1 2 /* ----------------------------------------------------------------------------------------------------------- 3 Software License for The Fraunhofer FDK AAC Codec Library for Android 4 5 Copyright 1995 - 2015 Fraunhofer-Gesellschaft zur Frderung der angewandten Forschung e.V. 6 All rights reserved. 7 8 1. INTRODUCTION 9 The Fraunhofer FDK AAC Codec Library for Android ("FDK AAC Codec") is software that implements 10 the MPEG Advanced Audio Coding ("AAC") encoding and decoding scheme for digital audio. 11 This FDK AAC Codec software is intended to be used on a wide variety of Android devices. 12 13 AAC's HE-AAC and HE-AAC v2 versions are regarded as today's most efficient general perceptual 14 audio codecs. AAC-ELD is considered the best-performing full-bandwidth communications codec by 15 independent studies and is widely deployed. AAC has been standardized by ISO and IEC as part 16 of the MPEG specifications. 17 18 Patent licenses for necessary patent claims for the FDK AAC Codec (including those of Fraunhofer) 19 may be obtained through Via Licensing (www.vialicensing.com) or through the respective patent owners 20 individually for the purpose of encoding or decoding bit streams in products that are compliant with 21 the ISO/IEC MPEG audio standards. Please note that most manufacturers of Android devices already license 22 these patent claims through Via Licensing or directly from the patent owners, and therefore FDK AAC Codec 23 software may already be covered under those patent licenses when it is used for those licensed purposes only. 24 25 Commercially-licensed AAC software libraries, including floating-point versions with enhanced sound quality, 26 are also available from Fraunhofer. Users are encouraged to check the Fraunhofer website for additional 27 applications information and documentation. 28 29 2. COPYRIGHT LICENSE 30 31 Redistribution and use in source and binary forms, with or without modification, are permitted without 32 payment of copyright license fees provided that you satisfy the following conditions: 33 34 You must retain the complete text of this software license in redistributions of the FDK AAC Codec or 35 your modifications thereto in source code form. 36 37 You must retain the complete text of this software license in the documentation and/or other materials 38 provided with redistributions of the FDK AAC Codec or your modifications thereto in binary form. 39 You must make available free of charge copies of the complete source code of the FDK AAC Codec and your 40 modifications thereto to recipients of copies in binary form. 41 42 The name of Fraunhofer may not be used to endorse or promote products derived from this library without 43 prior written permission. 44 45 You may not charge copyright license fees for anyone to use, copy or distribute the FDK AAC Codec 46 software or your modifications thereto. 47 48 Your modified versions of the FDK AAC Codec must carry prominent notices stating that you changed the software 49 and the date of any change. For modified versions of the FDK AAC Codec, the term 50 "Fraunhofer FDK AAC Codec Library for Android" must be replaced by the term 51 "Third-Party Modified Version of the Fraunhofer FDK AAC Codec Library for Android." 52 53 3. NO PATENT LICENSE 54 55 NO EXPRESS OR IMPLIED LICENSES TO ANY PATENT CLAIMS, including without limitation the patents of Fraunhofer, 56 ARE GRANTED BY THIS SOFTWARE LICENSE. Fraunhofer provides no warranty of patent non-infringement with 57 respect to this software. 58 59 You may use this FDK AAC Codec software or modifications thereto only for purposes that are authorized 60 by appropriate patent licenses. 61 62 4. DISCLAIMER 63 64 This FDK AAC Codec software is provided by Fraunhofer on behalf of the copyright holders and contributors 65 "AS IS" and WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES, including but not limited to the implied warranties 66 of merchantability and fitness for a particular purpose. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR 67 CONTRIBUTORS BE LIABLE for any direct, indirect, incidental, special, exemplary, or consequential damages, 68 including but not limited to procurement of substitute goods or services; loss of use, data, or profits, 69 or business interruption, however caused and on any theory of liability, whether in contract, strict 70 liability, or tort (including negligence), arising in any way out of the use of this software, even if 71 advised of the possibility of such damage. 72 73 5. CONTACT INFORMATION 74 75 Fraunhofer Institute for Integrated Circuits IIS 76 Attention: Audio and Multimedia Departments - FDK AAC LL 77 Am Wolfsmantel 33 78 91058 Erlangen, Germany 79 80 www.iis.fraunhofer.de/amm 81 amm-info (at) iis.fraunhofer.de 82 ----------------------------------------------------------------------------------------------------------- */ 83 84 /******************************** MPEG Audio Encoder ************************** 85 86 Initial author: M.Werner 87 contents/description: Quantization 88 89 ******************************************************************************/ 90 91 #include "quantize.h" 92 93 #include "aacEnc_rom.h" 94 95 /***************************************************************************** 96 97 functionname: FDKaacEnc_quantizeLines 98 description: quantizes spectrum lines 99 returns: 100 input: global gain, number of lines to process, spectral data 101 output: quantized spectrum 102 103 *****************************************************************************/ 104 static void FDKaacEnc_quantizeLines(INT gain, 105 INT noOfLines, 106 FIXP_DBL *mdctSpectrum, 107 SHORT *quaSpectrum, 108 INT dZoneQuantEnable) 109 { 110 int line; 111 FIXP_DBL k = FL2FXCONST_DBL(0.0f); 112 FIXP_QTD quantizer = FDKaacEnc_quantTableQ[(-gain)&3]; 113 INT quantizershift = ((-gain)>>2)+1; 114 const INT kShift=16; 115 116 if (dZoneQuantEnable) 117 k = FL2FXCONST_DBL(0.23f)>>kShift; 118 else 119 k = FL2FXCONST_DBL(-0.0946f + 0.5f)>>kShift; 120 121 for (line = 0; line < noOfLines; line++) 122 { 123 FIXP_DBL accu = fMultDiv2(mdctSpectrum[line],quantizer); 124 125 if (accu < FL2FXCONST_DBL(0.0f)) 126 { 127 accu=-accu; 128 /* normalize */ 129 INT accuShift = CntLeadingZeros(accu) - 1; /* CountLeadingBits() is not necessary here since test value is always > 0 */ 130 accu <<= accuShift; 131 INT tabIndex = (INT)(accu>>(DFRACT_BITS-2-MANT_DIGITS))&(~MANT_SIZE); 132 INT totalShift = quantizershift-accuShift+1; 133 accu = fMultDiv2(FDKaacEnc_mTab_3_4[tabIndex],FDKaacEnc_quantTableE[totalShift&3]); 134 totalShift = (16-4)-(3*(totalShift>>2)); 135 FDK_ASSERT(totalShift >=0); /* MAX_QUANT_VIOLATION */ 136 accu >>= fixMin(totalShift,DFRACT_BITS-1); 137 quaSpectrum[line] = (SHORT)(-((LONG)(k + accu) >> (DFRACT_BITS-1-16))); 138 } 139 else if(accu > FL2FXCONST_DBL(0.0f)) 140 { 141 /* normalize */ 142 INT accuShift = CntLeadingZeros(accu) - 1; /* CountLeadingBits() is not necessary here since test value is always > 0 */ 143 accu <<= accuShift; 144 INT tabIndex = (INT)(accu>>(DFRACT_BITS-2-MANT_DIGITS))&(~MANT_SIZE); 145 INT totalShift = quantizershift-accuShift+1; 146 accu = fMultDiv2(FDKaacEnc_mTab_3_4[tabIndex],FDKaacEnc_quantTableE[totalShift&3]); 147 totalShift = (16-4)-(3*(totalShift>>2)); 148 FDK_ASSERT(totalShift >=0); /* MAX_QUANT_VIOLATION */ 149 accu >>= fixMin(totalShift,DFRACT_BITS-1); 150 quaSpectrum[line] = (SHORT)((LONG)(k + accu) >> (DFRACT_BITS-1-16)); 151 } 152 else 153 quaSpectrum[line]=0; 154 } 155 } 156 157 158 /***************************************************************************** 159 160 functionname:iFDKaacEnc_quantizeLines 161 description: iquantizes spectrum lines 162 mdctSpectrum = iquaSpectrum^4/3 *2^(0.25*gain) 163 input: global gain, number of lines to process,quantized spectrum 164 output: spectral data 165 166 *****************************************************************************/ 167 static void FDKaacEnc_invQuantizeLines(INT gain, 168 INT noOfLines, 169 SHORT *quantSpectrum, 170 FIXP_DBL *mdctSpectrum) 171 172 { 173 INT iquantizermod; 174 INT iquantizershift; 175 INT line; 176 177 iquantizermod = gain&3; 178 iquantizershift = gain>>2; 179 180 for (line = 0; line < noOfLines; line++) { 181 182 if(quantSpectrum[line] < 0) { 183 FIXP_DBL accu; 184 INT ex,specExp,tabIndex; 185 FIXP_DBL s,t; 186 187 accu = (FIXP_DBL) -quantSpectrum[line]; 188 189 ex = CountLeadingBits(accu); 190 accu <<= ex; 191 specExp = (DFRACT_BITS-1) - ex; 192 193 FDK_ASSERT(specExp < 14); /* this fails if abs(value) > 8191 */ 194 195 tabIndex = (INT)(accu>>(DFRACT_BITS-2-MANT_DIGITS))&(~MANT_SIZE); 196 197 /* calculate "mantissa" ^4/3 */ 198 s = FDKaacEnc_mTab_4_3Elc[tabIndex]; 199 200 /* get approperiate exponent multiplier for specExp^3/4 combined with scfMod */ 201 t = FDKaacEnc_specExpMantTableCombElc[iquantizermod][specExp]; 202 203 /* multiply "mantissa" ^4/3 with exponent multiplier */ 204 accu = fMult(s,t); 205 206 /* get approperiate exponent shifter */ 207 specExp = FDKaacEnc_specExpTableComb[iquantizermod][specExp]-1; /* -1 to avoid overflows in accu */ 208 209 if ((-iquantizershift-specExp) < 0) 210 accu <<= -(-iquantizershift-specExp); 211 else 212 accu >>= -iquantizershift-specExp; 213 214 mdctSpectrum[line] = -accu; 215 } 216 else if (quantSpectrum[line] > 0) { 217 FIXP_DBL accu; 218 INT ex,specExp,tabIndex; 219 FIXP_DBL s,t; 220 221 accu = (FIXP_DBL)(INT)quantSpectrum[line]; 222 223 ex = CountLeadingBits(accu); 224 accu <<= ex; 225 specExp = (DFRACT_BITS-1) - ex; 226 227 FDK_ASSERT(specExp < 14); /* this fails if abs(value) > 8191 */ 228 229 tabIndex = (INT)(accu>>(DFRACT_BITS-2-MANT_DIGITS))&(~MANT_SIZE); 230 231 /* calculate "mantissa" ^4/3 */ 232 s = FDKaacEnc_mTab_4_3Elc[tabIndex]; 233 234 /* get approperiate exponent multiplier for specExp^3/4 combined with scfMod */ 235 t = FDKaacEnc_specExpMantTableCombElc[iquantizermod][specExp]; 236 237 /* multiply "mantissa" ^4/3 with exponent multiplier */ 238 accu = fMult(s,t); 239 240 /* get approperiate exponent shifter */ 241 specExp = FDKaacEnc_specExpTableComb[iquantizermod][specExp]-1; /* -1 to avoid overflows in accu */ 242 243 if (( -iquantizershift-specExp) < 0) 244 accu <<= -(-iquantizershift-specExp); 245 else 246 accu >>= -iquantizershift-specExp; 247 248 mdctSpectrum[line] = accu; 249 } 250 else { 251 mdctSpectrum[line] = FL2FXCONST_DBL(0.0f); 252 } 253 } 254 } 255 256 /***************************************************************************** 257 258 functionname: FDKaacEnc_QuantizeSpectrum 259 description: quantizes the entire spectrum 260 returns: 261 input: number of scalefactor bands to be quantized, ... 262 output: quantized spectrum 263 264 *****************************************************************************/ 265 void FDKaacEnc_QuantizeSpectrum(INT sfbCnt, 266 INT maxSfbPerGroup, 267 INT sfbPerGroup, 268 INT *sfbOffset, 269 FIXP_DBL *mdctSpectrum, 270 INT globalGain, 271 INT *scalefactors, 272 SHORT *quantizedSpectrum, 273 INT dZoneQuantEnable) 274 { 275 INT sfbOffs,sfb; 276 277 /* in FDKaacEnc_quantizeLines quaSpectrum is calculated with: 278 spec^(3/4) * 2^(-3/16*QSS) * 2^(3/4*scale) + k 279 simplify scaling calculation and reduce QSS before: 280 spec^(3/4) * 2^(-3/16*(QSS - 4*scale)) */ 281 282 for(sfbOffs=0;sfbOffs<sfbCnt;sfbOffs+=sfbPerGroup) 283 for (sfb = 0; sfb < maxSfbPerGroup; sfb++) 284 { 285 INT scalefactor = scalefactors[sfbOffs+sfb] ; 286 287 FDKaacEnc_quantizeLines(globalGain - scalefactor, /* QSS */ 288 sfbOffset[sfbOffs+sfb+1] - sfbOffset[sfbOffs+sfb], 289 mdctSpectrum + sfbOffset[sfbOffs+sfb], 290 quantizedSpectrum + sfbOffset[sfbOffs+sfb], 291 dZoneQuantEnable); 292 } 293 } 294 295 /***************************************************************************** 296 297 functionname: FDKaacEnc_calcSfbDist 298 description: calculates distortion of quantized values 299 returns: distortion 300 input: gain, number of lines to process, spectral data 301 output: 302 303 *****************************************************************************/ 304 FIXP_DBL FDKaacEnc_calcSfbDist(FIXP_DBL *mdctSpectrum, 305 SHORT *quantSpectrum, 306 INT noOfLines, 307 INT gain, 308 INT dZoneQuantEnable 309 ) 310 { 311 INT i,scale; 312 FIXP_DBL xfsf; 313 FIXP_DBL diff; 314 FIXP_DBL invQuantSpec; 315 316 xfsf = FL2FXCONST_DBL(0.0f); 317 318 for (i=0; i<noOfLines; i++) { 319 /* quantization */ 320 FDKaacEnc_quantizeLines(gain, 321 1, 322 &mdctSpectrum[i], 323 &quantSpectrum[i], 324 dZoneQuantEnable); 325 326 if (fAbs(quantSpectrum[i])>MAX_QUANT) { 327 return FL2FXCONST_DBL(0.0f); 328 } 329 /* inverse quantization */ 330 FDKaacEnc_invQuantizeLines(gain,1,&quantSpectrum[i],&invQuantSpec); 331 332 /* dist */ 333 diff = fixp_abs(fixp_abs(invQuantSpec) - fixp_abs(mdctSpectrum[i]>>1)); 334 335 scale = CountLeadingBits(diff); 336 diff = scaleValue(diff, scale); 337 diff = fPow2(diff); 338 scale = fixMin(2*(scale-1), DFRACT_BITS-1); 339 340 diff = scaleValue(diff, -scale); 341 342 xfsf = xfsf + diff; 343 } 344 345 xfsf = CalcLdData(xfsf); 346 347 return xfsf; 348 } 349 350 /***************************************************************************** 351 352 functionname: FDKaacEnc_calcSfbQuantEnergyAndDist 353 description: calculates energy and distortion of quantized values 354 returns: 355 input: gain, number of lines to process, quantized spectral data, 356 spectral data 357 output: energy, distortion 358 359 *****************************************************************************/ 360 void FDKaacEnc_calcSfbQuantEnergyAndDist(FIXP_DBL *mdctSpectrum, 361 SHORT *quantSpectrum, 362 INT noOfLines, 363 INT gain, 364 FIXP_DBL *en, 365 FIXP_DBL *dist) 366 { 367 INT i,scale; 368 FIXP_DBL invQuantSpec; 369 FIXP_DBL diff; 370 371 FIXP_DBL energy = FL2FXCONST_DBL(0.0f); 372 FIXP_DBL distortion = FL2FXCONST_DBL(0.0f); 373 374 for (i=0; i<noOfLines; i++) { 375 376 if (fAbs(quantSpectrum[i])>MAX_QUANT) { 377 *en = FL2FXCONST_DBL(0.0f); 378 *dist = FL2FXCONST_DBL(0.0f); 379 return; 380 } 381 382 /* inverse quantization */ 383 FDKaacEnc_invQuantizeLines(gain,1,&quantSpectrum[i],&invQuantSpec); 384 385 /* energy */ 386 energy += fPow2(invQuantSpec); 387 388 /* dist */ 389 diff = fixp_abs(fixp_abs(invQuantSpec) - fixp_abs(mdctSpectrum[i]>>1)); 390 391 scale = CountLeadingBits(diff); 392 diff = scaleValue(diff, scale); 393 diff = fPow2(diff); 394 395 scale = fixMin(2*(scale-1), DFRACT_BITS-1); 396 397 diff = scaleValue(diff, -scale); 398 399 distortion += diff; 400 } 401 402 *en = CalcLdData(energy)+FL2FXCONST_DBL(0.03125f); 403 *dist = CalcLdData(distortion); 404 } 405 406