llvm::AttributeSet ExtraAttrs, 1731 bool IsForDefinition) { 1732 const Decl *D = GD.getDecl(); 1733 1734 // Lookup the entry, lazily creating it if necessary. 1735 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 1736 if (Entry) { 1737 if (WeakRefReferences.erase(Entry)) { 1738 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D); 1739 if (FD && !FD->hasAttr<WeakAttr>()) 1740 Entry->setLinkage(llvm::Function::ExternalLinkage); 1741 } 1742 1743 // Handle dropped DLL attributes. 1744 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) 1745 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 1746 1747 // If there are two attempts to define the same mangled name, issue an 1748 // error. 1749 if (IsForDefinition && !Entry->isDeclaration()) { 1750 GlobalDecl OtherGD; 1751 // Check that GD is not yet in ExplicitDefinitions is required to make 1752 // sure that we issue an error only once. 1753 if (lookupRepresentativeDecl(MangledName, OtherGD) && 1754 (GD.getCanonicalDecl().getDecl() != 1755 OtherGD.getCanonicalDecl().getDecl()) && 1756 DiagnosedConflictingDefinitions.insert(GD).second) { 1757 getDiags().Report(D->getLocation(), 1758 diag::err_duplicate_mangled_name); 1759 getDiags().Report(OtherGD.getDecl()->getLocation(), 1760 diag::note_previous_definition); 1761 } 1762 } 1763 1764 if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) && 1765 (Entry->getType()->getElementType() == Ty)) { 1766 return Entry; 1767 } 1768 1769 // Make sure the result is of the correct type. 1770 // (If function is requested for a definition, we always need to create a new 1771 // function, not just return a bitcast.) 1772 if (!IsForDefinition) 1773 return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo()); 1774 } 1775 1776 // This function doesn't have a complete type (for example, the return 1777 // type is an incomplete struct). Use a fake type instead, and make 1778 // sure not to try to set attributes. 1779 bool IsIncompleteFunction = false; 1780 1781 llvm::FunctionType *FTy; 1782 if (isa<llvm::FunctionType>(Ty)) { 1783 FTy = cast<llvm::FunctionType>(Ty); 1784 } else { 1785 FTy = llvm::FunctionType::get(VoidTy, false); 1786 IsIncompleteFunction = true; 1787 } 1788 1789 llvm::Function *F = 1790 llvm::Function::Create(FTy, llvm::Function::ExternalLinkage, 1791 Entry ? StringRef() : MangledName, &getModule()); 1792 1793 // If we already created a function with the same mangled name (but different 1794 // type) before, take its name and add it to the list of functions to be 1795 // replaced with F at the end of CodeGen. 1796 // 1797 // This happens if there is a prototype for a function (e.g. "int f()") and 1798 // then a definition of a different type (e.g. "int f(int x)"). 1799 if (Entry) { 1800 F->takeName(Entry); 1801 1802 // This might be an implementation of a function without a prototype, in 1803 // which case, try to do special replacement of calls which match the new 1804 // prototype. The really key thing here is that we also potentially drop 1805 // arguments from the call site so as to make a direct call, which makes the 1806 // inliner happier and suppresses a number of optimizer warnings (!) about 1807 // dropping arguments. 1808 if (!Entry->use_empty()) { 1809 ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F); 1810 Entry->removeDeadConstantUsers(); 1811 } 1812 1813 llvm::Constant *BC = llvm::ConstantExpr::getBitCast( 1814 F, Entry->getType()->getElementType()->getPointerTo()); 1815 addGlobalValReplacement(Entry, BC); 1816 } 1817 1818 assert(F->getName() == MangledName && "name was uniqued!"); 1819 if (D) 1820 SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk); 1821 if (ExtraAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex)) { 1822 llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeSet::FunctionIndex); 1823 F->addAttributes(llvm::AttributeSet::FunctionIndex, 1824 llvm::AttributeSet::get(VMContext, 1825 llvm::AttributeSet::FunctionIndex, 1826 B)); 1827 } 1828 1829 if (!DontDefer) { 1830 // All MSVC dtors other than the base dtor are linkonce_odr and delegate to 1831 // each other bottoming out with the base dtor. Therefore we emit non-base 1832 // dtors on usage, even if there is no dtor definition in the TU. 1833 if (D && isa<CXXDestructorDecl>(D) && 1834 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 1835 GD.getDtorType())) 1836 addDeferredDeclToEmit(F, GD); 1837 1838 // This is the first use or definition of a mangled name. If there is a 1839 // deferred decl with this name, remember that we need to emit it at the end 1840 // of the file. 1841 auto DDI = DeferredDecls.find(MangledName); 1842 if (DDI != DeferredDecls.end()) { 1843 // Move the potentially referenced deferred decl to the 1844 // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we 1845 // don't need it anymore). 1846 addDeferredDeclToEmit(F, DDI->second); 1847 DeferredDecls.erase(DDI); 1848 1849 // Otherwise, there are cases we have to worry about where we're 1850 // using a declaration for which we must emit a definition but where 1851 // we might not find a top-level definition: 1852 // - member functions defined inline in their classes 1853 // - friend functions defined inline in some class 1854 // - special member functions with implicit definitions 1855 // If we ever change our AST traversal to walk into class methods, 1856 // this will be unnecessary. 1857 // 1858 // We also don't emit a definition for a function if it's going to be an 1859 // entry in a vtable, unless it's already marked as used. 1860 } else if (getLangOpts().CPlusPlus && D) { 1861 // Look for a declaration that's lexically in a record. 1862 for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD; 1863 FD = FD->getPreviousDecl()) { 1864 if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) { 1865 if (FD->doesThisDeclarationHaveABody()) { 1866 addDeferredDeclToEmit(F, GD.getWithDecl(FD)); 1867 break; 1868 } 1869 } 1870 } 1871 } 1872 } 1873 1874 // Make sure the result is of the requested type. 1875 if (!IsIncompleteFunction) { 1876 assert(F->getType()->getElementType() == Ty); 1877 return F; 1878 } 1879 1880 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 1881 return llvm::ConstantExpr::getBitCast(F, PTy); 1882 } 1883 1884 /// GetAddrOfFunction - Return the address of the given function. If Ty is 1885 /// non-null, then this function will use the specified type if it has to 1886 /// create it (this occurs when we see a definition of the function). 1887 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, 1888 llvm::Type *Ty, 1889 bool ForVTable, 1890 bool DontDefer, 1891 bool IsForDefinition) { 1892 // If there was no specific requested type, just convert it now. 1893 if (!Ty) { 1894 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 1895 auto CanonTy = Context.getCanonicalType(FD->getType()); 1896 Ty = getTypes().ConvertFunctionType(CanonTy, FD); 1897 } 1898 1899 StringRef MangledName = getMangledName(GD); 1900 return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer, 1901 /*IsThunk=*/false, llvm::AttributeSet(), 1902 IsForDefinition); 1903 } 1904 1905 /// CreateRuntimeFunction - Create a new runtime function with the specified 1906 /// type and name. 1907 llvm::Constant * 1908 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, 1909 StringRef Name, 1910 llvm::AttributeSet ExtraAttrs) { 1911 llvm::Constant *C = 1912 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 1913 /*DontDefer=*/false, /*IsThunk=*/false, ExtraAttrs); 1914 if (auto *F = dyn_cast<llvm::Function>(C)) 1915 if (F->empty()) 1916 F->setCallingConv(getRuntimeCC()); 1917 return C; 1918 } 1919 1920 /// CreateBuiltinFunction - Create a new builtin function with the specified 1921 /// type and name. 1922 llvm::Constant * 1923 CodeGenModule::CreateBuiltinFunction(llvm::FunctionType *FTy, 1924 StringRef Name, 1925 llvm::AttributeSet ExtraAttrs) { 1926 llvm::Constant *C = 1927 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 1928 /*DontDefer=*/false, /*IsThunk=*/false, ExtraAttrs); 1929 if (auto *F = dyn_cast<llvm::Function>(C)) 1930 if (F->empty()) 1931 F->setCallingConv(getBuiltinCC()); 1932 return C; 1933 } 1934 1935 /// isTypeConstant - Determine whether an object of this type can be emitted 1936 /// as a constant. 1937 /// 1938 /// If ExcludeCtor is true, the duration when the object's constructor runs 1939 /// will not be considered. The caller will need to verify that the object is 1940 /// not written to during its construction. 1941 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) { 1942 if (!Ty.isConstant(Context) && !Ty->isReferenceType()) 1943 return false; 1944 1945 if (Context.getLangOpts().CPlusPlus) { 1946 if (const CXXRecordDecl *Record 1947 = Context.getBaseElementType(Ty)->getAsCXXRecordDecl()) 1948 return ExcludeCtor && !Record->hasMutableFields() && 1949 Record->hasTrivialDestructor(); 1950 } 1951 1952 return true; 1953 } 1954 1955 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 1956 /// create and return an llvm GlobalVariable with the specified type. If there 1957 /// is something in the module with the specified name, return it potentially 1958 /// bitcasted to the right type. 1959 /// 1960 /// If D is non-null, it specifies a decl that correspond to this. This is used 1961 /// to set the attributes on the global when it is first created. 1962 llvm::Constant * 1963 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, 1964 llvm::PointerType *Ty, 1965 const VarDecl *D) { 1966 // Lookup the entry, lazily creating it if necessary. 1967 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 1968 if (Entry) { 1969 if (WeakRefReferences.erase(Entry)) { 1970 if (D && !D->hasAttr<WeakAttr>()) 1971 Entry->setLinkage(llvm::Function::ExternalLinkage); 1972 } 1973 1974 // Handle dropped DLL attributes. 1975 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) 1976 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 1977 1978 if (Entry->getType() == Ty) 1979 return Entry; 1980 1981 // Make sure the result is of the correct type. 1982 if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace()) 1983 return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty); 1984 1985 return llvm::ConstantExpr::getBitCast(Entry, Ty); 1986 } 1987 1988 unsigned AddrSpace = GetGlobalVarAddressSpace(D, Ty->getAddressSpace()); 1989 auto *GV = new llvm::GlobalVariable( 1990 getModule(), Ty->getElementType(), false, 1991 llvm::GlobalValue::ExternalLinkage, nullptr, MangledName, nullptr, 1992 llvm::GlobalVariable::NotThreadLocal, AddrSpace); 1993 1994 // This is the first use or definition of a mangled name. If there is a 1995 // deferred decl with this name, remember that we need to emit it at the end 1996 // of the file. 1997 auto DDI = DeferredDecls.find(MangledName); 1998 if (DDI != DeferredDecls.end()) { 1999 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 2000 // list, and remove it from DeferredDecls (since we don't need it anymore). 2001 addDeferredDeclToEmit(GV, DDI->second); 2002 DeferredDecls.erase(DDI); 2003 } 2004 2005 // Handle things which are present even on external declarations. 2006 if (D) { 2007 // FIXME: This code is overly simple and should be merged with other global 2008 // handling. 2009 GV->setConstant(isTypeConstant(D->getType(), false)); 2010 2011 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 2012 2013 setLinkageAndVisibilityForGV(GV, D); 2014 2015 if (D->getTLSKind()) { 2016 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 2017 CXXThreadLocals.push_back(D); 2018 setTLSMode(GV, *D); 2019 } 2020 2021 // If required by the ABI, treat declarations of static data members with 2022 // inline initializers as definitions. 2023 if (getContext().isMSStaticDataMemberInlineDefinition(D)) { 2024 EmitGlobalVarDefinition(D); 2025 } 2026 2027 // Handle XCore specific ABI requirements. 2028 if (getTarget().getTriple().getArch() == llvm::Triple::xcore && 2029 D->getLanguageLinkage() == CLanguageLinkage && 2030 D->getType().isConstant(Context) && 2031 isExternallyVisible(D->getLinkageAndVisibility().getLinkage())) 2032 GV->setSection(".cp.rodata"); 2033 } 2034 2035 if (AddrSpace != Ty->getAddressSpace()) 2036 return llvm::ConstantExpr::getAddrSpaceCast(GV, Ty); 2037 2038 return GV; 2039 } 2040 2041 llvm::Constant * 2042 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD, 2043 bool IsForDefinition) { 2044 if (isa<CXXConstructorDecl>(GD.getDecl())) 2045 return getAddrOfCXXStructor(cast<CXXConstructorDecl>(GD.getDecl()), 2046 getFromCtorType(GD.getCtorType()), 2047 /*FnInfo=*/nullptr, /*FnType=*/nullptr, 2048 /*DontDefer=*/false, IsForDefinition); 2049 else if (isa<CXXDestructorDecl>(GD.getDecl())) 2050 return getAddrOfCXXStructor(cast<CXXDestructorDecl>(GD.getDecl()), 2051 getFromDtorType(GD.getDtorType()), 2052 /*FnInfo=*/nullptr, /*FnType=*/nullptr, 2053 /*DontDefer=*/false, IsForDefinition); 2054 else if (isa<CXXMethodDecl>(GD.getDecl())) { 2055 auto FInfo = &getTypes().arrangeCXXMethodDeclaration( 2056 cast<CXXMethodDecl>(GD.getDecl())); 2057 auto Ty = getTypes().GetFunctionType(*FInfo); 2058 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 2059 IsForDefinition); 2060 } else if (isa<FunctionDecl>(GD.getDecl())) { 2061 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 2062 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 2063 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 2064 IsForDefinition); 2065 } else 2066 return GetAddrOfGlobalVar(cast<VarDecl>(GD.getDecl())); 2067 } 2068 2069 llvm::GlobalVariable * 2070 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name, 2071 llvm::Type *Ty, 2072 llvm::GlobalValue::LinkageTypes Linkage) { 2073 llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name); 2074 llvm::GlobalVariable *OldGV = nullptr; 2075 2076 if (GV) { 2077 // Check if the variable has the right type. 2078 if (GV->getType()->getElementType() == Ty) 2079 return GV; 2080 2081 // Because C++ name mangling, the only way we can end up with an already 2082 // existing global with the same name is if it has been declared extern "C". 2083 assert(GV->isDeclaration() && "Declaration has wrong type!"); 2084 OldGV = GV; 2085 } 2086 2087 // Create a new variable. 2088 GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true, 2089 Linkage, nullptr, Name); 2090 2091 if (OldGV) { 2092 // Replace occurrences of the old variable if needed. 2093 GV->takeName(OldGV); 2094 2095 if (!OldGV->use_empty()) { 2096 llvm::Constant *NewPtrForOldDecl = 2097 llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); 2098 OldGV->replaceAllUsesWith(NewPtrForOldDecl); 2099 } 2100 2101 OldGV->eraseFromParent(); 2102 } 2103 2104 if (supportsCOMDAT() && GV->isWeakForLinker() && 2105 !GV->hasAvailableExternallyLinkage()) 2106 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 2107 2108 return GV; 2109 } 2110 2111 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 2112 /// given global variable. If Ty is non-null and if the global doesn't exist, 2113 /// then it will be created with the specified type instead of whatever the 2114 /// normal requested type would be. 2115 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 2116 llvm::Type *Ty) { 2117 assert(D->hasGlobalStorage() && "Not a global variable"); 2118 QualType ASTTy = D->getType(); 2119 if (!Ty) 2120 Ty = getTypes().ConvertTypeForMem(ASTTy); 2121 2122 llvm::PointerType *PTy = 2123 llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy)); 2124 2125 StringRef MangledName = getMangledName(D); 2126 return GetOrCreateLLVMGlobal(MangledName, PTy, D); 2127 } 2128 2129 /// CreateRuntimeVariable - Create a new runtime global variable with the 2130 /// specified type and name. 2131 llvm::Constant * 2132 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty, 2133 StringRef Name) { 2134 return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), nullptr); 2135 } 2136 2137 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 2138 assert(!D->getInit() && "Cannot emit definite definitions here!"); 2139 2140 if (!MustBeEmitted(D)) { 2141 // If we have not seen a reference to this variable yet, place it 2142 // into the deferred declarations table to be emitted if needed 2143 // later. 2144 StringRef MangledName = getMangledName(D); 2145 if (!GetGlobalValue(MangledName)) { 2146 DeferredDecls[MangledName] = D; 2147 return; 2148 } 2149 } 2150 2151 // The tentative definition is the only definition. 2152 EmitGlobalVarDefinition(D); 2153 } 2154 2155 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const { 2156 return Context.toCharUnitsFromBits( 2157 getDataLayout().getTypeStoreSizeInBits(Ty)); 2158 } 2159 2160 unsigned CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D, 2161 unsigned AddrSpace) { 2162 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) { 2163 if (D->hasAttr<CUDAConstantAttr>()) 2164 AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_constant); 2165 else if (D->hasAttr<CUDASharedAttr>()) 2166 AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_shared); 2167 else 2168 AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_device); 2169 } 2170 2171 return AddrSpace; 2172 } 2173 2174 template<typename SomeDecl> 2175 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D, 2176 llvm::GlobalValue *GV) { 2177 if (!getLangOpts().CPlusPlus) 2178 return; 2179 2180 // Must have 'used' attribute, or else inline assembly can't rely on 2181 // the name existing. 2182 if (!D->template hasAttr<UsedAttr>()) 2183 return; 2184 2185 // Must have internal linkage and an ordinary name. 2186 if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage) 2187 return; 2188 2189 // Must be in an extern "C" context. Entities declared directly within 2190 // a record are not extern "C" even if the record is in such a context. 2191 const SomeDecl *First = D->getFirstDecl(); 2192 if (First->getDeclContext()->isRecord() || !First->isInExternCContext()) 2193 return; 2194 2195 // OK, this is an internal linkage entity inside an extern "C" linkage 2196 // specification. Make a note of that so we can give it the "expected" 2197 // mangled name if nothing else is using that name. 2198 std::pair<StaticExternCMap::iterator, bool> R = 2199 StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV)); 2200 2201 // If we have multiple internal linkage entities with the same name 2202 // in extern "C" regions, none of them gets that name. 2203 if (!R.second) 2204 R.first->second = nullptr; 2205 } 2206 2207 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) { 2208 if (!CGM.supportsCOMDAT()) 2209 return false; 2210 2211 if (D.hasAttr<SelectAnyAttr>()) 2212 return true; 2213 2214 GVALinkage Linkage; 2215 if (auto *VD = dyn_cast<VarDecl>(&D)) 2216 Linkage = CGM.getContext().GetGVALinkageForVariable(VD); 2217 else 2218 Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D)); 2219 2220 switch (Linkage) { 2221 case GVA_Internal: 2222 case GVA_AvailableExternally: 2223 case GVA_StrongExternal: 2224 return false; 2225 case GVA_DiscardableODR: 2226 case GVA_StrongODR: 2227 return true; 2228 } 2229 llvm_unreachable("No such linkage"); 2230 } 2231 2232 void CodeGenModule::maybeSetTrivialComdat(const Decl &D, 2233 llvm::GlobalObject &GO) { 2234 if (!shouldBeInCOMDAT(*this, D)) 2235 return; 2236 GO.setComdat(TheModule.getOrInsertComdat(GO.getName())); 2237 } 2238 2239 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) { 2240 llvm::Constant *Init = nullptr; 2241 QualType ASTTy = D->getType(); 2242 CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); 2243 bool NeedsGlobalCtor = false; 2244 bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor(); 2245 2246 const VarDecl *InitDecl; 2247 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 2248 2249 // CUDA E.2.4.1 "__shared__ variables cannot have an initialization as part 2250 // of their declaration." 2251 if (getLangOpts().CPlusPlus && getLangOpts().CUDAIsDevice 2252 && D->hasAttr<CUDASharedAttr>()) { 2253 if (InitExpr) { 2254 const auto *C = dyn_cast<CXXConstructExpr>(InitExpr); 2255 if (C == nullptr || !C->getConstructor()->hasTrivialBody()) 2256 Error(D->getLocation(), 2257 "__shared__ variable cannot have an initialization."); 2258 } 2259 Init = llvm::UndefValue::get(getTypes().ConvertType(ASTTy)); 2260 } else if (!InitExpr) { 2261 // This is a tentative definition; tentative definitions are 2262 // implicitly initialized with { 0 }. 2263 // 2264 // Note that tentative definitions are only emitted at the end of 2265 // a translation unit, so they should never have incomplete 2266 // type. In addition, EmitTentativeDefinition makes sure that we 2267 // never attempt to emit a tentative definition if a real one 2268 // exists. A use may still exists, however, so we still may need 2269 // to do a RAUW. 2270 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 2271 Init = EmitNullConstant(D->getType()); 2272 } else { 2273 initializedGlobalDecl = GlobalDecl(D); 2274 Init = EmitConstantInit(*InitDecl); 2275 2276 if (!Init) { 2277 QualType T = InitExpr->getType(); 2278 if (D->getType()->isReferenceType()) 2279 T = D->getType(); 2280 2281 if (getLangOpts().CPlusPlus) { 2282 Init = EmitNullConstant(T); 2283 NeedsGlobalCtor = true; 2284 } else { 2285 ErrorUnsupported(D, "static initializer"); 2286 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 2287 } 2288 } else { 2289 // We don't need an initializer, so remove the entry for the delayed 2290 // initializer position (just in case this entry was delayed) if we 2291 // also don't need to register a destructor. 2292 if (getLangOpts().CPlusPlus && !NeedsGlobalDtor) 2293 DelayedCXXInitPosition.erase(D); 2294 } 2295 } 2296 2297 llvm::Type* InitType = Init->getType(); 2298 llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType); 2299 2300 // Strip off a bitcast if we got one back. 2301 if (auto *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 2302 assert(CE->getOpcode() == llvm::Instruction::BitCast || 2303 CE->getOpcode() == llvm::Instruction::AddrSpaceCast || 2304 // All zero index gep. 2305 CE->getOpcode() == llvm::Instruction::GetElementPtr); 2306 Entry = CE->getOperand(0); 2307 } 2308 2309 // Entry is now either a Function or GlobalVariable. 2310 auto *GV = dyn_cast<llvm::GlobalVariable>(Entry); 2311 2312 // We have a definition after a declaration with the wrong type. 2313 // We must make a new GlobalVariable* and update everything that used OldGV 2314 // (a declaration or tentative definition) with the new GlobalVariable* 2315 // (which will be a definition). 2316 // 2317 // This happens if there is a prototype for a global (e.g. 2318 // "extern int x[];") and then a definition of a different type (e.g. 2319 // "int x[10];"). This also happens when an initializer has a different type 2320 // from the type of the global (this happens with unions). 2321 if (!GV || 2322 GV->getType()->getElementType() != InitType || 2323 GV->getType()->getAddressSpace() != 2324 GetGlobalVarAddressSpace(D, getContext().getTargetAddressSpace(ASTTy))) { 2325 2326 // Move the old entry aside so that we'll create a new one. 2327 Entry->setName(StringRef()); 2328 2329 // Make a new global with the correct type, this is now guaranteed to work. 2330 GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType)); 2331 2332 // Replace all uses of the old global with the new global 2333 llvm::Constant *NewPtrForOldDecl = 2334 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 2335 Entry->replaceAllUsesWith(NewPtrForOldDecl); 2336 2337 // Erase the old global, since it is no longer used. 2338 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 2339 } 2340 2341 MaybeHandleStaticInExternC(D, GV); 2342 2343 if (D->hasAttr<AnnotateAttr>()) 2344 AddGlobalAnnotations(D, GV); 2345 2346 // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on 2347 // the device. [...]" 2348 // CUDA B.2.2 "The __constant__ qualifier, optionally used together with 2349 // __device__, declares a variable that: [...] 2350 // Is accessible from all the threads within the grid and from the host 2351 // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize() 2352 // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())." 2353 if (GV && LangOpts.CUDA && LangOpts.CUDAIsDevice && 2354 (D->hasAttr<CUDAConstantAttr>() || D->hasAttr<CUDADeviceAttr>())) { 2355 GV->setExternallyInitialized(true); 2356 } 2357 GV->setInitializer(Init); 2358 2359 // If it is safe to mark the global 'constant', do so now. 2360 GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor && 2361 isTypeConstant(D->getType(), true)); 2362 2363 // If it is in a read-only section, mark it 'constant'. 2364 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 2365 const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()]; 2366 if ((SI.SectionFlags & ASTContext::PSF_Write) == 0) 2367 GV->setConstant(true); 2368 } 2369 2370 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 2371 2372 // Set the llvm linkage type as appropriate. 2373 llvm::GlobalValue::LinkageTypes Linkage = 2374 getLLVMLinkageVarDefinition(D, GV->isConstant()); 2375 2376 // On Darwin, if the normal linkage of a C++ thread_local variable is 2377 // LinkOnce or Weak, we keep the normal linkage to prevent multiple 2378 // copies within a linkage unit; otherwise, the backing variable has 2379 // internal linkage and all accesses should just be calls to the 2380 // Itanium-specified entry point, which has the normal linkage of the 2381 // variable. This is to preserve the ability to change the implementation 2382 // behind the scenes. 2383 if (!D->isStaticLocal() && D->getTLSKind() == VarDecl::TLS_Dynamic && 2384 Context.getTargetInfo().getTriple().isOSDarwin() && 2385 !llvm::GlobalVariable::isLinkOnceLinkage(Linkage) && 2386 !llvm::GlobalVariable::isWeakLinkage(Linkage)) 2387 Linkage = llvm::GlobalValue::InternalLinkage; 2388 2389 GV->setLinkage(Linkage); 2390 if (D->hasAttr<DLLImportAttr>()) 2391 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 2392 else if (D->hasAttr<DLLExportAttr>()) 2393 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 2394 else 2395 GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 2396 2397 if (Linkage == llvm::GlobalVariable::CommonLinkage) 2398 // common vars aren't constant even if declared const. 2399 GV->setConstant(false); 2400 2401 setNonAliasAttributes(D, GV); 2402 2403 if (D->getTLSKind() && !GV->isThreadLocal()) { 2404 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 2405 CXXThreadLocals.push_back(D); 2406 setTLSMode(GV, *D); 2407 } 2408 2409 maybeSetTrivialComdat(*D, *GV); 2410 2411 // Emit the initializer function if necessary. 2412 if (NeedsGlobalCtor || NeedsGlobalDtor) 2413 EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor); 2414 2415 SanitizerMD->reportGlobalToASan(GV, *D, NeedsGlobalCtor); 2416 2417 // Emit global variable debug information. 2418 if (CGDebugInfo *DI = getModuleDebugInfo()) 2419 if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) 2420 DI->EmitGlobalVariable(GV, D); 2421 } 2422 2423 static bool isVarDeclStrongDefinition(const ASTContext &Context, 2424 CodeGenModule &CGM, const VarDecl *D, 2425 bool NoCommon) { 2426 // Don't give variables common linkage if -fno-common was specified unless it 2427 // was overridden by a NoCommon attribute. 2428 if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>()) 2429 return true; 2430 2431 // C11 6.9.2/2: 2432 // A declaration of an identifier for an object that has file scope without 2433 // an initializer, and without a storage-class specifier or with the 2434 // storage-class specifier static, constitutes a tentative definition. 2435 if (D->getInit() || D->hasExternalStorage()) 2436 return true; 2437 2438 // A variable cannot be both common and exist in a section. 2439 if (D->hasAttr<SectionAttr>()) 2440 return true; 2441 2442 // Thread local vars aren't considered common linkage. 2443 if (D->getTLSKind()) 2444 return true; 2445 2446 // Tentative definitions marked with WeakImportAttr are true definitions. 2447 if (D->hasAttr<WeakImportAttr>()) 2448 return true; 2449 2450 // A variable cannot be both common and exist in a comdat. 2451 if (shouldBeInCOMDAT(CGM, *D)) 2452 return true; 2453 2454 // Declarations with a required alignment do not have common linakge in MSVC 2455 // mode. 2456 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) { 2457 if (D->hasAttr<AlignedAttr>()) 2458 return true; 2459 QualType VarType = D->getType(); 2460 if (Context.isAlignmentRequired(VarType)) 2461 return true; 2462 2463 if (const auto *RT = VarType->getAs<RecordType>()) { 2464 const RecordDecl *RD = RT->getDecl(); 2465 for (const FieldDecl *FD : RD->fields()) { 2466 if (FD->isBitField()) 2467 continue; 2468 if (FD->hasAttr<AlignedAttr>()) 2469 return true; 2470 if (Context.isAlignmentRequired(FD->getType())) 2471 return true; 2472 } 2473 } 2474 } 2475 2476 return false; 2477 } 2478 2479 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator( 2480 const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) { 2481 if (Linkage == GVA_Internal) 2482 return llvm::Function::InternalLinkage; 2483 2484 if (D->hasAttr<WeakAttr>()) { 2485 if (IsConstantVariable) 2486 return llvm::GlobalVariable::WeakODRLinkage; 2487 else 2488 return llvm::GlobalVariable::WeakAnyLinkage; 2489 } 2490 2491 // We are guaranteed to have a strong definition somewhere else, 2492 // so we can use available_externally linkage. 2493 if (Linkage == GVA_AvailableExternally) 2494 return llvm::Function::AvailableExternallyLinkage; 2495 2496 // Note that Apple's kernel linker doesn't support symbol 2497 // coalescing, so we need to avoid linkonce and weak linkages there. 2498 // Normally, this means we just map to internal, but for explicit 2499 // instantiations we'll map to external. 2500 2501 // In C++, the compiler has to emit a definition in every translation unit 2502 // that references the function. We should use linkonce_odr because 2503 // a) if all references in this translation unit are optimized away, we 2504 // don't need to codegen it. b) if the function persists, it needs to be 2505 // merged with other definitions. c) C++ has the ODR, so we know the 2506 // definition is dependable. 2507 if (Linkage == GVA_DiscardableODR) 2508 return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage 2509 : llvm::Function::InternalLinkage; 2510 2511 // An explicit instantiation of a template has weak linkage, since 2512 // explicit instantiations can occur in multiple translation units 2513 // and must all be equivalent. However, we are not allowed to 2514 // throw away these explicit instantiations. 2515 if (Linkage == GVA_StrongODR) 2516 return !Context.getLangOpts().AppleKext ? llvm::Function::WeakODRLinkage 2517 : llvm::Function::ExternalLinkage; 2518 2519 // C++ doesn't have tentative definitions and thus cannot have common 2520 // linkage. 2521 if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) && 2522 !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D), 2523 CodeGenOpts.NoCommon)) 2524 return llvm::GlobalVariable::CommonLinkage; 2525 2526 // selectany symbols are externally visible, so use weak instead of 2527 // linkonce. MSVC optimizes away references to const selectany globals, so 2528 // all definitions should be the same and ODR linkage should be used. 2529 // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx 2530 if (D->hasAttr<SelectAnyAttr>()) 2531 return llvm::GlobalVariable::WeakODRLinkage; 2532 2533 // Otherwise, we have strong external linkage. 2534 assert(Linkage == GVA_StrongExternal); 2535 return llvm::GlobalVariable::ExternalLinkage; 2536 } 2537 2538 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition( 2539 const VarDecl *VD, bool IsConstant) { 2540 GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD); 2541 return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant); 2542 } 2543 2544 /// Replace the uses of a function that was declared with a non-proto type. 2545 /// We want to silently drop extra arguments from call sites 2546 static void replaceUsesOfNonProtoConstant(llvm::Constant *old, 2547 llvm::Function *newFn) { 2548 // Fast path. 2549 if (old->use_empty()) return; 2550 2551 llvm::Type *newRetTy = newFn->getReturnType(); 2552 SmallVector<llvm::Value*, 4> newArgs; 2553 SmallVector<llvm::OperandBundleDef, 1> newBundles; 2554 2555 for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end(); 2556 ui != ue; ) { 2557 llvm::Value::use_iterator use = ui++; // Increment before the use is erased. 2558 llvm::User *user = use->getUser(); 2559 2560 // Recognize and replace uses of bitcasts. Most calls to 2561 // unprototyped functions will use bitcasts. 2562 if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) { 2563 if (bitcast->getOpcode() == llvm::Instruction::BitCast) 2564 replaceUsesOfNonProtoConstant(bitcast, newFn); 2565 continue; 2566 } 2567 2568 // Recognize calls to the function. 2569 llvm::CallSite callSite(user); 2570 if (!callSite) continue; 2571 if (!callSite.isCallee(&*use)) continue; 2572 2573 // If the return types don't match exactly, then we can't 2574 // transform this call unless it's dead. 2575 if (callSite->getType() != newRetTy && !callSite->use_empty()) 2576 continue; 2577 2578 // Get the call site's attribute list. 2579 SmallVector<llvm::AttributeSet, 8> newAttrs; 2580 llvm::AttributeSet oldAttrs = callSite.getAttributes(); 2581 2582 // Collect any return attributes from the call. 2583 if (oldAttrs.hasAttributes(llvm::AttributeSet::ReturnIndex)) 2584 newAttrs.push_back( 2585 llvm::AttributeSet::get(newFn->getContext(), 2586 oldAttrs.getRetAttributes())); 2587 2588 // If the function was passed too few arguments, don't transform. 2589 unsigned newNumArgs = newFn->arg_size(); 2590 if (callSite.arg_size() < newNumArgs) continue; 2591 2592 // If extra arguments were passed, we silently drop them. 2593 // If any of the types mismatch, we don't transform. 2594 unsigned argNo = 0; 2595 bool dontTransform = false; 2596 for (llvm::Function::arg_iterator ai = newFn->arg_begin(), 2597 ae = newFn->arg_end(); ai != ae; ++ai, ++argNo) { 2598 if (callSite.getArgument(argNo)->getType() != ai->getType()) { 2599 dontTransform = true; 2600 break; 2601 } 2602 2603 // Add any parameter attributes. 2604 if (oldAttrs.hasAttributes(argNo + 1)) 2605 newAttrs. 2606 push_back(llvm:: 2607 AttributeSet::get(newFn->getContext(), 2608 oldAttrs.getParamAttributes(argNo + 1))); 2609 } 2610 if (dontTransform) 2611 continue; 2612 2613 if (oldAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex)) 2614 newAttrs.push_back(llvm::AttributeSet::get(newFn->getContext(), 2615 oldAttrs.getFnAttributes())); 2616 2617 // Okay, we can transform this. Create the new call instruction and copy 2618 // over the required information. 2619 newArgs.append(callSite.arg_begin(), callSite.arg_begin() + argNo); 2620 2621 // Copy over any operand bundles. 2622 callSite.getOperandBundlesAsDefs(newBundles); 2623 2624 llvm::CallSite newCall; 2625 if (callSite.isCall()) { 2626 newCall = llvm::CallInst::Create(newFn, newArgs, newBundles, "", 2627 callSite.getInstruction()); 2628 } else { 2629 auto *oldInvoke = cast<llvm::InvokeInst>(callSite.getInstruction()); 2630 newCall = llvm::InvokeInst::Create(newFn, 2631 oldInvoke->getNormalDest(), 2632 oldInvoke->getUnwindDest(), 2633 newArgs, newBundles, "", 2634 callSite.getInstruction()); 2635 } 2636 newArgs.clear(); // for the next iteration 2637 2638 if (!newCall->getType()->isVoidTy()) 2639 newCall->takeName(callSite.getInstruction()); 2640 newCall.setAttributes( 2641 llvm::AttributeSet::get(newFn->getContext(), newAttrs)); 2642 newCall.setCallingConv(callSite.getCallingConv()); 2643 2644 // Finally, remove the old call, replacing any uses with the new one. 2645 if (!callSite->use_empty()) 2646 callSite->replaceAllUsesWith(newCall.getInstruction()); 2647 2648 // Copy debug location attached to CI. 2649 if (callSite->getDebugLoc()) 2650 newCall->setDebugLoc(callSite->getDebugLoc()); 2651 2652 callSite->eraseFromParent(); 2653 } 2654 } 2655 2656 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 2657 /// implement a function with no prototype, e.g. "int foo() {}". If there are 2658 /// existing call uses of the old function in the module, this adjusts them to 2659 /// call the new function directly. 2660 /// 2661 /// This is not just a cleanup: the always_inline pass requires direct calls to 2662 /// functions to be able to inline them. If there is a bitcast in the way, it 2663 /// won't inline them. Instcombine normally deletes these calls, but it isn't 2664 /// run at -O0. 2665 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 2666 llvm::Function *NewFn) { 2667 // If we're redefining a global as a function, don't transform it. 2668 if (!isa<llvm::Function>(Old)) return; 2669 2670 replaceUsesOfNonProtoConstant(Old, NewFn); 2671 } 2672 2673 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) { 2674 TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind(); 2675 // If we have a definition, this might be a deferred decl. If the 2676 // instantiation is explicit, make sure we emit it at the end. 2677 if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition) 2678 GetAddrOfGlobalVar(VD); 2679 2680 EmitTopLevelDecl(VD); 2681 } 2682 2683 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD, 2684 llvm::GlobalValue *GV) { 2685 const auto *D = cast<FunctionDecl>(GD.getDecl()); 2686 2687 // Compute the function info and LLVM type. 2688 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 2689 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 2690 2691 // Get or create the prototype for the function. 2692 if (!GV || (GV->getType()->getElementType() != Ty)) 2693 GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, 2694 /*DontDefer=*/true, 2695 /*IsForDefinition=*/true)); 2696 2697 // Already emitted. 2698 if (!GV->isDeclaration()) 2699 return; 2700 2701 // We need to set linkage and visibility on the function before 2702 // generating code for it because various parts of IR generation 2703 // want to propagate this information down (e.g. to local static 2704 // declarations). 2705 auto *Fn = cast<llvm::Function>(GV); 2706 setFunctionLinkage(GD, Fn); 2707 setFunctionDLLStorageClass(GD, Fn); 2708 2709 // FIXME: this is redundant with part of setFunctionDefinitionAttributes 2710 setGlobalVisibility(Fn, D); 2711 2712 MaybeHandleStaticInExternC(D, Fn); 2713 2714 maybeSetTrivialComdat(*D, *Fn); 2715 2716 CodeGenFunction(*this).GenerateCode(D, Fn, FI); 2717 2718 setFunctionDefinitionAttributes(D, Fn); 2719 SetLLVMFunctionAttributesForDefinition(D, Fn); 2720 2721 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 2722 AddGlobalCtor(Fn, CA->getPriority()); 2723 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 2724 AddGlobalDtor(Fn, DA->getPriority()); 2725 if (D->hasAttr<AnnotateAttr>()) 2726 AddGlobalAnnotations(D, Fn); 2727 } 2728 2729 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) { 2730 const auto *D = cast<ValueDecl>(GD.getDecl()); 2731 const AliasAttr *AA = D->getAttr<AliasAttr>(); 2732 assert(AA && "Not an alias?"); 2733 2734 StringRef MangledName = getMangledName(GD); 2735 2736 if (AA->getAliasee() == MangledName) { 2737 Diags.Report(AA->getLocation(), diag::err_cyclic_alias); 2738 return; 2739 } 2740 2741 // If there is a definition in the module, then it wins over the alias. 2742 // This is dubious, but allow it to be safe. Just ignore the alias. 2743 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 2744 if (Entry && !Entry->isDeclaration()) 2745 return; 2746 2747 Aliases.push_back(GD); 2748 2749 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 2750 2751 // Create a reference to the named value. This ensures that it is emitted 2752 // if a deferred decl. 2753 llvm::Constant *Aliasee; 2754 if (isa<llvm::FunctionType>(DeclTy)) 2755 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD, 2756 /*ForVTable=*/false); 2757 else 2758 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 2759 llvm::PointerType::getUnqual(DeclTy), 2760 /*D=*/nullptr); 2761 2762 // Create the new alias itself, but don't set a name yet. 2763 auto *GA = llvm::GlobalAlias::create( 2764 DeclTy, 0, llvm::Function::ExternalLinkage, "", Aliasee, &getModule()); 2765 2766 if (Entry) { 2767 if (GA->getAliasee() == Entry) { 2768 Diags.Report(AA->getLocation(), diag::err_cyclic_alias); 2769 return; 2770 } 2771 2772 assert(Entry->isDeclaration()); 2773 2774 // If there is a declaration in the module, then we had an extern followed 2775 // by the alias, as in: 2776 // extern int test6(); 2777 // ... 2778 // int test6() __attribute__((alias("test7"))); 2779 // 2780 // Remove it and replace uses of it with the alias. 2781 GA->takeName(Entry); 2782 2783 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 2784 Entry->getType())); 2785 Entry->eraseFromParent(); 2786 } else { 2787 GA->setName(MangledName); 2788 } 2789 2790 // Set attributes which are particular to an alias; this is a 2791 // specialization of the attributes which may be set on a global 2792 // variable/function. 2793 if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() || 2794 D->isWeakImported()) { 2795 GA->setLinkage(llvm::Function::WeakAnyLinkage); 2796 } 2797 2798 if (const auto *VD = dyn_cast<VarDecl>(D)) 2799 if (VD->getTLSKind()) 2800 setTLSMode(GA, *VD); 2801 2802 setAliasAttributes(D, GA); 2803 } 2804 2805 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID, 2806 ArrayRef<llvm::Type*> Tys) { 2807 return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID, 2808 Tys); 2809 } 2810 2811 static llvm::StringMapEntry<llvm::GlobalVariable *> & 2812 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map, 2813 const StringLiteral *Literal, bool TargetIsLSB, 2814 bool &IsUTF16, unsigned &StringLength) { 2815 StringRef String = Literal->getString(); 2816 unsigned NumBytes = String.size(); 2817 2818 // Check for simple case. 2819 if (!Literal->containsNonAsciiOrNull()) { 2820 StringLength = NumBytes; 2821 return *Map.insert(std::make_pair(String, nullptr)).first; 2822 } 2823 2824 // Otherwise, convert the UTF8 literals into a string of shorts. 2825 IsUTF16 = true; 2826 2827 SmallVector<UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls. 2828 const UTF8 *FromPtr = (const UTF8 *)String.data(); 2829 UTF16 *ToPtr = &ToBuf[0]; 2830 2831 (void)ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, 2832 &ToPtr, ToPtr + NumBytes, 2833 strictConversion); 2834 2835 // ConvertUTF8toUTF16 returns the length in ToPtr. 2836 StringLength = ToPtr - &ToBuf[0]; 2837 2838 // Add an explicit null. 2839 *ToPtr = 0; 2840 return *Map.insert(std::make_pair( 2841 StringRef(reinterpret_cast<const char *>(ToBuf.data()), 2842 (StringLength + 1) * 2), 2843 nullptr)).first; 2844 } 2845 2846 static llvm::StringMapEntry<llvm::GlobalVariable *> & 2847 GetConstantStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map, 2848 const StringLiteral *Literal, unsigned &StringLength) { 2849 StringRef String = Literal->getString(); 2850 StringLength = String.size(); 2851 return *Map.insert(std::make_pair(String, nullptr)).first; 2852 } 2853 2854 ConstantAddress 2855 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 2856 unsigned StringLength = 0; 2857 bool isUTF16 = false; 2858 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry = 2859 GetConstantCFStringEntry(CFConstantStringMap, Literal, 2860 getDataLayout().isLittleEndian(), isUTF16, 2861 StringLength); 2862 2863 if (auto *C = Entry.second) 2864 return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment())); 2865 2866 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 2867 llvm::Constant *Zeros[] = { Zero, Zero }; 2868 llvm::Value *V; 2869 2870 // If we don't already have it, get __CFConstantStringClassReference. 2871 if (!CFConstantStringClassRef) { 2872 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 2873 Ty = llvm::ArrayType::get(Ty, 0); 2874 llvm::Constant *GV = CreateRuntimeVariable(Ty, 2875 "__CFConstantStringClassReference"); 2876 // Decay array -> ptr 2877 V = llvm::ConstantExpr::getGetElementPtr(Ty, GV, Zeros); 2878 CFConstantStringClassRef = V; 2879 } 2880 else 2881 V = CFConstantStringClassRef; 2882 2883 QualType CFTy = getContext().getCFConstantStringType(); 2884 2885 auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 2886 2887 llvm::Constant *Fields[4]; 2888 2889 // Class pointer. 2890 Fields[0] = cast<llvm::ConstantExpr>(V); 2891 2892 // Flags. 2893 llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 2894 Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) : 2895 llvm::ConstantInt::get(Ty, 0x07C8); 2896 2897 // String pointer. 2898 llvm::Constant *C = nullptr; 2899 if (isUTF16) { 2900 auto Arr = llvm::makeArrayRef( 2901 reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())), 2902 Entry.first().size() / 2); 2903 C = llvm::ConstantDataArray::get(VMContext, Arr); 2904 } else { 2905 C = llvm::ConstantDataArray::getString(VMContext, Entry.first()); 2906 } 2907 2908 // Note: -fwritable-strings doesn't make the backing store strings of 2909 // CFStrings writable. (See <rdar://problem/10657500>) 2910 auto *GV = 2911 new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true, 2912 llvm::GlobalValue::PrivateLinkage, C, ".str"); 2913 GV->setUnnamedAddr(true); 2914 // Don't enforce the target's minimum global alignment, since the only use 2915 // of the string is via this class initializer. 2916 // FIXME: We set the section explicitly to avoid a bug in ld64 224.1. Without 2917 // it LLVM can merge the string with a non unnamed_addr one during LTO. Doing 2918 // that changes the section it ends in, which surprises ld64. 2919 if (isUTF16) { 2920 CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy); 2921 GV->setAlignment(Align.getQuantity()); 2922 GV->setSection("__TEXT,__ustring"); 2923 } else { 2924 CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy); 2925 GV->setAlignment(Align.getQuantity()); 2926 GV->setSection("__TEXT,__cstring,cstring_literals"); 2927 } 2928 2929 // String. 2930 Fields[2] = 2931 llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros); 2932 2933 if (isUTF16) 2934 // Cast the UTF16 string to the correct type. 2935 Fields[2] = llvm::ConstantExpr::getBitCast(Fields[2], Int8PtrTy); 2936 2937 // String length. 2938 Ty = getTypes().ConvertType(getContext().LongTy); 2939 Fields[3] = llvm::ConstantInt::get(Ty, StringLength); 2940 2941 CharUnits Alignment = getPointerAlign(); 2942 2943 // The struct. 2944 C = llvm::ConstantStruct::get(STy, Fields); 2945 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 2946 llvm::GlobalVariable::PrivateLinkage, C, 2947 "_unnamed_cfstring_"); 2948 GV->setSection("__DATA,__cfstring"); 2949 GV->setAlignment(Alignment.getQuantity()); 2950 Entry.second = GV; 2951 2952 return ConstantAddress(GV, Alignment); 2953 } 2954 2955 ConstantAddress 2956 CodeGenModule::GetAddrOfConstantString(const StringLiteral *Literal) { 2957 unsigned StringLength = 0; 2958 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry = 2959 GetConstantStringEntry(CFConstantStringMap, Literal, StringLength); 2960 2961 if (auto *C = Entry.second) 2962 return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment())); 2963 2964 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 2965 llvm::Constant *Zeros[] = { Zero, Zero }; 2966 llvm::Value *V; 2967 // If we don't already have it, get _NSConstantStringClassReference. 2968 if (!ConstantStringClassRef) { 2969 std::string StringClass(getLangOpts().ObjCConstantStringClass); 2970 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 2971 llvm::Constant *GV; 2972 if (LangOpts.ObjCRuntime.isNonFragile()) { 2973 std::string str = 2974 StringClass.empty() ? "OBJC_CLASS_$_NSConstantString" 2975 : "OBJC_CLASS_$_" + StringClass; 2976 GV = getObjCRuntime().GetClassGlobal(str); 2977 // Make sure the result is of the correct type. 2978 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 2979 V = llvm::ConstantExpr::getBitCast(GV, PTy); 2980 ConstantStringClassRef = V; 2981 } else { 2982 std::string str = 2983 StringClass.empty() ? "_NSConstantStringClassReference" 2984 : "_" + StringClass + "ClassReference"; 2985 llvm::Type *PTy = llvm::ArrayType::get(Ty, 0); 2986 GV = CreateRuntimeVariable(PTy, str); 2987 // Decay array -> ptr 2988 V = llvm::ConstantExpr::getGetElementPtr(PTy, GV, Zeros); 2989 ConstantStringClassRef = V; 2990 } 2991 } else 2992 V = ConstantStringClassRef; 2993 2994 if (!NSConstantStringType) { 2995 // Construct the type for a constant NSString. 2996 RecordDecl *D = Context.buildImplicitRecord("__builtin_NSString"); 2997 D->startDefinition(); 2998 2999 QualType FieldTypes[3]; 3000 3001 // const int *isa; 3002 FieldTypes[0] = Context.getPointerType(Context.IntTy.withConst()); 3003 // const char *str; 3004 FieldTypes[1] = Context.getPointerType(Context.CharTy.withConst()); 3005 // unsigned int length; 3006 FieldTypes[2] = Context.UnsignedIntTy; 3007 3008 // Create fields 3009 for (unsigned i = 0; i < 3; ++i) { 3010 FieldDecl *Field = FieldDecl::Create(Context, D, 3011 SourceLocation(), 3012 SourceLocation(), nullptr, 3013 FieldTypes[i], /*TInfo=*/nullptr, 3014 /*BitWidth=*/nullptr, 3015 /*Mutable=*/false, 3016 ICIS_NoInit); 3017 Field->setAccess(AS_public); 3018 D->addDecl(Field); 3019 } 3020 3021 D->completeDefinition(); 3022 QualType NSTy = Context.getTagDeclType(D); 3023 NSConstantStringType = cast<llvm::StructType>(getTypes().ConvertType(NSTy)); 3024 } 3025 3026 llvm::Constant *Fields[3]; 3027 3028 // Class pointer. 3029 Fields[0] = cast<llvm::ConstantExpr>(V); 3030 3031 // String pointer. 3032 llvm::Constant *C = 3033 llvm::ConstantDataArray::getString(VMContext, Entry.first()); 3034 3035 llvm::GlobalValue::LinkageTypes Linkage; 3036 bool isConstant; 3037 Linkage = llvm::GlobalValue::PrivateLinkage; 3038 isConstant = !LangOpts.WritableStrings; 3039 3040 auto *GV = new llvm::GlobalVariable(getModule(), C->getType(), isConstant, 3041 Linkage, C, ".str"); 3042 GV->setUnnamedAddr(true); 3043 // Don't enforce the target's minimum global alignment, since the only use 3044 // of the string is via this class initializer. 3045 CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy); 3046 GV->setAlignment(Align.getQuantity()); 3047 Fields[1] = 3048 llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros); 3049 3050 // String length. 3051 llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 3052 Fields[2] = llvm::ConstantInt::get(Ty, StringLength); 3053 3054 // The struct. 3055 CharUnits Alignment = getPointerAlign(); 3056 C = llvm::ConstantStruct::get(NSConstantStringType, Fields); 3057 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 3058 llvm::GlobalVariable::PrivateLinkage, C, 3059 "_unnamed_nsstring_"); 3060 GV->setAlignment(Alignment.getQuantity()); 3061 const char *NSStringSection = "__OBJC,__cstring_object,regular,no_dead_strip"; 3062 const char *NSStringNonFragileABISection = 3063 "__DATA,__objc_stringobj,regular,no_dead_strip"; 3064 // FIXME. Fix section. 3065 GV->setSection(LangOpts.ObjCRuntime.isNonFragile() 3066 ? NSStringNonFragileABISection 3067 : NSStringSection); 3068 Entry.second = GV; 3069 3070 return ConstantAddress(GV, Alignment); 3071 } 3072 3073 QualType CodeGenModule::getObjCFastEnumerationStateType() { 3074 if (ObjCFastEnumerationStateType.isNull()) { 3075 RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState"); 3076 D->startDefinition(); 3077 3078 QualType FieldTypes[] = { 3079 Context.UnsignedLongTy, 3080 Context.getPointerType(Context.getObjCIdType()), 3081 Context.getPointerType(Context.UnsignedLongTy), 3082 Context.getConstantArrayType(Context.UnsignedLongTy, 3083 llvm::APInt(32, 5), ArrayType::Normal, 0) 3084 }; 3085 3086 for (size_t i = 0; i < 4; ++i) { 3087 FieldDecl *Field = FieldDecl::Create(Context, 3088 D, 3089 SourceLocation(), 3090 SourceLocation(), nullptr, 3091 FieldTypes[i], /*TInfo=*/nullptr, 3092 /*BitWidth=*/nullptr, 3093 /*Mutable=*/false, 3094 ICIS_NoInit); 3095 Field->setAccess(AS_public); 3096 D->addDecl(Field); 3097 } 3098 3099 D->completeDefinition(); 3100 ObjCFastEnumerationStateType = Context.getTagDeclType(D); 3101 } 3102 3103 return ObjCFastEnumerationStateType; 3104 } 3105 3106 llvm::Constant * 3107 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) { 3108 assert(!E->getType()->isPointerType() && "Strings are always arrays"); 3109 3110 // Don't emit it as the address of the string, emit the string data itself 3111 // as an inline array. 3112 if (E->getCharByteWidth() == 1) { 3113 SmallString<64> Str(E->getString()); 3114 3115 // Resize the string to the right size, which is indicated by its type. 3116 const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType()); 3117 Str.resize(CAT->getSize().getZExtValue()); 3118 return llvm::ConstantDataArray::getString(VMContext, Str, false); 3119 } 3120 3121 auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType())); 3122 llvm::Type *ElemTy = AType->getElementType(); 3123 unsigned NumElements = AType->getNumElements(); 3124 3125 // Wide strings have either 2-byte or 4-byte elements. 3126 if (ElemTy->getPrimitiveSizeInBits() == 16) { 3127 SmallVector<uint16_t, 32> Elements; 3128 Elements.reserve(NumElements); 3129 3130 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 3131 Elements.push_back(E->getCodeUnit(i)); 3132 Elements.resize(NumElements); 3133 return llvm::ConstantDataArray::get(VMContext, Elements); 3134 } 3135 3136 assert(ElemTy->getPrimitiveSizeInBits() == 32); 3137 SmallVector<uint32_t, 32> Elements; 3138 Elements.reserve(NumElements); 3139 3140 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 3141 Elements.push_back(E->getCodeUnit(i)); 3142 Elements.resize(NumElements); 3143 return llvm::ConstantDataArray::get(VMContext, Elements); 3144 } 3145 3146 static llvm::GlobalVariable * 3147 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT, 3148 CodeGenModule &CGM, StringRef GlobalName, 3149 CharUnits Alignment) { 3150 // OpenCL v1.2 s6.5.3: a string literal is in the constant address space. 3151 unsigned AddrSpace = 0; 3152 if (CGM.getLangOpts().OpenCL) 3153 AddrSpace = CGM.getContext().getTargetAddressSpace(LangAS::opencl_constant); 3154 3155 llvm::Module &M = CGM.getModule(); 3156 // Create a global variable for this string 3157 auto *GV = new llvm::GlobalVariable( 3158 M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName, 3159 nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace); 3160 GV->setAlignment(Alignment.getQuantity()); 3161 GV->setUnnamedAddr(true); 3162 if (GV->isWeakForLinker()) { 3163 assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals"); 3164 GV->setComdat(M.getOrInsertComdat(GV->getName())); 3165 } 3166 3167 return GV; 3168 } 3169 3170 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 3171 /// constant array for the given string literal. 3172 ConstantAddress 3173 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S, 3174 StringRef Name) { 3175 CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType()); 3176 3177 llvm::Constant *C = GetConstantArrayFromStringLiteral(S); 3178 llvm::GlobalVariable **Entry = nullptr; 3179 if (!LangOpts.WritableStrings) { 3180 Entry = &ConstantStringMap[C]; 3181 if (auto GV = *Entry) { 3182 if (Alignment.getQuantity() > GV->getAlignment()) 3183 GV->setAlignment(Alignment.getQuantity()); 3184 return ConstantAddress(GV, Alignment); 3185 } 3186 } 3187 3188 SmallString<256> MangledNameBuffer; 3189 StringRef GlobalVariableName; 3190 llvm::GlobalValue::LinkageTypes LT; 3191 3192 // Mangle the string literal if the ABI allows for it. However, we cannot 3193 // do this if we are compiling with ASan or -fwritable-strings because they 3194 // rely on strings having normal linkage. 3195 if (!LangOpts.WritableStrings && 3196 !LangOpts.Sanitize.has(SanitizerKind::Address) && 3197 getCXXABI().getMangleContext().shouldMangleStringLiteral(S)) { 3198 llvm::raw_svector_ostream Out(MangledNameBuffer); 3199 getCXXABI().getMangleContext().mangleStringLiteral(S, Out); 3200 3201 LT = llvm::GlobalValue::LinkOnceODRLinkage; 3202 GlobalVariableName = MangledNameBuffer; 3203 } else { 3204 LT = llvm::GlobalValue::PrivateLinkage; 3205 GlobalVariableName = Name; 3206 } 3207 3208 auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment); 3209 if (Entry) 3210 *Entry = GV; 3211 3212 SanitizerMD->reportGlobalToASan(GV, S->getStrTokenLoc(0), "<string literal>", 3213 QualType()); 3214 return ConstantAddress(GV, Alignment); 3215 } 3216 3217 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 3218 /// array for the given ObjCEncodeExpr node. 3219 ConstantAddress 3220 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 3221 std::string Str; 3222 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 3223 3224 return GetAddrOfConstantCString(Str); 3225 } 3226 3227 /// GetAddrOfConstantCString - Returns a pointer to a character array containing 3228 /// the literal and a terminating '\0' character. 3229 /// The result has pointer to array type. 3230 ConstantAddress CodeGenModule::GetAddrOfConstantCString( 3231 const std::string &Str, const char *GlobalName) { 3232 StringRef StrWithNull(Str.c_str(), Str.size() + 1); 3233 CharUnits Alignment = 3234 getContext().getAlignOfGlobalVarInChars(getContext().CharTy); 3235 3236 llvm::Constant *C = 3237 llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false); 3238 3239 // Don't share any string literals if strings aren't constant. 3240 llvm::GlobalVariable **Entry = nullptr; 3241 if (!LangOpts.WritableStrings) { 3242 Entry = &ConstantStringMap[C]; 3243 if (auto GV = *Entry) { 3244 if (Alignment.getQuantity() > GV->getAlignment()) 3245 GV->setAlignment(Alignment.getQuantity()); 3246 return ConstantAddress(GV, Alignment); 3247 } 3248 } 3249 3250 // Get the default prefix if a name wasn't specified. 3251 if (!GlobalName) 3252 GlobalName = ".str"; 3253 // Create a global variable for this. 3254 auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this, 3255 GlobalName, Alignment); 3256 if (Entry) 3257 *Entry = GV; 3258 return ConstantAddress(GV, Alignment); 3259 } 3260 3261 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary( 3262 const MaterializeTemporaryExpr *E, const Expr *Init) { 3263 assert((E->getStorageDuration() == SD_Static || 3264 E->getStorageDuration() == SD_Thread) && "not a global temporary"); 3265 const auto *VD = cast<VarDecl>(E->getExtendingDecl()); 3266 3267 // If we're not materializing a subobject of the temporary, keep the 3268 // cv-qualifiers from the type of the MaterializeTemporaryExpr. 3269 QualType MaterializedType = Init->getType(); 3270 if (Init == E->GetTemporaryExpr()) 3271 MaterializedType = E->getType(); 3272 3273 CharUnits Align = getContext().getTypeAlignInChars(MaterializedType); 3274 3275 if (llvm::Constant *Slot = MaterializedGlobalTemporaryMap[E]) 3276 return ConstantAddress(Slot, Align); 3277 3278 // FIXME: If an externally-visible declaration extends multiple temporaries, 3279 // we need to give each temporary the same name in every translation unit (and 3280 // we also need to make the temporaries externally-visible). 3281 SmallString<256> Name; 3282 llvm::raw_svector_ostream Out(Name); 3283 getCXXABI().getMangleContext().mangleReferenceTemporary( 3284 VD, E->getManglingNumber(), Out); 3285 3286 APValue *Value = nullptr; 3287 if (E->getStorageDuration() == SD_Static) { 3288 // We might have a cached constant initializer for this temporary. Note 3289 // that this might have a different value from the value computed by 3290 // evaluating the initializer if the surrounding constant expression 3291 // modifies the temporary. 3292 Value = getContext().getMaterializedTemporaryValue(E, false); 3293 if (Value && Value->isUninit()) 3294 Value = nullptr; 3295 } 3296 3297 // Try evaluating it now, it might have a constant initializer. 3298 Expr::EvalResult EvalResult; 3299 if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) && 3300 !EvalResult.hasSideEffects()) 3301 Value = &EvalResult.Val; 3302 3303 llvm::Constant *InitialValue = nullptr; 3304 bool Constant = false; 3305 llvm::Type *Type; 3306 if (Value) { 3307 // The temporary has a constant initializer, use it. 3308 InitialValue = EmitConstantValue(*Value, MaterializedType, nullptr); 3309 Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value); 3310 Type = InitialValue->getType(); 3311 } else { 3312 // No initializer, the initialization will be provided when we 3313 // initialize the declaration which performed lifetime extension. 3314 Type = getTypes().ConvertTypeForMem(MaterializedType); 3315 } 3316 3317 // Create a global variable for this lifetime-extended temporary. 3318 llvm::GlobalValue::LinkageTypes Linkage = 3319 getLLVMLinkageVarDefinition(VD, Constant); 3320 if (Linkage == llvm::GlobalVariable::ExternalLinkage) { 3321 const VarDecl *InitVD; 3322 if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) && 3323 isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) { 3324 // Temporaries defined inside a class get linkonce_odr linkage because the 3325 // class can be defined in multipe translation units. 3326 Linkage = llvm::GlobalVariable::LinkOnceODRLinkage; 3327 } else { 3328 // There is no need for this temporary to have external linkage if the 3329 // VarDecl has external linkage. 3330 Linkage = llvm::GlobalVariable::InternalLinkage; 3331 } 3332 } 3333 unsigned AddrSpace = GetGlobalVarAddressSpace( 3334 VD, getContext().getTargetAddressSpace(MaterializedType)); 3335 auto *GV = new llvm::GlobalVariable( 3336 getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(), 3337 /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, 3338 AddrSpace); 3339 setGlobalVisibility(GV, VD); 3340 GV->setAlignment(Align.getQuantity()); 3341 if (supportsCOMDAT() && GV->isWeakForLinker()) 3342 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 3343 if (VD->getTLSKind()) 3344 setTLSMode(GV, *VD); 3345 MaterializedGlobalTemporaryMap[E] = GV; 3346 return ConstantAddress(GV, Align); 3347 } 3348 3349 /// EmitObjCPropertyImplementations - Emit information for synthesized 3350 /// properties for an implementation. 3351 void CodeGenModule::EmitObjCPropertyImplementations(const 3352 ObjCImplementationDecl *D) { 3353 for (const auto *PID : D->property_impls()) { 3354 // Dynamic is just for type-checking. 3355 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 3356 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 3357 3358 // Determine which methods need to be implemented, some may have 3359 // been overridden. Note that ::isPropertyAccessor is not the method 3360 // we want, that just indicates if the decl came from a 3361 // property. What we want to know is if the method is defined in 3362 // this implementation. 3363 if (!D->getInstanceMethod(PD->getGetterName())) 3364 CodeGenFunction(*this).GenerateObjCGetter( 3365 const_cast<ObjCImplementationDecl *>(D), PID); 3366 if (!PD->isReadOnly() && 3367 !D->getInstanceMethod(PD->getSetterName())) 3368 CodeGenFunction(*this).GenerateObjCSetter( 3369 const_cast<ObjCImplementationDecl *>(D), PID); 3370 } 3371 } 3372 } 3373 3374 static bool needsDestructMethod(ObjCImplementationDecl *impl) { 3375 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 3376 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin(); 3377 ivar; ivar = ivar->getNextIvar()) 3378 if (ivar->getType().isDestructedType()) 3379 return true; 3380 3381 return false; 3382 } 3383 3384 static bool AllTrivialInitializers(CodeGenModule &CGM, 3385 ObjCImplementationDecl *D) { 3386 CodeGenFunction CGF(CGM); 3387 for (ObjCImplementationDecl::init_iterator B = D->init_begin(), 3388 E = D->init_end(); B != E; ++B) { 3389 CXXCtorInitializer *CtorInitExp = *B; 3390 Expr *Init = CtorInitExp->getInit(); 3391 if (!CGF.isTrivialInitializer(Init)) 3392 return false; 3393 } 3394 return true; 3395 } 3396 3397 /// EmitObjCIvarInitializations - Emit information for ivar initialization 3398 /// for an implementation. 3399 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) { 3400 // We might need a .cxx_destruct even if we don't have any ivar initializers. 3401 if (needsDestructMethod(D)) { 3402 IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct"); 3403 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 3404 ObjCMethodDecl *DTORMethod = 3405 ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(), 3406 cxxSelector, getContext().VoidTy, nullptr, D, 3407 /*isInstance=*/true, /*isVariadic=*/false, 3408 /*isPropertyAccessor=*/true, /*isImplicitlyDeclared=*/true, 3409 /*isDefined=*/false, ObjCMethodDecl::Required); 3410 D->addInstanceMethod(DTORMethod); 3411 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false); 3412 D->setHasDestructors(true); 3413 } 3414 3415 // If the implementation doesn't have any ivar initializers, we don't need 3416 // a .cxx_construct. 3417 if (D->getNumIvarInitializers() == 0 || 3418 AllTrivialInitializers(*this, D)) 3419 return; 3420 3421 IdentifierInfo *II = &getContext().Idents.get(".cxx_construct"); 3422 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 3423 // The constructor returns 'self'. 3424 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(), 3425 D->getLocation(), 3426 D->getLocation(), 3427 cxxSelector, 3428 getContext().getObjCIdType(), 3429 nullptr, D, /*isInstance=*/true, 3430 /*isVariadic=*/false, 3431 /*isPropertyAccessor=*/true, 3432 /*isImplicitlyDeclared=*/true, 3433 /*isDefined=*/false, 3434 ObjCMethodDecl::Required); 3435 D->addInstanceMethod(CTORMethod); 3436 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true); 3437 D->setHasNonZeroConstructors(true); 3438 } 3439 3440 /// EmitNamespace - Emit all declarations in a namespace. 3441 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) { 3442 for (auto *I : ND->decls()) { 3443 if (const auto *VD = dyn_cast<VarDecl>(I)) 3444 if (VD->getTemplateSpecializationKind() != TSK_ExplicitSpecialization && 3445 VD->getTemplateSpecializationKind() != TSK_Undeclared) 3446 continue; 3447 EmitTopLevelDecl(I); 3448 } 3449 } 3450 3451 // EmitLinkageSpec - Emit all declarations in a linkage spec. 3452 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 3453 if (LSD->getLanguage() != LinkageSpecDecl::lang_c && 3454 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { 3455 ErrorUnsupported(LSD, "linkage spec"); 3456 return; 3457 } 3458 3459 for (auto *I : LSD->decls()) { 3460 // Meta-data for ObjC class includes references to implemented methods. 3461 // Generate class's method definitions first. 3462 if (auto *OID = dyn_cast<ObjCImplDecl>(I)) { 3463 for (auto *M : OID->methods()) 3464 EmitTopLevelDecl(M); 3465 } 3466 EmitTopLevelDecl(I); 3467 } 3468 } 3469 3470 /// EmitTopLevelDecl - Emit code for a single top level declaration. 3471 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 3472 // Ignore dependent declarations. 3473 if (D->getDeclContext() && D->getDeclContext()->isDependentContext()) 3474 return; 3475 3476 switch (D->getKind()) { 3477 case Decl::CXXConversion: 3478 case Decl::CXXMethod: 3479 case Decl::Function: 3480 // Skip function templates 3481 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() || 3482 cast<FunctionDecl>(D)->isLateTemplateParsed()) 3483 return; 3484 3485 EmitGlobal(cast<FunctionDecl>(D)); 3486 // Always provide some coverage mapping 3487 // even for the functions that aren't emitted. 3488 AddDeferredUnusedCoverageMapping(D); 3489 break; 3490 3491 case Decl::Var: 3492 // Skip variable templates 3493 if (cast<VarDecl>(D)->getDescribedVarTemplate()) 3494 return; 3495 case Decl::VarTemplateSpecialization: 3496 EmitGlobal(cast<VarDecl>(D)); 3497 break; 3498 3499 // Indirect fields from global anonymous structs and unions can be 3500 // ignored; only the actual variable requires IR gen support. 3501 case Decl::IndirectField: 3502 break; 3503 3504 // C++ Decls 3505 case Decl::Namespace: 3506 EmitNamespace(cast<NamespaceDecl>(D)); 3507 break; 3508 // No code generation needed. 3509 case Decl::UsingShadow: 3510 case Decl::ClassTemplate: 3511 case Decl::VarTemplate: 3512 case Decl::VarTemplatePartialSpecialization: 3513 case Decl::FunctionTemplate: 3514 case Decl::TypeAliasTemplate: 3515 case Decl::Block: 3516 case Decl::Empty: 3517 break; 3518 case Decl::Using: // using X; [C++] 3519 if (CGDebugInfo *DI = getModuleDebugInfo()) 3520 DI->EmitUsingDecl(cast<UsingDecl>(*D)); 3521 return; 3522 case Decl::NamespaceAlias: 3523 if (CGDebugInfo *DI = getModuleDebugInfo()) 3524 DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D)); 3525 return; 3526 case Decl::UsingDirective: // using namespace X; [C++] 3527 if (CGDebugInfo *DI = getModuleDebugInfo()) 3528 DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D)); 3529 return; 3530 case Decl::CXXConstructor: 3531 // Skip function templates 3532 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() || 3533 cast<FunctionDecl>(D)->isLateTemplateParsed()) 3534 return; 3535 3536 getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 3537 break; 3538 case Decl::CXXDestructor: 3539 if (cast<FunctionDecl>(D)->isLateTemplateParsed()) 3540 return; 3541 getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 3542 break; 3543 3544 case Decl::StaticAssert: 3545 // Nothing to do. 3546 break; 3547 3548 // Objective-C Decls 3549 3550 // Forward declarations, no (immediate) code generation. 3551 case Decl::ObjCInterface: 3552 case Decl::ObjCCategory: 3553 break; 3554 3555 case Decl::ObjCProtocol: { 3556 auto *Proto = cast<ObjCProtocolDecl>(D); 3557 if (Proto->isThisDeclarationADefinition()) 3558 ObjCRuntime->GenerateProtocol(Proto); 3559 break; 3560 } 3561 3562 case Decl::ObjCCategoryImpl: 3563 // Categories have properties but don't support synthesize so we 3564 // can ignore them here. 3565 ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 3566 break; 3567 3568 case Decl::ObjCImplementation: { 3569 auto *OMD = cast<ObjCImplementationDecl>(D); 3570 EmitObjCPropertyImplementations(OMD); 3571 EmitObjCIvarInitializations(OMD); 3572 ObjCRuntime->GenerateClass(OMD); 3573 // Emit global variable debug information. 3574 if (CGDebugInfo *DI = getModuleDebugInfo()) 3575 if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) 3576 DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType( 3577 OMD->getClassInterface()), OMD->getLocation()); 3578 break; 3579 } 3580 case Decl::ObjCMethod: { 3581 auto *OMD = cast<ObjCMethodDecl>(D); 3582 // If this is not a prototype, emit the body. 3583 if (OMD->getBody()) 3584 CodeGenFunction(*this).GenerateObjCMethod(OMD); 3585 break; 3586 } 3587 case Decl::ObjCCompatibleAlias: 3588 ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D)); 3589 break; 3590 3591 case Decl::LinkageSpec: 3592 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 3593 break; 3594 3595 case Decl::FileScopeAsm: { 3596 // File-scope asm is ignored during device-side CUDA compilation. 3597 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) 3598 break; 3599 auto *AD = cast<FileScopeAsmDecl>(D); 3600 getModule().appendModuleInlineAsm(AD->getAsmString()->getString()); 3601 break; 3602 } 3603 3604 case Decl::Import: { 3605 auto *Import = cast<ImportDecl>(D); 3606 3607 // Ignore import declarations that come from imported modules. 3608 if (Import->getImportedOwningModule()) 3609 break; 3610 if (CGDebugInfo *DI = getModuleDebugInfo()) 3611 DI->EmitImportDecl(*Import); 3612 3613 ImportedModules.insert(Import->getImportedModule()); 3614 break; 3615 } 3616 3617 case Decl::OMPThreadPrivate: 3618 EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D)); 3619 break; 3620 3621 case Decl::ClassTemplateSpecialization: { 3622 const auto *Spec = cast<ClassTemplateSpecializationDecl>(D); 3623 if (DebugInfo && 3624 Spec->getSpecializationKind() == TSK_ExplicitInstantiationDefinition && 3625 Spec->hasDefinition()) 3626 DebugInfo->completeTemplateDefinition(*Spec); 3627 break; 3628 } 3629 3630 default: 3631 // Make sure we handled everything we should, every other kind is a 3632 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 3633 // function. Need to recode Decl::Kind to do that easily. 3634 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 3635 break; 3636 } 3637 } 3638 3639 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) { 3640 // Do we need to generate coverage mapping? 3641 if (!CodeGenOpts.CoverageMapping) 3642 return; 3643 switch (D->getKind()) { 3644 case Decl::CXXConversion: 3645 case Decl::CXXMethod: 3646 case Decl::Function: 3647 case Decl::ObjCMethod: 3648 case Decl::CXXConstructor: 3649 case Decl::CXXDestructor: { 3650 if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody()) 3651 return; 3652 auto I = DeferredEmptyCoverageMappingDecls.find(D); 3653 if (I == DeferredEmptyCoverageMappingDecls.end()) 3654 DeferredEmptyCoverageMappingDecls[D] = true; 3655 break; 3656 } 3657 default: 3658 break; 3659 }; 3660 } 3661 3662 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) { 3663 // Do we need to generate coverage mapping? 3664 if (!CodeGenOpts.CoverageMapping) 3665 return; 3666 if (const auto *Fn = dyn_cast<FunctionDecl>(D)) { 3667 if (Fn->isTemplateInstantiation()) 3668 ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern()); 3669 } 3670 auto I = DeferredEmptyCoverageMappingDecls.find(D); 3671 if (I == DeferredEmptyCoverageMappingDecls.end()) 3672 DeferredEmptyCoverageMappingDecls[D] = false; 3673 else 3674 I->second = false; 3675 } 3676 3677 void CodeGenModule::EmitDeferredUnusedCoverageMappings() { 3678 std::vector<const Decl *> DeferredDecls; 3679 for (const auto &I : DeferredEmptyCoverageMappingDecls) { 3680 if (!I.second) 3681 continue; 3682 DeferredDecls.push_back(I.first); 3683 } 3684 // Sort the declarations by their location to make sure that the tests get a 3685 // predictable order for the coverage mapping for the unused declarations. 3686 if (CodeGenOpts.DumpCoverageMapping) 3687 std::sort(DeferredDecls.begin(), DeferredDecls.end(), 3688 [] (const Decl *LHS, const Decl *RHS) { 3689 return LHS->getLocStart() < RHS->getLocStart(); 3690 }); 3691 for (const auto *D : DeferredDecls) { 3692 switch (D->getKind()) { 3693 case Decl::CXXConversion: 3694 case Decl::CXXMethod: 3695 case Decl::Function: 3696 case Decl::ObjCMethod: { 3697 CodeGenPGO PGO(*this); 3698 GlobalDecl GD(cast<FunctionDecl>(D)); 3699 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 3700 getFunctionLinkage(GD)); 3701 break; 3702 } 3703 case Decl::CXXConstructor: { 3704 CodeGenPGO PGO(*this); 3705 GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base); 3706 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 3707 getFunctionLinkage(GD)); 3708 break; 3709 } 3710 case Decl::CXXDestructor: { 3711 CodeGenPGO PGO(*this); 3712 GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base); 3713 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 3714 getFunctionLinkage(GD)); 3715 break; 3716 } 3717 default: 3718 break; 3719 }; 3720 } 3721 } 3722 3723 /// Turns the given pointer into a constant. 3724 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context, 3725 const void *Ptr) { 3726 uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr); 3727 llvm::Type *i64 = llvm::Type::getInt64Ty(Context); 3728 return llvm::ConstantInt::get(i64, PtrInt); 3729 } 3730 3731 static void EmitGlobalDeclMetadata(CodeGenModule &CGM, 3732 llvm::NamedMDNode *&GlobalMetadata, 3733 GlobalDecl D, 3734 llvm::GlobalValue *Addr) { 3735 if (!GlobalMetadata) 3736 GlobalMetadata = 3737 CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs"); 3738 3739 // TODO: should we report variant information for ctors/dtors? 3740 llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr), 3741 llvm::ConstantAsMetadata::get(GetPointerConstant( 3742 CGM.getLLVMContext(), D.getDecl()))}; 3743 GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 3744 } 3745 3746 /// For each function which is declared within an extern "C" region and marked 3747 /// as 'used', but has internal linkage, create an alias from the unmangled 3748 /// name to the mangled name if possible. People expect to be able to refer 3749 /// to such functions with an unmangled name from inline assembly within the 3750 /// same translation unit. 3751 void CodeGenModule::EmitStaticExternCAliases() { 3752 for (auto &I : StaticExternCValues) { 3753 IdentifierInfo *Name = I.first; 3754 llvm::GlobalValue *Val = I.second; 3755 if (Val && !getModule().getNamedValue(Name->getName())) 3756 addUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val)); 3757 } 3758 } 3759 3760 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName, 3761 GlobalDecl &Result) const { 3762 auto Res = Manglings.find(MangledName); 3763 if (Res == Manglings.end()) 3764 return false; 3765 Result = Res->getValue(); 3766 return true; 3767 } 3768 3769 /// Emits metadata nodes associating all the global values in the 3770 /// current module with the Decls they came from. This is useful for 3771 /// projects using IR gen as a subroutine. 3772 /// 3773 /// Since there's currently no way to associate an MDNode directly 3774 /// with an llvm::GlobalValue, we create a global named metadata 3775 /// with the name 'clang.global.decl.ptrs'. 3776 void CodeGenModule::EmitDeclMetadata() { 3777 llvm::NamedMDNode *GlobalMetadata = nullptr; 3778 3779 for (auto &I : MangledDeclNames) { 3780 llvm::GlobalValue *Addr = getModule().getNamedValue(I.second); 3781 // Some mangled names don't necessarily have an associated GlobalValue 3782 // in this module, e.g. if we mangled it for DebugInfo. 3783 if (Addr) 3784 EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr); 3785 } 3786 } 3787 3788 /// Emits metadata nodes for all the local variables in the current 3789 /// function. 3790 void CodeGenFunction::EmitDeclMetadata() { 3791 if (LocalDeclMap.empty()) return; 3792 3793 llvm::LLVMContext &Context = getLLVMContext(); 3794 3795 // Find the unique metadata ID for this name. 3796 unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr"); 3797 3798 llvm::NamedMDNode *GlobalMetadata = nullptr; 3799 3800 for (auto &I : LocalDeclMap) { 3801 const Decl *D = I.first; 3802 llvm::Value *Addr = I.second.getPointer(); 3803 if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) { 3804 llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D); 3805 Alloca->setMetadata( 3806 DeclPtrKind, llvm::MDNode::get( 3807 Context, llvm::ValueAsMetadata::getConstant(DAddr))); 3808 } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) { 3809 GlobalDecl GD = GlobalDecl(cast<VarDecl>(D)); 3810 EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV); 3811 } 3812 } 3813 } 3814 3815 void CodeGenModule::EmitVersionIdentMetadata() { 3816 llvm::NamedMDNode *IdentMetadata = 3817 TheModule.getOrInsertNamedMetadata("llvm.ident"); 3818 std::string Version = getClangFullVersion(); 3819 llvm::LLVMContext &Ctx = TheModule.getContext(); 3820 3821 llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)}; 3822 IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode)); 3823 } 3824 3825 void CodeGenModule::EmitTargetMetadata() { 3826 // Warning, new MangledDeclNames may be appended within this loop. 3827 // We rely on MapVector insertions adding new elements to the end 3828 // of the container. 3829 // FIXME: Move this loop into the one target that needs it, and only 3830 // loop over those declarations for which we couldn't emit the target 3831 // metadata when we emitted the declaration. 3832 for (unsigned I = 0; I != MangledDeclNames.size(); ++I) { 3833 auto Val = *(MangledDeclNames.begin() + I); 3834 const Decl *D = Val.first.getDecl()->getMostRecentDecl(); 3835 llvm::GlobalValue *GV = GetGlobalValue(Val.second); 3836 getTargetCodeGenInfo().emitTargetMD(D, GV, *this); 3837 } 3838 } 3839 3840 void CodeGenModule::EmitCoverageFile() { 3841 if (!getCodeGenOpts().CoverageFile.empty()) { 3842 if (llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu")) { 3843 llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov"); 3844 llvm::LLVMContext &Ctx = TheModule.getContext(); 3845 llvm::MDString *CoverageFile = 3846 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageFile); 3847 for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) { 3848 llvm::MDNode *CU = CUNode->getOperand(i); 3849 llvm::Metadata *Elts[] = {CoverageFile, CU}; 3850 GCov->addOperand(llvm::MDNode::get(Ctx, Elts)); 3851 } 3852 } 3853 } 3854 } 3855 3856 llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid) { 3857 // Sema has checked that all uuid strings are of the form 3858 // "12345678-1234-1234-1234-1234567890ab". 3859 assert(Uuid.size() == 36); 3860 for (unsigned i = 0; i < 36; ++i) { 3861 if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuid[i] == '-'); 3862 else assert(isHexDigit(Uuid[i])); 3863 } 3864 3865 // The starts of all bytes of Field3 in Uuid. Field 3 is "1234-1234567890ab". 3866 const unsigned Field3ValueOffsets[8] = { 19, 21, 24, 26, 28, 30, 32, 34 }; 3867 3868 llvm::Constant *Field3[8]; 3869 for (unsigned Idx = 0; Idx < 8; ++Idx) 3870 Field3[Idx] = llvm::ConstantInt::get( 3871 Int8Ty, Uuid.substr(Field3ValueOffsets[Idx], 2), 16); 3872 3873 llvm::Constant *Fields[4] = { 3874 llvm::ConstantInt::get(Int32Ty, Uuid.substr(0, 8), 16), 3875 llvm::ConstantInt::get(Int16Ty, Uuid.substr(9, 4), 16), 3876 llvm::ConstantInt::get(Int16Ty, Uuid.substr(14, 4), 16), 3877 llvm::ConstantArray::get(llvm::ArrayType::get(Int8Ty, 8), Field3) 3878 }; 3879 3880 return llvm::ConstantStruct::getAnon(Fields); 3881 } 3882 3883 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty, 3884 bool ForEH) { 3885 // Return a bogus pointer if RTTI is disabled, unless it's for EH. 3886 // FIXME: should we even be calling this method if RTTI is disabled 3887 // and it's not for EH? 3888 if (!ForEH && !getLangOpts().RTTI) 3889 return llvm::Constant::getNullValue(Int8PtrTy); 3890 3891 if (ForEH && Ty->isObjCObjectPointerType() && 3892 LangOpts.ObjCRuntime.isGNUFamily()) 3893 return ObjCRuntime->GetEHType(Ty); 3894 3895 return getCXXABI().getAddrOfRTTIDescriptor(Ty); 3896 } 3897 3898 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) { 3899 for (auto RefExpr : D->varlists()) { 3900 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl()); 3901 bool PerformInit = 3902 VD->getAnyInitializer() && 3903 !VD->getAnyInitializer()->isConstantInitializer(getContext(), 3904 /*ForRef=*/false); 3905 3906 Address Addr(GetAddrOfGlobalVar(VD), getContext().getDeclAlign(VD)); 3907 if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition( 3908 VD, Addr, RefExpr->getLocStart(), PerformInit)) 3909 CXXGlobalInits.push_back(InitFunction); 3910 } 3911 } 3912 3913 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) { 3914 llvm::Metadata *&InternalId = MetadataIdMap[T.getCanonicalType()]; 3915 if (InternalId) 3916 return InternalId; 3917 3918 if (isExternallyVisible(T->getLinkage())) { 3919 std::string OutName; 3920 llvm::raw_string_ostream Out(OutName); 3921 getCXXABI().getMangleContext().mangleTypeName(T, Out); 3922 3923 InternalId = llvm::MDString::get(getLLVMContext(), Out.str()); 3924 } else { 3925 InternalId = llvm::MDNode::getDistinct(getLLVMContext(), 3926 llvm::ArrayRef<llvm::Metadata *>()); 3927 } 3928 3929 return InternalId; 3930 } 3931 3932 void CodeGenModule::CreateVTableBitSetEntry(llvm::NamedMDNode *BitsetsMD, 3933 llvm::GlobalVariable *VTable, 3934 CharUnits Offset, 3935 const CXXRecordDecl *RD) { 3936 llvm::Metadata *MD = 3937 CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0)); 3938 llvm::Metadata *BitsetOps[] = { 3939 MD, llvm::ConstantAsMetadata::get(VTable), 3940 llvm::ConstantAsMetadata::get( 3941 llvm::ConstantInt::get(Int64Ty, Offset.getQuantity()))}; 3942 BitsetsMD->addOperand(llvm::MDTuple::get(getLLVMContext(), BitsetOps)); 3943 3944 if (CodeGenOpts.SanitizeCfiCrossDso) { 3945 if (auto TypeId = CreateCfiIdForTypeMetadata(MD)) { 3946 llvm::Metadata *BitsetOps2[] = { 3947 llvm::ConstantAsMetadata::get(TypeId), 3948 llvm::ConstantAsMetadata::get(VTable), 3949 llvm::ConstantAsMetadata::get( 3950 llvm::ConstantInt::get(Int64Ty, Offset.getQuantity()))}; 3951 BitsetsMD->addOperand(llvm::MDTuple::get(getLLVMContext(), BitsetOps2)); 3952 } 3953 } 3954 } 3955 3956 // Fills in the supplied string map with the set of target features for the 3957 // passed in function. 3958 void CodeGenModule::getFunctionFeatureMap(llvm::StringMap<bool> &FeatureMap, 3959 const FunctionDecl *FD) { 3960 StringRef TargetCPU = Target.getTargetOpts().CPU; 3961 if (const auto *TD = FD->getAttr<TargetAttr>()) { 3962 // If we have a TargetAttr build up the feature map based on that. 3963 TargetAttr::ParsedTargetAttr ParsedAttr = TD->parse(); 3964 3965 // Make a copy of the features as passed on the command line into the 3966 // beginning of the additional features from the function to override. 3967 ParsedAttr.first.insert(ParsedAttr.first.begin(), 3968 Target.getTargetOpts().FeaturesAsWritten.begin(), 3969 Target.getTargetOpts().FeaturesAsWritten.end()); 3970 3971 if (ParsedAttr.second != "") 3972 TargetCPU = ParsedAttr.second; 3973 3974 // Now populate the feature map, first with the TargetCPU which is either 3975 // the default or a new one from the target attribute string. Then we'll use 3976 // the passed in features (FeaturesAsWritten) along with the new ones from 3977 // the attribute. 3978 Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU, ParsedAttr.first); 3979 } else { 3980 Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU, 3981 Target.getTargetOpts().Features); 3982 } 3983 } 3984