Home | History | Annotate | Download | only in message_loop
      1 // Copyright 2013 The Chromium Authors. All rights reserved.
      2 // Use of this source code is governed by a BSD-style license that can be
      3 // found in the LICENSE file.
      4 
      5 #include <stddef.h>
      6 #include <stdint.h>
      7 
      8 #include <vector>
      9 
     10 #include "base/bind.h"
     11 #include "base/bind_helpers.h"
     12 #include "base/compiler_specific.h"
     13 #include "base/logging.h"
     14 #include "base/macros.h"
     15 #include "base/memory/ref_counted.h"
     16 #include "base/message_loop/message_loop.h"
     17 #include "base/message_loop/message_loop_test.h"
     18 #include "base/pending_task.h"
     19 #include "base/posix/eintr_wrapper.h"
     20 #include "base/run_loop.h"
     21 #include "base/synchronization/waitable_event.h"
     22 #include "base/test/test_simple_task_runner.h"
     23 #include "base/thread_task_runner_handle.h"
     24 #include "base/threading/platform_thread.h"
     25 #include "base/threading/thread.h"
     26 #include "build/build_config.h"
     27 #include "testing/gtest/include/gtest/gtest.h"
     28 
     29 #if defined(OS_WIN)
     30 #include "base/message_loop/message_pump_dispatcher.h"
     31 #include "base/message_loop/message_pump_win.h"
     32 #include "base/process/memory.h"
     33 #include "base/strings/string16.h"
     34 #include "base/win/scoped_handle.h"
     35 #endif
     36 
     37 namespace base {
     38 
     39 // TODO(darin): Platform-specific MessageLoop tests should be grouped together
     40 // to avoid chopping this file up with so many #ifdefs.
     41 
     42 namespace {
     43 
     44 scoped_ptr<MessagePump> TypeDefaultMessagePumpFactory() {
     45   return MessageLoop::CreateMessagePumpForType(MessageLoop::TYPE_DEFAULT);
     46 }
     47 
     48 scoped_ptr<MessagePump> TypeIOMessagePumpFactory() {
     49   return MessageLoop::CreateMessagePumpForType(MessageLoop::TYPE_IO);
     50 }
     51 
     52 scoped_ptr<MessagePump> TypeUIMessagePumpFactory() {
     53   return MessageLoop::CreateMessagePumpForType(MessageLoop::TYPE_UI);
     54 }
     55 
     56 class Foo : public RefCounted<Foo> {
     57  public:
     58   Foo() : test_count_(0) {
     59   }
     60 
     61   void Test1ConstRef(const std::string& a) {
     62     ++test_count_;
     63     result_.append(a);
     64   }
     65 
     66   int test_count() const { return test_count_; }
     67   const std::string& result() const { return result_; }
     68 
     69  private:
     70   friend class RefCounted<Foo>;
     71 
     72   ~Foo() {}
     73 
     74   int test_count_;
     75   std::string result_;
     76 };
     77 
     78 #if defined(OS_WIN)
     79 
     80 // This function runs slowly to simulate a large amount of work being done.
     81 static void SlowFunc(TimeDelta pause, int* quit_counter) {
     82     PlatformThread::Sleep(pause);
     83     if (--(*quit_counter) == 0)
     84       MessageLoop::current()->QuitWhenIdle();
     85 }
     86 
     87 // This function records the time when Run was called in a Time object, which is
     88 // useful for building a variety of MessageLoop tests.
     89 static void RecordRunTimeFunc(Time* run_time, int* quit_counter) {
     90   *run_time = Time::Now();
     91 
     92     // Cause our Run function to take some time to execute.  As a result we can
     93     // count on subsequent RecordRunTimeFunc()s running at a future time,
     94     // without worry about the resolution of our system clock being an issue.
     95   SlowFunc(TimeDelta::FromMilliseconds(10), quit_counter);
     96 }
     97 
     98 void SubPumpFunc() {
     99   MessageLoop::current()->SetNestableTasksAllowed(true);
    100   MSG msg;
    101   while (GetMessage(&msg, NULL, 0, 0)) {
    102     TranslateMessage(&msg);
    103     DispatchMessage(&msg);
    104   }
    105   MessageLoop::current()->QuitWhenIdle();
    106 }
    107 
    108 void RunTest_PostDelayedTask_SharedTimer_SubPump() {
    109   MessageLoop loop(MessageLoop::TYPE_UI);
    110 
    111   // Test that the interval of the timer, used to run the next delayed task, is
    112   // set to a value corresponding to when the next delayed task should run.
    113 
    114   // By setting num_tasks to 1, we ensure that the first task to run causes the
    115   // run loop to exit.
    116   int num_tasks = 1;
    117   Time run_time;
    118 
    119   loop.PostTask(FROM_HERE, Bind(&SubPumpFunc));
    120 
    121   // This very delayed task should never run.
    122   loop.PostDelayedTask(
    123       FROM_HERE,
    124       Bind(&RecordRunTimeFunc, &run_time, &num_tasks),
    125       TimeDelta::FromSeconds(1000));
    126 
    127   // This slightly delayed task should run from within SubPumpFunc.
    128   loop.PostDelayedTask(
    129       FROM_HERE,
    130       Bind(&PostQuitMessage, 0),
    131       TimeDelta::FromMilliseconds(10));
    132 
    133   Time start_time = Time::Now();
    134 
    135   loop.Run();
    136   EXPECT_EQ(1, num_tasks);
    137 
    138   // Ensure that we ran in far less time than the slower timer.
    139   TimeDelta total_time = Time::Now() - start_time;
    140   EXPECT_GT(5000, total_time.InMilliseconds());
    141 
    142   // In case both timers somehow run at nearly the same time, sleep a little
    143   // and then run all pending to force them both to have run.  This is just
    144   // encouraging flakiness if there is any.
    145   PlatformThread::Sleep(TimeDelta::FromMilliseconds(100));
    146   RunLoop().RunUntilIdle();
    147 
    148   EXPECT_TRUE(run_time.is_null());
    149 }
    150 
    151 const wchar_t kMessageBoxTitle[] = L"MessageLoop Unit Test";
    152 
    153 enum TaskType {
    154   MESSAGEBOX,
    155   ENDDIALOG,
    156   RECURSIVE,
    157   TIMEDMESSAGELOOP,
    158   QUITMESSAGELOOP,
    159   ORDERED,
    160   PUMPS,
    161   SLEEP,
    162   RUNS,
    163 };
    164 
    165 // Saves the order in which the tasks executed.
    166 struct TaskItem {
    167   TaskItem(TaskType t, int c, bool s)
    168       : type(t),
    169         cookie(c),
    170         start(s) {
    171   }
    172 
    173   TaskType type;
    174   int cookie;
    175   bool start;
    176 
    177   bool operator == (const TaskItem& other) const {
    178     return type == other.type && cookie == other.cookie && start == other.start;
    179   }
    180 };
    181 
    182 std::ostream& operator <<(std::ostream& os, TaskType type) {
    183   switch (type) {
    184   case MESSAGEBOX:        os << "MESSAGEBOX"; break;
    185   case ENDDIALOG:         os << "ENDDIALOG"; break;
    186   case RECURSIVE:         os << "RECURSIVE"; break;
    187   case TIMEDMESSAGELOOP:  os << "TIMEDMESSAGELOOP"; break;
    188   case QUITMESSAGELOOP:   os << "QUITMESSAGELOOP"; break;
    189   case ORDERED:          os << "ORDERED"; break;
    190   case PUMPS:             os << "PUMPS"; break;
    191   case SLEEP:             os << "SLEEP"; break;
    192   default:
    193     NOTREACHED();
    194     os << "Unknown TaskType";
    195     break;
    196   }
    197   return os;
    198 }
    199 
    200 std::ostream& operator <<(std::ostream& os, const TaskItem& item) {
    201   if (item.start)
    202     return os << item.type << " " << item.cookie << " starts";
    203   else
    204     return os << item.type << " " << item.cookie << " ends";
    205 }
    206 
    207 class TaskList {
    208  public:
    209   void RecordStart(TaskType type, int cookie) {
    210     TaskItem item(type, cookie, true);
    211     DVLOG(1) << item;
    212     task_list_.push_back(item);
    213   }
    214 
    215   void RecordEnd(TaskType type, int cookie) {
    216     TaskItem item(type, cookie, false);
    217     DVLOG(1) << item;
    218     task_list_.push_back(item);
    219   }
    220 
    221   size_t Size() {
    222     return task_list_.size();
    223   }
    224 
    225   TaskItem Get(int n)  {
    226     return task_list_[n];
    227   }
    228 
    229  private:
    230   std::vector<TaskItem> task_list_;
    231 };
    232 
    233 // MessageLoop implicitly start a "modal message loop". Modal dialog boxes,
    234 // common controls (like OpenFile) and StartDoc printing function can cause
    235 // implicit message loops.
    236 void MessageBoxFunc(TaskList* order, int cookie, bool is_reentrant) {
    237   order->RecordStart(MESSAGEBOX, cookie);
    238   if (is_reentrant)
    239     MessageLoop::current()->SetNestableTasksAllowed(true);
    240   MessageBox(NULL, L"Please wait...", kMessageBoxTitle, MB_OK);
    241   order->RecordEnd(MESSAGEBOX, cookie);
    242 }
    243 
    244 // Will end the MessageBox.
    245 void EndDialogFunc(TaskList* order, int cookie) {
    246   order->RecordStart(ENDDIALOG, cookie);
    247   HWND window = GetActiveWindow();
    248   if (window != NULL) {
    249     EXPECT_NE(EndDialog(window, IDCONTINUE), 0);
    250     // Cheap way to signal that the window wasn't found if RunEnd() isn't
    251     // called.
    252     order->RecordEnd(ENDDIALOG, cookie);
    253   }
    254 }
    255 
    256 void RecursiveFunc(TaskList* order, int cookie, int depth,
    257                    bool is_reentrant) {
    258   order->RecordStart(RECURSIVE, cookie);
    259   if (depth > 0) {
    260     if (is_reentrant)
    261       MessageLoop::current()->SetNestableTasksAllowed(true);
    262     MessageLoop::current()->PostTask(
    263         FROM_HERE,
    264         Bind(&RecursiveFunc, order, cookie, depth - 1, is_reentrant));
    265   }
    266   order->RecordEnd(RECURSIVE, cookie);
    267 }
    268 
    269 void QuitFunc(TaskList* order, int cookie) {
    270   order->RecordStart(QUITMESSAGELOOP, cookie);
    271   MessageLoop::current()->QuitWhenIdle();
    272   order->RecordEnd(QUITMESSAGELOOP, cookie);
    273 }
    274 
    275 void RecursiveFuncWin(MessageLoop* target,
    276                       HANDLE event,
    277                       bool expect_window,
    278                       TaskList* order,
    279                       bool is_reentrant) {
    280   target->PostTask(FROM_HERE,
    281                    Bind(&RecursiveFunc, order, 1, 2, is_reentrant));
    282   target->PostTask(FROM_HERE,
    283                    Bind(&MessageBoxFunc, order, 2, is_reentrant));
    284   target->PostTask(FROM_HERE,
    285                    Bind(&RecursiveFunc, order, 3, 2, is_reentrant));
    286   // The trick here is that for recursive task processing, this task will be
    287   // ran _inside_ the MessageBox message loop, dismissing the MessageBox
    288   // without a chance.
    289   // For non-recursive task processing, this will be executed _after_ the
    290   // MessageBox will have been dismissed by the code below, where
    291   // expect_window_ is true.
    292   target->PostTask(FROM_HERE,
    293                    Bind(&EndDialogFunc, order, 4));
    294   target->PostTask(FROM_HERE,
    295                    Bind(&QuitFunc, order, 5));
    296 
    297   // Enforce that every tasks are sent before starting to run the main thread
    298   // message loop.
    299   ASSERT_TRUE(SetEvent(event));
    300 
    301   // Poll for the MessageBox. Don't do this at home! At the speed we do it,
    302   // you will never realize one MessageBox was shown.
    303   for (; expect_window;) {
    304     HWND window = FindWindow(L"#32770", kMessageBoxTitle);
    305     if (window) {
    306       // Dismiss it.
    307       for (;;) {
    308         HWND button = FindWindowEx(window, NULL, L"Button", NULL);
    309         if (button != NULL) {
    310           EXPECT_EQ(0, SendMessage(button, WM_LBUTTONDOWN, 0, 0));
    311           EXPECT_EQ(0, SendMessage(button, WM_LBUTTONUP, 0, 0));
    312           break;
    313         }
    314       }
    315       break;
    316     }
    317   }
    318 }
    319 
    320 // TODO(darin): These tests need to be ported since they test critical
    321 // message loop functionality.
    322 
    323 // A side effect of this test is the generation a beep. Sorry.
    324 void RunTest_RecursiveDenial2(MessageLoop::Type message_loop_type) {
    325   MessageLoop loop(message_loop_type);
    326 
    327   Thread worker("RecursiveDenial2_worker");
    328   Thread::Options options;
    329   options.message_loop_type = message_loop_type;
    330   ASSERT_EQ(true, worker.StartWithOptions(options));
    331   TaskList order;
    332   win::ScopedHandle event(CreateEvent(NULL, FALSE, FALSE, NULL));
    333   worker.message_loop()->PostTask(FROM_HERE,
    334                                   Bind(&RecursiveFuncWin,
    335                                              MessageLoop::current(),
    336                                              event.Get(),
    337                                              true,
    338                                              &order,
    339                                              false));
    340   // Let the other thread execute.
    341   WaitForSingleObject(event.Get(), INFINITE);
    342   MessageLoop::current()->Run();
    343 
    344   ASSERT_EQ(17u, order.Size());
    345   EXPECT_EQ(order.Get(0), TaskItem(RECURSIVE, 1, true));
    346   EXPECT_EQ(order.Get(1), TaskItem(RECURSIVE, 1, false));
    347   EXPECT_EQ(order.Get(2), TaskItem(MESSAGEBOX, 2, true));
    348   EXPECT_EQ(order.Get(3), TaskItem(MESSAGEBOX, 2, false));
    349   EXPECT_EQ(order.Get(4), TaskItem(RECURSIVE, 3, true));
    350   EXPECT_EQ(order.Get(5), TaskItem(RECURSIVE, 3, false));
    351   // When EndDialogFunc is processed, the window is already dismissed, hence no
    352   // "end" entry.
    353   EXPECT_EQ(order.Get(6), TaskItem(ENDDIALOG, 4, true));
    354   EXPECT_EQ(order.Get(7), TaskItem(QUITMESSAGELOOP, 5, true));
    355   EXPECT_EQ(order.Get(8), TaskItem(QUITMESSAGELOOP, 5, false));
    356   EXPECT_EQ(order.Get(9), TaskItem(RECURSIVE, 1, true));
    357   EXPECT_EQ(order.Get(10), TaskItem(RECURSIVE, 1, false));
    358   EXPECT_EQ(order.Get(11), TaskItem(RECURSIVE, 3, true));
    359   EXPECT_EQ(order.Get(12), TaskItem(RECURSIVE, 3, false));
    360   EXPECT_EQ(order.Get(13), TaskItem(RECURSIVE, 1, true));
    361   EXPECT_EQ(order.Get(14), TaskItem(RECURSIVE, 1, false));
    362   EXPECT_EQ(order.Get(15), TaskItem(RECURSIVE, 3, true));
    363   EXPECT_EQ(order.Get(16), TaskItem(RECURSIVE, 3, false));
    364 }
    365 
    366 // A side effect of this test is the generation a beep. Sorry.  This test also
    367 // needs to process windows messages on the current thread.
    368 void RunTest_RecursiveSupport2(MessageLoop::Type message_loop_type) {
    369   MessageLoop loop(message_loop_type);
    370 
    371   Thread worker("RecursiveSupport2_worker");
    372   Thread::Options options;
    373   options.message_loop_type = message_loop_type;
    374   ASSERT_EQ(true, worker.StartWithOptions(options));
    375   TaskList order;
    376   win::ScopedHandle event(CreateEvent(NULL, FALSE, FALSE, NULL));
    377   worker.message_loop()->PostTask(FROM_HERE,
    378                                   Bind(&RecursiveFuncWin,
    379                                              MessageLoop::current(),
    380                                              event.Get(),
    381                                              false,
    382                                              &order,
    383                                              true));
    384   // Let the other thread execute.
    385   WaitForSingleObject(event.Get(), INFINITE);
    386   MessageLoop::current()->Run();
    387 
    388   ASSERT_EQ(18u, order.Size());
    389   EXPECT_EQ(order.Get(0), TaskItem(RECURSIVE, 1, true));
    390   EXPECT_EQ(order.Get(1), TaskItem(RECURSIVE, 1, false));
    391   EXPECT_EQ(order.Get(2), TaskItem(MESSAGEBOX, 2, true));
    392   // Note that this executes in the MessageBox modal loop.
    393   EXPECT_EQ(order.Get(3), TaskItem(RECURSIVE, 3, true));
    394   EXPECT_EQ(order.Get(4), TaskItem(RECURSIVE, 3, false));
    395   EXPECT_EQ(order.Get(5), TaskItem(ENDDIALOG, 4, true));
    396   EXPECT_EQ(order.Get(6), TaskItem(ENDDIALOG, 4, false));
    397   EXPECT_EQ(order.Get(7), TaskItem(MESSAGEBOX, 2, false));
    398   /* The order can subtly change here. The reason is that when RecursiveFunc(1)
    399      is called in the main thread, if it is faster than getting to the
    400      PostTask(FROM_HERE, Bind(&QuitFunc) execution, the order of task
    401      execution can change. We don't care anyway that the order isn't correct.
    402   EXPECT_EQ(order.Get(8), TaskItem(QUITMESSAGELOOP, 5, true));
    403   EXPECT_EQ(order.Get(9), TaskItem(QUITMESSAGELOOP, 5, false));
    404   EXPECT_EQ(order.Get(10), TaskItem(RECURSIVE, 1, true));
    405   EXPECT_EQ(order.Get(11), TaskItem(RECURSIVE, 1, false));
    406   */
    407   EXPECT_EQ(order.Get(12), TaskItem(RECURSIVE, 3, true));
    408   EXPECT_EQ(order.Get(13), TaskItem(RECURSIVE, 3, false));
    409   EXPECT_EQ(order.Get(14), TaskItem(RECURSIVE, 1, true));
    410   EXPECT_EQ(order.Get(15), TaskItem(RECURSIVE, 1, false));
    411   EXPECT_EQ(order.Get(16), TaskItem(RECURSIVE, 3, true));
    412   EXPECT_EQ(order.Get(17), TaskItem(RECURSIVE, 3, false));
    413 }
    414 
    415 #endif  // defined(OS_WIN)
    416 
    417 void PostNTasksThenQuit(int posts_remaining) {
    418   if (posts_remaining > 1) {
    419     MessageLoop::current()->PostTask(
    420         FROM_HERE,
    421         Bind(&PostNTasksThenQuit, posts_remaining - 1));
    422   } else {
    423     MessageLoop::current()->QuitWhenIdle();
    424   }
    425 }
    426 
    427 #if defined(OS_WIN)
    428 
    429 class DispatcherImpl : public MessagePumpDispatcher {
    430  public:
    431   DispatcherImpl() : dispatch_count_(0) {}
    432 
    433   uint32_t Dispatch(const NativeEvent& msg) override {
    434     ::TranslateMessage(&msg);
    435     ::DispatchMessage(&msg);
    436     // Do not count WM_TIMER since it is not what we post and it will cause
    437     // flakiness.
    438     if (msg.message != WM_TIMER)
    439       ++dispatch_count_;
    440     // We treat WM_LBUTTONUP as the last message.
    441     return msg.message == WM_LBUTTONUP ? POST_DISPATCH_QUIT_LOOP
    442                                        : POST_DISPATCH_NONE;
    443   }
    444 
    445   int dispatch_count_;
    446 };
    447 
    448 void MouseDownUp() {
    449   PostMessage(NULL, WM_LBUTTONDOWN, 0, 0);
    450   PostMessage(NULL, WM_LBUTTONUP, 'A', 0);
    451 }
    452 
    453 void RunTest_Dispatcher(MessageLoop::Type message_loop_type) {
    454   MessageLoop loop(message_loop_type);
    455 
    456   MessageLoop::current()->PostDelayedTask(
    457       FROM_HERE,
    458       Bind(&MouseDownUp),
    459       TimeDelta::FromMilliseconds(100));
    460   DispatcherImpl dispatcher;
    461   RunLoop run_loop(&dispatcher);
    462   run_loop.Run();
    463   ASSERT_EQ(2, dispatcher.dispatch_count_);
    464 }
    465 
    466 LRESULT CALLBACK MsgFilterProc(int code, WPARAM wparam, LPARAM lparam) {
    467   if (code == MessagePumpForUI::kMessageFilterCode) {
    468     MSG* msg = reinterpret_cast<MSG*>(lparam);
    469     if (msg->message == WM_LBUTTONDOWN)
    470       return TRUE;
    471   }
    472   return FALSE;
    473 }
    474 
    475 void RunTest_DispatcherWithMessageHook(MessageLoop::Type message_loop_type) {
    476   MessageLoop loop(message_loop_type);
    477 
    478   MessageLoop::current()->PostDelayedTask(
    479       FROM_HERE,
    480       Bind(&MouseDownUp),
    481       TimeDelta::FromMilliseconds(100));
    482   HHOOK msg_hook = SetWindowsHookEx(WH_MSGFILTER,
    483                                     MsgFilterProc,
    484                                     NULL,
    485                                     GetCurrentThreadId());
    486   DispatcherImpl dispatcher;
    487   RunLoop run_loop(&dispatcher);
    488   run_loop.Run();
    489   ASSERT_EQ(1, dispatcher.dispatch_count_);
    490   UnhookWindowsHookEx(msg_hook);
    491 }
    492 
    493 class TestIOHandler : public MessageLoopForIO::IOHandler {
    494  public:
    495   TestIOHandler(const wchar_t* name, HANDLE signal, bool wait);
    496 
    497   void OnIOCompleted(MessageLoopForIO::IOContext* context,
    498                      DWORD bytes_transfered,
    499                      DWORD error) override;
    500 
    501   void Init();
    502   void WaitForIO();
    503   OVERLAPPED* context() { return &context_.overlapped; }
    504   DWORD size() { return sizeof(buffer_); }
    505 
    506  private:
    507   char buffer_[48];
    508   MessageLoopForIO::IOContext context_;
    509   HANDLE signal_;
    510   win::ScopedHandle file_;
    511   bool wait_;
    512 };
    513 
    514 TestIOHandler::TestIOHandler(const wchar_t* name, HANDLE signal, bool wait)
    515     : signal_(signal), wait_(wait) {
    516   memset(buffer_, 0, sizeof(buffer_));
    517   memset(&context_, 0, sizeof(context_));
    518   context_.handler = this;
    519 
    520   file_.Set(CreateFile(name, GENERIC_READ, 0, NULL, OPEN_EXISTING,
    521                        FILE_FLAG_OVERLAPPED, NULL));
    522   EXPECT_TRUE(file_.IsValid());
    523 }
    524 
    525 void TestIOHandler::Init() {
    526   MessageLoopForIO::current()->RegisterIOHandler(file_.Get(), this);
    527 
    528   DWORD read;
    529   EXPECT_FALSE(ReadFile(file_.Get(), buffer_, size(), &read, context()));
    530   EXPECT_EQ(static_cast<DWORD>(ERROR_IO_PENDING), GetLastError());
    531   if (wait_)
    532     WaitForIO();
    533 }
    534 
    535 void TestIOHandler::OnIOCompleted(MessageLoopForIO::IOContext* context,
    536                                   DWORD bytes_transfered, DWORD error) {
    537   ASSERT_TRUE(context == &context_);
    538   ASSERT_TRUE(SetEvent(signal_));
    539 }
    540 
    541 void TestIOHandler::WaitForIO() {
    542   EXPECT_TRUE(MessageLoopForIO::current()->WaitForIOCompletion(300, this));
    543   EXPECT_TRUE(MessageLoopForIO::current()->WaitForIOCompletion(400, this));
    544 }
    545 
    546 void RunTest_IOHandler() {
    547   win::ScopedHandle callback_called(CreateEvent(NULL, TRUE, FALSE, NULL));
    548   ASSERT_TRUE(callback_called.IsValid());
    549 
    550   const wchar_t* kPipeName = L"\\\\.\\pipe\\iohandler_pipe";
    551   win::ScopedHandle server(
    552       CreateNamedPipe(kPipeName, PIPE_ACCESS_OUTBOUND, 0, 1, 0, 0, 0, NULL));
    553   ASSERT_TRUE(server.IsValid());
    554 
    555   Thread thread("IOHandler test");
    556   Thread::Options options;
    557   options.message_loop_type = MessageLoop::TYPE_IO;
    558   ASSERT_TRUE(thread.StartWithOptions(options));
    559 
    560   MessageLoop* thread_loop = thread.message_loop();
    561   ASSERT_TRUE(NULL != thread_loop);
    562 
    563   TestIOHandler handler(kPipeName, callback_called.Get(), false);
    564   thread_loop->PostTask(FROM_HERE, Bind(&TestIOHandler::Init,
    565                                               Unretained(&handler)));
    566   // Make sure the thread runs and sleeps for lack of work.
    567   PlatformThread::Sleep(TimeDelta::FromMilliseconds(100));
    568 
    569   const char buffer[] = "Hello there!";
    570   DWORD written;
    571   EXPECT_TRUE(WriteFile(server.Get(), buffer, sizeof(buffer), &written, NULL));
    572 
    573   DWORD result = WaitForSingleObject(callback_called.Get(), 1000);
    574   EXPECT_EQ(WAIT_OBJECT_0, result);
    575 
    576   thread.Stop();
    577 }
    578 
    579 void RunTest_WaitForIO() {
    580   win::ScopedHandle callback1_called(
    581       CreateEvent(NULL, TRUE, FALSE, NULL));
    582   win::ScopedHandle callback2_called(
    583       CreateEvent(NULL, TRUE, FALSE, NULL));
    584   ASSERT_TRUE(callback1_called.IsValid());
    585   ASSERT_TRUE(callback2_called.IsValid());
    586 
    587   const wchar_t* kPipeName1 = L"\\\\.\\pipe\\iohandler_pipe1";
    588   const wchar_t* kPipeName2 = L"\\\\.\\pipe\\iohandler_pipe2";
    589   win::ScopedHandle server1(
    590       CreateNamedPipe(kPipeName1, PIPE_ACCESS_OUTBOUND, 0, 1, 0, 0, 0, NULL));
    591   win::ScopedHandle server2(
    592       CreateNamedPipe(kPipeName2, PIPE_ACCESS_OUTBOUND, 0, 1, 0, 0, 0, NULL));
    593   ASSERT_TRUE(server1.IsValid());
    594   ASSERT_TRUE(server2.IsValid());
    595 
    596   Thread thread("IOHandler test");
    597   Thread::Options options;
    598   options.message_loop_type = MessageLoop::TYPE_IO;
    599   ASSERT_TRUE(thread.StartWithOptions(options));
    600 
    601   MessageLoop* thread_loop = thread.message_loop();
    602   ASSERT_TRUE(NULL != thread_loop);
    603 
    604   TestIOHandler handler1(kPipeName1, callback1_called.Get(), false);
    605   TestIOHandler handler2(kPipeName2, callback2_called.Get(), true);
    606   thread_loop->PostTask(FROM_HERE, Bind(&TestIOHandler::Init,
    607                                               Unretained(&handler1)));
    608   // TODO(ajwong): Do we really need such long Sleeps in this function?
    609   // Make sure the thread runs and sleeps for lack of work.
    610   TimeDelta delay = TimeDelta::FromMilliseconds(100);
    611   PlatformThread::Sleep(delay);
    612   thread_loop->PostTask(FROM_HERE, Bind(&TestIOHandler::Init,
    613                                               Unretained(&handler2)));
    614   PlatformThread::Sleep(delay);
    615 
    616   // At this time handler1 is waiting to be called, and the thread is waiting
    617   // on the Init method of handler2, filtering only handler2 callbacks.
    618 
    619   const char buffer[] = "Hello there!";
    620   DWORD written;
    621   EXPECT_TRUE(WriteFile(server1.Get(), buffer, sizeof(buffer), &written, NULL));
    622   PlatformThread::Sleep(2 * delay);
    623   EXPECT_EQ(static_cast<DWORD>(WAIT_TIMEOUT),
    624             WaitForSingleObject(callback1_called.Get(), 0))
    625       << "handler1 has not been called";
    626 
    627   EXPECT_TRUE(WriteFile(server2.Get(), buffer, sizeof(buffer), &written, NULL));
    628 
    629   HANDLE objects[2] = { callback1_called.Get(), callback2_called.Get() };
    630   DWORD result = WaitForMultipleObjects(2, objects, TRUE, 1000);
    631   EXPECT_EQ(WAIT_OBJECT_0, result);
    632 
    633   thread.Stop();
    634 }
    635 
    636 #endif  // defined(OS_WIN)
    637 
    638 }  // namespace
    639 
    640 //-----------------------------------------------------------------------------
    641 // Each test is run against each type of MessageLoop.  That way we are sure
    642 // that message loops work properly in all configurations.  Of course, in some
    643 // cases, a unit test may only be for a particular type of loop.
    644 
    645 RUN_MESSAGE_LOOP_TESTS(Default, &TypeDefaultMessagePumpFactory);
    646 RUN_MESSAGE_LOOP_TESTS(UI, &TypeUIMessagePumpFactory);
    647 RUN_MESSAGE_LOOP_TESTS(IO, &TypeIOMessagePumpFactory);
    648 
    649 #if defined(OS_WIN)
    650 TEST(MessageLoopTest, PostDelayedTask_SharedTimer_SubPump) {
    651   RunTest_PostDelayedTask_SharedTimer_SubPump();
    652 }
    653 
    654 // This test occasionally hangs. See http://crbug.com/44567.
    655 TEST(MessageLoopTest, DISABLED_RecursiveDenial2) {
    656   RunTest_RecursiveDenial2(MessageLoop::TYPE_DEFAULT);
    657   RunTest_RecursiveDenial2(MessageLoop::TYPE_UI);
    658   RunTest_RecursiveDenial2(MessageLoop::TYPE_IO);
    659 }
    660 
    661 TEST(MessageLoopTest, RecursiveSupport2) {
    662   // This test requires a UI loop.
    663   RunTest_RecursiveSupport2(MessageLoop::TYPE_UI);
    664 }
    665 #endif  // defined(OS_WIN)
    666 
    667 class DummyTaskObserver : public MessageLoop::TaskObserver {
    668  public:
    669   explicit DummyTaskObserver(int num_tasks)
    670       : num_tasks_started_(0),
    671         num_tasks_processed_(0),
    672         num_tasks_(num_tasks) {}
    673 
    674   ~DummyTaskObserver() override {}
    675 
    676   void WillProcessTask(const PendingTask& pending_task) override {
    677     num_tasks_started_++;
    678     EXPECT_LE(num_tasks_started_, num_tasks_);
    679     EXPECT_EQ(num_tasks_started_, num_tasks_processed_ + 1);
    680   }
    681 
    682   void DidProcessTask(const PendingTask& pending_task) override {
    683     num_tasks_processed_++;
    684     EXPECT_LE(num_tasks_started_, num_tasks_);
    685     EXPECT_EQ(num_tasks_started_, num_tasks_processed_);
    686   }
    687 
    688   int num_tasks_started() const { return num_tasks_started_; }
    689   int num_tasks_processed() const { return num_tasks_processed_; }
    690 
    691  private:
    692   int num_tasks_started_;
    693   int num_tasks_processed_;
    694   const int num_tasks_;
    695 
    696   DISALLOW_COPY_AND_ASSIGN(DummyTaskObserver);
    697 };
    698 
    699 TEST(MessageLoopTest, TaskObserver) {
    700   const int kNumPosts = 6;
    701   DummyTaskObserver observer(kNumPosts);
    702 
    703   MessageLoop loop;
    704   loop.AddTaskObserver(&observer);
    705   loop.PostTask(FROM_HERE, Bind(&PostNTasksThenQuit, kNumPosts));
    706   loop.Run();
    707   loop.RemoveTaskObserver(&observer);
    708 
    709   EXPECT_EQ(kNumPosts, observer.num_tasks_started());
    710   EXPECT_EQ(kNumPosts, observer.num_tasks_processed());
    711 }
    712 
    713 #if defined(OS_WIN)
    714 TEST(MessageLoopTest, Dispatcher) {
    715   // This test requires a UI loop
    716   RunTest_Dispatcher(MessageLoop::TYPE_UI);
    717 }
    718 
    719 TEST(MessageLoopTest, DispatcherWithMessageHook) {
    720   // This test requires a UI loop
    721   RunTest_DispatcherWithMessageHook(MessageLoop::TYPE_UI);
    722 }
    723 
    724 TEST(MessageLoopTest, IOHandler) {
    725   RunTest_IOHandler();
    726 }
    727 
    728 TEST(MessageLoopTest, WaitForIO) {
    729   RunTest_WaitForIO();
    730 }
    731 
    732 TEST(MessageLoopTest, HighResolutionTimer) {
    733   MessageLoop loop;
    734   Time::EnableHighResolutionTimer(true);
    735 
    736   const TimeDelta kFastTimer = TimeDelta::FromMilliseconds(5);
    737   const TimeDelta kSlowTimer = TimeDelta::FromMilliseconds(100);
    738 
    739   EXPECT_FALSE(loop.HasHighResolutionTasks());
    740   // Post a fast task to enable the high resolution timers.
    741   loop.PostDelayedTask(FROM_HERE, Bind(&PostNTasksThenQuit, 1),
    742                        kFastTimer);
    743   EXPECT_TRUE(loop.HasHighResolutionTasks());
    744   loop.Run();
    745   EXPECT_FALSE(loop.HasHighResolutionTasks());
    746   EXPECT_FALSE(Time::IsHighResolutionTimerInUse());
    747   // Check that a slow task does not trigger the high resolution logic.
    748   loop.PostDelayedTask(FROM_HERE, Bind(&PostNTasksThenQuit, 1),
    749                        kSlowTimer);
    750   EXPECT_FALSE(loop.HasHighResolutionTasks());
    751   loop.Run();
    752   EXPECT_FALSE(loop.HasHighResolutionTasks());
    753   Time::EnableHighResolutionTimer(false);
    754 }
    755 
    756 #endif  // defined(OS_WIN)
    757 
    758 #if defined(OS_POSIX) && !defined(OS_NACL)
    759 
    760 namespace {
    761 
    762 class QuitDelegate : public MessageLoopForIO::Watcher {
    763  public:
    764   void OnFileCanWriteWithoutBlocking(int fd) override {
    765     MessageLoop::current()->QuitWhenIdle();
    766   }
    767   void OnFileCanReadWithoutBlocking(int fd) override {
    768     MessageLoop::current()->QuitWhenIdle();
    769   }
    770 };
    771 
    772 TEST(MessageLoopTest, FileDescriptorWatcherOutlivesMessageLoop) {
    773   // Simulate a MessageLoop that dies before an FileDescriptorWatcher.
    774   // This could happen when people use the Singleton pattern or atexit.
    775 
    776   // Create a file descriptor.  Doesn't need to be readable or writable,
    777   // as we don't need to actually get any notifications.
    778   // pipe() is just the easiest way to do it.
    779   int pipefds[2];
    780   int err = pipe(pipefds);
    781   ASSERT_EQ(0, err);
    782   int fd = pipefds[1];
    783   {
    784     // Arrange for controller to live longer than message loop.
    785     MessageLoopForIO::FileDescriptorWatcher controller;
    786     {
    787       MessageLoopForIO message_loop;
    788 
    789       QuitDelegate delegate;
    790       message_loop.WatchFileDescriptor(fd,
    791           true, MessageLoopForIO::WATCH_WRITE, &controller, &delegate);
    792       // and don't run the message loop, just destroy it.
    793     }
    794   }
    795   if (IGNORE_EINTR(close(pipefds[0])) < 0)
    796     PLOG(ERROR) << "close";
    797   if (IGNORE_EINTR(close(pipefds[1])) < 0)
    798     PLOG(ERROR) << "close";
    799 }
    800 
    801 TEST(MessageLoopTest, FileDescriptorWatcherDoubleStop) {
    802   // Verify that it's ok to call StopWatchingFileDescriptor().
    803   // (Errors only showed up in valgrind.)
    804   int pipefds[2];
    805   int err = pipe(pipefds);
    806   ASSERT_EQ(0, err);
    807   int fd = pipefds[1];
    808   {
    809     // Arrange for message loop to live longer than controller.
    810     MessageLoopForIO message_loop;
    811     {
    812       MessageLoopForIO::FileDescriptorWatcher controller;
    813 
    814       QuitDelegate delegate;
    815       message_loop.WatchFileDescriptor(fd,
    816           true, MessageLoopForIO::WATCH_WRITE, &controller, &delegate);
    817       controller.StopWatchingFileDescriptor();
    818     }
    819   }
    820   if (IGNORE_EINTR(close(pipefds[0])) < 0)
    821     PLOG(ERROR) << "close";
    822   if (IGNORE_EINTR(close(pipefds[1])) < 0)
    823     PLOG(ERROR) << "close";
    824 }
    825 
    826 }  // namespace
    827 
    828 #endif  // defined(OS_POSIX) && !defined(OS_NACL)
    829 
    830 namespace {
    831 // Inject a test point for recording the destructor calls for Closure objects
    832 // send to MessageLoop::PostTask(). It is awkward usage since we are trying to
    833 // hook the actual destruction, which is not a common operation.
    834 class DestructionObserverProbe :
    835   public RefCounted<DestructionObserverProbe> {
    836  public:
    837   DestructionObserverProbe(bool* task_destroyed,
    838                            bool* destruction_observer_called)
    839       : task_destroyed_(task_destroyed),
    840         destruction_observer_called_(destruction_observer_called) {
    841   }
    842   virtual void Run() {
    843     // This task should never run.
    844     ADD_FAILURE();
    845   }
    846  private:
    847   friend class RefCounted<DestructionObserverProbe>;
    848 
    849   virtual ~DestructionObserverProbe() {
    850     EXPECT_FALSE(*destruction_observer_called_);
    851     *task_destroyed_ = true;
    852   }
    853 
    854   bool* task_destroyed_;
    855   bool* destruction_observer_called_;
    856 };
    857 
    858 class MLDestructionObserver : public MessageLoop::DestructionObserver {
    859  public:
    860   MLDestructionObserver(bool* task_destroyed, bool* destruction_observer_called)
    861       : task_destroyed_(task_destroyed),
    862         destruction_observer_called_(destruction_observer_called),
    863         task_destroyed_before_message_loop_(false) {
    864   }
    865   void WillDestroyCurrentMessageLoop() override {
    866     task_destroyed_before_message_loop_ = *task_destroyed_;
    867     *destruction_observer_called_ = true;
    868   }
    869   bool task_destroyed_before_message_loop() const {
    870     return task_destroyed_before_message_loop_;
    871   }
    872  private:
    873   bool* task_destroyed_;
    874   bool* destruction_observer_called_;
    875   bool task_destroyed_before_message_loop_;
    876 };
    877 
    878 }  // namespace
    879 
    880 TEST(MessageLoopTest, DestructionObserverTest) {
    881   // Verify that the destruction observer gets called at the very end (after
    882   // all the pending tasks have been destroyed).
    883   MessageLoop* loop = new MessageLoop;
    884   const TimeDelta kDelay = TimeDelta::FromMilliseconds(100);
    885 
    886   bool task_destroyed = false;
    887   bool destruction_observer_called = false;
    888 
    889   MLDestructionObserver observer(&task_destroyed, &destruction_observer_called);
    890   loop->AddDestructionObserver(&observer);
    891   loop->PostDelayedTask(
    892       FROM_HERE,
    893       Bind(&DestructionObserverProbe::Run,
    894                  new DestructionObserverProbe(&task_destroyed,
    895                                               &destruction_observer_called)),
    896       kDelay);
    897   delete loop;
    898   EXPECT_TRUE(observer.task_destroyed_before_message_loop());
    899   // The task should have been destroyed when we deleted the loop.
    900   EXPECT_TRUE(task_destroyed);
    901   EXPECT_TRUE(destruction_observer_called);
    902 }
    903 
    904 
    905 // Verify that MessageLoop sets ThreadMainTaskRunner::current() and it
    906 // posts tasks on that message loop.
    907 TEST(MessageLoopTest, ThreadMainTaskRunner) {
    908   MessageLoop loop;
    909 
    910   scoped_refptr<Foo> foo(new Foo());
    911   std::string a("a");
    912   ThreadTaskRunnerHandle::Get()->PostTask(FROM_HERE, Bind(
    913       &Foo::Test1ConstRef, foo.get(), a));
    914 
    915   // Post quit task;
    916   MessageLoop::current()->PostTask(
    917       FROM_HERE,
    918       Bind(&MessageLoop::QuitWhenIdle, Unretained(MessageLoop::current())));
    919 
    920   // Now kick things off
    921   MessageLoop::current()->Run();
    922 
    923   EXPECT_EQ(foo->test_count(), 1);
    924   EXPECT_EQ(foo->result(), "a");
    925 }
    926 
    927 TEST(MessageLoopTest, IsType) {
    928   MessageLoop loop(MessageLoop::TYPE_UI);
    929   EXPECT_TRUE(loop.IsType(MessageLoop::TYPE_UI));
    930   EXPECT_FALSE(loop.IsType(MessageLoop::TYPE_IO));
    931   EXPECT_FALSE(loop.IsType(MessageLoop::TYPE_DEFAULT));
    932 }
    933 
    934 #if defined(OS_WIN)
    935 void EmptyFunction() {}
    936 
    937 void PostMultipleTasks() {
    938   MessageLoop::current()->PostTask(FROM_HERE, base::Bind(&EmptyFunction));
    939   MessageLoop::current()->PostTask(FROM_HERE, base::Bind(&EmptyFunction));
    940 }
    941 
    942 static const int kSignalMsg = WM_USER + 2;
    943 
    944 void PostWindowsMessage(HWND message_hwnd) {
    945   PostMessage(message_hwnd, kSignalMsg, 0, 2);
    946 }
    947 
    948 void EndTest(bool* did_run, HWND hwnd) {
    949   *did_run = true;
    950   PostMessage(hwnd, WM_CLOSE, 0, 0);
    951 }
    952 
    953 int kMyMessageFilterCode = 0x5002;
    954 
    955 LRESULT CALLBACK TestWndProcThunk(HWND hwnd, UINT message,
    956                                   WPARAM wparam, LPARAM lparam) {
    957   if (message == WM_CLOSE)
    958     EXPECT_TRUE(DestroyWindow(hwnd));
    959   if (message != kSignalMsg)
    960     return DefWindowProc(hwnd, message, wparam, lparam);
    961 
    962   switch (lparam) {
    963   case 1:
    964     // First, we post a task that will post multiple no-op tasks to make sure
    965     // that the pump's incoming task queue does not become empty during the
    966     // test.
    967     MessageLoop::current()->PostTask(FROM_HERE, base::Bind(&PostMultipleTasks));
    968     // Next, we post a task that posts a windows message to trigger the second
    969     // stage of the test.
    970     MessageLoop::current()->PostTask(FROM_HERE,
    971                                      base::Bind(&PostWindowsMessage, hwnd));
    972     break;
    973   case 2:
    974     // Since we're about to enter a modal loop, tell the message loop that we
    975     // intend to nest tasks.
    976     MessageLoop::current()->SetNestableTasksAllowed(true);
    977     bool did_run = false;
    978     MessageLoop::current()->PostTask(FROM_HERE,
    979                                      base::Bind(&EndTest, &did_run, hwnd));
    980     // Run a nested windows-style message loop and verify that our task runs. If
    981     // it doesn't, then we'll loop here until the test times out.
    982     MSG msg;
    983     while (GetMessage(&msg, 0, 0, 0)) {
    984       if (!CallMsgFilter(&msg, kMyMessageFilterCode))
    985         DispatchMessage(&msg);
    986       // If this message is a WM_CLOSE, explicitly exit the modal loop. Posting
    987       // a WM_QUIT should handle this, but unfortunately MessagePumpWin eats
    988       // WM_QUIT messages even when running inside a modal loop.
    989       if (msg.message == WM_CLOSE)
    990         break;
    991     }
    992     EXPECT_TRUE(did_run);
    993     MessageLoop::current()->QuitWhenIdle();
    994     break;
    995   }
    996   return 0;
    997 }
    998 
    999 TEST(MessageLoopTest, AlwaysHaveUserMessageWhenNesting) {
   1000   MessageLoop loop(MessageLoop::TYPE_UI);
   1001   HINSTANCE instance = GetModuleFromAddress(&TestWndProcThunk);
   1002   WNDCLASSEX wc = {0};
   1003   wc.cbSize = sizeof(wc);
   1004   wc.lpfnWndProc = TestWndProcThunk;
   1005   wc.hInstance = instance;
   1006   wc.lpszClassName = L"MessageLoopTest_HWND";
   1007   ATOM atom = RegisterClassEx(&wc);
   1008   ASSERT_TRUE(atom);
   1009 
   1010   HWND message_hwnd = CreateWindow(MAKEINTATOM(atom), 0, 0, 0, 0, 0, 0,
   1011                                    HWND_MESSAGE, 0, instance, 0);
   1012   ASSERT_TRUE(message_hwnd) << GetLastError();
   1013 
   1014   ASSERT_TRUE(PostMessage(message_hwnd, kSignalMsg, 0, 1));
   1015 
   1016   loop.Run();
   1017 
   1018   ASSERT_TRUE(UnregisterClass(MAKEINTATOM(atom), instance));
   1019 }
   1020 #endif  // defined(OS_WIN)
   1021 
   1022 TEST(MessageLoopTest, SetTaskRunner) {
   1023   MessageLoop loop;
   1024   scoped_refptr<SingleThreadTaskRunner> new_runner(new TestSimpleTaskRunner());
   1025 
   1026   loop.SetTaskRunner(new_runner);
   1027   EXPECT_EQ(new_runner, loop.task_runner());
   1028   EXPECT_EQ(new_runner, ThreadTaskRunnerHandle::Get());
   1029 }
   1030 
   1031 TEST(MessageLoopTest, OriginalRunnerWorks) {
   1032   MessageLoop loop;
   1033   scoped_refptr<SingleThreadTaskRunner> new_runner(new TestSimpleTaskRunner());
   1034   scoped_refptr<SingleThreadTaskRunner> original_runner(loop.task_runner());
   1035   loop.SetTaskRunner(new_runner);
   1036 
   1037   scoped_refptr<Foo> foo(new Foo());
   1038   original_runner->PostTask(FROM_HERE,
   1039                             Bind(&Foo::Test1ConstRef, foo.get(), "a"));
   1040   loop.RunUntilIdle();
   1041   EXPECT_EQ(1, foo->test_count());
   1042 }
   1043 
   1044 TEST(MessageLoopTest, DeleteUnboundLoop) {
   1045   // It should be possible to delete an unbound message loop on a thread which
   1046   // already has another active loop. This happens when thread creation fails.
   1047   MessageLoop loop;
   1048   scoped_ptr<MessageLoop> unbound_loop(MessageLoop::CreateUnbound(
   1049       MessageLoop::TYPE_DEFAULT, MessageLoop::MessagePumpFactoryCallback()));
   1050   unbound_loop.reset();
   1051   EXPECT_EQ(&loop, MessageLoop::current());
   1052   EXPECT_EQ(loop.task_runner(), ThreadTaskRunnerHandle::Get());
   1053 }
   1054 
   1055 }  // namespace base
   1056