Home | History | Annotate | Download | only in src
      1 
      2 /* -----------------------------------------------------------------------------------------------------------
      3 Software License for The Fraunhofer FDK AAC Codec Library for Android
      4 
      5  Copyright  1995 - 2015 Fraunhofer-Gesellschaft zur Frderung der angewandten Forschung e.V.
      6   All rights reserved.
      7 
      8  1.    INTRODUCTION
      9 The Fraunhofer FDK AAC Codec Library for Android ("FDK AAC Codec") is software that implements
     10 the MPEG Advanced Audio Coding ("AAC") encoding and decoding scheme for digital audio.
     11 This FDK AAC Codec software is intended to be used on a wide variety of Android devices.
     12 
     13 AAC's HE-AAC and HE-AAC v2 versions are regarded as today's most efficient general perceptual
     14 audio codecs. AAC-ELD is considered the best-performing full-bandwidth communications codec by
     15 independent studies and is widely deployed. AAC has been standardized by ISO and IEC as part
     16 of the MPEG specifications.
     17 
     18 Patent licenses for necessary patent claims for the FDK AAC Codec (including those of Fraunhofer)
     19 may be obtained through Via Licensing (www.vialicensing.com) or through the respective patent owners
     20 individually for the purpose of encoding or decoding bit streams in products that are compliant with
     21 the ISO/IEC MPEG audio standards. Please note that most manufacturers of Android devices already license
     22 these patent claims through Via Licensing or directly from the patent owners, and therefore FDK AAC Codec
     23 software may already be covered under those patent licenses when it is used for those licensed purposes only.
     24 
     25 Commercially-licensed AAC software libraries, including floating-point versions with enhanced sound quality,
     26 are also available from Fraunhofer. Users are encouraged to check the Fraunhofer website for additional
     27 applications information and documentation.
     28 
     29 2.    COPYRIGHT LICENSE
     30 
     31 Redistribution and use in source and binary forms, with or without modification, are permitted without
     32 payment of copyright license fees provided that you satisfy the following conditions:
     33 
     34 You must retain the complete text of this software license in redistributions of the FDK AAC Codec or
     35 your modifications thereto in source code form.
     36 
     37 You must retain the complete text of this software license in the documentation and/or other materials
     38 provided with redistributions of the FDK AAC Codec or your modifications thereto in binary form.
     39 You must make available free of charge copies of the complete source code of the FDK AAC Codec and your
     40 modifications thereto to recipients of copies in binary form.
     41 
     42 The name of Fraunhofer may not be used to endorse or promote products derived from this library without
     43 prior written permission.
     44 
     45 You may not charge copyright license fees for anyone to use, copy or distribute the FDK AAC Codec
     46 software or your modifications thereto.
     47 
     48 Your modified versions of the FDK AAC Codec must carry prominent notices stating that you changed the software
     49 and the date of any change. For modified versions of the FDK AAC Codec, the term
     50 "Fraunhofer FDK AAC Codec Library for Android" must be replaced by the term
     51 "Third-Party Modified Version of the Fraunhofer FDK AAC Codec Library for Android."
     52 
     53 3.    NO PATENT LICENSE
     54 
     55 NO EXPRESS OR IMPLIED LICENSES TO ANY PATENT CLAIMS, including without limitation the patents of Fraunhofer,
     56 ARE GRANTED BY THIS SOFTWARE LICENSE. Fraunhofer provides no warranty of patent non-infringement with
     57 respect to this software.
     58 
     59 You may use this FDK AAC Codec software or modifications thereto only for purposes that are authorized
     60 by appropriate patent licenses.
     61 
     62 4.    DISCLAIMER
     63 
     64 This FDK AAC Codec software is provided by Fraunhofer on behalf of the copyright holders and contributors
     65 "AS IS" and WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES, including but not limited to the implied warranties
     66 of merchantability and fitness for a particular purpose. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
     67 CONTRIBUTORS BE LIABLE for any direct, indirect, incidental, special, exemplary, or consequential damages,
     68 including but not limited to procurement of substitute goods or services; loss of use, data, or profits,
     69 or business interruption, however caused and on any theory of liability, whether in contract, strict
     70 liability, or tort (including negligence), arising in any way out of the use of this software, even if
     71 advised of the possibility of such damage.
     72 
     73 5.    CONTACT INFORMATION
     74 
     75 Fraunhofer Institute for Integrated Circuits IIS
     76 Attention: Audio and Multimedia Departments - FDK AAC LL
     77 Am Wolfsmantel 33
     78 91058 Erlangen, Germany
     79 
     80 www.iis.fraunhofer.de/amm
     81 amm-info (at) iis.fraunhofer.de
     82 ----------------------------------------------------------------------------------------------------------- */
     83 
     84 /******************************** MPEG Audio Encoder **************************
     85 
     86    Initial author:       M.Werner
     87    contents/description: Quantization
     88 
     89 ******************************************************************************/
     90 
     91 #include "quantize.h"
     92 
     93 #include "aacEnc_rom.h"
     94 
     95 /*****************************************************************************
     96 
     97     functionname: FDKaacEnc_quantizeLines
     98     description: quantizes spectrum lines
     99     returns:
    100     input: global gain, number of lines to process, spectral data
    101     output: quantized spectrum
    102 
    103 *****************************************************************************/
    104 static void FDKaacEnc_quantizeLines(INT      gain,
    105                           INT      noOfLines,
    106                           FIXP_DBL *mdctSpectrum,
    107                           SHORT    *quaSpectrum,
    108                           INT      dZoneQuantEnable)
    109 {
    110   int   line;
    111   FIXP_DBL k = FL2FXCONST_DBL(0.0f);
    112   FIXP_QTD quantizer = FDKaacEnc_quantTableQ[(-gain)&3];
    113   INT      quantizershift = ((-gain)>>2)+1;
    114   const INT kShift=16;
    115 
    116   if (dZoneQuantEnable)
    117     k = FL2FXCONST_DBL(0.23f)>>kShift;
    118   else
    119     k = FL2FXCONST_DBL(-0.0946f + 0.5f)>>kShift;
    120 
    121   for (line = 0; line < noOfLines; line++)
    122   {
    123     FIXP_DBL accu = fMultDiv2(mdctSpectrum[line],quantizer);
    124 
    125     if (accu < FL2FXCONST_DBL(0.0f))
    126     {
    127       accu=-accu;
    128       /* normalize */
    129       INT   accuShift = CntLeadingZeros(accu) - 1;  /* CountLeadingBits() is not necessary here since test value is always > 0 */
    130       accu <<= accuShift;
    131       INT tabIndex = (INT)(accu>>(DFRACT_BITS-2-MANT_DIGITS))&(~MANT_SIZE);
    132       INT totalShift = quantizershift-accuShift+1;
    133       accu = fMultDiv2(FDKaacEnc_mTab_3_4[tabIndex],FDKaacEnc_quantTableE[totalShift&3]);
    134       totalShift = (16-4)-(3*(totalShift>>2));
    135       FDK_ASSERT(totalShift >=0); /* MAX_QUANT_VIOLATION */
    136       accu >>= fixMin(totalShift,DFRACT_BITS-1);
    137       quaSpectrum[line] = (SHORT)(-((LONG)(k + accu) >> (DFRACT_BITS-1-16)));
    138     }
    139     else if(accu > FL2FXCONST_DBL(0.0f))
    140     {
    141       /* normalize */
    142       INT   accuShift = CntLeadingZeros(accu) - 1;  /* CountLeadingBits() is not necessary here since test value is always > 0 */
    143       accu <<= accuShift;
    144       INT tabIndex = (INT)(accu>>(DFRACT_BITS-2-MANT_DIGITS))&(~MANT_SIZE);
    145       INT totalShift = quantizershift-accuShift+1;
    146       accu = fMultDiv2(FDKaacEnc_mTab_3_4[tabIndex],FDKaacEnc_quantTableE[totalShift&3]);
    147       totalShift = (16-4)-(3*(totalShift>>2));
    148       FDK_ASSERT(totalShift >=0); /* MAX_QUANT_VIOLATION */
    149       accu >>= fixMin(totalShift,DFRACT_BITS-1);
    150       quaSpectrum[line] = (SHORT)((LONG)(k + accu) >> (DFRACT_BITS-1-16));
    151     }
    152     else
    153       quaSpectrum[line]=0;
    154   }
    155 }
    156 
    157 
    158 /*****************************************************************************
    159 
    160     functionname:iFDKaacEnc_quantizeLines
    161     description: iquantizes spectrum lines
    162                  mdctSpectrum = iquaSpectrum^4/3 *2^(0.25*gain)
    163     input: global gain, number of lines to process,quantized spectrum
    164     output: spectral data
    165 
    166 *****************************************************************************/
    167 static void FDKaacEnc_invQuantizeLines(INT  gain,
    168                              INT  noOfLines,
    169                              SHORT *quantSpectrum,
    170                              FIXP_DBL *mdctSpectrum)
    171 
    172 {
    173   INT iquantizermod;
    174   INT iquantizershift;
    175   INT line;
    176 
    177   iquantizermod = gain&3;
    178   iquantizershift = gain>>2;
    179 
    180   for (line = 0; line < noOfLines; line++) {
    181 
    182     if(quantSpectrum[line] < 0) {
    183       FIXP_DBL accu;
    184       INT ex,specExp,tabIndex;
    185       FIXP_DBL s,t;
    186 
    187       accu = (FIXP_DBL) -quantSpectrum[line];
    188 
    189       ex = CountLeadingBits(accu);
    190       accu <<= ex;
    191       specExp = (DFRACT_BITS-1) - ex;
    192 
    193       FDK_ASSERT(specExp < 14);       /* this fails if abs(value) > 8191 */
    194 
    195       tabIndex = (INT)(accu>>(DFRACT_BITS-2-MANT_DIGITS))&(~MANT_SIZE);
    196 
    197       /* calculate "mantissa" ^4/3 */
    198       s = FDKaacEnc_mTab_4_3Elc[tabIndex];
    199 
    200       /* get approperiate exponent multiplier for specExp^3/4 combined with scfMod */
    201       t = FDKaacEnc_specExpMantTableCombElc[iquantizermod][specExp];
    202 
    203       /* multiply "mantissa" ^4/3 with exponent multiplier */
    204       accu = fMult(s,t);
    205 
    206       /* get approperiate exponent shifter */
    207       specExp = FDKaacEnc_specExpTableComb[iquantizermod][specExp]-1; /* -1 to avoid overflows in accu */
    208 
    209       if ((-iquantizershift-specExp) < 0)
    210         accu <<= -(-iquantizershift-specExp);
    211       else
    212         accu >>= -iquantizershift-specExp;
    213 
    214       mdctSpectrum[line] = -accu;
    215     }
    216     else if (quantSpectrum[line] > 0) {
    217       FIXP_DBL accu;
    218       INT ex,specExp,tabIndex;
    219       FIXP_DBL s,t;
    220 
    221       accu = (FIXP_DBL)(INT)quantSpectrum[line];
    222 
    223       ex = CountLeadingBits(accu);
    224       accu <<= ex;
    225       specExp = (DFRACT_BITS-1) - ex;
    226 
    227       FDK_ASSERT(specExp < 14);       /* this fails if abs(value) > 8191 */
    228 
    229       tabIndex = (INT)(accu>>(DFRACT_BITS-2-MANT_DIGITS))&(~MANT_SIZE);
    230 
    231       /* calculate "mantissa" ^4/3 */
    232       s = FDKaacEnc_mTab_4_3Elc[tabIndex];
    233 
    234       /* get approperiate exponent multiplier for specExp^3/4 combined with scfMod */
    235       t = FDKaacEnc_specExpMantTableCombElc[iquantizermod][specExp];
    236 
    237       /* multiply "mantissa" ^4/3 with exponent multiplier */
    238       accu = fMult(s,t);
    239 
    240       /* get approperiate exponent shifter */
    241       specExp = FDKaacEnc_specExpTableComb[iquantizermod][specExp]-1; /* -1 to avoid overflows in accu */
    242 
    243       if (( -iquantizershift-specExp) < 0)
    244         accu <<= -(-iquantizershift-specExp);
    245       else
    246         accu >>= -iquantizershift-specExp;
    247 
    248       mdctSpectrum[line] = accu;
    249     }
    250     else {
    251       mdctSpectrum[line] = FL2FXCONST_DBL(0.0f);
    252     }
    253   }
    254 }
    255 
    256 /*****************************************************************************
    257 
    258     functionname: FDKaacEnc_QuantizeSpectrum
    259     description: quantizes the entire spectrum
    260     returns:
    261     input: number of scalefactor bands to be quantized, ...
    262     output: quantized spectrum
    263 
    264 *****************************************************************************/
    265 void FDKaacEnc_QuantizeSpectrum(INT sfbCnt,
    266                       INT maxSfbPerGroup,
    267                       INT sfbPerGroup,
    268                       INT *sfbOffset,
    269                       FIXP_DBL *mdctSpectrum,
    270                       INT globalGain,
    271                       INT *scalefactors,
    272                       SHORT *quantizedSpectrum,
    273                       INT dZoneQuantEnable)
    274 {
    275   INT sfbOffs,sfb;
    276 
    277   /* in FDKaacEnc_quantizeLines quaSpectrum is calculated with:
    278         spec^(3/4) * 2^(-3/16*QSS) * 2^(3/4*scale) + k
    279      simplify scaling calculation and reduce QSS before:
    280         spec^(3/4) * 2^(-3/16*(QSS - 4*scale)) */
    281 
    282   for(sfbOffs=0;sfbOffs<sfbCnt;sfbOffs+=sfbPerGroup)
    283   for (sfb = 0; sfb < maxSfbPerGroup; sfb++)
    284   {
    285     INT scalefactor = scalefactors[sfbOffs+sfb] ;
    286 
    287     FDKaacEnc_quantizeLines(globalGain - scalefactor, /* QSS */
    288                   sfbOffset[sfbOffs+sfb+1] - sfbOffset[sfbOffs+sfb],
    289                   mdctSpectrum + sfbOffset[sfbOffs+sfb],
    290                   quantizedSpectrum + sfbOffset[sfbOffs+sfb],
    291                   dZoneQuantEnable);
    292   }
    293 }
    294 
    295 /*****************************************************************************
    296 
    297     functionname: FDKaacEnc_calcSfbDist
    298     description: calculates distortion of quantized values
    299     returns: distortion
    300     input: gain, number of lines to process, spectral data
    301     output:
    302 
    303 *****************************************************************************/
    304 FIXP_DBL FDKaacEnc_calcSfbDist(FIXP_DBL *mdctSpectrum,
    305                      SHORT *quantSpectrum,
    306                      INT noOfLines,
    307                      INT gain,
    308                      INT dZoneQuantEnable
    309                      )
    310 {
    311   INT i,scale;
    312   FIXP_DBL xfsf;
    313   FIXP_DBL diff;
    314   FIXP_DBL invQuantSpec;
    315 
    316   xfsf = FL2FXCONST_DBL(0.0f);
    317 
    318   for (i=0; i<noOfLines; i++) {
    319     /* quantization */
    320     FDKaacEnc_quantizeLines(gain,
    321                   1,
    322                  &mdctSpectrum[i],
    323                  &quantSpectrum[i],
    324                   dZoneQuantEnable);
    325 
    326     if (fAbs(quantSpectrum[i])>MAX_QUANT) {
    327       return FL2FXCONST_DBL(0.0f);
    328     }
    329     /* inverse quantization */
    330     FDKaacEnc_invQuantizeLines(gain,1,&quantSpectrum[i],&invQuantSpec);
    331 
    332     /* dist */
    333     diff = fixp_abs(fixp_abs(invQuantSpec) - fixp_abs(mdctSpectrum[i]>>1));
    334 
    335     scale = CountLeadingBits(diff);
    336     diff = scaleValue(diff, scale);
    337     diff = fPow2(diff);
    338     scale = fixMin(2*(scale-1), DFRACT_BITS-1);
    339 
    340     diff = scaleValue(diff, -scale);
    341 
    342     xfsf = xfsf + diff;
    343   }
    344 
    345   xfsf = CalcLdData(xfsf);
    346 
    347   return xfsf;
    348 }
    349 
    350 /*****************************************************************************
    351 
    352     functionname: FDKaacEnc_calcSfbQuantEnergyAndDist
    353     description: calculates energy and distortion of quantized values
    354     returns:
    355     input: gain, number of lines to process, quantized spectral data,
    356            spectral data
    357     output: energy, distortion
    358 
    359 *****************************************************************************/
    360 void FDKaacEnc_calcSfbQuantEnergyAndDist(FIXP_DBL *mdctSpectrum,
    361                                SHORT *quantSpectrum,
    362                                INT noOfLines,
    363                                INT gain,
    364                                FIXP_DBL *en,
    365                                FIXP_DBL *dist)
    366 {
    367   INT i,scale;
    368   FIXP_DBL invQuantSpec;
    369   FIXP_DBL diff;
    370 
    371   FIXP_DBL energy = FL2FXCONST_DBL(0.0f);
    372   FIXP_DBL distortion = FL2FXCONST_DBL(0.0f);
    373 
    374   for (i=0; i<noOfLines; i++) {
    375 
    376     if (fAbs(quantSpectrum[i])>MAX_QUANT) {
    377       *en   = FL2FXCONST_DBL(0.0f);
    378       *dist = FL2FXCONST_DBL(0.0f);
    379       return;
    380     }
    381 
    382     /* inverse quantization */
    383     FDKaacEnc_invQuantizeLines(gain,1,&quantSpectrum[i],&invQuantSpec);
    384 
    385     /* energy */
    386     energy += fPow2(invQuantSpec);
    387 
    388     /* dist */
    389     diff = fixp_abs(fixp_abs(invQuantSpec) - fixp_abs(mdctSpectrum[i]>>1));
    390 
    391     scale = CountLeadingBits(diff);
    392     diff = scaleValue(diff, scale);
    393     diff = fPow2(diff);
    394 
    395     scale = fixMin(2*(scale-1), DFRACT_BITS-1);
    396 
    397     diff = scaleValue(diff, -scale);
    398 
    399     distortion += diff;
    400   }
    401 
    402   *en   = CalcLdData(energy)+FL2FXCONST_DBL(0.03125f);
    403   *dist = CalcLdData(distortion);
    404 }
    405 
    406