Home | History | Annotate | Download | only in arm
      1 // Copyright 2011 the V8 project authors. All rights reserved.
      2 // Use of this source code is governed by a BSD-style license that can be
      3 // found in the LICENSE file.
      4 
      5 #ifndef V8_ARM_CONSTANTS_ARM_H_
      6 #define V8_ARM_CONSTANTS_ARM_H_
      7 
      8 #include <stdint.h>
      9 
     10 #include "src/base/logging.h"
     11 #include "src/base/macros.h"
     12 #include "src/globals.h"
     13 
     14 // ARM EABI is required.
     15 #if defined(__arm__) && !defined(__ARM_EABI__)
     16 #error ARM EABI support is required.
     17 #endif
     18 
     19 namespace v8 {
     20 namespace internal {
     21 
     22 // Constant pool marker.
     23 // Use UDF, the permanently undefined instruction.
     24 const int kConstantPoolMarkerMask = 0xfff000f0;
     25 const int kConstantPoolMarker = 0xe7f000f0;
     26 const int kConstantPoolLengthMaxMask = 0xffff;
     27 inline int EncodeConstantPoolLength(int length) {
     28   DCHECK((length & kConstantPoolLengthMaxMask) == length);
     29   return ((length & 0xfff0) << 4) | (length & 0xf);
     30 }
     31 inline int DecodeConstantPoolLength(int instr) {
     32   DCHECK((instr & kConstantPoolMarkerMask) == kConstantPoolMarker);
     33   return ((instr >> 4) & 0xfff0) | (instr & 0xf);
     34 }
     35 
     36 // Used in code age prologue - ldr(pc, MemOperand(pc, -4))
     37 const int kCodeAgeJumpInstruction = 0xe51ff004;
     38 
     39 // Number of registers in normal ARM mode.
     40 const int kNumRegisters = 16;
     41 
     42 // VFP support.
     43 const int kNumVFPSingleRegisters = 32;
     44 const int kNumVFPDoubleRegisters = 32;
     45 const int kNumVFPRegisters = kNumVFPSingleRegisters + kNumVFPDoubleRegisters;
     46 
     47 // PC is register 15.
     48 const int kPCRegister = 15;
     49 const int kNoRegister = -1;
     50 
     51 // Used in embedded constant pool builder - max reach in bits for
     52 // various load instructions (unsigned)
     53 const int kLdrMaxReachBits = 12;
     54 const int kVldrMaxReachBits = 10;
     55 
     56 // -----------------------------------------------------------------------------
     57 // Conditions.
     58 
     59 // Defines constants and accessor classes to assemble, disassemble and
     60 // simulate ARM instructions.
     61 //
     62 // Section references in the code refer to the "ARM Architecture Reference
     63 // Manual" from July 2005 (available at http://www.arm.com/miscPDFs/14128.pdf)
     64 //
     65 // Constants for specific fields are defined in their respective named enums.
     66 // General constants are in an anonymous enum in class Instr.
     67 
     68 // Values for the condition field as defined in section A3.2
     69 enum Condition {
     70   kNoCondition = -1,
     71 
     72   eq =  0 << 28,                 // Z set            Equal.
     73   ne =  1 << 28,                 // Z clear          Not equal.
     74   cs =  2 << 28,                 // C set            Unsigned higher or same.
     75   cc =  3 << 28,                 // C clear          Unsigned lower.
     76   mi =  4 << 28,                 // N set            Negative.
     77   pl =  5 << 28,                 // N clear          Positive or zero.
     78   vs =  6 << 28,                 // V set            Overflow.
     79   vc =  7 << 28,                 // V clear          No overflow.
     80   hi =  8 << 28,                 // C set, Z clear   Unsigned higher.
     81   ls =  9 << 28,                 // C clear or Z set Unsigned lower or same.
     82   ge = 10 << 28,                 // N == V           Greater or equal.
     83   lt = 11 << 28,                 // N != V           Less than.
     84   gt = 12 << 28,                 // Z clear, N == V  Greater than.
     85   le = 13 << 28,                 // Z set or N != V  Less then or equal
     86   al = 14 << 28,                 //                  Always.
     87 
     88   kSpecialCondition = 15 << 28,  // Special condition (refer to section A3.2.1).
     89   kNumberOfConditions = 16,
     90 
     91   // Aliases.
     92   hs = cs,                       // C set            Unsigned higher or same.
     93   lo = cc                        // C clear          Unsigned lower.
     94 };
     95 
     96 
     97 inline Condition NegateCondition(Condition cond) {
     98   DCHECK(cond != al);
     99   return static_cast<Condition>(cond ^ ne);
    100 }
    101 
    102 
    103 // Commute a condition such that {a cond b == b cond' a}.
    104 inline Condition CommuteCondition(Condition cond) {
    105   switch (cond) {
    106     case lo:
    107       return hi;
    108     case hi:
    109       return lo;
    110     case hs:
    111       return ls;
    112     case ls:
    113       return hs;
    114     case lt:
    115       return gt;
    116     case gt:
    117       return lt;
    118     case ge:
    119       return le;
    120     case le:
    121       return ge;
    122     default:
    123       return cond;
    124   }
    125 }
    126 
    127 
    128 // -----------------------------------------------------------------------------
    129 // Instructions encoding.
    130 
    131 // Instr is merely used by the Assembler to distinguish 32bit integers
    132 // representing instructions from usual 32 bit values.
    133 // Instruction objects are pointers to 32bit values, and provide methods to
    134 // access the various ISA fields.
    135 typedef int32_t Instr;
    136 
    137 
    138 // Opcodes for Data-processing instructions (instructions with a type 0 and 1)
    139 // as defined in section A3.4
    140 enum Opcode {
    141   AND =  0 << 21,  // Logical AND.
    142   EOR =  1 << 21,  // Logical Exclusive OR.
    143   SUB =  2 << 21,  // Subtract.
    144   RSB =  3 << 21,  // Reverse Subtract.
    145   ADD =  4 << 21,  // Add.
    146   ADC =  5 << 21,  // Add with Carry.
    147   SBC =  6 << 21,  // Subtract with Carry.
    148   RSC =  7 << 21,  // Reverse Subtract with Carry.
    149   TST =  8 << 21,  // Test.
    150   TEQ =  9 << 21,  // Test Equivalence.
    151   CMP = 10 << 21,  // Compare.
    152   CMN = 11 << 21,  // Compare Negated.
    153   ORR = 12 << 21,  // Logical (inclusive) OR.
    154   MOV = 13 << 21,  // Move.
    155   BIC = 14 << 21,  // Bit Clear.
    156   MVN = 15 << 21   // Move Not.
    157 };
    158 
    159 
    160 // The bits for bit 7-4 for some type 0 miscellaneous instructions.
    161 enum MiscInstructionsBits74 {
    162   // With bits 22-21 01.
    163   BX   =  1 << 4,
    164   BXJ  =  2 << 4,
    165   BLX  =  3 << 4,
    166   BKPT =  7 << 4,
    167 
    168   // With bits 22-21 11.
    169   CLZ  =  1 << 4
    170 };
    171 
    172 
    173 // Instruction encoding bits and masks.
    174 enum {
    175   H = 1 << 5,   // Halfword (or byte).
    176   S6 = 1 << 6,  // Signed (or unsigned).
    177   L = 1 << 20,  // Load (or store).
    178   S = 1 << 20,  // Set condition code (or leave unchanged).
    179   W = 1 << 21,  // Writeback base register (or leave unchanged).
    180   A = 1 << 21,  // Accumulate in multiply instruction (or not).
    181   B = 1 << 22,  // Unsigned byte (or word).
    182   N = 1 << 22,  // Long (or short).
    183   U = 1 << 23,  // Positive (or negative) offset/index.
    184   P = 1 << 24,  // Offset/pre-indexed addressing (or post-indexed addressing).
    185   I = 1 << 25,  // Immediate shifter operand (or not).
    186   B0 = 1 << 0,
    187   B4 = 1 << 4,
    188   B5 = 1 << 5,
    189   B6 = 1 << 6,
    190   B7 = 1 << 7,
    191   B8 = 1 << 8,
    192   B9 = 1 << 9,
    193   B12 = 1 << 12,
    194   B16 = 1 << 16,
    195   B17 = 1 << 17,
    196   B18 = 1 << 18,
    197   B19 = 1 << 19,
    198   B20 = 1 << 20,
    199   B21 = 1 << 21,
    200   B22 = 1 << 22,
    201   B23 = 1 << 23,
    202   B24 = 1 << 24,
    203   B25 = 1 << 25,
    204   B26 = 1 << 26,
    205   B27 = 1 << 27,
    206   B28 = 1 << 28,
    207 
    208   // Instruction bit masks.
    209   kCondMask = 15 << 28,
    210   kALUMask = 0x6f << 21,
    211   kRdMask = 15 << 12,  // In str instruction.
    212   kCoprocessorMask = 15 << 8,
    213   kOpCodeMask = 15 << 21,  // In data-processing instructions.
    214   kImm24Mask = (1 << 24) - 1,
    215   kImm16Mask = (1 << 16) - 1,
    216   kImm8Mask = (1 << 8) - 1,
    217   kOff12Mask = (1 << 12) - 1,
    218   kOff8Mask = (1 << 8) - 1
    219 };
    220 
    221 
    222 // -----------------------------------------------------------------------------
    223 // Addressing modes and instruction variants.
    224 
    225 // Condition code updating mode.
    226 enum SBit {
    227   SetCC   = 1 << 20,  // Set condition code.
    228   LeaveCC = 0 << 20   // Leave condition code unchanged.
    229 };
    230 
    231 
    232 // Status register selection.
    233 enum SRegister {
    234   CPSR = 0 << 22,
    235   SPSR = 1 << 22
    236 };
    237 
    238 
    239 // Shifter types for Data-processing operands as defined in section A5.1.2.
    240 enum ShiftOp {
    241   LSL = 0 << 5,   // Logical shift left.
    242   LSR = 1 << 5,   // Logical shift right.
    243   ASR = 2 << 5,   // Arithmetic shift right.
    244   ROR = 3 << 5,   // Rotate right.
    245 
    246   // RRX is encoded as ROR with shift_imm == 0.
    247   // Use a special code to make the distinction. The RRX ShiftOp is only used
    248   // as an argument, and will never actually be encoded. The Assembler will
    249   // detect it and emit the correct ROR shift operand with shift_imm == 0.
    250   RRX = -1,
    251   kNumberOfShifts = 4
    252 };
    253 
    254 
    255 // Status register fields.
    256 enum SRegisterField {
    257   CPSR_c = CPSR | 1 << 16,
    258   CPSR_x = CPSR | 1 << 17,
    259   CPSR_s = CPSR | 1 << 18,
    260   CPSR_f = CPSR | 1 << 19,
    261   SPSR_c = SPSR | 1 << 16,
    262   SPSR_x = SPSR | 1 << 17,
    263   SPSR_s = SPSR | 1 << 18,
    264   SPSR_f = SPSR | 1 << 19
    265 };
    266 
    267 // Status register field mask (or'ed SRegisterField enum values).
    268 typedef uint32_t SRegisterFieldMask;
    269 
    270 
    271 // Memory operand addressing mode.
    272 enum AddrMode {
    273   // Bit encoding P U W.
    274   Offset       = (8|4|0) << 21,  // Offset (without writeback to base).
    275   PreIndex     = (8|4|1) << 21,  // Pre-indexed addressing with writeback.
    276   PostIndex    = (0|4|0) << 21,  // Post-indexed addressing with writeback.
    277   NegOffset    = (8|0|0) << 21,  // Negative offset (without writeback to base).
    278   NegPreIndex  = (8|0|1) << 21,  // Negative pre-indexed with writeback.
    279   NegPostIndex = (0|0|0) << 21   // Negative post-indexed with writeback.
    280 };
    281 
    282 
    283 // Load/store multiple addressing mode.
    284 enum BlockAddrMode {
    285   // Bit encoding P U W .
    286   da           = (0|0|0) << 21,  // Decrement after.
    287   ia           = (0|4|0) << 21,  // Increment after.
    288   db           = (8|0|0) << 21,  // Decrement before.
    289   ib           = (8|4|0) << 21,  // Increment before.
    290   da_w         = (0|0|1) << 21,  // Decrement after with writeback to base.
    291   ia_w         = (0|4|1) << 21,  // Increment after with writeback to base.
    292   db_w         = (8|0|1) << 21,  // Decrement before with writeback to base.
    293   ib_w         = (8|4|1) << 21,  // Increment before with writeback to base.
    294 
    295   // Alias modes for comparison when writeback does not matter.
    296   da_x         = (0|0|0) << 21,  // Decrement after.
    297   ia_x         = (0|4|0) << 21,  // Increment after.
    298   db_x         = (8|0|0) << 21,  // Decrement before.
    299   ib_x         = (8|4|0) << 21,  // Increment before.
    300 
    301   kBlockAddrModeMask = (8|4|1) << 21
    302 };
    303 
    304 
    305 // Coprocessor load/store operand size.
    306 enum LFlag {
    307   Long  = 1 << 22,  // Long load/store coprocessor.
    308   Short = 0 << 22   // Short load/store coprocessor.
    309 };
    310 
    311 
    312 // NEON data type
    313 enum NeonDataType {
    314   NeonS8 = 0x1,   // U = 0, imm3 = 0b001
    315   NeonS16 = 0x2,  // U = 0, imm3 = 0b010
    316   NeonS32 = 0x4,  // U = 0, imm3 = 0b100
    317   NeonU8 = 1 << 24 | 0x1,   // U = 1, imm3 = 0b001
    318   NeonU16 = 1 << 24 | 0x2,  // U = 1, imm3 = 0b010
    319   NeonU32 = 1 << 24 | 0x4,   // U = 1, imm3 = 0b100
    320   NeonDataTypeSizeMask = 0x7,
    321   NeonDataTypeUMask = 1 << 24
    322 };
    323 
    324 enum NeonListType {
    325   nlt_1 = 0x7,
    326   nlt_2 = 0xA,
    327   nlt_3 = 0x6,
    328   nlt_4 = 0x2
    329 };
    330 
    331 enum NeonSize {
    332   Neon8 = 0x0,
    333   Neon16 = 0x1,
    334   Neon32 = 0x2,
    335   Neon64 = 0x3
    336 };
    337 
    338 // -----------------------------------------------------------------------------
    339 // Supervisor Call (svc) specific support.
    340 
    341 // Special Software Interrupt codes when used in the presence of the ARM
    342 // simulator.
    343 // svc (formerly swi) provides a 24bit immediate value. Use bits 22:0 for
    344 // standard SoftwareInterrupCode. Bit 23 is reserved for the stop feature.
    345 enum SoftwareInterruptCodes {
    346   // transition to C code
    347   kCallRtRedirected = 0x10,
    348   // break point
    349   kBreakpoint = 0x20,
    350   // stop
    351   kStopCode = 1 << 23
    352 };
    353 const uint32_t kStopCodeMask = kStopCode - 1;
    354 const uint32_t kMaxStopCode = kStopCode - 1;
    355 const int32_t  kDefaultStopCode = -1;
    356 
    357 
    358 // Type of VFP register. Determines register encoding.
    359 enum VFPRegPrecision {
    360   kSinglePrecision = 0,
    361   kDoublePrecision = 1
    362 };
    363 
    364 
    365 // VFP FPSCR constants.
    366 enum VFPConversionMode {
    367   kFPSCRRounding = 0,
    368   kDefaultRoundToZero = 1
    369 };
    370 
    371 // This mask does not include the "inexact" or "input denormal" cumulative
    372 // exceptions flags, because we usually don't want to check for it.
    373 const uint32_t kVFPExceptionMask = 0xf;
    374 const uint32_t kVFPInvalidOpExceptionBit = 1 << 0;
    375 const uint32_t kVFPOverflowExceptionBit = 1 << 2;
    376 const uint32_t kVFPUnderflowExceptionBit = 1 << 3;
    377 const uint32_t kVFPInexactExceptionBit = 1 << 4;
    378 const uint32_t kVFPFlushToZeroMask = 1 << 24;
    379 const uint32_t kVFPDefaultNaNModeControlBit = 1 << 25;
    380 
    381 const uint32_t kVFPNConditionFlagBit = 1 << 31;
    382 const uint32_t kVFPZConditionFlagBit = 1 << 30;
    383 const uint32_t kVFPCConditionFlagBit = 1 << 29;
    384 const uint32_t kVFPVConditionFlagBit = 1 << 28;
    385 
    386 
    387 // VFP rounding modes. See ARM DDI 0406B Page A2-29.
    388 enum VFPRoundingMode {
    389   RN = 0 << 22,   // Round to Nearest.
    390   RP = 1 << 22,   // Round towards Plus Infinity.
    391   RM = 2 << 22,   // Round towards Minus Infinity.
    392   RZ = 3 << 22,   // Round towards zero.
    393 
    394   // Aliases.
    395   kRoundToNearest = RN,
    396   kRoundToPlusInf = RP,
    397   kRoundToMinusInf = RM,
    398   kRoundToZero = RZ
    399 };
    400 
    401 const uint32_t kVFPRoundingModeMask = 3 << 22;
    402 
    403 enum CheckForInexactConversion {
    404   kCheckForInexactConversion,
    405   kDontCheckForInexactConversion
    406 };
    407 
    408 // -----------------------------------------------------------------------------
    409 // Hints.
    410 
    411 // Branch hints are not used on the ARM.  They are defined so that they can
    412 // appear in shared function signatures, but will be ignored in ARM
    413 // implementations.
    414 enum Hint { no_hint };
    415 
    416 // Hints are not used on the arm.  Negating is trivial.
    417 inline Hint NegateHint(Hint ignored) { return no_hint; }
    418 
    419 
    420 // -----------------------------------------------------------------------------
    421 // Instruction abstraction.
    422 
    423 // The class Instruction enables access to individual fields defined in the ARM
    424 // architecture instruction set encoding as described in figure A3-1.
    425 // Note that the Assembler uses typedef int32_t Instr.
    426 //
    427 // Example: Test whether the instruction at ptr does set the condition code
    428 // bits.
    429 //
    430 // bool InstructionSetsConditionCodes(byte* ptr) {
    431 //   Instruction* instr = Instruction::At(ptr);
    432 //   int type = instr->TypeValue();
    433 //   return ((type == 0) || (type == 1)) && instr->HasS();
    434 // }
    435 //
    436 class Instruction {
    437  public:
    438   enum {
    439     kInstrSize = 4,
    440     kInstrSizeLog2 = 2,
    441     kPCReadOffset = 8
    442   };
    443 
    444   // Helper macro to define static accessors.
    445   // We use the cast to char* trick to bypass the strict anti-aliasing rules.
    446   #define DECLARE_STATIC_TYPED_ACCESSOR(return_type, Name)                     \
    447     static inline return_type Name(Instr instr) {                              \
    448       char* temp = reinterpret_cast<char*>(&instr);                            \
    449       return reinterpret_cast<Instruction*>(temp)->Name();                     \
    450     }
    451 
    452   #define DECLARE_STATIC_ACCESSOR(Name) DECLARE_STATIC_TYPED_ACCESSOR(int, Name)
    453 
    454   // Get the raw instruction bits.
    455   inline Instr InstructionBits() const {
    456     return *reinterpret_cast<const Instr*>(this);
    457   }
    458 
    459   // Set the raw instruction bits to value.
    460   inline void SetInstructionBits(Instr value) {
    461     *reinterpret_cast<Instr*>(this) = value;
    462   }
    463 
    464   // Read one particular bit out of the instruction bits.
    465   inline int Bit(int nr) const {
    466     return (InstructionBits() >> nr) & 1;
    467   }
    468 
    469   // Read a bit field's value out of the instruction bits.
    470   inline int Bits(int hi, int lo) const {
    471     return (InstructionBits() >> lo) & ((2 << (hi - lo)) - 1);
    472   }
    473 
    474   // Read a bit field out of the instruction bits.
    475   inline int BitField(int hi, int lo) const {
    476     return InstructionBits() & (((2 << (hi - lo)) - 1) << lo);
    477   }
    478 
    479   // Static support.
    480 
    481   // Read one particular bit out of the instruction bits.
    482   static inline int Bit(Instr instr, int nr) {
    483     return (instr >> nr) & 1;
    484   }
    485 
    486   // Read the value of a bit field out of the instruction bits.
    487   static inline int Bits(Instr instr, int hi, int lo) {
    488     return (instr >> lo) & ((2 << (hi - lo)) - 1);
    489   }
    490 
    491 
    492   // Read a bit field out of the instruction bits.
    493   static inline int BitField(Instr instr, int hi, int lo) {
    494     return instr & (((2 << (hi - lo)) - 1) << lo);
    495   }
    496 
    497 
    498   // Accessors for the different named fields used in the ARM encoding.
    499   // The naming of these accessor corresponds to figure A3-1.
    500   //
    501   // Two kind of accessors are declared:
    502   // - <Name>Field() will return the raw field, i.e. the field's bits at their
    503   //   original place in the instruction encoding.
    504   //   e.g. if instr is the 'addgt r0, r1, r2' instruction, encoded as
    505   //   0xC0810002 ConditionField(instr) will return 0xC0000000.
    506   // - <Name>Value() will return the field value, shifted back to bit 0.
    507   //   e.g. if instr is the 'addgt r0, r1, r2' instruction, encoded as
    508   //   0xC0810002 ConditionField(instr) will return 0xC.
    509 
    510 
    511   // Generally applicable fields
    512   inline Condition ConditionValue() const {
    513     return static_cast<Condition>(Bits(31, 28));
    514   }
    515   inline Condition ConditionField() const {
    516     return static_cast<Condition>(BitField(31, 28));
    517   }
    518   DECLARE_STATIC_TYPED_ACCESSOR(Condition, ConditionValue);
    519   DECLARE_STATIC_TYPED_ACCESSOR(Condition, ConditionField);
    520 
    521   inline int TypeValue() const { return Bits(27, 25); }
    522   inline int SpecialValue() const { return Bits(27, 23); }
    523 
    524   inline int RnValue() const { return Bits(19, 16); }
    525   DECLARE_STATIC_ACCESSOR(RnValue);
    526   inline int RdValue() const { return Bits(15, 12); }
    527   DECLARE_STATIC_ACCESSOR(RdValue);
    528 
    529   inline int CoprocessorValue() const { return Bits(11, 8); }
    530   // Support for VFP.
    531   // Vn(19-16) | Vd(15-12) |  Vm(3-0)
    532   inline int VnValue() const { return Bits(19, 16); }
    533   inline int VmValue() const { return Bits(3, 0); }
    534   inline int VdValue() const { return Bits(15, 12); }
    535   inline int NValue() const { return Bit(7); }
    536   inline int MValue() const { return Bit(5); }
    537   inline int DValue() const { return Bit(22); }
    538   inline int RtValue() const { return Bits(15, 12); }
    539   inline int PValue() const { return Bit(24); }
    540   inline int UValue() const { return Bit(23); }
    541   inline int Opc1Value() const { return (Bit(23) << 2) | Bits(21, 20); }
    542   inline int Opc2Value() const { return Bits(19, 16); }
    543   inline int Opc3Value() const { return Bits(7, 6); }
    544   inline int SzValue() const { return Bit(8); }
    545   inline int VLValue() const { return Bit(20); }
    546   inline int VCValue() const { return Bit(8); }
    547   inline int VAValue() const { return Bits(23, 21); }
    548   inline int VBValue() const { return Bits(6, 5); }
    549   inline int VFPNRegValue(VFPRegPrecision pre) {
    550     return VFPGlueRegValue(pre, 16, 7);
    551   }
    552   inline int VFPMRegValue(VFPRegPrecision pre) {
    553     return VFPGlueRegValue(pre, 0, 5);
    554   }
    555   inline int VFPDRegValue(VFPRegPrecision pre) {
    556     return VFPGlueRegValue(pre, 12, 22);
    557   }
    558 
    559   // Fields used in Data processing instructions
    560   inline int OpcodeValue() const {
    561     return static_cast<Opcode>(Bits(24, 21));
    562   }
    563   inline Opcode OpcodeField() const {
    564     return static_cast<Opcode>(BitField(24, 21));
    565   }
    566   inline int SValue() const { return Bit(20); }
    567     // with register
    568   inline int RmValue() const { return Bits(3, 0); }
    569   DECLARE_STATIC_ACCESSOR(RmValue);
    570   inline int ShiftValue() const { return static_cast<ShiftOp>(Bits(6, 5)); }
    571   inline ShiftOp ShiftField() const {
    572     return static_cast<ShiftOp>(BitField(6, 5));
    573   }
    574   inline int RegShiftValue() const { return Bit(4); }
    575   inline int RsValue() const { return Bits(11, 8); }
    576   inline int ShiftAmountValue() const { return Bits(11, 7); }
    577     // with immediate
    578   inline int RotateValue() const { return Bits(11, 8); }
    579   DECLARE_STATIC_ACCESSOR(RotateValue);
    580   inline int Immed8Value() const { return Bits(7, 0); }
    581   DECLARE_STATIC_ACCESSOR(Immed8Value);
    582   inline int Immed4Value() const { return Bits(19, 16); }
    583   inline int ImmedMovwMovtValue() const {
    584       return Immed4Value() << 12 | Offset12Value(); }
    585   DECLARE_STATIC_ACCESSOR(ImmedMovwMovtValue);
    586 
    587   // Fields used in Load/Store instructions
    588   inline int PUValue() const { return Bits(24, 23); }
    589   inline int PUField() const { return BitField(24, 23); }
    590   inline int  BValue() const { return Bit(22); }
    591   inline int  WValue() const { return Bit(21); }
    592   inline int  LValue() const { return Bit(20); }
    593     // with register uses same fields as Data processing instructions above
    594     // with immediate
    595   inline int Offset12Value() const { return Bits(11, 0); }
    596     // multiple
    597   inline int RlistValue() const { return Bits(15, 0); }
    598     // extra loads and stores
    599   inline int SignValue() const { return Bit(6); }
    600   inline int HValue() const { return Bit(5); }
    601   inline int ImmedHValue() const { return Bits(11, 8); }
    602   inline int ImmedLValue() const { return Bits(3, 0); }
    603 
    604   // Fields used in Branch instructions
    605   inline int LinkValue() const { return Bit(24); }
    606   inline int SImmed24Value() const { return ((InstructionBits() << 8) >> 8); }
    607 
    608   // Fields used in Software interrupt instructions
    609   inline SoftwareInterruptCodes SvcValue() const {
    610     return static_cast<SoftwareInterruptCodes>(Bits(23, 0));
    611   }
    612 
    613   // Test for special encodings of type 0 instructions (extra loads and stores,
    614   // as well as multiplications).
    615   inline bool IsSpecialType0() const { return (Bit(7) == 1) && (Bit(4) == 1); }
    616 
    617   // Test for miscellaneous instructions encodings of type 0 instructions.
    618   inline bool IsMiscType0() const { return (Bit(24) == 1)
    619                                            && (Bit(23) == 0)
    620                                            && (Bit(20) == 0)
    621                                            && ((Bit(7) == 0)); }
    622 
    623   // Test for a nop instruction, which falls under type 1.
    624   inline bool IsNopType1() const { return Bits(24, 0) == 0x0120F000; }
    625 
    626   // Test for a stop instruction.
    627   inline bool IsStop() const {
    628     return (TypeValue() == 7) && (Bit(24) == 1) && (SvcValue() >= kStopCode);
    629   }
    630 
    631   // Special accessors that test for existence of a value.
    632   inline bool HasS()    const { return SValue() == 1; }
    633   inline bool HasB()    const { return BValue() == 1; }
    634   inline bool HasW()    const { return WValue() == 1; }
    635   inline bool HasL()    const { return LValue() == 1; }
    636   inline bool HasU()    const { return UValue() == 1; }
    637   inline bool HasSign() const { return SignValue() == 1; }
    638   inline bool HasH()    const { return HValue() == 1; }
    639   inline bool HasLink() const { return LinkValue() == 1; }
    640 
    641   // Decoding the double immediate in the vmov instruction.
    642   double DoubleImmedVmov() const;
    643 
    644   // Instructions are read of out a code stream. The only way to get a
    645   // reference to an instruction is to convert a pointer. There is no way
    646   // to allocate or create instances of class Instruction.
    647   // Use the At(pc) function to create references to Instruction.
    648   static Instruction* At(byte* pc) {
    649     return reinterpret_cast<Instruction*>(pc);
    650   }
    651 
    652 
    653  private:
    654   // Join split register codes, depending on single or double precision.
    655   // four_bit is the position of the least-significant bit of the four
    656   // bit specifier. one_bit is the position of the additional single bit
    657   // specifier.
    658   inline int VFPGlueRegValue(VFPRegPrecision pre, int four_bit, int one_bit) {
    659     if (pre == kSinglePrecision) {
    660       return (Bits(four_bit + 3, four_bit) << 1) | Bit(one_bit);
    661     }
    662     return (Bit(one_bit) << 4) | Bits(four_bit + 3, four_bit);
    663   }
    664 
    665   // We need to prevent the creation of instances of class Instruction.
    666   DISALLOW_IMPLICIT_CONSTRUCTORS(Instruction);
    667 };
    668 
    669 
    670 // Helper functions for converting between register numbers and names.
    671 class Registers {
    672  public:
    673   // Return the name of the register.
    674   static const char* Name(int reg);
    675 
    676   // Lookup the register number for the name provided.
    677   static int Number(const char* name);
    678 
    679   struct RegisterAlias {
    680     int reg;
    681     const char* name;
    682   };
    683 
    684  private:
    685   static const char* names_[kNumRegisters];
    686   static const RegisterAlias aliases_[];
    687 };
    688 
    689 // Helper functions for converting between VFP register numbers and names.
    690 class VFPRegisters {
    691  public:
    692   // Return the name of the register.
    693   static const char* Name(int reg, bool is_double);
    694 
    695   // Lookup the register number for the name provided.
    696   // Set flag pointed by is_double to true if register
    697   // is double-precision.
    698   static int Number(const char* name, bool* is_double);
    699 
    700  private:
    701   static const char* names_[kNumVFPRegisters];
    702 };
    703 
    704 
    705 }  // namespace internal
    706 }  // namespace v8
    707 
    708 #endif  // V8_ARM_CONSTANTS_ARM_H_
    709