Home | History | Annotate | Download | only in gc
      1 /*
      2  * Copyright (C) 2008 The Android Open Source Project
      3  *
      4  * Licensed under the Apache License, Version 2.0 (the "License");
      5  * you may not use this file except in compliance with the License.
      6  * You may obtain a copy of the License at
      7  *
      8  *      http://www.apache.org/licenses/LICENSE-2.0
      9  *
     10  * Unless required by applicable law or agreed to in writing, software
     11  * distributed under the License is distributed on an "AS IS" BASIS,
     12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     13  * See the License for the specific language governing permissions and
     14  * limitations under the License.
     15  */
     16 
     17 #ifndef ART_RUNTIME_GC_HEAP_H_
     18 #define ART_RUNTIME_GC_HEAP_H_
     19 
     20 #include <iosfwd>
     21 #include <string>
     22 #include <unordered_set>
     23 #include <vector>
     24 
     25 #include "allocator_type.h"
     26 #include "arch/instruction_set.h"
     27 #include "atomic.h"
     28 #include "base/time_utils.h"
     29 #include "gc/accounting/atomic_stack.h"
     30 #include "gc/accounting/card_table.h"
     31 #include "gc/accounting/read_barrier_table.h"
     32 #include "gc/gc_cause.h"
     33 #include "gc/collector/gc_type.h"
     34 #include "gc/collector_type.h"
     35 #include "gc/space/large_object_space.h"
     36 #include "globals.h"
     37 #include "object_callbacks.h"
     38 #include "offsets.h"
     39 #include "process_state.h"
     40 #include "safe_map.h"
     41 #include "verify_object.h"
     42 
     43 namespace art {
     44 
     45 class ConditionVariable;
     46 class Mutex;
     47 class StackVisitor;
     48 class Thread;
     49 class ThreadPool;
     50 class TimingLogger;
     51 
     52 namespace mirror {
     53   class Class;
     54   class Object;
     55 }  // namespace mirror
     56 
     57 namespace gc {
     58 
     59 class AllocRecordObjectMap;
     60 class ReferenceProcessor;
     61 class TaskProcessor;
     62 
     63 namespace accounting {
     64   class HeapBitmap;
     65   class ModUnionTable;
     66   class RememberedSet;
     67 }  // namespace accounting
     68 
     69 namespace collector {
     70   class ConcurrentCopying;
     71   class GarbageCollector;
     72   class MarkCompact;
     73   class MarkSweep;
     74   class SemiSpace;
     75 }  // namespace collector
     76 
     77 namespace allocator {
     78   class RosAlloc;
     79 }  // namespace allocator
     80 
     81 namespace space {
     82   class AllocSpace;
     83   class BumpPointerSpace;
     84   class ContinuousMemMapAllocSpace;
     85   class DiscontinuousSpace;
     86   class DlMallocSpace;
     87   class ImageSpace;
     88   class LargeObjectSpace;
     89   class MallocSpace;
     90   class RegionSpace;
     91   class RosAllocSpace;
     92   class Space;
     93   class ZygoteSpace;
     94 }  // namespace space
     95 
     96 class AgeCardVisitor {
     97  public:
     98   uint8_t operator()(uint8_t card) const {
     99     return (card == accounting::CardTable::kCardDirty) ? card - 1 : 0;
    100   }
    101 };
    102 
    103 enum HomogeneousSpaceCompactResult {
    104   // Success.
    105   kSuccess,
    106   // Reject due to disabled moving GC.
    107   kErrorReject,
    108   // Unsupported due to the current configuration.
    109   kErrorUnsupported,
    110   // System is shutting down.
    111   kErrorVMShuttingDown,
    112 };
    113 
    114 // If true, use rosalloc/RosAllocSpace instead of dlmalloc/DlMallocSpace
    115 static constexpr bool kUseRosAlloc = true;
    116 
    117 // If true, use thread-local allocation stack.
    118 static constexpr bool kUseThreadLocalAllocationStack = true;
    119 
    120 class Heap {
    121  public:
    122   // If true, measure the total allocation time.
    123   static constexpr size_t kDefaultStartingSize = kPageSize;
    124   static constexpr size_t kDefaultInitialSize = 2 * MB;
    125   static constexpr size_t kDefaultMaximumSize = 256 * MB;
    126   static constexpr size_t kDefaultNonMovingSpaceCapacity = 64 * MB;
    127   static constexpr size_t kDefaultMaxFree = 2 * MB;
    128   static constexpr size_t kDefaultMinFree = kDefaultMaxFree / 4;
    129   static constexpr size_t kDefaultLongPauseLogThreshold = MsToNs(5);
    130   static constexpr size_t kDefaultLongGCLogThreshold = MsToNs(100);
    131   static constexpr size_t kDefaultTLABSize = 256 * KB;
    132   static constexpr double kDefaultTargetUtilization = 0.5;
    133   static constexpr double kDefaultHeapGrowthMultiplier = 2.0;
    134   // Primitive arrays larger than this size are put in the large object space.
    135   static constexpr size_t kDefaultLargeObjectThreshold = 3 * kPageSize;
    136   // Whether or not parallel GC is enabled. If not, then we never create the thread pool.
    137   static constexpr bool kDefaultEnableParallelGC = false;
    138 
    139   // Whether or not we use the free list large object space. Only use it if USE_ART_LOW_4G_ALLOCATOR
    140   // since this means that we have to use the slow msync loop in MemMap::MapAnonymous.
    141   static constexpr space::LargeObjectSpaceType kDefaultLargeObjectSpaceType =
    142       USE_ART_LOW_4G_ALLOCATOR ?
    143           space::LargeObjectSpaceType::kFreeList
    144         : space::LargeObjectSpaceType::kMap;
    145 
    146   // Used so that we don't overflow the allocation time atomic integer.
    147   static constexpr size_t kTimeAdjust = 1024;
    148 
    149   // How often we allow heap trimming to happen (nanoseconds).
    150   static constexpr uint64_t kHeapTrimWait = MsToNs(5000);
    151   // How long we wait after a transition request to perform a collector transition (nanoseconds).
    152   static constexpr uint64_t kCollectorTransitionWait = MsToNs(5000);
    153 
    154   // Create a heap with the requested sizes. The possible empty
    155   // image_file_names names specify Spaces to load based on
    156   // ImageWriter output.
    157   Heap(size_t initial_size,
    158        size_t growth_limit,
    159        size_t min_free,
    160        size_t max_free,
    161        double target_utilization,
    162        double foreground_heap_growth_multiplier,
    163        size_t capacity,
    164        size_t non_moving_space_capacity,
    165        const std::string& original_image_file_name,
    166        InstructionSet image_instruction_set,
    167        CollectorType foreground_collector_type,
    168        CollectorType background_collector_type,
    169        space::LargeObjectSpaceType large_object_space_type,
    170        size_t large_object_threshold,
    171        size_t parallel_gc_threads,
    172        size_t conc_gc_threads,
    173        bool low_memory_mode,
    174        size_t long_pause_threshold,
    175        size_t long_gc_threshold,
    176        bool ignore_max_footprint,
    177        bool use_tlab,
    178        bool verify_pre_gc_heap,
    179        bool verify_pre_sweeping_heap,
    180        bool verify_post_gc_heap,
    181        bool verify_pre_gc_rosalloc,
    182        bool verify_pre_sweeping_rosalloc,
    183        bool verify_post_gc_rosalloc,
    184        bool gc_stress_mode,
    185        bool use_homogeneous_space_compaction,
    186        uint64_t min_interval_homogeneous_space_compaction_by_oom);
    187 
    188   ~Heap();
    189 
    190   // Allocates and initializes storage for an object instance.
    191   template <bool kInstrumented, typename PreFenceVisitor>
    192   mirror::Object* AllocObject(Thread* self,
    193                               mirror::Class* klass,
    194                               size_t num_bytes,
    195                               const PreFenceVisitor& pre_fence_visitor)
    196       SHARED_REQUIRES(Locks::mutator_lock_)
    197       REQUIRES(!*gc_complete_lock_, !*pending_task_lock_, !*backtrace_lock_,
    198                !Roles::uninterruptible_) {
    199     return AllocObjectWithAllocator<kInstrumented, true>(
    200         self, klass, num_bytes, GetCurrentAllocator(), pre_fence_visitor);
    201   }
    202 
    203   template <bool kInstrumented, typename PreFenceVisitor>
    204   mirror::Object* AllocNonMovableObject(Thread* self,
    205                                         mirror::Class* klass,
    206                                         size_t num_bytes,
    207                                         const PreFenceVisitor& pre_fence_visitor)
    208       SHARED_REQUIRES(Locks::mutator_lock_)
    209       REQUIRES(!*gc_complete_lock_, !*pending_task_lock_, !*backtrace_lock_,
    210                !Roles::uninterruptible_) {
    211     return AllocObjectWithAllocator<kInstrumented, true>(
    212         self, klass, num_bytes, GetCurrentNonMovingAllocator(), pre_fence_visitor);
    213   }
    214 
    215   template <bool kInstrumented, bool kCheckLargeObject, typename PreFenceVisitor>
    216   ALWAYS_INLINE mirror::Object* AllocObjectWithAllocator(Thread* self,
    217                                                          mirror::Class* klass,
    218                                                          size_t byte_count,
    219                                                          AllocatorType allocator,
    220                                                          const PreFenceVisitor& pre_fence_visitor)
    221       SHARED_REQUIRES(Locks::mutator_lock_)
    222       REQUIRES(!*gc_complete_lock_, !*pending_task_lock_, !*backtrace_lock_,
    223                !Roles::uninterruptible_);
    224 
    225   AllocatorType GetCurrentAllocator() const {
    226     return current_allocator_;
    227   }
    228 
    229   AllocatorType GetCurrentNonMovingAllocator() const {
    230     return current_non_moving_allocator_;
    231   }
    232 
    233   // Visit all of the live objects in the heap.
    234   void VisitObjects(ObjectCallback callback, void* arg)
    235       SHARED_REQUIRES(Locks::mutator_lock_)
    236       REQUIRES(!Locks::heap_bitmap_lock_, !*gc_complete_lock_);
    237   void VisitObjectsPaused(ObjectCallback callback, void* arg)
    238       REQUIRES(Locks::mutator_lock_, !Locks::heap_bitmap_lock_, !*gc_complete_lock_);
    239 
    240   void CheckPreconditionsForAllocObject(mirror::Class* c, size_t byte_count)
    241       SHARED_REQUIRES(Locks::mutator_lock_);
    242 
    243   void RegisterNativeAllocation(JNIEnv* env, size_t bytes)
    244       REQUIRES(!*gc_complete_lock_, !*pending_task_lock_, !native_histogram_lock_);
    245   void RegisterNativeFree(JNIEnv* env, size_t bytes)
    246       REQUIRES(!*gc_complete_lock_, !*pending_task_lock_, !native_histogram_lock_);
    247 
    248   // Change the allocator, updates entrypoints.
    249   void ChangeAllocator(AllocatorType allocator)
    250       REQUIRES(Locks::mutator_lock_, !Locks::runtime_shutdown_lock_);
    251 
    252   // Transition the garbage collector during runtime, may copy objects from one space to another.
    253   void TransitionCollector(CollectorType collector_type) REQUIRES(!*gc_complete_lock_);
    254 
    255   // Change the collector to be one of the possible options (MS, CMS, SS).
    256   void ChangeCollector(CollectorType collector_type)
    257       REQUIRES(Locks::mutator_lock_);
    258 
    259   // The given reference is believed to be to an object in the Java heap, check the soundness of it.
    260   // TODO: NO_THREAD_SAFETY_ANALYSIS since we call this everywhere and it is impossible to find a
    261   // proper lock ordering for it.
    262   void VerifyObjectBody(mirror::Object* o) NO_THREAD_SAFETY_ANALYSIS;
    263 
    264   // Check sanity of all live references.
    265   void VerifyHeap() REQUIRES(!Locks::heap_bitmap_lock_);
    266   // Returns how many failures occured.
    267   size_t VerifyHeapReferences(bool verify_referents = true)
    268       REQUIRES(Locks::mutator_lock_, !*gc_complete_lock_);
    269   bool VerifyMissingCardMarks()
    270       REQUIRES(Locks::heap_bitmap_lock_, Locks::mutator_lock_);
    271 
    272   // A weaker test than IsLiveObject or VerifyObject that doesn't require the heap lock,
    273   // and doesn't abort on error, allowing the caller to report more
    274   // meaningful diagnostics.
    275   bool IsValidObjectAddress(const mirror::Object* obj) const SHARED_REQUIRES(Locks::mutator_lock_);
    276 
    277   // Faster alternative to IsHeapAddress since finding if an object is in the large object space is
    278   // very slow.
    279   bool IsNonDiscontinuousSpaceHeapAddress(const mirror::Object* obj) const
    280       SHARED_REQUIRES(Locks::mutator_lock_);
    281 
    282   // Returns true if 'obj' is a live heap object, false otherwise (including for invalid addresses).
    283   // Requires the heap lock to be held.
    284   bool IsLiveObjectLocked(mirror::Object* obj,
    285                           bool search_allocation_stack = true,
    286                           bool search_live_stack = true,
    287                           bool sorted = false)
    288       SHARED_REQUIRES(Locks::heap_bitmap_lock_, Locks::mutator_lock_);
    289 
    290   // Returns true if there is any chance that the object (obj) will move.
    291   bool IsMovableObject(const mirror::Object* obj) const SHARED_REQUIRES(Locks::mutator_lock_);
    292 
    293   // Enables us to compacting GC until objects are released.
    294   void IncrementDisableMovingGC(Thread* self) REQUIRES(!*gc_complete_lock_);
    295   void DecrementDisableMovingGC(Thread* self) REQUIRES(!*gc_complete_lock_);
    296 
    297   // Temporarily disable thread flip for JNI critical calls.
    298   void IncrementDisableThreadFlip(Thread* self) REQUIRES(!*thread_flip_lock_);
    299   void DecrementDisableThreadFlip(Thread* self) REQUIRES(!*thread_flip_lock_);
    300   void ThreadFlipBegin(Thread* self) REQUIRES(!*thread_flip_lock_);
    301   void ThreadFlipEnd(Thread* self) REQUIRES(!*thread_flip_lock_);
    302 
    303   // Clear all of the mark bits, doesn't clear bitmaps which have the same live bits as mark bits.
    304   // Mutator lock is required for GetContinuousSpaces.
    305   void ClearMarkedObjects()
    306       REQUIRES(Locks::heap_bitmap_lock_)
    307       SHARED_REQUIRES(Locks::mutator_lock_);
    308 
    309   // Initiates an explicit garbage collection.
    310   void CollectGarbage(bool clear_soft_references)
    311       REQUIRES(!*gc_complete_lock_, !*pending_task_lock_);
    312 
    313   // Does a concurrent GC, should only be called by the GC daemon thread
    314   // through runtime.
    315   void ConcurrentGC(Thread* self, bool force_full)
    316       REQUIRES(!Locks::runtime_shutdown_lock_, !*gc_complete_lock_, !*pending_task_lock_);
    317 
    318   // Implements VMDebug.countInstancesOfClass and JDWP VM_InstanceCount.
    319   // The boolean decides whether to use IsAssignableFrom or == when comparing classes.
    320   void CountInstances(const std::vector<mirror::Class*>& classes,
    321                       bool use_is_assignable_from,
    322                       uint64_t* counts)
    323       REQUIRES(!Locks::heap_bitmap_lock_, !*gc_complete_lock_)
    324       SHARED_REQUIRES(Locks::mutator_lock_);
    325   // Implements JDWP RT_Instances.
    326   void GetInstances(mirror::Class* c, int32_t max_count, std::vector<mirror::Object*>& instances)
    327       REQUIRES(!Locks::heap_bitmap_lock_, !*gc_complete_lock_)
    328       SHARED_REQUIRES(Locks::mutator_lock_);
    329   // Implements JDWP OR_ReferringObjects.
    330   void GetReferringObjects(mirror::Object* o,
    331                            int32_t max_count,
    332                            std::vector<mirror::Object*>& referring_objects)
    333       REQUIRES(!Locks::heap_bitmap_lock_, !*gc_complete_lock_)
    334       SHARED_REQUIRES(Locks::mutator_lock_);
    335 
    336   // Removes the growth limit on the alloc space so it may grow to its maximum capacity. Used to
    337   // implement dalvik.system.VMRuntime.clearGrowthLimit.
    338   void ClearGrowthLimit();
    339 
    340   // Make the current growth limit the new maximum capacity, unmaps pages at the end of spaces
    341   // which will never be used. Used to implement dalvik.system.VMRuntime.clampGrowthLimit.
    342   void ClampGrowthLimit() REQUIRES(!Locks::heap_bitmap_lock_);
    343 
    344   // Target ideal heap utilization ratio, implements
    345   // dalvik.system.VMRuntime.getTargetHeapUtilization.
    346   double GetTargetHeapUtilization() const {
    347     return target_utilization_;
    348   }
    349 
    350   // Data structure memory usage tracking.
    351   void RegisterGCAllocation(size_t bytes);
    352   void RegisterGCDeAllocation(size_t bytes);
    353 
    354   // Set the heap's private space pointers to be the same as the space based on it's type. Public
    355   // due to usage by tests.
    356   void SetSpaceAsDefault(space::ContinuousSpace* continuous_space)
    357       REQUIRES(!Locks::heap_bitmap_lock_);
    358   void AddSpace(space::Space* space)
    359       REQUIRES(!Locks::heap_bitmap_lock_)
    360       REQUIRES(Locks::mutator_lock_);
    361   void RemoveSpace(space::Space* space)
    362     REQUIRES(!Locks::heap_bitmap_lock_)
    363     REQUIRES(Locks::mutator_lock_);
    364 
    365   // Set target ideal heap utilization ratio, implements
    366   // dalvik.system.VMRuntime.setTargetHeapUtilization.
    367   void SetTargetHeapUtilization(float target);
    368 
    369   // For the alloc space, sets the maximum number of bytes that the heap is allowed to allocate
    370   // from the system. Doesn't allow the space to exceed its growth limit.
    371   void SetIdealFootprint(size_t max_allowed_footprint);
    372 
    373   // Blocks the caller until the garbage collector becomes idle and returns the type of GC we
    374   // waited for.
    375   collector::GcType WaitForGcToComplete(GcCause cause, Thread* self) REQUIRES(!*gc_complete_lock_);
    376 
    377   // Update the heap's process state to a new value, may cause compaction to occur.
    378   void UpdateProcessState(ProcessState old_process_state, ProcessState new_process_state)
    379       REQUIRES(!*pending_task_lock_, !*gc_complete_lock_);
    380 
    381   bool HaveContinuousSpaces() const NO_THREAD_SAFETY_ANALYSIS {
    382     // No lock since vector empty is thread safe.
    383     return !continuous_spaces_.empty();
    384   }
    385 
    386   const std::vector<space::ContinuousSpace*>& GetContinuousSpaces() const
    387       SHARED_REQUIRES(Locks::mutator_lock_) {
    388     return continuous_spaces_;
    389   }
    390 
    391   const std::vector<space::DiscontinuousSpace*>& GetDiscontinuousSpaces() const {
    392     return discontinuous_spaces_;
    393   }
    394 
    395   const collector::Iteration* GetCurrentGcIteration() const {
    396     return &current_gc_iteration_;
    397   }
    398   collector::Iteration* GetCurrentGcIteration() {
    399     return &current_gc_iteration_;
    400   }
    401 
    402   // Enable verification of object references when the runtime is sufficiently initialized.
    403   void EnableObjectValidation() {
    404     verify_object_mode_ = kVerifyObjectSupport;
    405     if (verify_object_mode_ > kVerifyObjectModeDisabled) {
    406       VerifyHeap();
    407     }
    408   }
    409 
    410   // Disable object reference verification for image writing.
    411   void DisableObjectValidation() {
    412     verify_object_mode_ = kVerifyObjectModeDisabled;
    413   }
    414 
    415   // Other checks may be performed if we know the heap should be in a sane state.
    416   bool IsObjectValidationEnabled() const {
    417     return verify_object_mode_ > kVerifyObjectModeDisabled;
    418   }
    419 
    420   // Returns true if low memory mode is enabled.
    421   bool IsLowMemoryMode() const {
    422     return low_memory_mode_;
    423   }
    424 
    425   // Returns the heap growth multiplier, this affects how much we grow the heap after a GC.
    426   // Scales heap growth, min free, and max free.
    427   double HeapGrowthMultiplier() const;
    428 
    429   // Freed bytes can be negative in cases where we copy objects from a compacted space to a
    430   // free-list backed space.
    431   void RecordFree(uint64_t freed_objects, int64_t freed_bytes);
    432 
    433   // Record the bytes freed by thread-local buffer revoke.
    434   void RecordFreeRevoke();
    435 
    436   // Must be called if a field of an Object in the heap changes, and before any GC safe-point.
    437   // The call is not needed if null is stored in the field.
    438   ALWAYS_INLINE void WriteBarrierField(const mirror::Object* dst,
    439                                        MemberOffset offset ATTRIBUTE_UNUSED,
    440                                        const mirror::Object* new_value ATTRIBUTE_UNUSED) {
    441     card_table_->MarkCard(dst);
    442   }
    443 
    444   // Write barrier for array operations that update many field positions
    445   ALWAYS_INLINE void WriteBarrierArray(const mirror::Object* dst,
    446                                        int start_offset ATTRIBUTE_UNUSED,
    447                                        // TODO: element_count or byte_count?
    448                                        size_t length ATTRIBUTE_UNUSED) {
    449     card_table_->MarkCard(dst);
    450   }
    451 
    452   ALWAYS_INLINE void WriteBarrierEveryFieldOf(const mirror::Object* obj) {
    453     card_table_->MarkCard(obj);
    454   }
    455 
    456   accounting::CardTable* GetCardTable() const {
    457     return card_table_.get();
    458   }
    459 
    460   accounting::ReadBarrierTable* GetReadBarrierTable() const {
    461     return rb_table_.get();
    462   }
    463 
    464   void AddFinalizerReference(Thread* self, mirror::Object** object);
    465 
    466   // Returns the number of bytes currently allocated.
    467   size_t GetBytesAllocated() const {
    468     return num_bytes_allocated_.LoadSequentiallyConsistent();
    469   }
    470 
    471   // Returns the number of objects currently allocated.
    472   size_t GetObjectsAllocated() const
    473       REQUIRES(!Locks::heap_bitmap_lock_);
    474 
    475   // Returns the total number of objects allocated since the heap was created.
    476   uint64_t GetObjectsAllocatedEver() const;
    477 
    478   // Returns the total number of bytes allocated since the heap was created.
    479   uint64_t GetBytesAllocatedEver() const;
    480 
    481   // Returns the total number of objects freed since the heap was created.
    482   uint64_t GetObjectsFreedEver() const {
    483     return total_objects_freed_ever_;
    484   }
    485 
    486   // Returns the total number of bytes freed since the heap was created.
    487   uint64_t GetBytesFreedEver() const {
    488     return total_bytes_freed_ever_;
    489   }
    490 
    491   // Implements java.lang.Runtime.maxMemory, returning the maximum amount of memory a program can
    492   // consume. For a regular VM this would relate to the -Xmx option and would return -1 if no Xmx
    493   // were specified. Android apps start with a growth limit (small heap size) which is
    494   // cleared/extended for large apps.
    495   size_t GetMaxMemory() const {
    496     // There is some race conditions in the allocation code that can cause bytes allocated to
    497     // become larger than growth_limit_ in rare cases.
    498     return std::max(GetBytesAllocated(), growth_limit_);
    499   }
    500 
    501   // Implements java.lang.Runtime.totalMemory, returning approximate amount of memory currently
    502   // consumed by an application.
    503   size_t GetTotalMemory() const;
    504 
    505   // Returns approximately how much free memory we have until the next GC happens.
    506   size_t GetFreeMemoryUntilGC() const {
    507     return max_allowed_footprint_ - GetBytesAllocated();
    508   }
    509 
    510   // Returns approximately how much free memory we have until the next OOME happens.
    511   size_t GetFreeMemoryUntilOOME() const {
    512     return growth_limit_ - GetBytesAllocated();
    513   }
    514 
    515   // Returns how much free memory we have until we need to grow the heap to perform an allocation.
    516   // Similar to GetFreeMemoryUntilGC. Implements java.lang.Runtime.freeMemory.
    517   size_t GetFreeMemory() const {
    518     size_t byte_allocated = num_bytes_allocated_.LoadSequentiallyConsistent();
    519     size_t total_memory = GetTotalMemory();
    520     // Make sure we don't get a negative number.
    521     return total_memory - std::min(total_memory, byte_allocated);
    522   }
    523 
    524   // get the space that corresponds to an object's address. Current implementation searches all
    525   // spaces in turn. If fail_ok is false then failing to find a space will cause an abort.
    526   // TODO: consider using faster data structure like binary tree.
    527   space::ContinuousSpace* FindContinuousSpaceFromObject(const mirror::Object*, bool fail_ok) const
    528       SHARED_REQUIRES(Locks::mutator_lock_);
    529   space::DiscontinuousSpace* FindDiscontinuousSpaceFromObject(const mirror::Object*,
    530                                                               bool fail_ok) const
    531       SHARED_REQUIRES(Locks::mutator_lock_);
    532   space::Space* FindSpaceFromObject(const mirror::Object*, bool fail_ok) const
    533       SHARED_REQUIRES(Locks::mutator_lock_);
    534 
    535   void DumpForSigQuit(std::ostream& os) REQUIRES(!*gc_complete_lock_, !native_histogram_lock_);
    536 
    537   // Do a pending collector transition.
    538   void DoPendingCollectorTransition() REQUIRES(!*gc_complete_lock_);
    539 
    540   // Deflate monitors, ... and trim the spaces.
    541   void Trim(Thread* self) REQUIRES(!*gc_complete_lock_);
    542 
    543   void RevokeThreadLocalBuffers(Thread* thread);
    544   void RevokeRosAllocThreadLocalBuffers(Thread* thread);
    545   void RevokeAllThreadLocalBuffers();
    546   void AssertThreadLocalBuffersAreRevoked(Thread* thread);
    547   void AssertAllBumpPointerSpaceThreadLocalBuffersAreRevoked();
    548   void RosAllocVerification(TimingLogger* timings, const char* name)
    549       REQUIRES(Locks::mutator_lock_);
    550 
    551   accounting::HeapBitmap* GetLiveBitmap() SHARED_REQUIRES(Locks::heap_bitmap_lock_) {
    552     return live_bitmap_.get();
    553   }
    554 
    555   accounting::HeapBitmap* GetMarkBitmap() SHARED_REQUIRES(Locks::heap_bitmap_lock_) {
    556     return mark_bitmap_.get();
    557   }
    558 
    559   accounting::ObjectStack* GetLiveStack() SHARED_REQUIRES(Locks::heap_bitmap_lock_) {
    560     return live_stack_.get();
    561   }
    562 
    563   void PreZygoteFork() NO_THREAD_SAFETY_ANALYSIS;
    564 
    565   // Mark and empty stack.
    566   void FlushAllocStack()
    567       SHARED_REQUIRES(Locks::mutator_lock_)
    568       REQUIRES(Locks::heap_bitmap_lock_);
    569 
    570   // Revoke all the thread-local allocation stacks.
    571   void RevokeAllThreadLocalAllocationStacks(Thread* self)
    572       REQUIRES(Locks::mutator_lock_, !Locks::runtime_shutdown_lock_, !Locks::thread_list_lock_);
    573 
    574   // Mark all the objects in the allocation stack in the specified bitmap.
    575   // TODO: Refactor?
    576   void MarkAllocStack(accounting::SpaceBitmap<kObjectAlignment>* bitmap1,
    577                       accounting::SpaceBitmap<kObjectAlignment>* bitmap2,
    578                       accounting::SpaceBitmap<kLargeObjectAlignment>* large_objects,
    579                       accounting::ObjectStack* stack)
    580       SHARED_REQUIRES(Locks::mutator_lock_)
    581       REQUIRES(Locks::heap_bitmap_lock_);
    582 
    583   // Mark the specified allocation stack as live.
    584   void MarkAllocStackAsLive(accounting::ObjectStack* stack)
    585       SHARED_REQUIRES(Locks::mutator_lock_)
    586       REQUIRES(Locks::heap_bitmap_lock_);
    587 
    588   // Unbind any bound bitmaps.
    589   void UnBindBitmaps()
    590       REQUIRES(Locks::heap_bitmap_lock_)
    591       SHARED_REQUIRES(Locks::mutator_lock_);
    592 
    593   // Returns the boot image spaces. There may be multiple boot image spaces.
    594   const std::vector<space::ImageSpace*>& GetBootImageSpaces() const {
    595     return boot_image_spaces_;
    596   }
    597 
    598   bool ObjectIsInBootImageSpace(mirror::Object* obj) const
    599       SHARED_REQUIRES(Locks::mutator_lock_);
    600 
    601   bool IsInBootImageOatFile(const void* p) const
    602       SHARED_REQUIRES(Locks::mutator_lock_);
    603 
    604   void GetBootImagesSize(uint32_t* boot_image_begin,
    605                          uint32_t* boot_image_end,
    606                          uint32_t* boot_oat_begin,
    607                          uint32_t* boot_oat_end);
    608 
    609   // Permenantly disable moving garbage collection.
    610   void DisableMovingGc() REQUIRES(!*gc_complete_lock_);
    611 
    612   space::DlMallocSpace* GetDlMallocSpace() const {
    613     return dlmalloc_space_;
    614   }
    615 
    616   space::RosAllocSpace* GetRosAllocSpace() const {
    617     return rosalloc_space_;
    618   }
    619 
    620   // Return the corresponding rosalloc space.
    621   space::RosAllocSpace* GetRosAllocSpace(gc::allocator::RosAlloc* rosalloc) const
    622       SHARED_REQUIRES(Locks::mutator_lock_);
    623 
    624   space::MallocSpace* GetNonMovingSpace() const {
    625     return non_moving_space_;
    626   }
    627 
    628   space::LargeObjectSpace* GetLargeObjectsSpace() const {
    629     return large_object_space_;
    630   }
    631 
    632   // Returns the free list space that may contain movable objects (the
    633   // one that's not the non-moving space), either rosalloc_space_ or
    634   // dlmalloc_space_.
    635   space::MallocSpace* GetPrimaryFreeListSpace() {
    636     if (kUseRosAlloc) {
    637       DCHECK(rosalloc_space_ != nullptr);
    638       // reinterpret_cast is necessary as the space class hierarchy
    639       // isn't known (#included) yet here.
    640       return reinterpret_cast<space::MallocSpace*>(rosalloc_space_);
    641     } else {
    642       DCHECK(dlmalloc_space_ != nullptr);
    643       return reinterpret_cast<space::MallocSpace*>(dlmalloc_space_);
    644     }
    645   }
    646 
    647   void DumpSpaces(std::ostream& stream) const SHARED_REQUIRES(Locks::mutator_lock_);
    648   std::string DumpSpaces() const SHARED_REQUIRES(Locks::mutator_lock_);
    649 
    650   // Dump object should only be used by the signal handler.
    651   void DumpObject(std::ostream& stream, mirror::Object* obj) NO_THREAD_SAFETY_ANALYSIS;
    652   // Safe version of pretty type of which check to make sure objects are heap addresses.
    653   std::string SafeGetClassDescriptor(mirror::Class* klass) NO_THREAD_SAFETY_ANALYSIS;
    654   std::string SafePrettyTypeOf(mirror::Object* obj) NO_THREAD_SAFETY_ANALYSIS;
    655 
    656   // GC performance measuring
    657   void DumpGcPerformanceInfo(std::ostream& os)
    658       REQUIRES(!*gc_complete_lock_, !native_histogram_lock_);
    659   void ResetGcPerformanceInfo() REQUIRES(!*gc_complete_lock_);
    660 
    661   // Thread pool.
    662   void CreateThreadPool();
    663   void DeleteThreadPool();
    664   ThreadPool* GetThreadPool() {
    665     return thread_pool_.get();
    666   }
    667   size_t GetParallelGCThreadCount() const {
    668     return parallel_gc_threads_;
    669   }
    670   size_t GetConcGCThreadCount() const {
    671     return conc_gc_threads_;
    672   }
    673   accounting::ModUnionTable* FindModUnionTableFromSpace(space::Space* space);
    674   void AddModUnionTable(accounting::ModUnionTable* mod_union_table);
    675 
    676   accounting::RememberedSet* FindRememberedSetFromSpace(space::Space* space);
    677   void AddRememberedSet(accounting::RememberedSet* remembered_set);
    678   // Also deletes the remebered set.
    679   void RemoveRememberedSet(space::Space* space);
    680 
    681   bool IsCompilingBoot() const;
    682   bool HasBootImageSpace() const {
    683     return !boot_image_spaces_.empty();
    684   }
    685 
    686   ReferenceProcessor* GetReferenceProcessor() {
    687     return reference_processor_.get();
    688   }
    689   TaskProcessor* GetTaskProcessor() {
    690     return task_processor_.get();
    691   }
    692 
    693   bool HasZygoteSpace() const {
    694     return zygote_space_ != nullptr;
    695   }
    696 
    697   collector::ConcurrentCopying* ConcurrentCopyingCollector() {
    698     return concurrent_copying_collector_;
    699   }
    700 
    701   CollectorType CurrentCollectorType() {
    702     return collector_type_;
    703   }
    704 
    705   bool IsGcConcurrentAndMoving() const {
    706     if (IsGcConcurrent() && IsMovingGc(collector_type_)) {
    707       // Assume no transition when a concurrent moving collector is used.
    708       DCHECK_EQ(collector_type_, foreground_collector_type_);
    709       DCHECK_EQ(foreground_collector_type_, background_collector_type_)
    710           << "Assume no transition such that collector_type_ won't change";
    711       return true;
    712     }
    713     return false;
    714   }
    715 
    716   bool IsMovingGCDisabled(Thread* self) REQUIRES(!*gc_complete_lock_) {
    717     MutexLock mu(self, *gc_complete_lock_);
    718     return disable_moving_gc_count_ > 0;
    719   }
    720 
    721   // Request an asynchronous trim.
    722   void RequestTrim(Thread* self) REQUIRES(!*pending_task_lock_);
    723 
    724   // Request asynchronous GC.
    725   void RequestConcurrentGC(Thread* self, bool force_full) REQUIRES(!*pending_task_lock_);
    726 
    727   // Whether or not we may use a garbage collector, used so that we only create collectors we need.
    728   bool MayUseCollector(CollectorType type) const;
    729 
    730   // Used by tests to reduce timinig-dependent flakiness in OOME behavior.
    731   void SetMinIntervalHomogeneousSpaceCompactionByOom(uint64_t interval) {
    732     min_interval_homogeneous_space_compaction_by_oom_ = interval;
    733   }
    734 
    735   // Helpers for android.os.Debug.getRuntimeStat().
    736   uint64_t GetGcCount() const;
    737   uint64_t GetGcTime() const;
    738   uint64_t GetBlockingGcCount() const;
    739   uint64_t GetBlockingGcTime() const;
    740   void DumpGcCountRateHistogram(std::ostream& os) const REQUIRES(!*gc_complete_lock_);
    741   void DumpBlockingGcCountRateHistogram(std::ostream& os) const REQUIRES(!*gc_complete_lock_);
    742 
    743   // Allocation tracking support
    744   // Callers to this function use double-checked locking to ensure safety on allocation_records_
    745   bool IsAllocTrackingEnabled() const {
    746     return alloc_tracking_enabled_.LoadRelaxed();
    747   }
    748 
    749   void SetAllocTrackingEnabled(bool enabled) REQUIRES(Locks::alloc_tracker_lock_) {
    750     alloc_tracking_enabled_.StoreRelaxed(enabled);
    751   }
    752 
    753   AllocRecordObjectMap* GetAllocationRecords() const
    754       REQUIRES(Locks::alloc_tracker_lock_) {
    755     return allocation_records_.get();
    756   }
    757 
    758   void SetAllocationRecords(AllocRecordObjectMap* records)
    759       REQUIRES(Locks::alloc_tracker_lock_);
    760 
    761   void VisitAllocationRecords(RootVisitor* visitor) const
    762       SHARED_REQUIRES(Locks::mutator_lock_)
    763       REQUIRES(!Locks::alloc_tracker_lock_);
    764 
    765   void SweepAllocationRecords(IsMarkedVisitor* visitor) const
    766       SHARED_REQUIRES(Locks::mutator_lock_)
    767       REQUIRES(!Locks::alloc_tracker_lock_);
    768 
    769   void DisallowNewAllocationRecords() const
    770       SHARED_REQUIRES(Locks::mutator_lock_)
    771       REQUIRES(!Locks::alloc_tracker_lock_);
    772 
    773   void AllowNewAllocationRecords() const
    774       SHARED_REQUIRES(Locks::mutator_lock_)
    775       REQUIRES(!Locks::alloc_tracker_lock_);
    776 
    777   void BroadcastForNewAllocationRecords() const
    778       SHARED_REQUIRES(Locks::mutator_lock_)
    779       REQUIRES(!Locks::alloc_tracker_lock_);
    780 
    781   void DisableGCForShutdown() REQUIRES(!*gc_complete_lock_);
    782 
    783   // Create a new alloc space and compact default alloc space to it.
    784   HomogeneousSpaceCompactResult PerformHomogeneousSpaceCompact() REQUIRES(!*gc_complete_lock_);
    785   bool SupportHomogeneousSpaceCompactAndCollectorTransitions() const;
    786 
    787  private:
    788   class ConcurrentGCTask;
    789   class CollectorTransitionTask;
    790   class HeapTrimTask;
    791 
    792   // Compact source space to target space. Returns the collector used.
    793   collector::GarbageCollector* Compact(space::ContinuousMemMapAllocSpace* target_space,
    794                                        space::ContinuousMemMapAllocSpace* source_space,
    795                                        GcCause gc_cause)
    796       REQUIRES(Locks::mutator_lock_);
    797 
    798   void LogGC(GcCause gc_cause, collector::GarbageCollector* collector);
    799   void StartGC(Thread* self, GcCause cause, CollectorType collector_type)
    800       REQUIRES(!*gc_complete_lock_);
    801   void FinishGC(Thread* self, collector::GcType gc_type) REQUIRES(!*gc_complete_lock_);
    802 
    803   // Create a mem map with a preferred base address.
    804   static MemMap* MapAnonymousPreferredAddress(const char* name, uint8_t* request_begin,
    805                                               size_t capacity, std::string* out_error_str);
    806 
    807   bool SupportHSpaceCompaction() const {
    808     // Returns true if we can do hspace compaction
    809     return main_space_backup_ != nullptr;
    810   }
    811 
    812   static ALWAYS_INLINE bool AllocatorHasAllocationStack(AllocatorType allocator_type) {
    813     return
    814         allocator_type != kAllocatorTypeBumpPointer &&
    815         allocator_type != kAllocatorTypeTLAB &&
    816         allocator_type != kAllocatorTypeRegion &&
    817         allocator_type != kAllocatorTypeRegionTLAB;
    818   }
    819   static ALWAYS_INLINE bool AllocatorMayHaveConcurrentGC(AllocatorType allocator_type) {
    820     return
    821         allocator_type != kAllocatorTypeBumpPointer &&
    822         allocator_type != kAllocatorTypeTLAB;
    823   }
    824   static bool IsMovingGc(CollectorType collector_type) {
    825     return
    826         collector_type == kCollectorTypeSS ||
    827         collector_type == kCollectorTypeGSS ||
    828         collector_type == kCollectorTypeCC ||
    829         collector_type == kCollectorTypeMC ||
    830         collector_type == kCollectorTypeHomogeneousSpaceCompact;
    831   }
    832   bool ShouldAllocLargeObject(mirror::Class* c, size_t byte_count) const
    833       SHARED_REQUIRES(Locks::mutator_lock_);
    834   ALWAYS_INLINE void CheckConcurrentGC(Thread* self,
    835                                        size_t new_num_bytes_allocated,
    836                                        mirror::Object** obj)
    837       SHARED_REQUIRES(Locks::mutator_lock_)
    838       REQUIRES(!*pending_task_lock_, !*gc_complete_lock_);
    839 
    840   accounting::ObjectStack* GetMarkStack() {
    841     return mark_stack_.get();
    842   }
    843 
    844   // We don't force this to be inlined since it is a slow path.
    845   template <bool kInstrumented, typename PreFenceVisitor>
    846   mirror::Object* AllocLargeObject(Thread* self,
    847                                    mirror::Class** klass,
    848                                    size_t byte_count,
    849                                    const PreFenceVisitor& pre_fence_visitor)
    850       SHARED_REQUIRES(Locks::mutator_lock_)
    851       REQUIRES(!*gc_complete_lock_, !*pending_task_lock_, !*backtrace_lock_);
    852 
    853   // Handles Allocate()'s slow allocation path with GC involved after
    854   // an initial allocation attempt failed.
    855   mirror::Object* AllocateInternalWithGc(Thread* self,
    856                                          AllocatorType allocator,
    857                                          bool instrumented,
    858                                          size_t num_bytes,
    859                                          size_t* bytes_allocated,
    860                                          size_t* usable_size,
    861                                          size_t* bytes_tl_bulk_allocated,
    862                                          mirror::Class** klass)
    863       REQUIRES(!Locks::thread_suspend_count_lock_, !*gc_complete_lock_, !*pending_task_lock_)
    864       SHARED_REQUIRES(Locks::mutator_lock_);
    865 
    866   // Allocate into a specific space.
    867   mirror::Object* AllocateInto(Thread* self,
    868                                space::AllocSpace* space,
    869                                mirror::Class* c,
    870                                size_t bytes)
    871       SHARED_REQUIRES(Locks::mutator_lock_);
    872 
    873   // Need to do this with mutators paused so that somebody doesn't accidentally allocate into the
    874   // wrong space.
    875   void SwapSemiSpaces() REQUIRES(Locks::mutator_lock_);
    876 
    877   // Try to allocate a number of bytes, this function never does any GCs. Needs to be inlined so
    878   // that the switch statement is constant optimized in the entrypoints.
    879   template <const bool kInstrumented, const bool kGrow>
    880   ALWAYS_INLINE mirror::Object* TryToAllocate(Thread* self,
    881                                               AllocatorType allocator_type,
    882                                               size_t alloc_size,
    883                                               size_t* bytes_allocated,
    884                                               size_t* usable_size,
    885                                               size_t* bytes_tl_bulk_allocated)
    886       SHARED_REQUIRES(Locks::mutator_lock_);
    887 
    888   void ThrowOutOfMemoryError(Thread* self, size_t byte_count, AllocatorType allocator_type)
    889       SHARED_REQUIRES(Locks::mutator_lock_);
    890 
    891   template <bool kGrow>
    892   ALWAYS_INLINE bool IsOutOfMemoryOnAllocation(AllocatorType allocator_type, size_t alloc_size);
    893 
    894   // Returns true if the address passed in is within the address range of a continuous space.
    895   bool IsValidContinuousSpaceObjectAddress(const mirror::Object* obj) const
    896       SHARED_REQUIRES(Locks::mutator_lock_);
    897 
    898   // Run the finalizers. If timeout is non zero, then we use the VMRuntime version.
    899   void RunFinalization(JNIEnv* env, uint64_t timeout);
    900 
    901   // Blocks the caller until the garbage collector becomes idle and returns the type of GC we
    902   // waited for.
    903   collector::GcType WaitForGcToCompleteLocked(GcCause cause, Thread* self)
    904       REQUIRES(gc_complete_lock_);
    905 
    906   void RequestCollectorTransition(CollectorType desired_collector_type, uint64_t delta_time)
    907       REQUIRES(!*pending_task_lock_);
    908 
    909   void RequestConcurrentGCAndSaveObject(Thread* self, bool force_full, mirror::Object** obj)
    910       SHARED_REQUIRES(Locks::mutator_lock_)
    911       REQUIRES(!*pending_task_lock_);
    912   bool IsGCRequestPending() const;
    913 
    914   // Sometimes CollectGarbageInternal decides to run a different Gc than you requested. Returns
    915   // which type of Gc was actually ran.
    916   collector::GcType CollectGarbageInternal(collector::GcType gc_plan,
    917                                            GcCause gc_cause,
    918                                            bool clear_soft_references)
    919       REQUIRES(!*gc_complete_lock_, !Locks::heap_bitmap_lock_, !Locks::thread_suspend_count_lock_,
    920                !*pending_task_lock_);
    921 
    922   void PreGcVerification(collector::GarbageCollector* gc)
    923       REQUIRES(!Locks::mutator_lock_, !*gc_complete_lock_);
    924   void PreGcVerificationPaused(collector::GarbageCollector* gc)
    925       REQUIRES(Locks::mutator_lock_, !*gc_complete_lock_);
    926   void PrePauseRosAllocVerification(collector::GarbageCollector* gc)
    927       REQUIRES(Locks::mutator_lock_);
    928   void PreSweepingGcVerification(collector::GarbageCollector* gc)
    929       REQUIRES(Locks::mutator_lock_, !Locks::heap_bitmap_lock_, !*gc_complete_lock_);
    930   void PostGcVerification(collector::GarbageCollector* gc)
    931       REQUIRES(!Locks::mutator_lock_, !*gc_complete_lock_);
    932   void PostGcVerificationPaused(collector::GarbageCollector* gc)
    933       REQUIRES(Locks::mutator_lock_, !*gc_complete_lock_);
    934 
    935   // Update the watermark for the native allocated bytes based on the current number of native
    936   // bytes allocated and the target utilization ratio.
    937   void UpdateMaxNativeFootprint();
    938 
    939   // Find a collector based on GC type.
    940   collector::GarbageCollector* FindCollectorByGcType(collector::GcType gc_type);
    941 
    942   // Create the main free list malloc space, either a RosAlloc space or DlMalloc space.
    943   void CreateMainMallocSpace(MemMap* mem_map,
    944                              size_t initial_size,
    945                              size_t growth_limit,
    946                              size_t capacity);
    947 
    948   // Create a malloc space based on a mem map. Does not set the space as default.
    949   space::MallocSpace* CreateMallocSpaceFromMemMap(MemMap* mem_map,
    950                                                   size_t initial_size,
    951                                                   size_t growth_limit,
    952                                                   size_t capacity,
    953                                                   const char* name,
    954                                                   bool can_move_objects);
    955 
    956   // Given the current contents of the alloc space, increase the allowed heap footprint to match
    957   // the target utilization ratio.  This should only be called immediately after a full garbage
    958   // collection. bytes_allocated_before_gc is used to measure bytes / second for the period which
    959   // the GC was run.
    960   void GrowForUtilization(collector::GarbageCollector* collector_ran,
    961                           uint64_t bytes_allocated_before_gc = 0);
    962 
    963   size_t GetPercentFree();
    964 
    965   static void VerificationCallback(mirror::Object* obj, void* arg)
    966       SHARED_REQUIRES(Locks::heap_bitmap_lock_);
    967 
    968   // Swap the allocation stack with the live stack.
    969   void SwapStacks() SHARED_REQUIRES(Locks::mutator_lock_);
    970 
    971   // Clear cards and update the mod union table. When process_alloc_space_cards is true,
    972   // if clear_alloc_space_cards is true, then we clear cards instead of ageing them. We do
    973   // not process the alloc space if process_alloc_space_cards is false.
    974   void ProcessCards(TimingLogger* timings,
    975                     bool use_rem_sets,
    976                     bool process_alloc_space_cards,
    977                     bool clear_alloc_space_cards)
    978       SHARED_REQUIRES(Locks::mutator_lock_);
    979 
    980   // Push an object onto the allocation stack.
    981   void PushOnAllocationStack(Thread* self, mirror::Object** obj)
    982       SHARED_REQUIRES(Locks::mutator_lock_)
    983       REQUIRES(!*gc_complete_lock_, !*pending_task_lock_);
    984   void PushOnAllocationStackWithInternalGC(Thread* self, mirror::Object** obj)
    985       SHARED_REQUIRES(Locks::mutator_lock_)
    986       REQUIRES(!*gc_complete_lock_, !*pending_task_lock_);
    987   void PushOnThreadLocalAllocationStackWithInternalGC(Thread* thread, mirror::Object** obj)
    988       SHARED_REQUIRES(Locks::mutator_lock_)
    989       REQUIRES(!*gc_complete_lock_, !*pending_task_lock_);
    990 
    991   void ClearConcurrentGCRequest();
    992   void ClearPendingTrim(Thread* self) REQUIRES(!*pending_task_lock_);
    993   void ClearPendingCollectorTransition(Thread* self) REQUIRES(!*pending_task_lock_);
    994 
    995   // What kind of concurrency behavior is the runtime after? Currently true for concurrent mark
    996   // sweep GC, false for other GC types.
    997   bool IsGcConcurrent() const ALWAYS_INLINE {
    998     return collector_type_ == kCollectorTypeCMS || collector_type_ == kCollectorTypeCC;
    999   }
   1000 
   1001   // Trim the managed and native spaces by releasing unused memory back to the OS.
   1002   void TrimSpaces(Thread* self) REQUIRES(!*gc_complete_lock_);
   1003 
   1004   // Trim 0 pages at the end of reference tables.
   1005   void TrimIndirectReferenceTables(Thread* self);
   1006 
   1007   void VisitObjectsInternal(ObjectCallback callback, void* arg)
   1008       SHARED_REQUIRES(Locks::mutator_lock_)
   1009       REQUIRES(!Locks::heap_bitmap_lock_, !*gc_complete_lock_);
   1010   void VisitObjectsInternalRegionSpace(ObjectCallback callback, void* arg)
   1011       REQUIRES(Locks::mutator_lock_, !Locks::heap_bitmap_lock_, !*gc_complete_lock_);
   1012 
   1013   void UpdateGcCountRateHistograms() REQUIRES(gc_complete_lock_);
   1014 
   1015   // GC stress mode attempts to do one GC per unique backtrace.
   1016   void CheckGcStressMode(Thread* self, mirror::Object** obj)
   1017       SHARED_REQUIRES(Locks::mutator_lock_)
   1018       REQUIRES(!*gc_complete_lock_, !*pending_task_lock_, !*backtrace_lock_);
   1019 
   1020   // All-known continuous spaces, where objects lie within fixed bounds.
   1021   std::vector<space::ContinuousSpace*> continuous_spaces_ GUARDED_BY(Locks::mutator_lock_);
   1022 
   1023   // All-known discontinuous spaces, where objects may be placed throughout virtual memory.
   1024   std::vector<space::DiscontinuousSpace*> discontinuous_spaces_ GUARDED_BY(Locks::mutator_lock_);
   1025 
   1026   // All-known alloc spaces, where objects may be or have been allocated.
   1027   std::vector<space::AllocSpace*> alloc_spaces_;
   1028 
   1029   // A space where non-movable objects are allocated, when compaction is enabled it contains
   1030   // Classes, ArtMethods, ArtFields, and non moving objects.
   1031   space::MallocSpace* non_moving_space_;
   1032 
   1033   // Space which we use for the kAllocatorTypeROSAlloc.
   1034   space::RosAllocSpace* rosalloc_space_;
   1035 
   1036   // Space which we use for the kAllocatorTypeDlMalloc.
   1037   space::DlMallocSpace* dlmalloc_space_;
   1038 
   1039   // The main space is the space which the GC copies to and from on process state updates. This
   1040   // space is typically either the dlmalloc_space_ or the rosalloc_space_.
   1041   space::MallocSpace* main_space_;
   1042 
   1043   // The large object space we are currently allocating into.
   1044   space::LargeObjectSpace* large_object_space_;
   1045 
   1046   // The card table, dirtied by the write barrier.
   1047   std::unique_ptr<accounting::CardTable> card_table_;
   1048 
   1049   std::unique_ptr<accounting::ReadBarrierTable> rb_table_;
   1050 
   1051   // A mod-union table remembers all of the references from the it's space to other spaces.
   1052   AllocationTrackingSafeMap<space::Space*, accounting::ModUnionTable*, kAllocatorTagHeap>
   1053       mod_union_tables_;
   1054 
   1055   // A remembered set remembers all of the references from the it's space to the target space.
   1056   AllocationTrackingSafeMap<space::Space*, accounting::RememberedSet*, kAllocatorTagHeap>
   1057       remembered_sets_;
   1058 
   1059   // The current collector type.
   1060   CollectorType collector_type_;
   1061   // Which collector we use when the app is in the foreground.
   1062   CollectorType foreground_collector_type_;
   1063   // Which collector we will use when the app is notified of a transition to background.
   1064   CollectorType background_collector_type_;
   1065   // Desired collector type, heap trimming daemon transitions the heap if it is != collector_type_.
   1066   CollectorType desired_collector_type_;
   1067 
   1068   // Lock which guards pending tasks.
   1069   Mutex* pending_task_lock_ DEFAULT_MUTEX_ACQUIRED_AFTER;
   1070 
   1071   // How many GC threads we may use for paused parts of garbage collection.
   1072   const size_t parallel_gc_threads_;
   1073 
   1074   // How many GC threads we may use for unpaused parts of garbage collection.
   1075   const size_t conc_gc_threads_;
   1076 
   1077   // Boolean for if we are in low memory mode.
   1078   const bool low_memory_mode_;
   1079 
   1080   // If we get a pause longer than long pause log threshold, then we print out the GC after it
   1081   // finishes.
   1082   const size_t long_pause_log_threshold_;
   1083 
   1084   // If we get a GC longer than long GC log threshold, then we print out the GC after it finishes.
   1085   const size_t long_gc_log_threshold_;
   1086 
   1087   // If we ignore the max footprint it lets the heap grow until it hits the heap capacity, this is
   1088   // useful for benchmarking since it reduces time spent in GC to a low %.
   1089   const bool ignore_max_footprint_;
   1090 
   1091   // Lock which guards zygote space creation.
   1092   Mutex zygote_creation_lock_;
   1093 
   1094   // Non-null iff we have a zygote space. Doesn't contain the large objects allocated before
   1095   // zygote space creation.
   1096   space::ZygoteSpace* zygote_space_;
   1097 
   1098   // Minimum allocation size of large object.
   1099   size_t large_object_threshold_;
   1100 
   1101   // Guards access to the state of GC, associated conditional variable is used to signal when a GC
   1102   // completes.
   1103   Mutex* gc_complete_lock_ DEFAULT_MUTEX_ACQUIRED_AFTER;
   1104   std::unique_ptr<ConditionVariable> gc_complete_cond_ GUARDED_BY(gc_complete_lock_);
   1105 
   1106   // Used to synchronize between JNI critical calls and the thread flip of the CC collector.
   1107   Mutex* thread_flip_lock_ DEFAULT_MUTEX_ACQUIRED_AFTER;
   1108   std::unique_ptr<ConditionVariable> thread_flip_cond_ GUARDED_BY(thread_flip_lock_);
   1109   // This counter keeps track of how many threads are currently in a JNI critical section. This is
   1110   // incremented once per thread even with nested enters.
   1111   size_t disable_thread_flip_count_ GUARDED_BY(thread_flip_lock_);
   1112   bool thread_flip_running_ GUARDED_BY(thread_flip_lock_);
   1113 
   1114   // Reference processor;
   1115   std::unique_ptr<ReferenceProcessor> reference_processor_;
   1116 
   1117   // Task processor, proxies heap trim requests to the daemon threads.
   1118   std::unique_ptr<TaskProcessor> task_processor_;
   1119 
   1120   // True while the garbage collector is running.
   1121   volatile CollectorType collector_type_running_ GUARDED_BY(gc_complete_lock_);
   1122 
   1123   // Last Gc type we ran. Used by WaitForConcurrentGc to know which Gc was waited on.
   1124   volatile collector::GcType last_gc_type_ GUARDED_BY(gc_complete_lock_);
   1125   collector::GcType next_gc_type_;
   1126 
   1127   // Maximum size that the heap can reach.
   1128   size_t capacity_;
   1129 
   1130   // The size the heap is limited to. This is initially smaller than capacity, but for largeHeap
   1131   // programs it is "cleared" making it the same as capacity.
   1132   size_t growth_limit_;
   1133 
   1134   // When the number of bytes allocated exceeds the footprint TryAllocate returns null indicating
   1135   // a GC should be triggered.
   1136   size_t max_allowed_footprint_;
   1137 
   1138   // The watermark at which a concurrent GC is requested by registerNativeAllocation.
   1139   size_t native_footprint_gc_watermark_;
   1140 
   1141   // Whether or not we need to run finalizers in the next native allocation.
   1142   bool native_need_to_run_finalization_;
   1143 
   1144   // When num_bytes_allocated_ exceeds this amount then a concurrent GC should be requested so that
   1145   // it completes ahead of an allocation failing.
   1146   size_t concurrent_start_bytes_;
   1147 
   1148   // Since the heap was created, how many bytes have been freed.
   1149   uint64_t total_bytes_freed_ever_;
   1150 
   1151   // Since the heap was created, how many objects have been freed.
   1152   uint64_t total_objects_freed_ever_;
   1153 
   1154   // Number of bytes allocated.  Adjusted after each allocation and free.
   1155   Atomic<size_t> num_bytes_allocated_;
   1156 
   1157   // Bytes which are allocated and managed by native code but still need to be accounted for.
   1158   Atomic<size_t> native_bytes_allocated_;
   1159 
   1160   // Native allocation stats.
   1161   Mutex native_histogram_lock_;
   1162   Histogram<uint64_t> native_allocation_histogram_;
   1163   Histogram<uint64_t> native_free_histogram_;
   1164 
   1165   // Number of bytes freed by thread local buffer revokes. This will
   1166   // cancel out the ahead-of-time bulk counting of bytes allocated in
   1167   // rosalloc thread-local buffers.  It is temporarily accumulated
   1168   // here to be subtracted from num_bytes_allocated_ later at the next
   1169   // GC.
   1170   Atomic<size_t> num_bytes_freed_revoke_;
   1171 
   1172   // Info related to the current or previous GC iteration.
   1173   collector::Iteration current_gc_iteration_;
   1174 
   1175   // Heap verification flags.
   1176   const bool verify_missing_card_marks_;
   1177   const bool verify_system_weaks_;
   1178   const bool verify_pre_gc_heap_;
   1179   const bool verify_pre_sweeping_heap_;
   1180   const bool verify_post_gc_heap_;
   1181   const bool verify_mod_union_table_;
   1182   bool verify_pre_gc_rosalloc_;
   1183   bool verify_pre_sweeping_rosalloc_;
   1184   bool verify_post_gc_rosalloc_;
   1185   const bool gc_stress_mode_;
   1186 
   1187   // RAII that temporarily disables the rosalloc verification during
   1188   // the zygote fork.
   1189   class ScopedDisableRosAllocVerification {
   1190    private:
   1191     Heap* const heap_;
   1192     const bool orig_verify_pre_gc_;
   1193     const bool orig_verify_pre_sweeping_;
   1194     const bool orig_verify_post_gc_;
   1195 
   1196    public:
   1197     explicit ScopedDisableRosAllocVerification(Heap* heap)
   1198         : heap_(heap),
   1199           orig_verify_pre_gc_(heap_->verify_pre_gc_rosalloc_),
   1200           orig_verify_pre_sweeping_(heap_->verify_pre_sweeping_rosalloc_),
   1201           orig_verify_post_gc_(heap_->verify_post_gc_rosalloc_) {
   1202       heap_->verify_pre_gc_rosalloc_ = false;
   1203       heap_->verify_pre_sweeping_rosalloc_ = false;
   1204       heap_->verify_post_gc_rosalloc_ = false;
   1205     }
   1206     ~ScopedDisableRosAllocVerification() {
   1207       heap_->verify_pre_gc_rosalloc_ = orig_verify_pre_gc_;
   1208       heap_->verify_pre_sweeping_rosalloc_ = orig_verify_pre_sweeping_;
   1209       heap_->verify_post_gc_rosalloc_ = orig_verify_post_gc_;
   1210     }
   1211   };
   1212 
   1213   // Parallel GC data structures.
   1214   std::unique_ptr<ThreadPool> thread_pool_;
   1215 
   1216   // Estimated allocation rate (bytes / second). Computed between the time of the last GC cycle
   1217   // and the start of the current one.
   1218   uint64_t allocation_rate_;
   1219 
   1220   // For a GC cycle, a bitmap that is set corresponding to the
   1221   std::unique_ptr<accounting::HeapBitmap> live_bitmap_ GUARDED_BY(Locks::heap_bitmap_lock_);
   1222   std::unique_ptr<accounting::HeapBitmap> mark_bitmap_ GUARDED_BY(Locks::heap_bitmap_lock_);
   1223 
   1224   // Mark stack that we reuse to avoid re-allocating the mark stack.
   1225   std::unique_ptr<accounting::ObjectStack> mark_stack_;
   1226 
   1227   // Allocation stack, new allocations go here so that we can do sticky mark bits. This enables us
   1228   // to use the live bitmap as the old mark bitmap.
   1229   const size_t max_allocation_stack_size_;
   1230   std::unique_ptr<accounting::ObjectStack> allocation_stack_;
   1231 
   1232   // Second allocation stack so that we can process allocation with the heap unlocked.
   1233   std::unique_ptr<accounting::ObjectStack> live_stack_;
   1234 
   1235   // Allocator type.
   1236   AllocatorType current_allocator_;
   1237   const AllocatorType current_non_moving_allocator_;
   1238 
   1239   // Which GCs we run in order when we an allocation fails.
   1240   std::vector<collector::GcType> gc_plan_;
   1241 
   1242   // Bump pointer spaces.
   1243   space::BumpPointerSpace* bump_pointer_space_;
   1244   // Temp space is the space which the semispace collector copies to.
   1245   space::BumpPointerSpace* temp_space_;
   1246 
   1247   space::RegionSpace* region_space_;
   1248 
   1249   // Minimum free guarantees that you always have at least min_free_ free bytes after growing for
   1250   // utilization, regardless of target utilization ratio.
   1251   size_t min_free_;
   1252 
   1253   // The ideal maximum free size, when we grow the heap for utilization.
   1254   size_t max_free_;
   1255 
   1256   // Target ideal heap utilization ratio
   1257   double target_utilization_;
   1258 
   1259   // How much more we grow the heap when we are a foreground app instead of background.
   1260   double foreground_heap_growth_multiplier_;
   1261 
   1262   // Total time which mutators are paused or waiting for GC to complete.
   1263   uint64_t total_wait_time_;
   1264 
   1265   // The current state of heap verification, may be enabled or disabled.
   1266   VerifyObjectMode verify_object_mode_;
   1267 
   1268   // Compacting GC disable count, prevents compacting GC from running iff > 0.
   1269   size_t disable_moving_gc_count_ GUARDED_BY(gc_complete_lock_);
   1270 
   1271   std::vector<collector::GarbageCollector*> garbage_collectors_;
   1272   collector::SemiSpace* semi_space_collector_;
   1273   collector::MarkCompact* mark_compact_collector_;
   1274   collector::ConcurrentCopying* concurrent_copying_collector_;
   1275 
   1276   const bool is_running_on_memory_tool_;
   1277   const bool use_tlab_;
   1278 
   1279   // Pointer to the space which becomes the new main space when we do homogeneous space compaction.
   1280   // Use unique_ptr since the space is only added during the homogeneous compaction phase.
   1281   std::unique_ptr<space::MallocSpace> main_space_backup_;
   1282 
   1283   // Minimal interval allowed between two homogeneous space compactions caused by OOM.
   1284   uint64_t min_interval_homogeneous_space_compaction_by_oom_;
   1285 
   1286   // Times of the last homogeneous space compaction caused by OOM.
   1287   uint64_t last_time_homogeneous_space_compaction_by_oom_;
   1288 
   1289   // Saved OOMs by homogeneous space compaction.
   1290   Atomic<size_t> count_delayed_oom_;
   1291 
   1292   // Count for requested homogeneous space compaction.
   1293   Atomic<size_t> count_requested_homogeneous_space_compaction_;
   1294 
   1295   // Count for ignored homogeneous space compaction.
   1296   Atomic<size_t> count_ignored_homogeneous_space_compaction_;
   1297 
   1298   // Count for performed homogeneous space compaction.
   1299   Atomic<size_t> count_performed_homogeneous_space_compaction_;
   1300 
   1301   // Whether or not a concurrent GC is pending.
   1302   Atomic<bool> concurrent_gc_pending_;
   1303 
   1304   // Active tasks which we can modify (change target time, desired collector type, etc..).
   1305   CollectorTransitionTask* pending_collector_transition_ GUARDED_BY(pending_task_lock_);
   1306   HeapTrimTask* pending_heap_trim_ GUARDED_BY(pending_task_lock_);
   1307 
   1308   // Whether or not we use homogeneous space compaction to avoid OOM errors.
   1309   bool use_homogeneous_space_compaction_for_oom_;
   1310 
   1311   // True if the currently running collection has made some thread wait.
   1312   bool running_collection_is_blocking_ GUARDED_BY(gc_complete_lock_);
   1313   // The number of blocking GC runs.
   1314   uint64_t blocking_gc_count_;
   1315   // The total duration of blocking GC runs.
   1316   uint64_t blocking_gc_time_;
   1317   // The duration of the window for the GC count rate histograms.
   1318   static constexpr uint64_t kGcCountRateHistogramWindowDuration = MsToNs(10 * 1000);  // 10s.
   1319   // The last time when the GC count rate histograms were updated.
   1320   // This is rounded by kGcCountRateHistogramWindowDuration (a multiple of 10s).
   1321   uint64_t last_update_time_gc_count_rate_histograms_;
   1322   // The running count of GC runs in the last window.
   1323   uint64_t gc_count_last_window_;
   1324   // The running count of blocking GC runs in the last window.
   1325   uint64_t blocking_gc_count_last_window_;
   1326   // The maximum number of buckets in the GC count rate histograms.
   1327   static constexpr size_t kGcCountRateMaxBucketCount = 200;
   1328   // The histogram of the number of GC invocations per window duration.
   1329   Histogram<uint64_t> gc_count_rate_histogram_ GUARDED_BY(gc_complete_lock_);
   1330   // The histogram of the number of blocking GC invocations per window duration.
   1331   Histogram<uint64_t> blocking_gc_count_rate_histogram_ GUARDED_BY(gc_complete_lock_);
   1332 
   1333   // Allocation tracking support
   1334   Atomic<bool> alloc_tracking_enabled_;
   1335   std::unique_ptr<AllocRecordObjectMap> allocation_records_;
   1336 
   1337   // GC stress related data structures.
   1338   Mutex* backtrace_lock_ DEFAULT_MUTEX_ACQUIRED_AFTER;
   1339   // Debugging variables, seen backtraces vs unique backtraces.
   1340   Atomic<uint64_t> seen_backtrace_count_;
   1341   Atomic<uint64_t> unique_backtrace_count_;
   1342   // Stack trace hashes that we already saw,
   1343   std::unordered_set<uint64_t> seen_backtraces_ GUARDED_BY(backtrace_lock_);
   1344 
   1345   // We disable GC when we are shutting down the runtime in case there are daemon threads still
   1346   // allocating.
   1347   bool gc_disabled_for_shutdown_ GUARDED_BY(gc_complete_lock_);
   1348 
   1349   // Boot image spaces.
   1350   std::vector<space::ImageSpace*> boot_image_spaces_;
   1351 
   1352   friend class CollectorTransitionTask;
   1353   friend class collector::GarbageCollector;
   1354   friend class collector::MarkCompact;
   1355   friend class collector::ConcurrentCopying;
   1356   friend class collector::MarkSweep;
   1357   friend class collector::SemiSpace;
   1358   friend class ReferenceQueue;
   1359   friend class ScopedGCCriticalSection;
   1360   friend class VerifyReferenceCardVisitor;
   1361   friend class VerifyReferenceVisitor;
   1362   friend class VerifyObjectVisitor;
   1363 
   1364   DISALLOW_IMPLICIT_CONSTRUCTORS(Heap);
   1365 };
   1366 
   1367 }  // namespace gc
   1368 }  // namespace art
   1369 
   1370 #endif  // ART_RUNTIME_GC_HEAP_H_
   1371