Home | History | Annotate | Download | only in CodeGen
      1 //===--- CGStmt.cpp - Emit LLVM Code from Statements ----------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This contains code to emit Stmt nodes as LLVM code.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "CodeGenFunction.h"
     15 #include "CGDebugInfo.h"
     16 #include "CodeGenModule.h"
     17 #include "TargetInfo.h"
     18 #include "clang/AST/StmtVisitor.h"
     19 #include "clang/Basic/Builtins.h"
     20 #include "clang/Basic/PrettyStackTrace.h"
     21 #include "clang/Basic/TargetInfo.h"
     22 #include "clang/Sema/LoopHint.h"
     23 #include "clang/Sema/SemaDiagnostic.h"
     24 #include "llvm/ADT/StringExtras.h"
     25 #include "llvm/IR/CallSite.h"
     26 #include "llvm/IR/DataLayout.h"
     27 #include "llvm/IR/InlineAsm.h"
     28 #include "llvm/IR/Intrinsics.h"
     29 #include "llvm/IR/MDBuilder.h"
     30 
     31 using namespace clang;
     32 using namespace CodeGen;
     33 
     34 //===----------------------------------------------------------------------===//
     35 //                              Statement Emission
     36 //===----------------------------------------------------------------------===//
     37 
     38 void CodeGenFunction::EmitStopPoint(const Stmt *S) {
     39   if (CGDebugInfo *DI = getDebugInfo()) {
     40     SourceLocation Loc;
     41     Loc = S->getLocStart();
     42     DI->EmitLocation(Builder, Loc);
     43 
     44     LastStopPoint = Loc;
     45   }
     46 }
     47 
     48 void CodeGenFunction::EmitStmt(const Stmt *S) {
     49   assert(S && "Null statement?");
     50   PGO.setCurrentStmt(S);
     51 
     52   // These statements have their own debug info handling.
     53   if (EmitSimpleStmt(S))
     54     return;
     55 
     56   // Check if we are generating unreachable code.
     57   if (!HaveInsertPoint()) {
     58     // If so, and the statement doesn't contain a label, then we do not need to
     59     // generate actual code. This is safe because (1) the current point is
     60     // unreachable, so we don't need to execute the code, and (2) we've already
     61     // handled the statements which update internal data structures (like the
     62     // local variable map) which could be used by subsequent statements.
     63     if (!ContainsLabel(S)) {
     64       // Verify that any decl statements were handled as simple, they may be in
     65       // scope of subsequent reachable statements.
     66       assert(!isa<DeclStmt>(*S) && "Unexpected DeclStmt!");
     67       return;
     68     }
     69 
     70     // Otherwise, make a new block to hold the code.
     71     EnsureInsertPoint();
     72   }
     73 
     74   // Generate a stoppoint if we are emitting debug info.
     75   EmitStopPoint(S);
     76 
     77   switch (S->getStmtClass()) {
     78   case Stmt::NoStmtClass:
     79   case Stmt::CXXCatchStmtClass:
     80   case Stmt::SEHExceptStmtClass:
     81   case Stmt::SEHFinallyStmtClass:
     82   case Stmt::MSDependentExistsStmtClass:
     83     llvm_unreachable("invalid statement class to emit generically");
     84   case Stmt::NullStmtClass:
     85   case Stmt::CompoundStmtClass:
     86   case Stmt::DeclStmtClass:
     87   case Stmt::LabelStmtClass:
     88   case Stmt::AttributedStmtClass:
     89   case Stmt::GotoStmtClass:
     90   case Stmt::BreakStmtClass:
     91   case Stmt::ContinueStmtClass:
     92   case Stmt::DefaultStmtClass:
     93   case Stmt::CaseStmtClass:
     94   case Stmt::SEHLeaveStmtClass:
     95     llvm_unreachable("should have emitted these statements as simple");
     96 
     97 #define STMT(Type, Base)
     98 #define ABSTRACT_STMT(Op)
     99 #define EXPR(Type, Base) \
    100   case Stmt::Type##Class:
    101 #include "clang/AST/StmtNodes.inc"
    102   {
    103     // Remember the block we came in on.
    104     llvm::BasicBlock *incoming = Builder.GetInsertBlock();
    105     assert(incoming && "expression emission must have an insertion point");
    106 
    107     EmitIgnoredExpr(cast<Expr>(S));
    108 
    109     llvm::BasicBlock *outgoing = Builder.GetInsertBlock();
    110     assert(outgoing && "expression emission cleared block!");
    111 
    112     // The expression emitters assume (reasonably!) that the insertion
    113     // point is always set.  To maintain that, the call-emission code
    114     // for noreturn functions has to enter a new block with no
    115     // predecessors.  We want to kill that block and mark the current
    116     // insertion point unreachable in the common case of a call like
    117     // "exit();".  Since expression emission doesn't otherwise create
    118     // blocks with no predecessors, we can just test for that.
    119     // However, we must be careful not to do this to our incoming
    120     // block, because *statement* emission does sometimes create
    121     // reachable blocks which will have no predecessors until later in
    122     // the function.  This occurs with, e.g., labels that are not
    123     // reachable by fallthrough.
    124     if (incoming != outgoing && outgoing->use_empty()) {
    125       outgoing->eraseFromParent();
    126       Builder.ClearInsertionPoint();
    127     }
    128     break;
    129   }
    130 
    131   case Stmt::IndirectGotoStmtClass:
    132     EmitIndirectGotoStmt(cast<IndirectGotoStmt>(*S)); break;
    133 
    134   case Stmt::IfStmtClass:       EmitIfStmt(cast<IfStmt>(*S));             break;
    135   case Stmt::WhileStmtClass:    EmitWhileStmt(cast<WhileStmt>(*S));       break;
    136   case Stmt::DoStmtClass:       EmitDoStmt(cast<DoStmt>(*S));             break;
    137   case Stmt::ForStmtClass:      EmitForStmt(cast<ForStmt>(*S));           break;
    138 
    139   case Stmt::ReturnStmtClass:   EmitReturnStmt(cast<ReturnStmt>(*S));     break;
    140 
    141   case Stmt::SwitchStmtClass:   EmitSwitchStmt(cast<SwitchStmt>(*S));     break;
    142   case Stmt::GCCAsmStmtClass:   // Intentional fall-through.
    143   case Stmt::MSAsmStmtClass:    EmitAsmStmt(cast<AsmStmt>(*S));           break;
    144   case Stmt::CoroutineBodyStmtClass:
    145   case Stmt::CoreturnStmtClass:
    146     CGM.ErrorUnsupported(S, "coroutine");
    147     break;
    148   case Stmt::CapturedStmtClass: {
    149     const CapturedStmt *CS = cast<CapturedStmt>(S);
    150     EmitCapturedStmt(*CS, CS->getCapturedRegionKind());
    151     }
    152     break;
    153   case Stmt::ObjCAtTryStmtClass:
    154     EmitObjCAtTryStmt(cast<ObjCAtTryStmt>(*S));
    155     break;
    156   case Stmt::ObjCAtCatchStmtClass:
    157     llvm_unreachable(
    158                     "@catch statements should be handled by EmitObjCAtTryStmt");
    159   case Stmt::ObjCAtFinallyStmtClass:
    160     llvm_unreachable(
    161                   "@finally statements should be handled by EmitObjCAtTryStmt");
    162   case Stmt::ObjCAtThrowStmtClass:
    163     EmitObjCAtThrowStmt(cast<ObjCAtThrowStmt>(*S));
    164     break;
    165   case Stmt::ObjCAtSynchronizedStmtClass:
    166     EmitObjCAtSynchronizedStmt(cast<ObjCAtSynchronizedStmt>(*S));
    167     break;
    168   case Stmt::ObjCForCollectionStmtClass:
    169     EmitObjCForCollectionStmt(cast<ObjCForCollectionStmt>(*S));
    170     break;
    171   case Stmt::ObjCAutoreleasePoolStmtClass:
    172     EmitObjCAutoreleasePoolStmt(cast<ObjCAutoreleasePoolStmt>(*S));
    173     break;
    174 
    175   case Stmt::CXXTryStmtClass:
    176     EmitCXXTryStmt(cast<CXXTryStmt>(*S));
    177     break;
    178   case Stmt::CXXForRangeStmtClass:
    179     EmitCXXForRangeStmt(cast<CXXForRangeStmt>(*S));
    180     break;
    181   case Stmt::SEHTryStmtClass:
    182     EmitSEHTryStmt(cast<SEHTryStmt>(*S));
    183     break;
    184   case Stmt::OMPParallelDirectiveClass:
    185     EmitOMPParallelDirective(cast<OMPParallelDirective>(*S));
    186     break;
    187   case Stmt::OMPSimdDirectiveClass:
    188     EmitOMPSimdDirective(cast<OMPSimdDirective>(*S));
    189     break;
    190   case Stmt::OMPForDirectiveClass:
    191     EmitOMPForDirective(cast<OMPForDirective>(*S));
    192     break;
    193   case Stmt::OMPForSimdDirectiveClass:
    194     EmitOMPForSimdDirective(cast<OMPForSimdDirective>(*S));
    195     break;
    196   case Stmt::OMPSectionsDirectiveClass:
    197     EmitOMPSectionsDirective(cast<OMPSectionsDirective>(*S));
    198     break;
    199   case Stmt::OMPSectionDirectiveClass:
    200     EmitOMPSectionDirective(cast<OMPSectionDirective>(*S));
    201     break;
    202   case Stmt::OMPSingleDirectiveClass:
    203     EmitOMPSingleDirective(cast<OMPSingleDirective>(*S));
    204     break;
    205   case Stmt::OMPMasterDirectiveClass:
    206     EmitOMPMasterDirective(cast<OMPMasterDirective>(*S));
    207     break;
    208   case Stmt::OMPCriticalDirectiveClass:
    209     EmitOMPCriticalDirective(cast<OMPCriticalDirective>(*S));
    210     break;
    211   case Stmt::OMPParallelForDirectiveClass:
    212     EmitOMPParallelForDirective(cast<OMPParallelForDirective>(*S));
    213     break;
    214   case Stmt::OMPParallelForSimdDirectiveClass:
    215     EmitOMPParallelForSimdDirective(cast<OMPParallelForSimdDirective>(*S));
    216     break;
    217   case Stmt::OMPParallelSectionsDirectiveClass:
    218     EmitOMPParallelSectionsDirective(cast<OMPParallelSectionsDirective>(*S));
    219     break;
    220   case Stmt::OMPTaskDirectiveClass:
    221     EmitOMPTaskDirective(cast<OMPTaskDirective>(*S));
    222     break;
    223   case Stmt::OMPTaskyieldDirectiveClass:
    224     EmitOMPTaskyieldDirective(cast<OMPTaskyieldDirective>(*S));
    225     break;
    226   case Stmt::OMPBarrierDirectiveClass:
    227     EmitOMPBarrierDirective(cast<OMPBarrierDirective>(*S));
    228     break;
    229   case Stmt::OMPTaskwaitDirectiveClass:
    230     EmitOMPTaskwaitDirective(cast<OMPTaskwaitDirective>(*S));
    231     break;
    232   case Stmt::OMPTaskgroupDirectiveClass:
    233     EmitOMPTaskgroupDirective(cast<OMPTaskgroupDirective>(*S));
    234     break;
    235   case Stmt::OMPFlushDirectiveClass:
    236     EmitOMPFlushDirective(cast<OMPFlushDirective>(*S));
    237     break;
    238   case Stmt::OMPOrderedDirectiveClass:
    239     EmitOMPOrderedDirective(cast<OMPOrderedDirective>(*S));
    240     break;
    241   case Stmt::OMPAtomicDirectiveClass:
    242     EmitOMPAtomicDirective(cast<OMPAtomicDirective>(*S));
    243     break;
    244   case Stmt::OMPTargetDirectiveClass:
    245     EmitOMPTargetDirective(cast<OMPTargetDirective>(*S));
    246     break;
    247   case Stmt::OMPTeamsDirectiveClass:
    248     EmitOMPTeamsDirective(cast<OMPTeamsDirective>(*S));
    249     break;
    250   case Stmt::OMPCancellationPointDirectiveClass:
    251     EmitOMPCancellationPointDirective(cast<OMPCancellationPointDirective>(*S));
    252     break;
    253   case Stmt::OMPCancelDirectiveClass:
    254     EmitOMPCancelDirective(cast<OMPCancelDirective>(*S));
    255     break;
    256   case Stmt::OMPTargetDataDirectiveClass:
    257     EmitOMPTargetDataDirective(cast<OMPTargetDataDirective>(*S));
    258     break;
    259   case Stmt::OMPTaskLoopDirectiveClass:
    260     EmitOMPTaskLoopDirective(cast<OMPTaskLoopDirective>(*S));
    261     break;
    262   case Stmt::OMPTaskLoopSimdDirectiveClass:
    263     EmitOMPTaskLoopSimdDirective(cast<OMPTaskLoopSimdDirective>(*S));
    264     break;
    265 case Stmt::OMPDistributeDirectiveClass:
    266     EmitOMPDistributeDirective(cast<OMPDistributeDirective>(*S));
    267 	break;
    268   }
    269 }
    270 
    271 bool CodeGenFunction::EmitSimpleStmt(const Stmt *S) {
    272   switch (S->getStmtClass()) {
    273   default: return false;
    274   case Stmt::NullStmtClass: break;
    275   case Stmt::CompoundStmtClass: EmitCompoundStmt(cast<CompoundStmt>(*S)); break;
    276   case Stmt::DeclStmtClass:     EmitDeclStmt(cast<DeclStmt>(*S));         break;
    277   case Stmt::LabelStmtClass:    EmitLabelStmt(cast<LabelStmt>(*S));       break;
    278   case Stmt::AttributedStmtClass:
    279                             EmitAttributedStmt(cast<AttributedStmt>(*S)); break;
    280   case Stmt::GotoStmtClass:     EmitGotoStmt(cast<GotoStmt>(*S));         break;
    281   case Stmt::BreakStmtClass:    EmitBreakStmt(cast<BreakStmt>(*S));       break;
    282   case Stmt::ContinueStmtClass: EmitContinueStmt(cast<ContinueStmt>(*S)); break;
    283   case Stmt::DefaultStmtClass:  EmitDefaultStmt(cast<DefaultStmt>(*S));   break;
    284   case Stmt::CaseStmtClass:     EmitCaseStmt(cast<CaseStmt>(*S));         break;
    285   case Stmt::SEHLeaveStmtClass: EmitSEHLeaveStmt(cast<SEHLeaveStmt>(*S)); break;
    286   }
    287 
    288   return true;
    289 }
    290 
    291 /// EmitCompoundStmt - Emit a compound statement {..} node.  If GetLast is true,
    292 /// this captures the expression result of the last sub-statement and returns it
    293 /// (for use by the statement expression extension).
    294 Address CodeGenFunction::EmitCompoundStmt(const CompoundStmt &S, bool GetLast,
    295                                           AggValueSlot AggSlot) {
    296   PrettyStackTraceLoc CrashInfo(getContext().getSourceManager(),S.getLBracLoc(),
    297                              "LLVM IR generation of compound statement ('{}')");
    298 
    299   // Keep track of the current cleanup stack depth, including debug scopes.
    300   LexicalScope Scope(*this, S.getSourceRange());
    301 
    302   return EmitCompoundStmtWithoutScope(S, GetLast, AggSlot);
    303 }
    304 
    305 Address
    306 CodeGenFunction::EmitCompoundStmtWithoutScope(const CompoundStmt &S,
    307                                               bool GetLast,
    308                                               AggValueSlot AggSlot) {
    309 
    310   for (CompoundStmt::const_body_iterator I = S.body_begin(),
    311        E = S.body_end()-GetLast; I != E; ++I)
    312     EmitStmt(*I);
    313 
    314   Address RetAlloca = Address::invalid();
    315   if (GetLast) {
    316     // We have to special case labels here.  They are statements, but when put
    317     // at the end of a statement expression, they yield the value of their
    318     // subexpression.  Handle this by walking through all labels we encounter,
    319     // emitting them before we evaluate the subexpr.
    320     const Stmt *LastStmt = S.body_back();
    321     while (const LabelStmt *LS = dyn_cast<LabelStmt>(LastStmt)) {
    322       EmitLabel(LS->getDecl());
    323       LastStmt = LS->getSubStmt();
    324     }
    325 
    326     EnsureInsertPoint();
    327 
    328     QualType ExprTy = cast<Expr>(LastStmt)->getType();
    329     if (hasAggregateEvaluationKind(ExprTy)) {
    330       EmitAggExpr(cast<Expr>(LastStmt), AggSlot);
    331     } else {
    332       // We can't return an RValue here because there might be cleanups at
    333       // the end of the StmtExpr.  Because of that, we have to emit the result
    334       // here into a temporary alloca.
    335       RetAlloca = CreateMemTemp(ExprTy);
    336       EmitAnyExprToMem(cast<Expr>(LastStmt), RetAlloca, Qualifiers(),
    337                        /*IsInit*/false);
    338     }
    339 
    340   }
    341 
    342   return RetAlloca;
    343 }
    344 
    345 void CodeGenFunction::SimplifyForwardingBlocks(llvm::BasicBlock *BB) {
    346   llvm::BranchInst *BI = dyn_cast<llvm::BranchInst>(BB->getTerminator());
    347 
    348   // If there is a cleanup stack, then we it isn't worth trying to
    349   // simplify this block (we would need to remove it from the scope map
    350   // and cleanup entry).
    351   if (!EHStack.empty())
    352     return;
    353 
    354   // Can only simplify direct branches.
    355   if (!BI || !BI->isUnconditional())
    356     return;
    357 
    358   // Can only simplify empty blocks.
    359   if (BI->getIterator() != BB->begin())
    360     return;
    361 
    362   BB->replaceAllUsesWith(BI->getSuccessor(0));
    363   BI->eraseFromParent();
    364   BB->eraseFromParent();
    365 }
    366 
    367 void CodeGenFunction::EmitBlock(llvm::BasicBlock *BB, bool IsFinished) {
    368   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
    369 
    370   // Fall out of the current block (if necessary).
    371   EmitBranch(BB);
    372 
    373   if (IsFinished && BB->use_empty()) {
    374     delete BB;
    375     return;
    376   }
    377 
    378   // Place the block after the current block, if possible, or else at
    379   // the end of the function.
    380   if (CurBB && CurBB->getParent())
    381     CurFn->getBasicBlockList().insertAfter(CurBB->getIterator(), BB);
    382   else
    383     CurFn->getBasicBlockList().push_back(BB);
    384   Builder.SetInsertPoint(BB);
    385 }
    386 
    387 void CodeGenFunction::EmitBranch(llvm::BasicBlock *Target) {
    388   // Emit a branch from the current block to the target one if this
    389   // was a real block.  If this was just a fall-through block after a
    390   // terminator, don't emit it.
    391   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
    392 
    393   if (!CurBB || CurBB->getTerminator()) {
    394     // If there is no insert point or the previous block is already
    395     // terminated, don't touch it.
    396   } else {
    397     // Otherwise, create a fall-through branch.
    398     Builder.CreateBr(Target);
    399   }
    400 
    401   Builder.ClearInsertionPoint();
    402 }
    403 
    404 void CodeGenFunction::EmitBlockAfterUses(llvm::BasicBlock *block) {
    405   bool inserted = false;
    406   for (llvm::User *u : block->users()) {
    407     if (llvm::Instruction *insn = dyn_cast<llvm::Instruction>(u)) {
    408       CurFn->getBasicBlockList().insertAfter(insn->getParent()->getIterator(),
    409                                              block);
    410       inserted = true;
    411       break;
    412     }
    413   }
    414 
    415   if (!inserted)
    416     CurFn->getBasicBlockList().push_back(block);
    417 
    418   Builder.SetInsertPoint(block);
    419 }
    420 
    421 CodeGenFunction::JumpDest
    422 CodeGenFunction::getJumpDestForLabel(const LabelDecl *D) {
    423   JumpDest &Dest = LabelMap[D];
    424   if (Dest.isValid()) return Dest;
    425 
    426   // Create, but don't insert, the new block.
    427   Dest = JumpDest(createBasicBlock(D->getName()),
    428                   EHScopeStack::stable_iterator::invalid(),
    429                   NextCleanupDestIndex++);
    430   return Dest;
    431 }
    432 
    433 void CodeGenFunction::EmitLabel(const LabelDecl *D) {
    434   // Add this label to the current lexical scope if we're within any
    435   // normal cleanups.  Jumps "in" to this label --- when permitted by
    436   // the language --- may need to be routed around such cleanups.
    437   if (EHStack.hasNormalCleanups() && CurLexicalScope)
    438     CurLexicalScope->addLabel(D);
    439 
    440   JumpDest &Dest = LabelMap[D];
    441 
    442   // If we didn't need a forward reference to this label, just go
    443   // ahead and create a destination at the current scope.
    444   if (!Dest.isValid()) {
    445     Dest = getJumpDestInCurrentScope(D->getName());
    446 
    447   // Otherwise, we need to give this label a target depth and remove
    448   // it from the branch-fixups list.
    449   } else {
    450     assert(!Dest.getScopeDepth().isValid() && "already emitted label!");
    451     Dest.setScopeDepth(EHStack.stable_begin());
    452     ResolveBranchFixups(Dest.getBlock());
    453   }
    454 
    455   EmitBlock(Dest.getBlock());
    456   incrementProfileCounter(D->getStmt());
    457 }
    458 
    459 /// Change the cleanup scope of the labels in this lexical scope to
    460 /// match the scope of the enclosing context.
    461 void CodeGenFunction::LexicalScope::rescopeLabels() {
    462   assert(!Labels.empty());
    463   EHScopeStack::stable_iterator innermostScope
    464     = CGF.EHStack.getInnermostNormalCleanup();
    465 
    466   // Change the scope depth of all the labels.
    467   for (SmallVectorImpl<const LabelDecl*>::const_iterator
    468          i = Labels.begin(), e = Labels.end(); i != e; ++i) {
    469     assert(CGF.LabelMap.count(*i));
    470     JumpDest &dest = CGF.LabelMap.find(*i)->second;
    471     assert(dest.getScopeDepth().isValid());
    472     assert(innermostScope.encloses(dest.getScopeDepth()));
    473     dest.setScopeDepth(innermostScope);
    474   }
    475 
    476   // Reparent the labels if the new scope also has cleanups.
    477   if (innermostScope != EHScopeStack::stable_end() && ParentScope) {
    478     ParentScope->Labels.append(Labels.begin(), Labels.end());
    479   }
    480 }
    481 
    482 
    483 void CodeGenFunction::EmitLabelStmt(const LabelStmt &S) {
    484   EmitLabel(S.getDecl());
    485   EmitStmt(S.getSubStmt());
    486 }
    487 
    488 void CodeGenFunction::EmitAttributedStmt(const AttributedStmt &S) {
    489   const Stmt *SubStmt = S.getSubStmt();
    490   switch (SubStmt->getStmtClass()) {
    491   case Stmt::DoStmtClass:
    492     EmitDoStmt(cast<DoStmt>(*SubStmt), S.getAttrs());
    493     break;
    494   case Stmt::ForStmtClass:
    495     EmitForStmt(cast<ForStmt>(*SubStmt), S.getAttrs());
    496     break;
    497   case Stmt::WhileStmtClass:
    498     EmitWhileStmt(cast<WhileStmt>(*SubStmt), S.getAttrs());
    499     break;
    500   case Stmt::CXXForRangeStmtClass:
    501     EmitCXXForRangeStmt(cast<CXXForRangeStmt>(*SubStmt), S.getAttrs());
    502     break;
    503   default:
    504     EmitStmt(SubStmt);
    505   }
    506 }
    507 
    508 void CodeGenFunction::EmitGotoStmt(const GotoStmt &S) {
    509   // If this code is reachable then emit a stop point (if generating
    510   // debug info). We have to do this ourselves because we are on the
    511   // "simple" statement path.
    512   if (HaveInsertPoint())
    513     EmitStopPoint(&S);
    514 
    515   EmitBranchThroughCleanup(getJumpDestForLabel(S.getLabel()));
    516 }
    517 
    518 
    519 void CodeGenFunction::EmitIndirectGotoStmt(const IndirectGotoStmt &S) {
    520   if (const LabelDecl *Target = S.getConstantTarget()) {
    521     EmitBranchThroughCleanup(getJumpDestForLabel(Target));
    522     return;
    523   }
    524 
    525   // Ensure that we have an i8* for our PHI node.
    526   llvm::Value *V = Builder.CreateBitCast(EmitScalarExpr(S.getTarget()),
    527                                          Int8PtrTy, "addr");
    528   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
    529 
    530   // Get the basic block for the indirect goto.
    531   llvm::BasicBlock *IndGotoBB = GetIndirectGotoBlock();
    532 
    533   // The first instruction in the block has to be the PHI for the switch dest,
    534   // add an entry for this branch.
    535   cast<llvm::PHINode>(IndGotoBB->begin())->addIncoming(V, CurBB);
    536 
    537   EmitBranch(IndGotoBB);
    538 }
    539 
    540 void CodeGenFunction::EmitIfStmt(const IfStmt &S) {
    541   // C99 6.8.4.1: The first substatement is executed if the expression compares
    542   // unequal to 0.  The condition must be a scalar type.
    543   LexicalScope ConditionScope(*this, S.getCond()->getSourceRange());
    544 
    545   if (S.getConditionVariable())
    546     EmitAutoVarDecl(*S.getConditionVariable());
    547 
    548   // If the condition constant folds and can be elided, try to avoid emitting
    549   // the condition and the dead arm of the if/else.
    550   bool CondConstant;
    551   if (ConstantFoldsToSimpleInteger(S.getCond(), CondConstant)) {
    552     // Figure out which block (then or else) is executed.
    553     const Stmt *Executed = S.getThen();
    554     const Stmt *Skipped  = S.getElse();
    555     if (!CondConstant)  // Condition false?
    556       std::swap(Executed, Skipped);
    557 
    558     // If the skipped block has no labels in it, just emit the executed block.
    559     // This avoids emitting dead code and simplifies the CFG substantially.
    560     if (!ContainsLabel(Skipped)) {
    561       if (CondConstant)
    562         incrementProfileCounter(&S);
    563       if (Executed) {
    564         RunCleanupsScope ExecutedScope(*this);
    565         EmitStmt(Executed);
    566       }
    567       return;
    568     }
    569   }
    570 
    571   // Otherwise, the condition did not fold, or we couldn't elide it.  Just emit
    572   // the conditional branch.
    573   llvm::BasicBlock *ThenBlock = createBasicBlock("if.then");
    574   llvm::BasicBlock *ContBlock = createBasicBlock("if.end");
    575   llvm::BasicBlock *ElseBlock = ContBlock;
    576   if (S.getElse())
    577     ElseBlock = createBasicBlock("if.else");
    578 
    579   EmitBranchOnBoolExpr(S.getCond(), ThenBlock, ElseBlock,
    580                        getProfileCount(S.getThen()));
    581 
    582   // Emit the 'then' code.
    583   EmitBlock(ThenBlock);
    584   incrementProfileCounter(&S);
    585   {
    586     RunCleanupsScope ThenScope(*this);
    587     EmitStmt(S.getThen());
    588   }
    589   EmitBranch(ContBlock);
    590 
    591   // Emit the 'else' code if present.
    592   if (const Stmt *Else = S.getElse()) {
    593     {
    594       // There is no need to emit line number for an unconditional branch.
    595       auto NL = ApplyDebugLocation::CreateEmpty(*this);
    596       EmitBlock(ElseBlock);
    597     }
    598     {
    599       RunCleanupsScope ElseScope(*this);
    600       EmitStmt(Else);
    601     }
    602     {
    603       // There is no need to emit line number for an unconditional branch.
    604       auto NL = ApplyDebugLocation::CreateEmpty(*this);
    605       EmitBranch(ContBlock);
    606     }
    607   }
    608 
    609   // Emit the continuation block for code after the if.
    610   EmitBlock(ContBlock, true);
    611 }
    612 
    613 void CodeGenFunction::EmitWhileStmt(const WhileStmt &S,
    614                                     ArrayRef<const Attr *> WhileAttrs) {
    615   // Emit the header for the loop, which will also become
    616   // the continue target.
    617   JumpDest LoopHeader = getJumpDestInCurrentScope("while.cond");
    618   EmitBlock(LoopHeader.getBlock());
    619 
    620   LoopStack.push(LoopHeader.getBlock(), CGM.getContext(), WhileAttrs);
    621 
    622   // Create an exit block for when the condition fails, which will
    623   // also become the break target.
    624   JumpDest LoopExit = getJumpDestInCurrentScope("while.end");
    625 
    626   // Store the blocks to use for break and continue.
    627   BreakContinueStack.push_back(BreakContinue(LoopExit, LoopHeader));
    628 
    629   // C++ [stmt.while]p2:
    630   //   When the condition of a while statement is a declaration, the
    631   //   scope of the variable that is declared extends from its point
    632   //   of declaration (3.3.2) to the end of the while statement.
    633   //   [...]
    634   //   The object created in a condition is destroyed and created
    635   //   with each iteration of the loop.
    636   RunCleanupsScope ConditionScope(*this);
    637 
    638   if (S.getConditionVariable())
    639     EmitAutoVarDecl(*S.getConditionVariable());
    640 
    641   // Evaluate the conditional in the while header.  C99 6.8.5.1: The
    642   // evaluation of the controlling expression takes place before each
    643   // execution of the loop body.
    644   llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond());
    645 
    646   // while(1) is common, avoid extra exit blocks.  Be sure
    647   // to correctly handle break/continue though.
    648   bool EmitBoolCondBranch = true;
    649   if (llvm::ConstantInt *C = dyn_cast<llvm::ConstantInt>(BoolCondVal))
    650     if (C->isOne())
    651       EmitBoolCondBranch = false;
    652 
    653   // As long as the condition is true, go to the loop body.
    654   llvm::BasicBlock *LoopBody = createBasicBlock("while.body");
    655   if (EmitBoolCondBranch) {
    656     llvm::BasicBlock *ExitBlock = LoopExit.getBlock();
    657     if (ConditionScope.requiresCleanups())
    658       ExitBlock = createBasicBlock("while.exit");
    659     Builder.CreateCondBr(
    660         BoolCondVal, LoopBody, ExitBlock,
    661         createProfileWeightsForLoop(S.getCond(), getProfileCount(S.getBody())));
    662 
    663     if (ExitBlock != LoopExit.getBlock()) {
    664       EmitBlock(ExitBlock);
    665       EmitBranchThroughCleanup(LoopExit);
    666     }
    667   }
    668 
    669   // Emit the loop body.  We have to emit this in a cleanup scope
    670   // because it might be a singleton DeclStmt.
    671   {
    672     RunCleanupsScope BodyScope(*this);
    673     EmitBlock(LoopBody);
    674     incrementProfileCounter(&S);
    675     EmitStmt(S.getBody());
    676   }
    677 
    678   BreakContinueStack.pop_back();
    679 
    680   // Immediately force cleanup.
    681   ConditionScope.ForceCleanup();
    682 
    683   EmitStopPoint(&S);
    684   // Branch to the loop header again.
    685   EmitBranch(LoopHeader.getBlock());
    686 
    687   LoopStack.pop();
    688 
    689   // Emit the exit block.
    690   EmitBlock(LoopExit.getBlock(), true);
    691 
    692   // The LoopHeader typically is just a branch if we skipped emitting
    693   // a branch, try to erase it.
    694   if (!EmitBoolCondBranch)
    695     SimplifyForwardingBlocks(LoopHeader.getBlock());
    696 }
    697 
    698 void CodeGenFunction::EmitDoStmt(const DoStmt &S,
    699                                  ArrayRef<const Attr *> DoAttrs) {
    700   JumpDest LoopExit = getJumpDestInCurrentScope("do.end");
    701   JumpDest LoopCond = getJumpDestInCurrentScope("do.cond");
    702 
    703   uint64_t ParentCount = getCurrentProfileCount();
    704 
    705   // Store the blocks to use for break and continue.
    706   BreakContinueStack.push_back(BreakContinue(LoopExit, LoopCond));
    707 
    708   // Emit the body of the loop.
    709   llvm::BasicBlock *LoopBody = createBasicBlock("do.body");
    710 
    711   LoopStack.push(LoopBody, CGM.getContext(), DoAttrs);
    712 
    713   EmitBlockWithFallThrough(LoopBody, &S);
    714   {
    715     RunCleanupsScope BodyScope(*this);
    716     EmitStmt(S.getBody());
    717   }
    718 
    719   EmitBlock(LoopCond.getBlock());
    720 
    721   // C99 6.8.5.2: "The evaluation of the controlling expression takes place
    722   // after each execution of the loop body."
    723 
    724   // Evaluate the conditional in the while header.
    725   // C99 6.8.5p2/p4: The first substatement is executed if the expression
    726   // compares unequal to 0.  The condition must be a scalar type.
    727   llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond());
    728 
    729   BreakContinueStack.pop_back();
    730 
    731   // "do {} while (0)" is common in macros, avoid extra blocks.  Be sure
    732   // to correctly handle break/continue though.
    733   bool EmitBoolCondBranch = true;
    734   if (llvm::ConstantInt *C = dyn_cast<llvm::ConstantInt>(BoolCondVal))
    735     if (C->isZero())
    736       EmitBoolCondBranch = false;
    737 
    738   // As long as the condition is true, iterate the loop.
    739   if (EmitBoolCondBranch) {
    740     uint64_t BackedgeCount = getProfileCount(S.getBody()) - ParentCount;
    741     Builder.CreateCondBr(
    742         BoolCondVal, LoopBody, LoopExit.getBlock(),
    743         createProfileWeightsForLoop(S.getCond(), BackedgeCount));
    744   }
    745 
    746   LoopStack.pop();
    747 
    748   // Emit the exit block.
    749   EmitBlock(LoopExit.getBlock());
    750 
    751   // The DoCond block typically is just a branch if we skipped
    752   // emitting a branch, try to erase it.
    753   if (!EmitBoolCondBranch)
    754     SimplifyForwardingBlocks(LoopCond.getBlock());
    755 }
    756 
    757 void CodeGenFunction::EmitForStmt(const ForStmt &S,
    758                                   ArrayRef<const Attr *> ForAttrs) {
    759   JumpDest LoopExit = getJumpDestInCurrentScope("for.end");
    760 
    761   LexicalScope ForScope(*this, S.getSourceRange());
    762 
    763   // Evaluate the first part before the loop.
    764   if (S.getInit())
    765     EmitStmt(S.getInit());
    766 
    767   // Start the loop with a block that tests the condition.
    768   // If there's an increment, the continue scope will be overwritten
    769   // later.
    770   JumpDest Continue = getJumpDestInCurrentScope("for.cond");
    771   llvm::BasicBlock *CondBlock = Continue.getBlock();
    772   EmitBlock(CondBlock);
    773 
    774   LoopStack.push(CondBlock, CGM.getContext(), ForAttrs);
    775 
    776   // If the for loop doesn't have an increment we can just use the
    777   // condition as the continue block.  Otherwise we'll need to create
    778   // a block for it (in the current scope, i.e. in the scope of the
    779   // condition), and that we will become our continue block.
    780   if (S.getInc())
    781     Continue = getJumpDestInCurrentScope("for.inc");
    782 
    783   // Store the blocks to use for break and continue.
    784   BreakContinueStack.push_back(BreakContinue(LoopExit, Continue));
    785 
    786   // Create a cleanup scope for the condition variable cleanups.
    787   LexicalScope ConditionScope(*this, S.getSourceRange());
    788 
    789   if (S.getCond()) {
    790     // If the for statement has a condition scope, emit the local variable
    791     // declaration.
    792     if (S.getConditionVariable()) {
    793       EmitAutoVarDecl(*S.getConditionVariable());
    794     }
    795 
    796     llvm::BasicBlock *ExitBlock = LoopExit.getBlock();
    797     // If there are any cleanups between here and the loop-exit scope,
    798     // create a block to stage a loop exit along.
    799     if (ForScope.requiresCleanups())
    800       ExitBlock = createBasicBlock("for.cond.cleanup");
    801 
    802     // As long as the condition is true, iterate the loop.
    803     llvm::BasicBlock *ForBody = createBasicBlock("for.body");
    804 
    805     // C99 6.8.5p2/p4: The first substatement is executed if the expression
    806     // compares unequal to 0.  The condition must be a scalar type.
    807     llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond());
    808     Builder.CreateCondBr(
    809         BoolCondVal, ForBody, ExitBlock,
    810         createProfileWeightsForLoop(S.getCond(), getProfileCount(S.getBody())));
    811 
    812     if (ExitBlock != LoopExit.getBlock()) {
    813       EmitBlock(ExitBlock);
    814       EmitBranchThroughCleanup(LoopExit);
    815     }
    816 
    817     EmitBlock(ForBody);
    818   } else {
    819     // Treat it as a non-zero constant.  Don't even create a new block for the
    820     // body, just fall into it.
    821   }
    822   incrementProfileCounter(&S);
    823 
    824   {
    825     // Create a separate cleanup scope for the body, in case it is not
    826     // a compound statement.
    827     RunCleanupsScope BodyScope(*this);
    828     EmitStmt(S.getBody());
    829   }
    830 
    831   // If there is an increment, emit it next.
    832   if (S.getInc()) {
    833     EmitBlock(Continue.getBlock());
    834     EmitStmt(S.getInc());
    835   }
    836 
    837   BreakContinueStack.pop_back();
    838 
    839   ConditionScope.ForceCleanup();
    840 
    841   EmitStopPoint(&S);
    842   EmitBranch(CondBlock);
    843 
    844   ForScope.ForceCleanup();
    845 
    846   LoopStack.pop();
    847 
    848   // Emit the fall-through block.
    849   EmitBlock(LoopExit.getBlock(), true);
    850 }
    851 
    852 void
    853 CodeGenFunction::EmitCXXForRangeStmt(const CXXForRangeStmt &S,
    854                                      ArrayRef<const Attr *> ForAttrs) {
    855   JumpDest LoopExit = getJumpDestInCurrentScope("for.end");
    856 
    857   LexicalScope ForScope(*this, S.getSourceRange());
    858 
    859   // Evaluate the first pieces before the loop.
    860   EmitStmt(S.getRangeStmt());
    861   EmitStmt(S.getBeginEndStmt());
    862 
    863   // Start the loop with a block that tests the condition.
    864   // If there's an increment, the continue scope will be overwritten
    865   // later.
    866   llvm::BasicBlock *CondBlock = createBasicBlock("for.cond");
    867   EmitBlock(CondBlock);
    868 
    869   LoopStack.push(CondBlock, CGM.getContext(), ForAttrs);
    870 
    871   // If there are any cleanups between here and the loop-exit scope,
    872   // create a block to stage a loop exit along.
    873   llvm::BasicBlock *ExitBlock = LoopExit.getBlock();
    874   if (ForScope.requiresCleanups())
    875     ExitBlock = createBasicBlock("for.cond.cleanup");
    876 
    877   // The loop body, consisting of the specified body and the loop variable.
    878   llvm::BasicBlock *ForBody = createBasicBlock("for.body");
    879 
    880   // The body is executed if the expression, contextually converted
    881   // to bool, is true.
    882   llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond());
    883   Builder.CreateCondBr(
    884       BoolCondVal, ForBody, ExitBlock,
    885       createProfileWeightsForLoop(S.getCond(), getProfileCount(S.getBody())));
    886 
    887   if (ExitBlock != LoopExit.getBlock()) {
    888     EmitBlock(ExitBlock);
    889     EmitBranchThroughCleanup(LoopExit);
    890   }
    891 
    892   EmitBlock(ForBody);
    893   incrementProfileCounter(&S);
    894 
    895   // Create a block for the increment. In case of a 'continue', we jump there.
    896   JumpDest Continue = getJumpDestInCurrentScope("for.inc");
    897 
    898   // Store the blocks to use for break and continue.
    899   BreakContinueStack.push_back(BreakContinue(LoopExit, Continue));
    900 
    901   {
    902     // Create a separate cleanup scope for the loop variable and body.
    903     LexicalScope BodyScope(*this, S.getSourceRange());
    904     EmitStmt(S.getLoopVarStmt());
    905     EmitStmt(S.getBody());
    906   }
    907 
    908   EmitStopPoint(&S);
    909   // If there is an increment, emit it next.
    910   EmitBlock(Continue.getBlock());
    911   EmitStmt(S.getInc());
    912 
    913   BreakContinueStack.pop_back();
    914 
    915   EmitBranch(CondBlock);
    916 
    917   ForScope.ForceCleanup();
    918 
    919   LoopStack.pop();
    920 
    921   // Emit the fall-through block.
    922   EmitBlock(LoopExit.getBlock(), true);
    923 }
    924 
    925 void CodeGenFunction::EmitReturnOfRValue(RValue RV, QualType Ty) {
    926   if (RV.isScalar()) {
    927     Builder.CreateStore(RV.getScalarVal(), ReturnValue);
    928   } else if (RV.isAggregate()) {
    929     EmitAggregateCopy(ReturnValue, RV.getAggregateAddress(), Ty);
    930   } else {
    931     EmitStoreOfComplex(RV.getComplexVal(), MakeAddrLValue(ReturnValue, Ty),
    932                        /*init*/ true);
    933   }
    934   EmitBranchThroughCleanup(ReturnBlock);
    935 }
    936 
    937 /// EmitReturnStmt - Note that due to GCC extensions, this can have an operand
    938 /// if the function returns void, or may be missing one if the function returns
    939 /// non-void.  Fun stuff :).
    940 void CodeGenFunction::EmitReturnStmt(const ReturnStmt &S) {
    941   // Returning from an outlined SEH helper is UB, and we already warn on it.
    942   if (IsOutlinedSEHHelper) {
    943     Builder.CreateUnreachable();
    944     Builder.ClearInsertionPoint();
    945   }
    946 
    947   // Emit the result value, even if unused, to evalute the side effects.
    948   const Expr *RV = S.getRetValue();
    949 
    950   // Treat block literals in a return expression as if they appeared
    951   // in their own scope.  This permits a small, easily-implemented
    952   // exception to our over-conservative rules about not jumping to
    953   // statements following block literals with non-trivial cleanups.
    954   RunCleanupsScope cleanupScope(*this);
    955   if (const ExprWithCleanups *cleanups =
    956         dyn_cast_or_null<ExprWithCleanups>(RV)) {
    957     enterFullExpression(cleanups);
    958     RV = cleanups->getSubExpr();
    959   }
    960 
    961   // FIXME: Clean this up by using an LValue for ReturnTemp,
    962   // EmitStoreThroughLValue, and EmitAnyExpr.
    963   if (getLangOpts().ElideConstructors &&
    964       S.getNRVOCandidate() && S.getNRVOCandidate()->isNRVOVariable()) {
    965     // Apply the named return value optimization for this return statement,
    966     // which means doing nothing: the appropriate result has already been
    967     // constructed into the NRVO variable.
    968 
    969     // If there is an NRVO flag for this variable, set it to 1 into indicate
    970     // that the cleanup code should not destroy the variable.
    971     if (llvm::Value *NRVOFlag = NRVOFlags[S.getNRVOCandidate()])
    972       Builder.CreateFlagStore(Builder.getTrue(), NRVOFlag);
    973   } else if (!ReturnValue.isValid() || (RV && RV->getType()->isVoidType())) {
    974     // Make sure not to return anything, but evaluate the expression
    975     // for side effects.
    976     if (RV)
    977       EmitAnyExpr(RV);
    978   } else if (!RV) {
    979     // Do nothing (return value is left uninitialized)
    980   } else if (FnRetTy->isReferenceType()) {
    981     // If this function returns a reference, take the address of the expression
    982     // rather than the value.
    983     RValue Result = EmitReferenceBindingToExpr(RV);
    984     Builder.CreateStore(Result.getScalarVal(), ReturnValue);
    985   } else {
    986     switch (getEvaluationKind(RV->getType())) {
    987     case TEK_Scalar:
    988       Builder.CreateStore(EmitScalarExpr(RV), ReturnValue);
    989       break;
    990     case TEK_Complex:
    991       EmitComplexExprIntoLValue(RV, MakeAddrLValue(ReturnValue, RV->getType()),
    992                                 /*isInit*/ true);
    993       break;
    994     case TEK_Aggregate:
    995       EmitAggExpr(RV, AggValueSlot::forAddr(ReturnValue,
    996                                             Qualifiers(),
    997                                             AggValueSlot::IsDestructed,
    998                                             AggValueSlot::DoesNotNeedGCBarriers,
    999                                             AggValueSlot::IsNotAliased));
   1000       break;
   1001     }
   1002   }
   1003 
   1004   ++NumReturnExprs;
   1005   if (!RV || RV->isEvaluatable(getContext()))
   1006     ++NumSimpleReturnExprs;
   1007 
   1008   cleanupScope.ForceCleanup();
   1009   EmitBranchThroughCleanup(ReturnBlock);
   1010 }
   1011 
   1012 void CodeGenFunction::EmitDeclStmt(const DeclStmt &S) {
   1013   // As long as debug info is modeled with instructions, we have to ensure we
   1014   // have a place to insert here and write the stop point here.
   1015   if (HaveInsertPoint())
   1016     EmitStopPoint(&S);
   1017 
   1018   for (const auto *I : S.decls())
   1019     EmitDecl(*I);
   1020 }
   1021 
   1022 void CodeGenFunction::EmitBreakStmt(const BreakStmt &S) {
   1023   assert(!BreakContinueStack.empty() && "break stmt not in a loop or switch!");
   1024 
   1025   // If this code is reachable then emit a stop point (if generating
   1026   // debug info). We have to do this ourselves because we are on the
   1027   // "simple" statement path.
   1028   if (HaveInsertPoint())
   1029     EmitStopPoint(&S);
   1030 
   1031   EmitBranchThroughCleanup(BreakContinueStack.back().BreakBlock);
   1032 }
   1033 
   1034 void CodeGenFunction::EmitContinueStmt(const ContinueStmt &S) {
   1035   assert(!BreakContinueStack.empty() && "continue stmt not in a loop!");
   1036 
   1037   // If this code is reachable then emit a stop point (if generating
   1038   // debug info). We have to do this ourselves because we are on the
   1039   // "simple" statement path.
   1040   if (HaveInsertPoint())
   1041     EmitStopPoint(&S);
   1042 
   1043   EmitBranchThroughCleanup(BreakContinueStack.back().ContinueBlock);
   1044 }
   1045 
   1046 /// EmitCaseStmtRange - If case statement range is not too big then
   1047 /// add multiple cases to switch instruction, one for each value within
   1048 /// the range. If range is too big then emit "if" condition check.
   1049 void CodeGenFunction::EmitCaseStmtRange(const CaseStmt &S) {
   1050   assert(S.getRHS() && "Expected RHS value in CaseStmt");
   1051 
   1052   llvm::APSInt LHS = S.getLHS()->EvaluateKnownConstInt(getContext());
   1053   llvm::APSInt RHS = S.getRHS()->EvaluateKnownConstInt(getContext());
   1054 
   1055   // Emit the code for this case. We do this first to make sure it is
   1056   // properly chained from our predecessor before generating the
   1057   // switch machinery to enter this block.
   1058   llvm::BasicBlock *CaseDest = createBasicBlock("sw.bb");
   1059   EmitBlockWithFallThrough(CaseDest, &S);
   1060   EmitStmt(S.getSubStmt());
   1061 
   1062   // If range is empty, do nothing.
   1063   if (LHS.isSigned() ? RHS.slt(LHS) : RHS.ult(LHS))
   1064     return;
   1065 
   1066   llvm::APInt Range = RHS - LHS;
   1067   // FIXME: parameters such as this should not be hardcoded.
   1068   if (Range.ult(llvm::APInt(Range.getBitWidth(), 64))) {
   1069     // Range is small enough to add multiple switch instruction cases.
   1070     uint64_t Total = getProfileCount(&S);
   1071     unsigned NCases = Range.getZExtValue() + 1;
   1072     // We only have one region counter for the entire set of cases here, so we
   1073     // need to divide the weights evenly between the generated cases, ensuring
   1074     // that the total weight is preserved. E.g., a weight of 5 over three cases
   1075     // will be distributed as weights of 2, 2, and 1.
   1076     uint64_t Weight = Total / NCases, Rem = Total % NCases;
   1077     for (unsigned I = 0; I != NCases; ++I) {
   1078       if (SwitchWeights)
   1079         SwitchWeights->push_back(Weight + (Rem ? 1 : 0));
   1080       if (Rem)
   1081         Rem--;
   1082       SwitchInsn->addCase(Builder.getInt(LHS), CaseDest);
   1083       LHS++;
   1084     }
   1085     return;
   1086   }
   1087 
   1088   // The range is too big. Emit "if" condition into a new block,
   1089   // making sure to save and restore the current insertion point.
   1090   llvm::BasicBlock *RestoreBB = Builder.GetInsertBlock();
   1091 
   1092   // Push this test onto the chain of range checks (which terminates
   1093   // in the default basic block). The switch's default will be changed
   1094   // to the top of this chain after switch emission is complete.
   1095   llvm::BasicBlock *FalseDest = CaseRangeBlock;
   1096   CaseRangeBlock = createBasicBlock("sw.caserange");
   1097 
   1098   CurFn->getBasicBlockList().push_back(CaseRangeBlock);
   1099   Builder.SetInsertPoint(CaseRangeBlock);
   1100 
   1101   // Emit range check.
   1102   llvm::Value *Diff =
   1103     Builder.CreateSub(SwitchInsn->getCondition(), Builder.getInt(LHS));
   1104   llvm::Value *Cond =
   1105     Builder.CreateICmpULE(Diff, Builder.getInt(Range), "inbounds");
   1106 
   1107   llvm::MDNode *Weights = nullptr;
   1108   if (SwitchWeights) {
   1109     uint64_t ThisCount = getProfileCount(&S);
   1110     uint64_t DefaultCount = (*SwitchWeights)[0];
   1111     Weights = createProfileWeights(ThisCount, DefaultCount);
   1112 
   1113     // Since we're chaining the switch default through each large case range, we
   1114     // need to update the weight for the default, ie, the first case, to include
   1115     // this case.
   1116     (*SwitchWeights)[0] += ThisCount;
   1117   }
   1118   Builder.CreateCondBr(Cond, CaseDest, FalseDest, Weights);
   1119 
   1120   // Restore the appropriate insertion point.
   1121   if (RestoreBB)
   1122     Builder.SetInsertPoint(RestoreBB);
   1123   else
   1124     Builder.ClearInsertionPoint();
   1125 }
   1126 
   1127 void CodeGenFunction::EmitCaseStmt(const CaseStmt &S) {
   1128   // If there is no enclosing switch instance that we're aware of, then this
   1129   // case statement and its block can be elided.  This situation only happens
   1130   // when we've constant-folded the switch, are emitting the constant case,
   1131   // and part of the constant case includes another case statement.  For
   1132   // instance: switch (4) { case 4: do { case 5: } while (1); }
   1133   if (!SwitchInsn) {
   1134     EmitStmt(S.getSubStmt());
   1135     return;
   1136   }
   1137 
   1138   // Handle case ranges.
   1139   if (S.getRHS()) {
   1140     EmitCaseStmtRange(S);
   1141     return;
   1142   }
   1143 
   1144   llvm::ConstantInt *CaseVal =
   1145     Builder.getInt(S.getLHS()->EvaluateKnownConstInt(getContext()));
   1146 
   1147   // If the body of the case is just a 'break', try to not emit an empty block.
   1148   // If we're profiling or we're not optimizing, leave the block in for better
   1149   // debug and coverage analysis.
   1150   if (!CGM.getCodeGenOpts().ProfileInstrGenerate &&
   1151       CGM.getCodeGenOpts().OptimizationLevel > 0 &&
   1152       isa<BreakStmt>(S.getSubStmt())) {
   1153     JumpDest Block = BreakContinueStack.back().BreakBlock;
   1154 
   1155     // Only do this optimization if there are no cleanups that need emitting.
   1156     if (isObviouslyBranchWithoutCleanups(Block)) {
   1157       if (SwitchWeights)
   1158         SwitchWeights->push_back(getProfileCount(&S));
   1159       SwitchInsn->addCase(CaseVal, Block.getBlock());
   1160 
   1161       // If there was a fallthrough into this case, make sure to redirect it to
   1162       // the end of the switch as well.
   1163       if (Builder.GetInsertBlock()) {
   1164         Builder.CreateBr(Block.getBlock());
   1165         Builder.ClearInsertionPoint();
   1166       }
   1167       return;
   1168     }
   1169   }
   1170 
   1171   llvm::BasicBlock *CaseDest = createBasicBlock("sw.bb");
   1172   EmitBlockWithFallThrough(CaseDest, &S);
   1173   if (SwitchWeights)
   1174     SwitchWeights->push_back(getProfileCount(&S));
   1175   SwitchInsn->addCase(CaseVal, CaseDest);
   1176 
   1177   // Recursively emitting the statement is acceptable, but is not wonderful for
   1178   // code where we have many case statements nested together, i.e.:
   1179   //  case 1:
   1180   //    case 2:
   1181   //      case 3: etc.
   1182   // Handling this recursively will create a new block for each case statement
   1183   // that falls through to the next case which is IR intensive.  It also causes
   1184   // deep recursion which can run into stack depth limitations.  Handle
   1185   // sequential non-range case statements specially.
   1186   const CaseStmt *CurCase = &S;
   1187   const CaseStmt *NextCase = dyn_cast<CaseStmt>(S.getSubStmt());
   1188 
   1189   // Otherwise, iteratively add consecutive cases to this switch stmt.
   1190   while (NextCase && NextCase->getRHS() == nullptr) {
   1191     CurCase = NextCase;
   1192     llvm::ConstantInt *CaseVal =
   1193       Builder.getInt(CurCase->getLHS()->EvaluateKnownConstInt(getContext()));
   1194 
   1195     if (SwitchWeights)
   1196       SwitchWeights->push_back(getProfileCount(NextCase));
   1197     if (CGM.getCodeGenOpts().ProfileInstrGenerate) {
   1198       CaseDest = createBasicBlock("sw.bb");
   1199       EmitBlockWithFallThrough(CaseDest, &S);
   1200     }
   1201 
   1202     SwitchInsn->addCase(CaseVal, CaseDest);
   1203     NextCase = dyn_cast<CaseStmt>(CurCase->getSubStmt());
   1204   }
   1205 
   1206   // Normal default recursion for non-cases.
   1207   EmitStmt(CurCase->getSubStmt());
   1208 }
   1209 
   1210 void CodeGenFunction::EmitDefaultStmt(const DefaultStmt &S) {
   1211   llvm::BasicBlock *DefaultBlock = SwitchInsn->getDefaultDest();
   1212   assert(DefaultBlock->empty() &&
   1213          "EmitDefaultStmt: Default block already defined?");
   1214 
   1215   EmitBlockWithFallThrough(DefaultBlock, &S);
   1216 
   1217   EmitStmt(S.getSubStmt());
   1218 }
   1219 
   1220 /// CollectStatementsForCase - Given the body of a 'switch' statement and a
   1221 /// constant value that is being switched on, see if we can dead code eliminate
   1222 /// the body of the switch to a simple series of statements to emit.  Basically,
   1223 /// on a switch (5) we want to find these statements:
   1224 ///    case 5:
   1225 ///      printf(...);    <--
   1226 ///      ++i;            <--
   1227 ///      break;
   1228 ///
   1229 /// and add them to the ResultStmts vector.  If it is unsafe to do this
   1230 /// transformation (for example, one of the elided statements contains a label
   1231 /// that might be jumped to), return CSFC_Failure.  If we handled it and 'S'
   1232 /// should include statements after it (e.g. the printf() line is a substmt of
   1233 /// the case) then return CSFC_FallThrough.  If we handled it and found a break
   1234 /// statement, then return CSFC_Success.
   1235 ///
   1236 /// If Case is non-null, then we are looking for the specified case, checking
   1237 /// that nothing we jump over contains labels.  If Case is null, then we found
   1238 /// the case and are looking for the break.
   1239 ///
   1240 /// If the recursive walk actually finds our Case, then we set FoundCase to
   1241 /// true.
   1242 ///
   1243 enum CSFC_Result { CSFC_Failure, CSFC_FallThrough, CSFC_Success };
   1244 static CSFC_Result CollectStatementsForCase(const Stmt *S,
   1245                                             const SwitchCase *Case,
   1246                                             bool &FoundCase,
   1247                               SmallVectorImpl<const Stmt*> &ResultStmts) {
   1248   // If this is a null statement, just succeed.
   1249   if (!S)
   1250     return Case ? CSFC_Success : CSFC_FallThrough;
   1251 
   1252   // If this is the switchcase (case 4: or default) that we're looking for, then
   1253   // we're in business.  Just add the substatement.
   1254   if (const SwitchCase *SC = dyn_cast<SwitchCase>(S)) {
   1255     if (S == Case) {
   1256       FoundCase = true;
   1257       return CollectStatementsForCase(SC->getSubStmt(), nullptr, FoundCase,
   1258                                       ResultStmts);
   1259     }
   1260 
   1261     // Otherwise, this is some other case or default statement, just ignore it.
   1262     return CollectStatementsForCase(SC->getSubStmt(), Case, FoundCase,
   1263                                     ResultStmts);
   1264   }
   1265 
   1266   // If we are in the live part of the code and we found our break statement,
   1267   // return a success!
   1268   if (!Case && isa<BreakStmt>(S))
   1269     return CSFC_Success;
   1270 
   1271   // If this is a switch statement, then it might contain the SwitchCase, the
   1272   // break, or neither.
   1273   if (const CompoundStmt *CS = dyn_cast<CompoundStmt>(S)) {
   1274     // Handle this as two cases: we might be looking for the SwitchCase (if so
   1275     // the skipped statements must be skippable) or we might already have it.
   1276     CompoundStmt::const_body_iterator I = CS->body_begin(), E = CS->body_end();
   1277     if (Case) {
   1278       // Keep track of whether we see a skipped declaration.  The code could be
   1279       // using the declaration even if it is skipped, so we can't optimize out
   1280       // the decl if the kept statements might refer to it.
   1281       bool HadSkippedDecl = false;
   1282 
   1283       // If we're looking for the case, just see if we can skip each of the
   1284       // substatements.
   1285       for (; Case && I != E; ++I) {
   1286         HadSkippedDecl |= isa<DeclStmt>(*I);
   1287 
   1288         switch (CollectStatementsForCase(*I, Case, FoundCase, ResultStmts)) {
   1289         case CSFC_Failure: return CSFC_Failure;
   1290         case CSFC_Success:
   1291           // A successful result means that either 1) that the statement doesn't
   1292           // have the case and is skippable, or 2) does contain the case value
   1293           // and also contains the break to exit the switch.  In the later case,
   1294           // we just verify the rest of the statements are elidable.
   1295           if (FoundCase) {
   1296             // If we found the case and skipped declarations, we can't do the
   1297             // optimization.
   1298             if (HadSkippedDecl)
   1299               return CSFC_Failure;
   1300 
   1301             for (++I; I != E; ++I)
   1302               if (CodeGenFunction::ContainsLabel(*I, true))
   1303                 return CSFC_Failure;
   1304             return CSFC_Success;
   1305           }
   1306           break;
   1307         case CSFC_FallThrough:
   1308           // If we have a fallthrough condition, then we must have found the
   1309           // case started to include statements.  Consider the rest of the
   1310           // statements in the compound statement as candidates for inclusion.
   1311           assert(FoundCase && "Didn't find case but returned fallthrough?");
   1312           // We recursively found Case, so we're not looking for it anymore.
   1313           Case = nullptr;
   1314 
   1315           // If we found the case and skipped declarations, we can't do the
   1316           // optimization.
   1317           if (HadSkippedDecl)
   1318             return CSFC_Failure;
   1319           break;
   1320         }
   1321       }
   1322     }
   1323 
   1324     // If we have statements in our range, then we know that the statements are
   1325     // live and need to be added to the set of statements we're tracking.
   1326     for (; I != E; ++I) {
   1327       switch (CollectStatementsForCase(*I, nullptr, FoundCase, ResultStmts)) {
   1328       case CSFC_Failure: return CSFC_Failure;
   1329       case CSFC_FallThrough:
   1330         // A fallthrough result means that the statement was simple and just
   1331         // included in ResultStmt, keep adding them afterwards.
   1332         break;
   1333       case CSFC_Success:
   1334         // A successful result means that we found the break statement and
   1335         // stopped statement inclusion.  We just ensure that any leftover stmts
   1336         // are skippable and return success ourselves.
   1337         for (++I; I != E; ++I)
   1338           if (CodeGenFunction::ContainsLabel(*I, true))
   1339             return CSFC_Failure;
   1340         return CSFC_Success;
   1341       }
   1342     }
   1343 
   1344     return Case ? CSFC_Success : CSFC_FallThrough;
   1345   }
   1346 
   1347   // Okay, this is some other statement that we don't handle explicitly, like a
   1348   // for statement or increment etc.  If we are skipping over this statement,
   1349   // just verify it doesn't have labels, which would make it invalid to elide.
   1350   if (Case) {
   1351     if (CodeGenFunction::ContainsLabel(S, true))
   1352       return CSFC_Failure;
   1353     return CSFC_Success;
   1354   }
   1355 
   1356   // Otherwise, we want to include this statement.  Everything is cool with that
   1357   // so long as it doesn't contain a break out of the switch we're in.
   1358   if (CodeGenFunction::containsBreak(S)) return CSFC_Failure;
   1359 
   1360   // Otherwise, everything is great.  Include the statement and tell the caller
   1361   // that we fall through and include the next statement as well.
   1362   ResultStmts.push_back(S);
   1363   return CSFC_FallThrough;
   1364 }
   1365 
   1366 /// FindCaseStatementsForValue - Find the case statement being jumped to and
   1367 /// then invoke CollectStatementsForCase to find the list of statements to emit
   1368 /// for a switch on constant.  See the comment above CollectStatementsForCase
   1369 /// for more details.
   1370 static bool FindCaseStatementsForValue(const SwitchStmt &S,
   1371                                        const llvm::APSInt &ConstantCondValue,
   1372                                 SmallVectorImpl<const Stmt*> &ResultStmts,
   1373                                        ASTContext &C,
   1374                                        const SwitchCase *&ResultCase) {
   1375   // First step, find the switch case that is being branched to.  We can do this
   1376   // efficiently by scanning the SwitchCase list.
   1377   const SwitchCase *Case = S.getSwitchCaseList();
   1378   const DefaultStmt *DefaultCase = nullptr;
   1379 
   1380   for (; Case; Case = Case->getNextSwitchCase()) {
   1381     // It's either a default or case.  Just remember the default statement in
   1382     // case we're not jumping to any numbered cases.
   1383     if (const DefaultStmt *DS = dyn_cast<DefaultStmt>(Case)) {
   1384       DefaultCase = DS;
   1385       continue;
   1386     }
   1387 
   1388     // Check to see if this case is the one we're looking for.
   1389     const CaseStmt *CS = cast<CaseStmt>(Case);
   1390     // Don't handle case ranges yet.
   1391     if (CS->getRHS()) return false;
   1392 
   1393     // If we found our case, remember it as 'case'.
   1394     if (CS->getLHS()->EvaluateKnownConstInt(C) == ConstantCondValue)
   1395       break;
   1396   }
   1397 
   1398   // If we didn't find a matching case, we use a default if it exists, or we
   1399   // elide the whole switch body!
   1400   if (!Case) {
   1401     // It is safe to elide the body of the switch if it doesn't contain labels
   1402     // etc.  If it is safe, return successfully with an empty ResultStmts list.
   1403     if (!DefaultCase)
   1404       return !CodeGenFunction::ContainsLabel(&S);
   1405     Case = DefaultCase;
   1406   }
   1407 
   1408   // Ok, we know which case is being jumped to, try to collect all the
   1409   // statements that follow it.  This can fail for a variety of reasons.  Also,
   1410   // check to see that the recursive walk actually found our case statement.
   1411   // Insane cases like this can fail to find it in the recursive walk since we
   1412   // don't handle every stmt kind:
   1413   // switch (4) {
   1414   //   while (1) {
   1415   //     case 4: ...
   1416   bool FoundCase = false;
   1417   ResultCase = Case;
   1418   return CollectStatementsForCase(S.getBody(), Case, FoundCase,
   1419                                   ResultStmts) != CSFC_Failure &&
   1420          FoundCase;
   1421 }
   1422 
   1423 void CodeGenFunction::EmitSwitchStmt(const SwitchStmt &S) {
   1424   // Handle nested switch statements.
   1425   llvm::SwitchInst *SavedSwitchInsn = SwitchInsn;
   1426   SmallVector<uint64_t, 16> *SavedSwitchWeights = SwitchWeights;
   1427   llvm::BasicBlock *SavedCRBlock = CaseRangeBlock;
   1428 
   1429   // See if we can constant fold the condition of the switch and therefore only
   1430   // emit the live case statement (if any) of the switch.
   1431   llvm::APSInt ConstantCondValue;
   1432   if (ConstantFoldsToSimpleInteger(S.getCond(), ConstantCondValue)) {
   1433     SmallVector<const Stmt*, 4> CaseStmts;
   1434     const SwitchCase *Case = nullptr;
   1435     if (FindCaseStatementsForValue(S, ConstantCondValue, CaseStmts,
   1436                                    getContext(), Case)) {
   1437       if (Case)
   1438         incrementProfileCounter(Case);
   1439       RunCleanupsScope ExecutedScope(*this);
   1440 
   1441       // Emit the condition variable if needed inside the entire cleanup scope
   1442       // used by this special case for constant folded switches.
   1443       if (S.getConditionVariable())
   1444         EmitAutoVarDecl(*S.getConditionVariable());
   1445 
   1446       // At this point, we are no longer "within" a switch instance, so
   1447       // we can temporarily enforce this to ensure that any embedded case
   1448       // statements are not emitted.
   1449       SwitchInsn = nullptr;
   1450 
   1451       // Okay, we can dead code eliminate everything except this case.  Emit the
   1452       // specified series of statements and we're good.
   1453       for (unsigned i = 0, e = CaseStmts.size(); i != e; ++i)
   1454         EmitStmt(CaseStmts[i]);
   1455       incrementProfileCounter(&S);
   1456 
   1457       // Now we want to restore the saved switch instance so that nested
   1458       // switches continue to function properly
   1459       SwitchInsn = SavedSwitchInsn;
   1460 
   1461       return;
   1462     }
   1463   }
   1464 
   1465   JumpDest SwitchExit = getJumpDestInCurrentScope("sw.epilog");
   1466 
   1467   RunCleanupsScope ConditionScope(*this);
   1468   if (S.getConditionVariable())
   1469     EmitAutoVarDecl(*S.getConditionVariable());
   1470   llvm::Value *CondV = EmitScalarExpr(S.getCond());
   1471 
   1472   // Create basic block to hold stuff that comes after switch
   1473   // statement. We also need to create a default block now so that
   1474   // explicit case ranges tests can have a place to jump to on
   1475   // failure.
   1476   llvm::BasicBlock *DefaultBlock = createBasicBlock("sw.default");
   1477   SwitchInsn = Builder.CreateSwitch(CondV, DefaultBlock);
   1478   if (PGO.haveRegionCounts()) {
   1479     // Walk the SwitchCase list to find how many there are.
   1480     uint64_t DefaultCount = 0;
   1481     unsigned NumCases = 0;
   1482     for (const SwitchCase *Case = S.getSwitchCaseList();
   1483          Case;
   1484          Case = Case->getNextSwitchCase()) {
   1485       if (isa<DefaultStmt>(Case))
   1486         DefaultCount = getProfileCount(Case);
   1487       NumCases += 1;
   1488     }
   1489     SwitchWeights = new SmallVector<uint64_t, 16>();
   1490     SwitchWeights->reserve(NumCases);
   1491     // The default needs to be first. We store the edge count, so we already
   1492     // know the right weight.
   1493     SwitchWeights->push_back(DefaultCount);
   1494   }
   1495   CaseRangeBlock = DefaultBlock;
   1496 
   1497   // Clear the insertion point to indicate we are in unreachable code.
   1498   Builder.ClearInsertionPoint();
   1499 
   1500   // All break statements jump to NextBlock. If BreakContinueStack is non-empty
   1501   // then reuse last ContinueBlock.
   1502   JumpDest OuterContinue;
   1503   if (!BreakContinueStack.empty())
   1504     OuterContinue = BreakContinueStack.back().ContinueBlock;
   1505 
   1506   BreakContinueStack.push_back(BreakContinue(SwitchExit, OuterContinue));
   1507 
   1508   // Emit switch body.
   1509   EmitStmt(S.getBody());
   1510 
   1511   BreakContinueStack.pop_back();
   1512 
   1513   // Update the default block in case explicit case range tests have
   1514   // been chained on top.
   1515   SwitchInsn->setDefaultDest(CaseRangeBlock);
   1516 
   1517   // If a default was never emitted:
   1518   if (!DefaultBlock->getParent()) {
   1519     // If we have cleanups, emit the default block so that there's a
   1520     // place to jump through the cleanups from.
   1521     if (ConditionScope.requiresCleanups()) {
   1522       EmitBlock(DefaultBlock);
   1523 
   1524     // Otherwise, just forward the default block to the switch end.
   1525     } else {
   1526       DefaultBlock->replaceAllUsesWith(SwitchExit.getBlock());
   1527       delete DefaultBlock;
   1528     }
   1529   }
   1530 
   1531   ConditionScope.ForceCleanup();
   1532 
   1533   // Emit continuation.
   1534   EmitBlock(SwitchExit.getBlock(), true);
   1535   incrementProfileCounter(&S);
   1536 
   1537   // If the switch has a condition wrapped by __builtin_unpredictable,
   1538   // create metadata that specifies that the switch is unpredictable.
   1539   // Don't bother if not optimizing because that metadata would not be used.
   1540   if (CGM.getCodeGenOpts().OptimizationLevel != 0) {
   1541     if (const CallExpr *Call = dyn_cast<CallExpr>(S.getCond())) {
   1542       const Decl *TargetDecl = Call->getCalleeDecl();
   1543       if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl)) {
   1544         if (FD->getBuiltinID() == Builtin::BI__builtin_unpredictable) {
   1545           llvm::MDBuilder MDHelper(getLLVMContext());
   1546           SwitchInsn->setMetadata(llvm::LLVMContext::MD_unpredictable,
   1547                                   MDHelper.createUnpredictable());
   1548         }
   1549       }
   1550     }
   1551   }
   1552 
   1553   if (SwitchWeights) {
   1554     assert(SwitchWeights->size() == 1 + SwitchInsn->getNumCases() &&
   1555            "switch weights do not match switch cases");
   1556     // If there's only one jump destination there's no sense weighting it.
   1557     if (SwitchWeights->size() > 1)
   1558       SwitchInsn->setMetadata(llvm::LLVMContext::MD_prof,
   1559                               createProfileWeights(*SwitchWeights));
   1560     delete SwitchWeights;
   1561   }
   1562   SwitchInsn = SavedSwitchInsn;
   1563   SwitchWeights = SavedSwitchWeights;
   1564   CaseRangeBlock = SavedCRBlock;
   1565 }
   1566 
   1567 static std::string
   1568 SimplifyConstraint(const char *Constraint, const TargetInfo &Target,
   1569                  SmallVectorImpl<TargetInfo::ConstraintInfo> *OutCons=nullptr) {
   1570   std::string Result;
   1571 
   1572   while (*Constraint) {
   1573     switch (*Constraint) {
   1574     default:
   1575       Result += Target.convertConstraint(Constraint);
   1576       break;
   1577     // Ignore these
   1578     case '*':
   1579     case '?':
   1580     case '!':
   1581     case '=': // Will see this and the following in mult-alt constraints.
   1582     case '+':
   1583       break;
   1584     case '#': // Ignore the rest of the constraint alternative.
   1585       while (Constraint[1] && Constraint[1] != ',')
   1586         Constraint++;
   1587       break;
   1588     case '&':
   1589     case '%':
   1590       Result += *Constraint;
   1591       while (Constraint[1] && Constraint[1] == *Constraint)
   1592         Constraint++;
   1593       break;
   1594     case ',':
   1595       Result += "|";
   1596       break;
   1597     case 'g':
   1598       Result += "imr";
   1599       break;
   1600     case '[': {
   1601       assert(OutCons &&
   1602              "Must pass output names to constraints with a symbolic name");
   1603       unsigned Index;
   1604       bool result = Target.resolveSymbolicName(Constraint, *OutCons, Index);
   1605       assert(result && "Could not resolve symbolic name"); (void)result;
   1606       Result += llvm::utostr(Index);
   1607       break;
   1608     }
   1609     }
   1610 
   1611     Constraint++;
   1612   }
   1613 
   1614   return Result;
   1615 }
   1616 
   1617 /// AddVariableConstraints - Look at AsmExpr and if it is a variable declared
   1618 /// as using a particular register add that as a constraint that will be used
   1619 /// in this asm stmt.
   1620 static std::string
   1621 AddVariableConstraints(const std::string &Constraint, const Expr &AsmExpr,
   1622                        const TargetInfo &Target, CodeGenModule &CGM,
   1623                        const AsmStmt &Stmt, const bool EarlyClobber) {
   1624   const DeclRefExpr *AsmDeclRef = dyn_cast<DeclRefExpr>(&AsmExpr);
   1625   if (!AsmDeclRef)
   1626     return Constraint;
   1627   const ValueDecl &Value = *AsmDeclRef->getDecl();
   1628   const VarDecl *Variable = dyn_cast<VarDecl>(&Value);
   1629   if (!Variable)
   1630     return Constraint;
   1631   if (Variable->getStorageClass() != SC_Register)
   1632     return Constraint;
   1633   AsmLabelAttr *Attr = Variable->getAttr<AsmLabelAttr>();
   1634   if (!Attr)
   1635     return Constraint;
   1636   StringRef Register = Attr->getLabel();
   1637   assert(Target.isValidGCCRegisterName(Register));
   1638   // We're using validateOutputConstraint here because we only care if
   1639   // this is a register constraint.
   1640   TargetInfo::ConstraintInfo Info(Constraint, "");
   1641   if (Target.validateOutputConstraint(Info) &&
   1642       !Info.allowsRegister()) {
   1643     CGM.ErrorUnsupported(&Stmt, "__asm__");
   1644     return Constraint;
   1645   }
   1646   // Canonicalize the register here before returning it.
   1647   Register = Target.getNormalizedGCCRegisterName(Register);
   1648   return (EarlyClobber ? "&{" : "{") + Register.str() + "}";
   1649 }
   1650 
   1651 llvm::Value*
   1652 CodeGenFunction::EmitAsmInputLValue(const TargetInfo::ConstraintInfo &Info,
   1653                                     LValue InputValue, QualType InputType,
   1654                                     std::string &ConstraintStr,
   1655                                     SourceLocation Loc) {
   1656   llvm::Value *Arg;
   1657   if (Info.allowsRegister() || !Info.allowsMemory()) {
   1658     if (CodeGenFunction::hasScalarEvaluationKind(InputType)) {
   1659       Arg = EmitLoadOfLValue(InputValue, Loc).getScalarVal();
   1660     } else {
   1661       llvm::Type *Ty = ConvertType(InputType);
   1662       uint64_t Size = CGM.getDataLayout().getTypeSizeInBits(Ty);
   1663       if (Size <= 64 && llvm::isPowerOf2_64(Size)) {
   1664         Ty = llvm::IntegerType::get(getLLVMContext(), Size);
   1665         Ty = llvm::PointerType::getUnqual(Ty);
   1666 
   1667         Arg = Builder.CreateLoad(Builder.CreateBitCast(InputValue.getAddress(),
   1668                                                        Ty));
   1669       } else {
   1670         Arg = InputValue.getPointer();
   1671         ConstraintStr += '*';
   1672       }
   1673     }
   1674   } else {
   1675     Arg = InputValue.getPointer();
   1676     ConstraintStr += '*';
   1677   }
   1678 
   1679   return Arg;
   1680 }
   1681 
   1682 llvm::Value* CodeGenFunction::EmitAsmInput(
   1683                                          const TargetInfo::ConstraintInfo &Info,
   1684                                            const Expr *InputExpr,
   1685                                            std::string &ConstraintStr) {
   1686   // If this can't be a register or memory, i.e., has to be a constant
   1687   // (immediate or symbolic), try to emit it as such.
   1688   if (!Info.allowsRegister() && !Info.allowsMemory()) {
   1689     llvm::APSInt Result;
   1690     if (InputExpr->EvaluateAsInt(Result, getContext()))
   1691       return llvm::ConstantInt::get(getLLVMContext(), Result);
   1692     assert(!Info.requiresImmediateConstant() &&
   1693            "Required-immediate inlineasm arg isn't constant?");
   1694   }
   1695 
   1696   if (Info.allowsRegister() || !Info.allowsMemory())
   1697     if (CodeGenFunction::hasScalarEvaluationKind(InputExpr->getType()))
   1698       return EmitScalarExpr(InputExpr);
   1699   if (InputExpr->getStmtClass() == Expr::CXXThisExprClass)
   1700     return EmitScalarExpr(InputExpr);
   1701   InputExpr = InputExpr->IgnoreParenNoopCasts(getContext());
   1702   LValue Dest = EmitLValue(InputExpr);
   1703   return EmitAsmInputLValue(Info, Dest, InputExpr->getType(), ConstraintStr,
   1704                             InputExpr->getExprLoc());
   1705 }
   1706 
   1707 /// getAsmSrcLocInfo - Return the !srcloc metadata node to attach to an inline
   1708 /// asm call instruction.  The !srcloc MDNode contains a list of constant
   1709 /// integers which are the source locations of the start of each line in the
   1710 /// asm.
   1711 static llvm::MDNode *getAsmSrcLocInfo(const StringLiteral *Str,
   1712                                       CodeGenFunction &CGF) {
   1713   SmallVector<llvm::Metadata *, 8> Locs;
   1714   // Add the location of the first line to the MDNode.
   1715   Locs.push_back(llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
   1716       CGF.Int32Ty, Str->getLocStart().getRawEncoding())));
   1717   StringRef StrVal = Str->getString();
   1718   if (!StrVal.empty()) {
   1719     const SourceManager &SM = CGF.CGM.getContext().getSourceManager();
   1720     const LangOptions &LangOpts = CGF.CGM.getLangOpts();
   1721     unsigned StartToken = 0;
   1722     unsigned ByteOffset = 0;
   1723 
   1724     // Add the location of the start of each subsequent line of the asm to the
   1725     // MDNode.
   1726     for (unsigned i = 0, e = StrVal.size() - 1; i != e; ++i) {
   1727       if (StrVal[i] != '\n') continue;
   1728       SourceLocation LineLoc = Str->getLocationOfByte(
   1729           i + 1, SM, LangOpts, CGF.getTarget(), &StartToken, &ByteOffset);
   1730       Locs.push_back(llvm::ConstantAsMetadata::get(
   1731           llvm::ConstantInt::get(CGF.Int32Ty, LineLoc.getRawEncoding())));
   1732     }
   1733   }
   1734 
   1735   return llvm::MDNode::get(CGF.getLLVMContext(), Locs);
   1736 }
   1737 
   1738 void CodeGenFunction::EmitAsmStmt(const AsmStmt &S) {
   1739   // Assemble the final asm string.
   1740   std::string AsmString = S.generateAsmString(getContext());
   1741 
   1742   // Get all the output and input constraints together.
   1743   SmallVector<TargetInfo::ConstraintInfo, 4> OutputConstraintInfos;
   1744   SmallVector<TargetInfo::ConstraintInfo, 4> InputConstraintInfos;
   1745 
   1746   for (unsigned i = 0, e = S.getNumOutputs(); i != e; i++) {
   1747     StringRef Name;
   1748     if (const GCCAsmStmt *GAS = dyn_cast<GCCAsmStmt>(&S))
   1749       Name = GAS->getOutputName(i);
   1750     TargetInfo::ConstraintInfo Info(S.getOutputConstraint(i), Name);
   1751     bool IsValid = getTarget().validateOutputConstraint(Info); (void)IsValid;
   1752     assert(IsValid && "Failed to parse output constraint");
   1753     OutputConstraintInfos.push_back(Info);
   1754   }
   1755 
   1756   for (unsigned i = 0, e = S.getNumInputs(); i != e; i++) {
   1757     StringRef Name;
   1758     if (const GCCAsmStmt *GAS = dyn_cast<GCCAsmStmt>(&S))
   1759       Name = GAS->getInputName(i);
   1760     TargetInfo::ConstraintInfo Info(S.getInputConstraint(i), Name);
   1761     bool IsValid =
   1762       getTarget().validateInputConstraint(OutputConstraintInfos, Info);
   1763     assert(IsValid && "Failed to parse input constraint"); (void)IsValid;
   1764     InputConstraintInfos.push_back(Info);
   1765   }
   1766 
   1767   std::string Constraints;
   1768 
   1769   std::vector<LValue> ResultRegDests;
   1770   std::vector<QualType> ResultRegQualTys;
   1771   std::vector<llvm::Type *> ResultRegTypes;
   1772   std::vector<llvm::Type *> ResultTruncRegTypes;
   1773   std::vector<llvm::Type *> ArgTypes;
   1774   std::vector<llvm::Value*> Args;
   1775 
   1776   // Keep track of inout constraints.
   1777   std::string InOutConstraints;
   1778   std::vector<llvm::Value*> InOutArgs;
   1779   std::vector<llvm::Type*> InOutArgTypes;
   1780 
   1781   // An inline asm can be marked readonly if it meets the following conditions:
   1782   //  - it doesn't have any sideeffects
   1783   //  - it doesn't clobber memory
   1784   //  - it doesn't return a value by-reference
   1785   // It can be marked readnone if it doesn't have any input memory constraints
   1786   // in addition to meeting the conditions listed above.
   1787   bool ReadOnly = true, ReadNone = true;
   1788 
   1789   for (unsigned i = 0, e = S.getNumOutputs(); i != e; i++) {
   1790     TargetInfo::ConstraintInfo &Info = OutputConstraintInfos[i];
   1791 
   1792     // Simplify the output constraint.
   1793     std::string OutputConstraint(S.getOutputConstraint(i));
   1794     OutputConstraint = SimplifyConstraint(OutputConstraint.c_str() + 1,
   1795                                           getTarget());
   1796 
   1797     const Expr *OutExpr = S.getOutputExpr(i);
   1798     OutExpr = OutExpr->IgnoreParenNoopCasts(getContext());
   1799 
   1800     OutputConstraint = AddVariableConstraints(OutputConstraint, *OutExpr,
   1801                                               getTarget(), CGM, S,
   1802                                               Info.earlyClobber());
   1803 
   1804     LValue Dest = EmitLValue(OutExpr);
   1805     if (!Constraints.empty())
   1806       Constraints += ',';
   1807 
   1808     // If this is a register output, then make the inline asm return it
   1809     // by-value.  If this is a memory result, return the value by-reference.
   1810     if (!Info.allowsMemory() && hasScalarEvaluationKind(OutExpr->getType())) {
   1811       Constraints += "=" + OutputConstraint;
   1812       ResultRegQualTys.push_back(OutExpr->getType());
   1813       ResultRegDests.push_back(Dest);
   1814       ResultRegTypes.push_back(ConvertTypeForMem(OutExpr->getType()));
   1815       ResultTruncRegTypes.push_back(ResultRegTypes.back());
   1816 
   1817       // If this output is tied to an input, and if the input is larger, then
   1818       // we need to set the actual result type of the inline asm node to be the
   1819       // same as the input type.
   1820       if (Info.hasMatchingInput()) {
   1821         unsigned InputNo;
   1822         for (InputNo = 0; InputNo != S.getNumInputs(); ++InputNo) {
   1823           TargetInfo::ConstraintInfo &Input = InputConstraintInfos[InputNo];
   1824           if (Input.hasTiedOperand() && Input.getTiedOperand() == i)
   1825             break;
   1826         }
   1827         assert(InputNo != S.getNumInputs() && "Didn't find matching input!");
   1828 
   1829         QualType InputTy = S.getInputExpr(InputNo)->getType();
   1830         QualType OutputType = OutExpr->getType();
   1831 
   1832         uint64_t InputSize = getContext().getTypeSize(InputTy);
   1833         if (getContext().getTypeSize(OutputType) < InputSize) {
   1834           // Form the asm to return the value as a larger integer or fp type.
   1835           ResultRegTypes.back() = ConvertType(InputTy);
   1836         }
   1837       }
   1838       if (llvm::Type* AdjTy =
   1839             getTargetHooks().adjustInlineAsmType(*this, OutputConstraint,
   1840                                                  ResultRegTypes.back()))
   1841         ResultRegTypes.back() = AdjTy;
   1842       else {
   1843         CGM.getDiags().Report(S.getAsmLoc(),
   1844                               diag::err_asm_invalid_type_in_input)
   1845             << OutExpr->getType() << OutputConstraint;
   1846       }
   1847     } else {
   1848       ArgTypes.push_back(Dest.getAddress().getType());
   1849       Args.push_back(Dest.getPointer());
   1850       Constraints += "=*";
   1851       Constraints += OutputConstraint;
   1852       ReadOnly = ReadNone = false;
   1853     }
   1854 
   1855     if (Info.isReadWrite()) {
   1856       InOutConstraints += ',';
   1857 
   1858       const Expr *InputExpr = S.getOutputExpr(i);
   1859       llvm::Value *Arg = EmitAsmInputLValue(Info, Dest, InputExpr->getType(),
   1860                                             InOutConstraints,
   1861                                             InputExpr->getExprLoc());
   1862 
   1863       if (llvm::Type* AdjTy =
   1864           getTargetHooks().adjustInlineAsmType(*this, OutputConstraint,
   1865                                                Arg->getType()))
   1866         Arg = Builder.CreateBitCast(Arg, AdjTy);
   1867 
   1868       if (Info.allowsRegister())
   1869         InOutConstraints += llvm::utostr(i);
   1870       else
   1871         InOutConstraints += OutputConstraint;
   1872 
   1873       InOutArgTypes.push_back(Arg->getType());
   1874       InOutArgs.push_back(Arg);
   1875     }
   1876   }
   1877 
   1878   // If this is a Microsoft-style asm blob, store the return registers (EAX:EDX)
   1879   // to the return value slot. Only do this when returning in registers.
   1880   if (isa<MSAsmStmt>(&S)) {
   1881     const ABIArgInfo &RetAI = CurFnInfo->getReturnInfo();
   1882     if (RetAI.isDirect() || RetAI.isExtend()) {
   1883       // Make a fake lvalue for the return value slot.
   1884       LValue ReturnSlot = MakeAddrLValue(ReturnValue, FnRetTy);
   1885       CGM.getTargetCodeGenInfo().addReturnRegisterOutputs(
   1886           *this, ReturnSlot, Constraints, ResultRegTypes, ResultTruncRegTypes,
   1887           ResultRegDests, AsmString, S.getNumOutputs());
   1888       SawAsmBlock = true;
   1889     }
   1890   }
   1891 
   1892   for (unsigned i = 0, e = S.getNumInputs(); i != e; i++) {
   1893     const Expr *InputExpr = S.getInputExpr(i);
   1894 
   1895     TargetInfo::ConstraintInfo &Info = InputConstraintInfos[i];
   1896 
   1897     if (Info.allowsMemory())
   1898       ReadNone = false;
   1899 
   1900     if (!Constraints.empty())
   1901       Constraints += ',';
   1902 
   1903     // Simplify the input constraint.
   1904     std::string InputConstraint(S.getInputConstraint(i));
   1905     InputConstraint = SimplifyConstraint(InputConstraint.c_str(), getTarget(),
   1906                                          &OutputConstraintInfos);
   1907 
   1908     InputConstraint = AddVariableConstraints(
   1909         InputConstraint, *InputExpr->IgnoreParenNoopCasts(getContext()),
   1910         getTarget(), CGM, S, false /* No EarlyClobber */);
   1911 
   1912     llvm::Value *Arg = EmitAsmInput(Info, InputExpr, Constraints);
   1913 
   1914     // If this input argument is tied to a larger output result, extend the
   1915     // input to be the same size as the output.  The LLVM backend wants to see
   1916     // the input and output of a matching constraint be the same size.  Note
   1917     // that GCC does not define what the top bits are here.  We use zext because
   1918     // that is usually cheaper, but LLVM IR should really get an anyext someday.
   1919     if (Info.hasTiedOperand()) {
   1920       unsigned Output = Info.getTiedOperand();
   1921       QualType OutputType = S.getOutputExpr(Output)->getType();
   1922       QualType InputTy = InputExpr->getType();
   1923 
   1924       if (getContext().getTypeSize(OutputType) >
   1925           getContext().getTypeSize(InputTy)) {
   1926         // Use ptrtoint as appropriate so that we can do our extension.
   1927         if (isa<llvm::PointerType>(Arg->getType()))
   1928           Arg = Builder.CreatePtrToInt(Arg, IntPtrTy);
   1929         llvm::Type *OutputTy = ConvertType(OutputType);
   1930         if (isa<llvm::IntegerType>(OutputTy))
   1931           Arg = Builder.CreateZExt(Arg, OutputTy);
   1932         else if (isa<llvm::PointerType>(OutputTy))
   1933           Arg = Builder.CreateZExt(Arg, IntPtrTy);
   1934         else {
   1935           assert(OutputTy->isFloatingPointTy() && "Unexpected output type");
   1936           Arg = Builder.CreateFPExt(Arg, OutputTy);
   1937         }
   1938       }
   1939     }
   1940     if (llvm::Type* AdjTy =
   1941               getTargetHooks().adjustInlineAsmType(*this, InputConstraint,
   1942                                                    Arg->getType()))
   1943       Arg = Builder.CreateBitCast(Arg, AdjTy);
   1944     else
   1945       CGM.getDiags().Report(S.getAsmLoc(), diag::err_asm_invalid_type_in_input)
   1946           << InputExpr->getType() << InputConstraint;
   1947 
   1948     ArgTypes.push_back(Arg->getType());
   1949     Args.push_back(Arg);
   1950     Constraints += InputConstraint;
   1951   }
   1952 
   1953   // Append the "input" part of inout constraints last.
   1954   for (unsigned i = 0, e = InOutArgs.size(); i != e; i++) {
   1955     ArgTypes.push_back(InOutArgTypes[i]);
   1956     Args.push_back(InOutArgs[i]);
   1957   }
   1958   Constraints += InOutConstraints;
   1959 
   1960   // Clobbers
   1961   for (unsigned i = 0, e = S.getNumClobbers(); i != e; i++) {
   1962     StringRef Clobber = S.getClobber(i);
   1963 
   1964     if (Clobber == "memory")
   1965       ReadOnly = ReadNone = false;
   1966     else if (Clobber != "cc")
   1967       Clobber = getTarget().getNormalizedGCCRegisterName(Clobber);
   1968 
   1969     if (!Constraints.empty())
   1970       Constraints += ',';
   1971 
   1972     Constraints += "~{";
   1973     Constraints += Clobber;
   1974     Constraints += '}';
   1975   }
   1976 
   1977   // Add machine specific clobbers
   1978   std::string MachineClobbers = getTarget().getClobbers();
   1979   if (!MachineClobbers.empty()) {
   1980     if (!Constraints.empty())
   1981       Constraints += ',';
   1982     Constraints += MachineClobbers;
   1983   }
   1984 
   1985   llvm::Type *ResultType;
   1986   if (ResultRegTypes.empty())
   1987     ResultType = VoidTy;
   1988   else if (ResultRegTypes.size() == 1)
   1989     ResultType = ResultRegTypes[0];
   1990   else
   1991     ResultType = llvm::StructType::get(getLLVMContext(), ResultRegTypes);
   1992 
   1993   llvm::FunctionType *FTy =
   1994     llvm::FunctionType::get(ResultType, ArgTypes, false);
   1995 
   1996   bool HasSideEffect = S.isVolatile() || S.getNumOutputs() == 0;
   1997   llvm::InlineAsm::AsmDialect AsmDialect = isa<MSAsmStmt>(&S) ?
   1998     llvm::InlineAsm::AD_Intel : llvm::InlineAsm::AD_ATT;
   1999   llvm::InlineAsm *IA =
   2000     llvm::InlineAsm::get(FTy, AsmString, Constraints, HasSideEffect,
   2001                          /* IsAlignStack */ false, AsmDialect);
   2002   llvm::CallInst *Result = Builder.CreateCall(IA, Args);
   2003   Result->addAttribute(llvm::AttributeSet::FunctionIndex,
   2004                        llvm::Attribute::NoUnwind);
   2005 
   2006   if (isa<MSAsmStmt>(&S)) {
   2007     // If the assembly contains any labels, mark the call noduplicate to prevent
   2008     // defining the same ASM label twice (PR23715). This is pretty hacky, but it
   2009     // works.
   2010     if (AsmString.find("__MSASMLABEL_") != std::string::npos)
   2011       Result->addAttribute(llvm::AttributeSet::FunctionIndex,
   2012                            llvm::Attribute::NoDuplicate);
   2013   }
   2014 
   2015   // Attach readnone and readonly attributes.
   2016   if (!HasSideEffect) {
   2017     if (ReadNone)
   2018       Result->addAttribute(llvm::AttributeSet::FunctionIndex,
   2019                            llvm::Attribute::ReadNone);
   2020     else if (ReadOnly)
   2021       Result->addAttribute(llvm::AttributeSet::FunctionIndex,
   2022                            llvm::Attribute::ReadOnly);
   2023   }
   2024 
   2025   // Slap the source location of the inline asm into a !srcloc metadata on the
   2026   // call.
   2027   if (const GCCAsmStmt *gccAsmStmt = dyn_cast<GCCAsmStmt>(&S)) {
   2028     Result->setMetadata("srcloc", getAsmSrcLocInfo(gccAsmStmt->getAsmString(),
   2029                                                    *this));
   2030   } else {
   2031     // At least put the line number on MS inline asm blobs.
   2032     auto Loc = llvm::ConstantInt::get(Int32Ty, S.getAsmLoc().getRawEncoding());
   2033     Result->setMetadata("srcloc",
   2034                         llvm::MDNode::get(getLLVMContext(),
   2035                                           llvm::ConstantAsMetadata::get(Loc)));
   2036   }
   2037 
   2038   // Extract all of the register value results from the asm.
   2039   std::vector<llvm::Value*> RegResults;
   2040   if (ResultRegTypes.size() == 1) {
   2041     RegResults.push_back(Result);
   2042   } else {
   2043     for (unsigned i = 0, e = ResultRegTypes.size(); i != e; ++i) {
   2044       llvm::Value *Tmp = Builder.CreateExtractValue(Result, i, "asmresult");
   2045       RegResults.push_back(Tmp);
   2046     }
   2047   }
   2048 
   2049   assert(RegResults.size() == ResultRegTypes.size());
   2050   assert(RegResults.size() == ResultTruncRegTypes.size());
   2051   assert(RegResults.size() == ResultRegDests.size());
   2052   for (unsigned i = 0, e = RegResults.size(); i != e; ++i) {
   2053     llvm::Value *Tmp = RegResults[i];
   2054 
   2055     // If the result type of the LLVM IR asm doesn't match the result type of
   2056     // the expression, do the conversion.
   2057     if (ResultRegTypes[i] != ResultTruncRegTypes[i]) {
   2058       llvm::Type *TruncTy = ResultTruncRegTypes[i];
   2059 
   2060       // Truncate the integer result to the right size, note that TruncTy can be
   2061       // a pointer.
   2062       if (TruncTy->isFloatingPointTy())
   2063         Tmp = Builder.CreateFPTrunc(Tmp, TruncTy);
   2064       else if (TruncTy->isPointerTy() && Tmp->getType()->isIntegerTy()) {
   2065         uint64_t ResSize = CGM.getDataLayout().getTypeSizeInBits(TruncTy);
   2066         Tmp = Builder.CreateTrunc(Tmp,
   2067                    llvm::IntegerType::get(getLLVMContext(), (unsigned)ResSize));
   2068         Tmp = Builder.CreateIntToPtr(Tmp, TruncTy);
   2069       } else if (Tmp->getType()->isPointerTy() && TruncTy->isIntegerTy()) {
   2070         uint64_t TmpSize =CGM.getDataLayout().getTypeSizeInBits(Tmp->getType());
   2071         Tmp = Builder.CreatePtrToInt(Tmp,
   2072                    llvm::IntegerType::get(getLLVMContext(), (unsigned)TmpSize));
   2073         Tmp = Builder.CreateTrunc(Tmp, TruncTy);
   2074       } else if (TruncTy->isIntegerTy()) {
   2075         Tmp = Builder.CreateTrunc(Tmp, TruncTy);
   2076       } else if (TruncTy->isVectorTy()) {
   2077         Tmp = Builder.CreateBitCast(Tmp, TruncTy);
   2078       }
   2079     }
   2080 
   2081     EmitStoreThroughLValue(RValue::get(Tmp), ResultRegDests[i]);
   2082   }
   2083 }
   2084 
   2085 LValue CodeGenFunction::InitCapturedStruct(const CapturedStmt &S) {
   2086   const RecordDecl *RD = S.getCapturedRecordDecl();
   2087   QualType RecordTy = getContext().getRecordType(RD);
   2088 
   2089   // Initialize the captured struct.
   2090   LValue SlotLV =
   2091     MakeAddrLValue(CreateMemTemp(RecordTy, "agg.captured"), RecordTy);
   2092 
   2093   RecordDecl::field_iterator CurField = RD->field_begin();
   2094   for (CapturedStmt::const_capture_init_iterator I = S.capture_init_begin(),
   2095                                                  E = S.capture_init_end();
   2096        I != E; ++I, ++CurField) {
   2097     LValue LV = EmitLValueForFieldInitialization(SlotLV, *CurField);
   2098     if (CurField->hasCapturedVLAType()) {
   2099       auto VAT = CurField->getCapturedVLAType();
   2100       EmitStoreThroughLValue(RValue::get(VLASizeMap[VAT->getSizeExpr()]), LV);
   2101     } else {
   2102       EmitInitializerForField(*CurField, LV, *I, None);
   2103     }
   2104   }
   2105 
   2106   return SlotLV;
   2107 }
   2108 
   2109 /// Generate an outlined function for the body of a CapturedStmt, store any
   2110 /// captured variables into the captured struct, and call the outlined function.
   2111 llvm::Function *
   2112 CodeGenFunction::EmitCapturedStmt(const CapturedStmt &S, CapturedRegionKind K) {
   2113   LValue CapStruct = InitCapturedStruct(S);
   2114 
   2115   // Emit the CapturedDecl
   2116   CodeGenFunction CGF(CGM, true);
   2117   CGCapturedStmtRAII CapInfoRAII(CGF, new CGCapturedStmtInfo(S, K));
   2118   llvm::Function *F = CGF.GenerateCapturedStmtFunction(S);
   2119   delete CGF.CapturedStmtInfo;
   2120 
   2121   // Emit call to the helper function.
   2122   EmitCallOrInvoke(F, CapStruct.getPointer());
   2123 
   2124   return F;
   2125 }
   2126 
   2127 Address CodeGenFunction::GenerateCapturedStmtArgument(const CapturedStmt &S) {
   2128   LValue CapStruct = InitCapturedStruct(S);
   2129   return CapStruct.getAddress();
   2130 }
   2131 
   2132 /// Creates the outlined function for a CapturedStmt.
   2133 llvm::Function *
   2134 CodeGenFunction::GenerateCapturedStmtFunction(const CapturedStmt &S) {
   2135   assert(CapturedStmtInfo &&
   2136     "CapturedStmtInfo should be set when generating the captured function");
   2137   const CapturedDecl *CD = S.getCapturedDecl();
   2138   const RecordDecl *RD = S.getCapturedRecordDecl();
   2139   SourceLocation Loc = S.getLocStart();
   2140   assert(CD->hasBody() && "missing CapturedDecl body");
   2141 
   2142   // Build the argument list.
   2143   ASTContext &Ctx = CGM.getContext();
   2144   FunctionArgList Args;
   2145   Args.append(CD->param_begin(), CD->param_end());
   2146 
   2147   // Create the function declaration.
   2148   FunctionType::ExtInfo ExtInfo;
   2149   const CGFunctionInfo &FuncInfo =
   2150       CGM.getTypes().arrangeFreeFunctionDeclaration(Ctx.VoidTy, Args, ExtInfo,
   2151                                                     /*IsVariadic=*/false);
   2152   llvm::FunctionType *FuncLLVMTy = CGM.getTypes().GetFunctionType(FuncInfo);
   2153 
   2154   llvm::Function *F =
   2155     llvm::Function::Create(FuncLLVMTy, llvm::GlobalValue::InternalLinkage,
   2156                            CapturedStmtInfo->getHelperName(), &CGM.getModule());
   2157   CGM.SetInternalFunctionAttributes(CD, F, FuncInfo);
   2158   if (CD->isNothrow())
   2159     F->addFnAttr(llvm::Attribute::NoUnwind);
   2160 
   2161   // Generate the function.
   2162   StartFunction(CD, Ctx.VoidTy, F, FuncInfo, Args,
   2163                 CD->getLocation(),
   2164                 CD->getBody()->getLocStart());
   2165   // Set the context parameter in CapturedStmtInfo.
   2166   Address DeclPtr = GetAddrOfLocalVar(CD->getContextParam());
   2167   CapturedStmtInfo->setContextValue(Builder.CreateLoad(DeclPtr));
   2168 
   2169   // Initialize variable-length arrays.
   2170   LValue Base = MakeNaturalAlignAddrLValue(CapturedStmtInfo->getContextValue(),
   2171                                            Ctx.getTagDeclType(RD));
   2172   for (auto *FD : RD->fields()) {
   2173     if (FD->hasCapturedVLAType()) {
   2174       auto *ExprArg = EmitLoadOfLValue(EmitLValueForField(Base, FD),
   2175                                        S.getLocStart()).getScalarVal();
   2176       auto VAT = FD->getCapturedVLAType();
   2177       VLASizeMap[VAT->getSizeExpr()] = ExprArg;
   2178     }
   2179   }
   2180 
   2181   // If 'this' is captured, load it into CXXThisValue.
   2182   if (CapturedStmtInfo->isCXXThisExprCaptured()) {
   2183     FieldDecl *FD = CapturedStmtInfo->getThisFieldDecl();
   2184     LValue ThisLValue = EmitLValueForField(Base, FD);
   2185     CXXThisValue = EmitLoadOfLValue(ThisLValue, Loc).getScalarVal();
   2186   }
   2187 
   2188   PGO.assignRegionCounters(GlobalDecl(CD), F);
   2189   CapturedStmtInfo->EmitBody(*this, CD->getBody());
   2190   FinishFunction(CD->getBodyRBrace());
   2191 
   2192   return F;
   2193 }
   2194