1 /* 2 * Copyright (C) 2011 The Android Open Source Project 3 * 4 * Licensed under the Apache License, Version 2.0 (the "License"); 5 * you may not use this file except in compliance with the License. 6 * You may obtain a copy of the License at 7 * 8 * http://www.apache.org/licenses/LICENSE-2.0 9 * 10 * Unless required by applicable law or agreed to in writing, software 11 * distributed under the License is distributed on an "AS IS" BASIS, 12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 13 * See the License for the specific language governing permissions and 14 * limitations under the License. 15 */ 16 17 #include "image_writer.h" 18 19 #include <sys/stat.h> 20 #include <lz4.h> 21 #include <lz4hc.h> 22 23 #include <memory> 24 #include <numeric> 25 #include <unordered_set> 26 #include <vector> 27 28 #include "art_field-inl.h" 29 #include "art_method-inl.h" 30 #include "base/logging.h" 31 #include "base/unix_file/fd_file.h" 32 #include "class_linker-inl.h" 33 #include "compiled_method.h" 34 #include "dex_file-inl.h" 35 #include "driver/compiler_driver.h" 36 #include "elf_file.h" 37 #include "elf_utils.h" 38 #include "elf_writer.h" 39 #include "gc/accounting/card_table-inl.h" 40 #include "gc/accounting/heap_bitmap.h" 41 #include "gc/accounting/space_bitmap-inl.h" 42 #include "gc/heap.h" 43 #include "gc/space/large_object_space.h" 44 #include "gc/space/space-inl.h" 45 #include "globals.h" 46 #include "image.h" 47 #include "intern_table.h" 48 #include "linear_alloc.h" 49 #include "lock_word.h" 50 #include "mirror/abstract_method.h" 51 #include "mirror/array-inl.h" 52 #include "mirror/class-inl.h" 53 #include "mirror/class_loader.h" 54 #include "mirror/dex_cache-inl.h" 55 #include "mirror/method.h" 56 #include "mirror/object-inl.h" 57 #include "mirror/object_array-inl.h" 58 #include "mirror/string-inl.h" 59 #include "oat.h" 60 #include "oat_file.h" 61 #include "oat_file_manager.h" 62 #include "runtime.h" 63 #include "scoped_thread_state_change.h" 64 #include "handle_scope-inl.h" 65 #include "utils/dex_cache_arrays_layout-inl.h" 66 67 using ::art::mirror::Class; 68 using ::art::mirror::DexCache; 69 using ::art::mirror::Object; 70 using ::art::mirror::ObjectArray; 71 using ::art::mirror::String; 72 73 namespace art { 74 75 // Separate objects into multiple bins to optimize dirty memory use. 76 static constexpr bool kBinObjects = true; 77 78 // Return true if an object is already in an image space. 79 bool ImageWriter::IsInBootImage(const void* obj) const { 80 gc::Heap* const heap = Runtime::Current()->GetHeap(); 81 if (!compile_app_image_) { 82 DCHECK(heap->GetBootImageSpaces().empty()); 83 return false; 84 } 85 for (gc::space::ImageSpace* boot_image_space : heap->GetBootImageSpaces()) { 86 const uint8_t* image_begin = boot_image_space->Begin(); 87 // Real image end including ArtMethods and ArtField sections. 88 const uint8_t* image_end = image_begin + boot_image_space->GetImageHeader().GetImageSize(); 89 if (image_begin <= obj && obj < image_end) { 90 return true; 91 } 92 } 93 return false; 94 } 95 96 bool ImageWriter::IsInBootOatFile(const void* ptr) const { 97 gc::Heap* const heap = Runtime::Current()->GetHeap(); 98 if (!compile_app_image_) { 99 DCHECK(heap->GetBootImageSpaces().empty()); 100 return false; 101 } 102 for (gc::space::ImageSpace* boot_image_space : heap->GetBootImageSpaces()) { 103 const ImageHeader& image_header = boot_image_space->GetImageHeader(); 104 if (image_header.GetOatFileBegin() <= ptr && ptr < image_header.GetOatFileEnd()) { 105 return true; 106 } 107 } 108 return false; 109 } 110 111 static void CheckNoDexObjectsCallback(Object* obj, void* arg ATTRIBUTE_UNUSED) 112 SHARED_REQUIRES(Locks::mutator_lock_) { 113 Class* klass = obj->GetClass(); 114 CHECK_NE(PrettyClass(klass), "com.android.dex.Dex"); 115 } 116 117 static void CheckNoDexObjects() { 118 ScopedObjectAccess soa(Thread::Current()); 119 Runtime::Current()->GetHeap()->VisitObjects(CheckNoDexObjectsCallback, nullptr); 120 } 121 122 bool ImageWriter::PrepareImageAddressSpace() { 123 target_ptr_size_ = InstructionSetPointerSize(compiler_driver_.GetInstructionSet()); 124 gc::Heap* const heap = Runtime::Current()->GetHeap(); 125 { 126 ScopedObjectAccess soa(Thread::Current()); 127 PruneNonImageClasses(); // Remove junk 128 if (!compile_app_image_) { 129 // Avoid for app image since this may increase RAM and image size. 130 ComputeLazyFieldsForImageClasses(); // Add useful information 131 } 132 } 133 heap->CollectGarbage(false); // Remove garbage. 134 135 // Dex caches must not have their dex fields set in the image. These are memory buffers of mapped 136 // dex files. 137 // 138 // We may open them in the unstarted-runtime code for class metadata. Their fields should all be 139 // reset in PruneNonImageClasses and the objects reclaimed in the GC. Make sure that's actually 140 // true. 141 if (kIsDebugBuild) { 142 CheckNoDexObjects(); 143 } 144 145 if (kIsDebugBuild) { 146 ScopedObjectAccess soa(Thread::Current()); 147 CheckNonImageClassesRemoved(); 148 } 149 150 { 151 ScopedObjectAccess soa(Thread::Current()); 152 CalculateNewObjectOffsets(); 153 } 154 155 // This needs to happen after CalculateNewObjectOffsets since it relies on intern_table_bytes_ and 156 // bin size sums being calculated. 157 if (!AllocMemory()) { 158 return false; 159 } 160 161 return true; 162 } 163 164 bool ImageWriter::Write(int image_fd, 165 const std::vector<const char*>& image_filenames, 166 const std::vector<const char*>& oat_filenames) { 167 // If image_fd or oat_fd are not kInvalidFd then we may have empty strings in image_filenames or 168 // oat_filenames. 169 CHECK(!image_filenames.empty()); 170 if (image_fd != kInvalidFd) { 171 CHECK_EQ(image_filenames.size(), 1u); 172 } 173 CHECK(!oat_filenames.empty()); 174 CHECK_EQ(image_filenames.size(), oat_filenames.size()); 175 176 { 177 ScopedObjectAccess soa(Thread::Current()); 178 for (size_t i = 0; i < oat_filenames.size(); ++i) { 179 CreateHeader(i); 180 CopyAndFixupNativeData(i); 181 } 182 } 183 184 { 185 // TODO: heap validation can't handle these fix up passes. 186 ScopedObjectAccess soa(Thread::Current()); 187 Runtime::Current()->GetHeap()->DisableObjectValidation(); 188 CopyAndFixupObjects(); 189 } 190 191 for (size_t i = 0; i < image_filenames.size(); ++i) { 192 const char* image_filename = image_filenames[i]; 193 ImageInfo& image_info = GetImageInfo(i); 194 std::unique_ptr<File> image_file; 195 if (image_fd != kInvalidFd) { 196 if (strlen(image_filename) == 0u) { 197 image_file.reset(new File(image_fd, unix_file::kCheckSafeUsage)); 198 // Empty the file in case it already exists. 199 if (image_file != nullptr) { 200 TEMP_FAILURE_RETRY(image_file->SetLength(0)); 201 TEMP_FAILURE_RETRY(image_file->Flush()); 202 } 203 } else { 204 LOG(ERROR) << "image fd " << image_fd << " name " << image_filename; 205 } 206 } else { 207 image_file.reset(OS::CreateEmptyFile(image_filename)); 208 } 209 210 if (image_file == nullptr) { 211 LOG(ERROR) << "Failed to open image file " << image_filename; 212 return false; 213 } 214 215 if (!compile_app_image_ && fchmod(image_file->Fd(), 0644) != 0) { 216 PLOG(ERROR) << "Failed to make image file world readable: " << image_filename; 217 image_file->Erase(); 218 return EXIT_FAILURE; 219 } 220 221 std::unique_ptr<char[]> compressed_data; 222 // Image data size excludes the bitmap and the header. 223 ImageHeader* const image_header = reinterpret_cast<ImageHeader*>(image_info.image_->Begin()); 224 const size_t image_data_size = image_header->GetImageSize() - sizeof(ImageHeader); 225 char* image_data = reinterpret_cast<char*>(image_info.image_->Begin()) + sizeof(ImageHeader); 226 size_t data_size; 227 const char* image_data_to_write; 228 const uint64_t compress_start_time = NanoTime(); 229 230 CHECK_EQ(image_header->storage_mode_, image_storage_mode_); 231 switch (image_storage_mode_) { 232 case ImageHeader::kStorageModeLZ4HC: // Fall-through. 233 case ImageHeader::kStorageModeLZ4: { 234 const size_t compressed_max_size = LZ4_compressBound(image_data_size); 235 compressed_data.reset(new char[compressed_max_size]); 236 data_size = LZ4_compress( 237 reinterpret_cast<char*>(image_info.image_->Begin()) + sizeof(ImageHeader), 238 &compressed_data[0], 239 image_data_size); 240 241 break; 242 } 243 /* 244 * Disabled due to image_test64 flakyness. Both use same decompression. b/27560444 245 case ImageHeader::kStorageModeLZ4HC: { 246 // Bound is same as non HC. 247 const size_t compressed_max_size = LZ4_compressBound(image_data_size); 248 compressed_data.reset(new char[compressed_max_size]); 249 data_size = LZ4_compressHC( 250 reinterpret_cast<char*>(image_info.image_->Begin()) + sizeof(ImageHeader), 251 &compressed_data[0], 252 image_data_size); 253 break; 254 } 255 */ 256 case ImageHeader::kStorageModeUncompressed: { 257 data_size = image_data_size; 258 image_data_to_write = image_data; 259 break; 260 } 261 default: { 262 LOG(FATAL) << "Unsupported"; 263 UNREACHABLE(); 264 } 265 } 266 267 if (compressed_data != nullptr) { 268 image_data_to_write = &compressed_data[0]; 269 VLOG(compiler) << "Compressed from " << image_data_size << " to " << data_size << " in " 270 << PrettyDuration(NanoTime() - compress_start_time); 271 if (kIsDebugBuild) { 272 std::unique_ptr<uint8_t[]> temp(new uint8_t[image_data_size]); 273 const size_t decompressed_size = LZ4_decompress_safe( 274 reinterpret_cast<char*>(&compressed_data[0]), 275 reinterpret_cast<char*>(&temp[0]), 276 data_size, 277 image_data_size); 278 CHECK_EQ(decompressed_size, image_data_size); 279 CHECK_EQ(memcmp(image_data, &temp[0], image_data_size), 0) << image_storage_mode_; 280 } 281 } 282 283 // Write out the image + fields + methods. 284 const bool is_compressed = compressed_data != nullptr; 285 if (!image_file->PwriteFully(image_data_to_write, data_size, sizeof(ImageHeader))) { 286 PLOG(ERROR) << "Failed to write image file data " << image_filename; 287 image_file->Erase(); 288 return false; 289 } 290 291 // Write out the image bitmap at the page aligned start of the image end, also uncompressed for 292 // convenience. 293 const ImageSection& bitmap_section = image_header->GetImageSection( 294 ImageHeader::kSectionImageBitmap); 295 // Align up since data size may be unaligned if the image is compressed. 296 size_t bitmap_position_in_file = RoundUp(sizeof(ImageHeader) + data_size, kPageSize); 297 if (!is_compressed) { 298 CHECK_EQ(bitmap_position_in_file, bitmap_section.Offset()); 299 } 300 if (!image_file->PwriteFully(reinterpret_cast<char*>(image_info.image_bitmap_->Begin()), 301 bitmap_section.Size(), 302 bitmap_position_in_file)) { 303 PLOG(ERROR) << "Failed to write image file " << image_filename; 304 image_file->Erase(); 305 return false; 306 } 307 308 int err = image_file->Flush(); 309 if (err < 0) { 310 PLOG(ERROR) << "Failed to flush image file " << image_filename << " with result " << err; 311 image_file->Erase(); 312 return false; 313 } 314 315 // Write header last in case the compiler gets killed in the middle of image writing. 316 // We do not want to have a corrupted image with a valid header. 317 // The header is uncompressed since it contains whether the image is compressed or not. 318 image_header->data_size_ = data_size; 319 if (!image_file->PwriteFully(reinterpret_cast<char*>(image_info.image_->Begin()), 320 sizeof(ImageHeader), 321 0)) { 322 PLOG(ERROR) << "Failed to write image file header " << image_filename; 323 image_file->Erase(); 324 return false; 325 } 326 327 CHECK_EQ(bitmap_position_in_file + bitmap_section.Size(), 328 static_cast<size_t>(image_file->GetLength())); 329 if (image_file->FlushCloseOrErase() != 0) { 330 PLOG(ERROR) << "Failed to flush and close image file " << image_filename; 331 return false; 332 } 333 } 334 return true; 335 } 336 337 void ImageWriter::SetImageOffset(mirror::Object* object, size_t offset) { 338 DCHECK(object != nullptr); 339 DCHECK_NE(offset, 0U); 340 341 // The object is already deflated from when we set the bin slot. Just overwrite the lock word. 342 object->SetLockWord(LockWord::FromForwardingAddress(offset), false); 343 DCHECK_EQ(object->GetLockWord(false).ReadBarrierState(), 0u); 344 DCHECK(IsImageOffsetAssigned(object)); 345 } 346 347 void ImageWriter::UpdateImageOffset(mirror::Object* obj, uintptr_t offset) { 348 DCHECK(IsImageOffsetAssigned(obj)) << obj << " " << offset; 349 obj->SetLockWord(LockWord::FromForwardingAddress(offset), false); 350 DCHECK_EQ(obj->GetLockWord(false).ReadBarrierState(), 0u); 351 } 352 353 void ImageWriter::AssignImageOffset(mirror::Object* object, ImageWriter::BinSlot bin_slot) { 354 DCHECK(object != nullptr); 355 DCHECK_NE(image_objects_offset_begin_, 0u); 356 357 size_t oat_index = GetOatIndex(object); 358 ImageInfo& image_info = GetImageInfo(oat_index); 359 size_t bin_slot_offset = image_info.bin_slot_offsets_[bin_slot.GetBin()]; 360 size_t new_offset = bin_slot_offset + bin_slot.GetIndex(); 361 DCHECK_ALIGNED(new_offset, kObjectAlignment); 362 363 SetImageOffset(object, new_offset); 364 DCHECK_LT(new_offset, image_info.image_end_); 365 } 366 367 bool ImageWriter::IsImageOffsetAssigned(mirror::Object* object) const { 368 // Will also return true if the bin slot was assigned since we are reusing the lock word. 369 DCHECK(object != nullptr); 370 return object->GetLockWord(false).GetState() == LockWord::kForwardingAddress; 371 } 372 373 size_t ImageWriter::GetImageOffset(mirror::Object* object) const { 374 DCHECK(object != nullptr); 375 DCHECK(IsImageOffsetAssigned(object)); 376 LockWord lock_word = object->GetLockWord(false); 377 size_t offset = lock_word.ForwardingAddress(); 378 size_t oat_index = GetOatIndex(object); 379 const ImageInfo& image_info = GetImageInfo(oat_index); 380 DCHECK_LT(offset, image_info.image_end_); 381 return offset; 382 } 383 384 void ImageWriter::SetImageBinSlot(mirror::Object* object, BinSlot bin_slot) { 385 DCHECK(object != nullptr); 386 DCHECK(!IsImageOffsetAssigned(object)); 387 DCHECK(!IsImageBinSlotAssigned(object)); 388 389 // Before we stomp over the lock word, save the hash code for later. 390 Monitor::Deflate(Thread::Current(), object);; 391 LockWord lw(object->GetLockWord(false)); 392 switch (lw.GetState()) { 393 case LockWord::kFatLocked: { 394 LOG(FATAL) << "Fat locked object " << object << " found during object copy"; 395 break; 396 } 397 case LockWord::kThinLocked: { 398 LOG(FATAL) << "Thin locked object " << object << " found during object copy"; 399 break; 400 } 401 case LockWord::kUnlocked: 402 // No hash, don't need to save it. 403 break; 404 case LockWord::kHashCode: 405 DCHECK(saved_hashcode_map_.find(object) == saved_hashcode_map_.end()); 406 saved_hashcode_map_.emplace(object, lw.GetHashCode()); 407 break; 408 default: 409 LOG(FATAL) << "Unreachable."; 410 UNREACHABLE(); 411 } 412 object->SetLockWord(LockWord::FromForwardingAddress(bin_slot.Uint32Value()), false); 413 DCHECK_EQ(object->GetLockWord(false).ReadBarrierState(), 0u); 414 DCHECK(IsImageBinSlotAssigned(object)); 415 } 416 417 void ImageWriter::PrepareDexCacheArraySlots() { 418 // Prepare dex cache array starts based on the ordering specified in the CompilerDriver. 419 // Set the slot size early to avoid DCHECK() failures in IsImageBinSlotAssigned() 420 // when AssignImageBinSlot() assigns their indexes out or order. 421 for (const DexFile* dex_file : compiler_driver_.GetDexFilesForOatFile()) { 422 auto it = dex_file_oat_index_map_.find(dex_file); 423 DCHECK(it != dex_file_oat_index_map_.end()) << dex_file->GetLocation(); 424 ImageInfo& image_info = GetImageInfo(it->second); 425 image_info.dex_cache_array_starts_.Put(dex_file, image_info.bin_slot_sizes_[kBinDexCacheArray]); 426 DexCacheArraysLayout layout(target_ptr_size_, dex_file); 427 image_info.bin_slot_sizes_[kBinDexCacheArray] += layout.Size(); 428 } 429 430 ClassLinker* class_linker = Runtime::Current()->GetClassLinker(); 431 Thread* const self = Thread::Current(); 432 ReaderMutexLock mu(self, *class_linker->DexLock()); 433 for (const ClassLinker::DexCacheData& data : class_linker->GetDexCachesData()) { 434 mirror::DexCache* dex_cache = 435 down_cast<mirror::DexCache*>(self->DecodeJObject(data.weak_root)); 436 if (dex_cache == nullptr || IsInBootImage(dex_cache)) { 437 continue; 438 } 439 const DexFile* dex_file = dex_cache->GetDexFile(); 440 CHECK(dex_file_oat_index_map_.find(dex_file) != dex_file_oat_index_map_.end()) 441 << "Dex cache should have been pruned " << dex_file->GetLocation() 442 << "; possibly in class path"; 443 DexCacheArraysLayout layout(target_ptr_size_, dex_file); 444 DCHECK(layout.Valid()); 445 size_t oat_index = GetOatIndexForDexCache(dex_cache); 446 ImageInfo& image_info = GetImageInfo(oat_index); 447 uint32_t start = image_info.dex_cache_array_starts_.Get(dex_file); 448 DCHECK_EQ(dex_file->NumTypeIds() != 0u, dex_cache->GetResolvedTypes() != nullptr); 449 AddDexCacheArrayRelocation(dex_cache->GetResolvedTypes(), 450 start + layout.TypesOffset(), 451 dex_cache); 452 DCHECK_EQ(dex_file->NumMethodIds() != 0u, dex_cache->GetResolvedMethods() != nullptr); 453 AddDexCacheArrayRelocation(dex_cache->GetResolvedMethods(), 454 start + layout.MethodsOffset(), 455 dex_cache); 456 DCHECK_EQ(dex_file->NumFieldIds() != 0u, dex_cache->GetResolvedFields() != nullptr); 457 AddDexCacheArrayRelocation(dex_cache->GetResolvedFields(), 458 start + layout.FieldsOffset(), 459 dex_cache); 460 DCHECK_EQ(dex_file->NumStringIds() != 0u, dex_cache->GetStrings() != nullptr); 461 AddDexCacheArrayRelocation(dex_cache->GetStrings(), start + layout.StringsOffset(), dex_cache); 462 } 463 } 464 465 void ImageWriter::AddDexCacheArrayRelocation(void* array, size_t offset, DexCache* dex_cache) { 466 if (array != nullptr) { 467 DCHECK(!IsInBootImage(array)); 468 size_t oat_index = GetOatIndexForDexCache(dex_cache); 469 native_object_relocations_.emplace(array, 470 NativeObjectRelocation { oat_index, offset, kNativeObjectRelocationTypeDexCacheArray }); 471 } 472 } 473 474 void ImageWriter::AddMethodPointerArray(mirror::PointerArray* arr) { 475 DCHECK(arr != nullptr); 476 if (kIsDebugBuild) { 477 for (size_t i = 0, len = arr->GetLength(); i < len; i++) { 478 ArtMethod* method = arr->GetElementPtrSize<ArtMethod*>(i, target_ptr_size_); 479 if (method != nullptr && !method->IsRuntimeMethod()) { 480 mirror::Class* klass = method->GetDeclaringClass(); 481 CHECK(klass == nullptr || KeepClass(klass)) 482 << PrettyClass(klass) << " should be a kept class"; 483 } 484 } 485 } 486 // kBinArtMethodClean picked arbitrarily, just required to differentiate between ArtFields and 487 // ArtMethods. 488 pointer_arrays_.emplace(arr, kBinArtMethodClean); 489 } 490 491 void ImageWriter::AssignImageBinSlot(mirror::Object* object) { 492 DCHECK(object != nullptr); 493 size_t object_size = object->SizeOf(); 494 495 // The magic happens here. We segregate objects into different bins based 496 // on how likely they are to get dirty at runtime. 497 // 498 // Likely-to-dirty objects get packed together into the same bin so that 499 // at runtime their page dirtiness ratio (how many dirty objects a page has) is 500 // maximized. 501 // 502 // This means more pages will stay either clean or shared dirty (with zygote) and 503 // the app will use less of its own (private) memory. 504 Bin bin = kBinRegular; 505 size_t current_offset = 0u; 506 507 if (kBinObjects) { 508 // 509 // Changing the bin of an object is purely a memory-use tuning. 510 // It has no change on runtime correctness. 511 // 512 // Memory analysis has determined that the following types of objects get dirtied 513 // the most: 514 // 515 // * Dex cache arrays are stored in a special bin. The arrays for each dex cache have 516 // a fixed layout which helps improve generated code (using PC-relative addressing), 517 // so we pre-calculate their offsets separately in PrepareDexCacheArraySlots(). 518 // Since these arrays are huge, most pages do not overlap other objects and it's not 519 // really important where they are for the clean/dirty separation. Due to their 520 // special PC-relative addressing, we arbitrarily keep them at the end. 521 // * Class'es which are verified [their clinit runs only at runtime] 522 // - classes in general [because their static fields get overwritten] 523 // - initialized classes with all-final statics are unlikely to be ever dirty, 524 // so bin them separately 525 // * Art Methods that are: 526 // - native [their native entry point is not looked up until runtime] 527 // - have declaring classes that aren't initialized 528 // [their interpreter/quick entry points are trampolines until the class 529 // becomes initialized] 530 // 531 // We also assume the following objects get dirtied either never or extremely rarely: 532 // * Strings (they are immutable) 533 // * Art methods that aren't native and have initialized declared classes 534 // 535 // We assume that "regular" bin objects are highly unlikely to become dirtied, 536 // so packing them together will not result in a noticeably tighter dirty-to-clean ratio. 537 // 538 if (object->IsClass()) { 539 bin = kBinClassVerified; 540 mirror::Class* klass = object->AsClass(); 541 542 // Add non-embedded vtable to the pointer array table if there is one. 543 auto* vtable = klass->GetVTable(); 544 if (vtable != nullptr) { 545 AddMethodPointerArray(vtable); 546 } 547 auto* iftable = klass->GetIfTable(); 548 if (iftable != nullptr) { 549 for (int32_t i = 0; i < klass->GetIfTableCount(); ++i) { 550 if (iftable->GetMethodArrayCount(i) > 0) { 551 AddMethodPointerArray(iftable->GetMethodArray(i)); 552 } 553 } 554 } 555 556 if (klass->GetStatus() == Class::kStatusInitialized) { 557 bin = kBinClassInitialized; 558 559 // If the class's static fields are all final, put it into a separate bin 560 // since it's very likely it will stay clean. 561 uint32_t num_static_fields = klass->NumStaticFields(); 562 if (num_static_fields == 0) { 563 bin = kBinClassInitializedFinalStatics; 564 } else { 565 // Maybe all the statics are final? 566 bool all_final = true; 567 for (uint32_t i = 0; i < num_static_fields; ++i) { 568 ArtField* field = klass->GetStaticField(i); 569 if (!field->IsFinal()) { 570 all_final = false; 571 break; 572 } 573 } 574 575 if (all_final) { 576 bin = kBinClassInitializedFinalStatics; 577 } 578 } 579 } 580 } else if (object->GetClass<kVerifyNone>()->IsStringClass()) { 581 bin = kBinString; // Strings are almost always immutable (except for object header). 582 } else if (object->GetClass<kVerifyNone>() == 583 Runtime::Current()->GetClassLinker()->GetClassRoot(ClassLinker::kJavaLangObject)) { 584 // Instance of java lang object, probably a lock object. This means it will be dirty when we 585 // synchronize on it. 586 bin = kBinMiscDirty; 587 } else if (object->IsDexCache()) { 588 // Dex file field becomes dirty when the image is loaded. 589 bin = kBinMiscDirty; 590 } 591 // else bin = kBinRegular 592 } 593 594 size_t oat_index = GetOatIndex(object); 595 ImageInfo& image_info = GetImageInfo(oat_index); 596 597 size_t offset_delta = RoundUp(object_size, kObjectAlignment); // 64-bit alignment 598 current_offset = image_info.bin_slot_sizes_[bin]; // How many bytes the current bin is at (aligned). 599 // Move the current bin size up to accommodate the object we just assigned a bin slot. 600 image_info.bin_slot_sizes_[bin] += offset_delta; 601 602 BinSlot new_bin_slot(bin, current_offset); 603 SetImageBinSlot(object, new_bin_slot); 604 605 ++image_info.bin_slot_count_[bin]; 606 607 // Grow the image closer to the end by the object we just assigned. 608 image_info.image_end_ += offset_delta; 609 } 610 611 bool ImageWriter::WillMethodBeDirty(ArtMethod* m) const { 612 if (m->IsNative()) { 613 return true; 614 } 615 mirror::Class* declaring_class = m->GetDeclaringClass(); 616 // Initialized is highly unlikely to dirty since there's no entry points to mutate. 617 return declaring_class == nullptr || declaring_class->GetStatus() != Class::kStatusInitialized; 618 } 619 620 bool ImageWriter::IsImageBinSlotAssigned(mirror::Object* object) const { 621 DCHECK(object != nullptr); 622 623 // We always stash the bin slot into a lockword, in the 'forwarding address' state. 624 // If it's in some other state, then we haven't yet assigned an image bin slot. 625 if (object->GetLockWord(false).GetState() != LockWord::kForwardingAddress) { 626 return false; 627 } else if (kIsDebugBuild) { 628 LockWord lock_word = object->GetLockWord(false); 629 size_t offset = lock_word.ForwardingAddress(); 630 BinSlot bin_slot(offset); 631 size_t oat_index = GetOatIndex(object); 632 const ImageInfo& image_info = GetImageInfo(oat_index); 633 DCHECK_LT(bin_slot.GetIndex(), image_info.bin_slot_sizes_[bin_slot.GetBin()]) 634 << "bin slot offset should not exceed the size of that bin"; 635 } 636 return true; 637 } 638 639 ImageWriter::BinSlot ImageWriter::GetImageBinSlot(mirror::Object* object) const { 640 DCHECK(object != nullptr); 641 DCHECK(IsImageBinSlotAssigned(object)); 642 643 LockWord lock_word = object->GetLockWord(false); 644 size_t offset = lock_word.ForwardingAddress(); // TODO: ForwardingAddress should be uint32_t 645 DCHECK_LE(offset, std::numeric_limits<uint32_t>::max()); 646 647 BinSlot bin_slot(static_cast<uint32_t>(offset)); 648 size_t oat_index = GetOatIndex(object); 649 const ImageInfo& image_info = GetImageInfo(oat_index); 650 DCHECK_LT(bin_slot.GetIndex(), image_info.bin_slot_sizes_[bin_slot.GetBin()]); 651 652 return bin_slot; 653 } 654 655 bool ImageWriter::AllocMemory() { 656 for (ImageInfo& image_info : image_infos_) { 657 ImageSection unused_sections[ImageHeader::kSectionCount]; 658 const size_t length = RoundUp( 659 image_info.CreateImageSections(unused_sections), kPageSize); 660 661 std::string error_msg; 662 image_info.image_.reset(MemMap::MapAnonymous("image writer image", 663 nullptr, 664 length, 665 PROT_READ | PROT_WRITE, 666 false, 667 false, 668 &error_msg)); 669 if (UNLIKELY(image_info.image_.get() == nullptr)) { 670 LOG(ERROR) << "Failed to allocate memory for image file generation: " << error_msg; 671 return false; 672 } 673 674 // Create the image bitmap, only needs to cover mirror object section which is up to image_end_. 675 CHECK_LE(image_info.image_end_, length); 676 image_info.image_bitmap_.reset(gc::accounting::ContinuousSpaceBitmap::Create( 677 "image bitmap", image_info.image_->Begin(), RoundUp(image_info.image_end_, kPageSize))); 678 if (image_info.image_bitmap_.get() == nullptr) { 679 LOG(ERROR) << "Failed to allocate memory for image bitmap"; 680 return false; 681 } 682 } 683 return true; 684 } 685 686 class ComputeLazyFieldsForClassesVisitor : public ClassVisitor { 687 public: 688 bool operator()(Class* c) OVERRIDE SHARED_REQUIRES(Locks::mutator_lock_) { 689 StackHandleScope<1> hs(Thread::Current()); 690 mirror::Class::ComputeName(hs.NewHandle(c)); 691 return true; 692 } 693 }; 694 695 void ImageWriter::ComputeLazyFieldsForImageClasses() { 696 ClassLinker* class_linker = Runtime::Current()->GetClassLinker(); 697 ComputeLazyFieldsForClassesVisitor visitor; 698 class_linker->VisitClassesWithoutClassesLock(&visitor); 699 } 700 701 static bool IsBootClassLoaderClass(mirror::Class* klass) SHARED_REQUIRES(Locks::mutator_lock_) { 702 return klass->GetClassLoader() == nullptr; 703 } 704 705 bool ImageWriter::IsBootClassLoaderNonImageClass(mirror::Class* klass) { 706 return IsBootClassLoaderClass(klass) && !IsInBootImage(klass); 707 } 708 709 bool ImageWriter::PruneAppImageClass(mirror::Class* klass) { 710 bool early_exit = false; 711 std::unordered_set<mirror::Class*> visited; 712 return PruneAppImageClassInternal(klass, &early_exit, &visited); 713 } 714 715 bool ImageWriter::PruneAppImageClassInternal( 716 mirror::Class* klass, 717 bool* early_exit, 718 std::unordered_set<mirror::Class*>* visited) { 719 DCHECK(early_exit != nullptr); 720 DCHECK(visited != nullptr); 721 DCHECK(compile_app_image_); 722 if (klass == nullptr || IsInBootImage(klass)) { 723 return false; 724 } 725 auto found = prune_class_memo_.find(klass); 726 if (found != prune_class_memo_.end()) { 727 // Already computed, return the found value. 728 return found->second; 729 } 730 // Circular dependencies, return false but do not store the result in the memoization table. 731 if (visited->find(klass) != visited->end()) { 732 *early_exit = true; 733 return false; 734 } 735 visited->emplace(klass); 736 bool result = IsBootClassLoaderClass(klass); 737 std::string temp; 738 // Prune if not an image class, this handles any broken sets of image classes such as having a 739 // class in the set but not it's superclass. 740 result = result || !compiler_driver_.IsImageClass(klass->GetDescriptor(&temp)); 741 bool my_early_exit = false; // Only for ourselves, ignore caller. 742 // Remove classes that failed to verify since we don't want to have java.lang.VerifyError in the 743 // app image. 744 if (klass->GetStatus() == mirror::Class::kStatusError) { 745 result = true; 746 } else { 747 CHECK(klass->GetVerifyError() == nullptr) << PrettyClass(klass); 748 } 749 if (!result) { 750 // Check interfaces since these wont be visited through VisitReferences.) 751 mirror::IfTable* if_table = klass->GetIfTable(); 752 for (size_t i = 0, num_interfaces = klass->GetIfTableCount(); i < num_interfaces; ++i) { 753 result = result || PruneAppImageClassInternal(if_table->GetInterface(i), 754 &my_early_exit, 755 visited); 756 } 757 } 758 if (klass->IsObjectArrayClass()) { 759 result = result || PruneAppImageClassInternal(klass->GetComponentType(), 760 &my_early_exit, 761 visited); 762 } 763 // Check static fields and their classes. 764 size_t num_static_fields = klass->NumReferenceStaticFields(); 765 if (num_static_fields != 0 && klass->IsResolved()) { 766 // Presumably GC can happen when we are cross compiling, it should not cause performance 767 // problems to do pointer size logic. 768 MemberOffset field_offset = klass->GetFirstReferenceStaticFieldOffset( 769 Runtime::Current()->GetClassLinker()->GetImagePointerSize()); 770 for (size_t i = 0u; i < num_static_fields; ++i) { 771 mirror::Object* ref = klass->GetFieldObject<mirror::Object>(field_offset); 772 if (ref != nullptr) { 773 if (ref->IsClass()) { 774 result = result || PruneAppImageClassInternal(ref->AsClass(), 775 &my_early_exit, 776 visited); 777 } else { 778 result = result || PruneAppImageClassInternal(ref->GetClass(), 779 &my_early_exit, 780 visited); 781 } 782 } 783 field_offset = MemberOffset(field_offset.Uint32Value() + 784 sizeof(mirror::HeapReference<mirror::Object>)); 785 } 786 } 787 result = result || PruneAppImageClassInternal(klass->GetSuperClass(), 788 &my_early_exit, 789 visited); 790 // Erase the element we stored earlier since we are exiting the function. 791 auto it = visited->find(klass); 792 DCHECK(it != visited->end()); 793 visited->erase(it); 794 // Only store result if it is true or none of the calls early exited due to circular 795 // dependencies. If visited is empty then we are the root caller, in this case the cycle was in 796 // a child call and we can remember the result. 797 if (result == true || !my_early_exit || visited->empty()) { 798 prune_class_memo_[klass] = result; 799 } 800 *early_exit |= my_early_exit; 801 return result; 802 } 803 804 bool ImageWriter::KeepClass(Class* klass) { 805 if (klass == nullptr) { 806 return false; 807 } 808 if (compile_app_image_ && Runtime::Current()->GetHeap()->ObjectIsInBootImageSpace(klass)) { 809 // Already in boot image, return true. 810 return true; 811 } 812 std::string temp; 813 if (!compiler_driver_.IsImageClass(klass->GetDescriptor(&temp))) { 814 return false; 815 } 816 if (compile_app_image_) { 817 // For app images, we need to prune boot loader classes that are not in the boot image since 818 // these may have already been loaded when the app image is loaded. 819 // Keep classes in the boot image space since we don't want to re-resolve these. 820 return !PruneAppImageClass(klass); 821 } 822 return true; 823 } 824 825 class NonImageClassesVisitor : public ClassVisitor { 826 public: 827 explicit NonImageClassesVisitor(ImageWriter* image_writer) : image_writer_(image_writer) {} 828 829 bool operator()(Class* klass) OVERRIDE SHARED_REQUIRES(Locks::mutator_lock_) { 830 if (!image_writer_->KeepClass(klass)) { 831 classes_to_prune_.insert(klass); 832 } 833 return true; 834 } 835 836 std::unordered_set<mirror::Class*> classes_to_prune_; 837 ImageWriter* const image_writer_; 838 }; 839 840 void ImageWriter::PruneNonImageClasses() { 841 Runtime* runtime = Runtime::Current(); 842 ClassLinker* class_linker = runtime->GetClassLinker(); 843 Thread* self = Thread::Current(); 844 845 // Clear class table strong roots so that dex caches can get pruned. We require pruning the class 846 // path dex caches. 847 class_linker->ClearClassTableStrongRoots(); 848 849 // Make a list of classes we would like to prune. 850 NonImageClassesVisitor visitor(this); 851 class_linker->VisitClasses(&visitor); 852 853 // Remove the undesired classes from the class roots. 854 VLOG(compiler) << "Pruning " << visitor.classes_to_prune_.size() << " classes"; 855 for (mirror::Class* klass : visitor.classes_to_prune_) { 856 std::string temp; 857 const char* name = klass->GetDescriptor(&temp); 858 VLOG(compiler) << "Pruning class " << name; 859 if (!compile_app_image_) { 860 DCHECK(IsBootClassLoaderClass(klass)); 861 } 862 bool result = class_linker->RemoveClass(name, klass->GetClassLoader()); 863 DCHECK(result); 864 } 865 866 // Clear references to removed classes from the DexCaches. 867 ArtMethod* resolution_method = runtime->GetResolutionMethod(); 868 869 ScopedAssertNoThreadSuspension sa(self, __FUNCTION__); 870 ReaderMutexLock mu(self, *Locks::classlinker_classes_lock_); // For ClassInClassTable 871 ReaderMutexLock mu2(self, *class_linker->DexLock()); 872 for (const ClassLinker::DexCacheData& data : class_linker->GetDexCachesData()) { 873 if (self->IsJWeakCleared(data.weak_root)) { 874 continue; 875 } 876 mirror::DexCache* dex_cache = self->DecodeJObject(data.weak_root)->AsDexCache(); 877 for (size_t i = 0; i < dex_cache->NumResolvedTypes(); i++) { 878 Class* klass = dex_cache->GetResolvedType(i); 879 if (klass != nullptr && !KeepClass(klass)) { 880 dex_cache->SetResolvedType(i, nullptr); 881 } 882 } 883 ArtMethod** resolved_methods = dex_cache->GetResolvedMethods(); 884 for (size_t i = 0, num = dex_cache->NumResolvedMethods(); i != num; ++i) { 885 ArtMethod* method = 886 mirror::DexCache::GetElementPtrSize(resolved_methods, i, target_ptr_size_); 887 DCHECK(method != nullptr) << "Expected resolution method instead of null method"; 888 mirror::Class* declaring_class = method->GetDeclaringClass(); 889 // Copied methods may be held live by a class which was not an image class but have a 890 // declaring class which is an image class. Set it to the resolution method to be safe and 891 // prevent dangling pointers. 892 if (method->IsCopied() || !KeepClass(declaring_class)) { 893 mirror::DexCache::SetElementPtrSize(resolved_methods, 894 i, 895 resolution_method, 896 target_ptr_size_); 897 } else { 898 // Check that the class is still in the classes table. 899 DCHECK(class_linker->ClassInClassTable(declaring_class)) << "Class " 900 << PrettyClass(declaring_class) << " not in class linker table"; 901 } 902 } 903 ArtField** resolved_fields = dex_cache->GetResolvedFields(); 904 for (size_t i = 0; i < dex_cache->NumResolvedFields(); i++) { 905 ArtField* field = mirror::DexCache::GetElementPtrSize(resolved_fields, i, target_ptr_size_); 906 if (field != nullptr && !KeepClass(field->GetDeclaringClass())) { 907 dex_cache->SetResolvedField(i, nullptr, target_ptr_size_); 908 } 909 } 910 // Clean the dex field. It might have been populated during the initialization phase, but 911 // contains data only valid during a real run. 912 dex_cache->SetFieldObject<false>(mirror::DexCache::DexOffset(), nullptr); 913 } 914 915 // Drop the array class cache in the ClassLinker, as these are roots holding those classes live. 916 class_linker->DropFindArrayClassCache(); 917 918 // Clear to save RAM. 919 prune_class_memo_.clear(); 920 } 921 922 void ImageWriter::CheckNonImageClassesRemoved() { 923 if (compiler_driver_.GetImageClasses() != nullptr) { 924 gc::Heap* heap = Runtime::Current()->GetHeap(); 925 heap->VisitObjects(CheckNonImageClassesRemovedCallback, this); 926 } 927 } 928 929 void ImageWriter::CheckNonImageClassesRemovedCallback(Object* obj, void* arg) { 930 ImageWriter* image_writer = reinterpret_cast<ImageWriter*>(arg); 931 if (obj->IsClass() && !image_writer->IsInBootImage(obj)) { 932 Class* klass = obj->AsClass(); 933 if (!image_writer->KeepClass(klass)) { 934 image_writer->DumpImageClasses(); 935 std::string temp; 936 CHECK(image_writer->KeepClass(klass)) << klass->GetDescriptor(&temp) 937 << " " << PrettyDescriptor(klass); 938 } 939 } 940 } 941 942 void ImageWriter::DumpImageClasses() { 943 auto image_classes = compiler_driver_.GetImageClasses(); 944 CHECK(image_classes != nullptr); 945 for (const std::string& image_class : *image_classes) { 946 LOG(INFO) << " " << image_class; 947 } 948 } 949 950 mirror::String* ImageWriter::FindInternedString(mirror::String* string) { 951 Thread* const self = Thread::Current(); 952 for (const ImageInfo& image_info : image_infos_) { 953 mirror::String* const found = image_info.intern_table_->LookupStrong(self, string); 954 DCHECK(image_info.intern_table_->LookupWeak(self, string) == nullptr) 955 << string->ToModifiedUtf8(); 956 if (found != nullptr) { 957 return found; 958 } 959 } 960 if (compile_app_image_) { 961 Runtime* const runtime = Runtime::Current(); 962 mirror::String* found = runtime->GetInternTable()->LookupStrong(self, string); 963 // If we found it in the runtime intern table it could either be in the boot image or interned 964 // during app image compilation. If it was in the boot image return that, otherwise return null 965 // since it belongs to another image space. 966 if (found != nullptr && runtime->GetHeap()->ObjectIsInBootImageSpace(found)) { 967 return found; 968 } 969 DCHECK(runtime->GetInternTable()->LookupWeak(self, string) == nullptr) 970 << string->ToModifiedUtf8(); 971 } 972 return nullptr; 973 } 974 975 void ImageWriter::CalculateObjectBinSlots(Object* obj) { 976 DCHECK(obj != nullptr); 977 // if it is a string, we want to intern it if its not interned. 978 if (obj->GetClass()->IsStringClass()) { 979 size_t oat_index = GetOatIndex(obj); 980 ImageInfo& image_info = GetImageInfo(oat_index); 981 982 // we must be an interned string that was forward referenced and already assigned 983 if (IsImageBinSlotAssigned(obj)) { 984 DCHECK_EQ(obj, FindInternedString(obj->AsString())); 985 return; 986 } 987 // Need to check if the string is already interned in another image info so that we don't have 988 // the intern tables of two different images contain the same string. 989 mirror::String* interned = FindInternedString(obj->AsString()); 990 if (interned == nullptr) { 991 // Not in another image space, insert to our table. 992 interned = image_info.intern_table_->InternStrongImageString(obj->AsString()); 993 } 994 if (obj != interned) { 995 if (!IsImageBinSlotAssigned(interned)) { 996 // interned obj is after us, allocate its location early 997 AssignImageBinSlot(interned); 998 } 999 // point those looking for this object to the interned version. 1000 SetImageBinSlot(obj, GetImageBinSlot(interned)); 1001 return; 1002 } 1003 // else (obj == interned), nothing to do but fall through to the normal case 1004 } 1005 1006 AssignImageBinSlot(obj); 1007 } 1008 1009 ObjectArray<Object>* ImageWriter::CreateImageRoots(size_t oat_index) const { 1010 Runtime* runtime = Runtime::Current(); 1011 ClassLinker* class_linker = runtime->GetClassLinker(); 1012 Thread* self = Thread::Current(); 1013 StackHandleScope<3> hs(self); 1014 Handle<Class> object_array_class(hs.NewHandle( 1015 class_linker->FindSystemClass(self, "[Ljava/lang/Object;"))); 1016 1017 std::unordered_set<const DexFile*> image_dex_files; 1018 for (auto& pair : dex_file_oat_index_map_) { 1019 const DexFile* image_dex_file = pair.first; 1020 size_t image_oat_index = pair.second; 1021 if (oat_index == image_oat_index) { 1022 image_dex_files.insert(image_dex_file); 1023 } 1024 } 1025 1026 // build an Object[] of all the DexCaches used in the source_space_. 1027 // Since we can't hold the dex lock when allocating the dex_caches 1028 // ObjectArray, we lock the dex lock twice, first to get the number 1029 // of dex caches first and then lock it again to copy the dex 1030 // caches. We check that the number of dex caches does not change. 1031 size_t dex_cache_count = 0; 1032 { 1033 ReaderMutexLock mu(self, *class_linker->DexLock()); 1034 // Count number of dex caches not in the boot image. 1035 for (const ClassLinker::DexCacheData& data : class_linker->GetDexCachesData()) { 1036 mirror::DexCache* dex_cache = 1037 down_cast<mirror::DexCache*>(self->DecodeJObject(data.weak_root)); 1038 if (dex_cache == nullptr) { 1039 continue; 1040 } 1041 const DexFile* dex_file = dex_cache->GetDexFile(); 1042 if (!IsInBootImage(dex_cache)) { 1043 dex_cache_count += image_dex_files.find(dex_file) != image_dex_files.end() ? 1u : 0u; 1044 } 1045 } 1046 } 1047 Handle<ObjectArray<Object>> dex_caches( 1048 hs.NewHandle(ObjectArray<Object>::Alloc(self, object_array_class.Get(), dex_cache_count))); 1049 CHECK(dex_caches.Get() != nullptr) << "Failed to allocate a dex cache array."; 1050 { 1051 ReaderMutexLock mu(self, *class_linker->DexLock()); 1052 size_t non_image_dex_caches = 0; 1053 // Re-count number of non image dex caches. 1054 for (const ClassLinker::DexCacheData& data : class_linker->GetDexCachesData()) { 1055 mirror::DexCache* dex_cache = 1056 down_cast<mirror::DexCache*>(self->DecodeJObject(data.weak_root)); 1057 if (dex_cache == nullptr) { 1058 continue; 1059 } 1060 const DexFile* dex_file = dex_cache->GetDexFile(); 1061 if (!IsInBootImage(dex_cache)) { 1062 non_image_dex_caches += image_dex_files.find(dex_file) != image_dex_files.end() ? 1u : 0u; 1063 } 1064 } 1065 CHECK_EQ(dex_cache_count, non_image_dex_caches) 1066 << "The number of non-image dex caches changed."; 1067 size_t i = 0; 1068 for (const ClassLinker::DexCacheData& data : class_linker->GetDexCachesData()) { 1069 mirror::DexCache* dex_cache = 1070 down_cast<mirror::DexCache*>(self->DecodeJObject(data.weak_root)); 1071 if (dex_cache == nullptr) { 1072 continue; 1073 } 1074 const DexFile* dex_file = dex_cache->GetDexFile(); 1075 if (!IsInBootImage(dex_cache) && image_dex_files.find(dex_file) != image_dex_files.end()) { 1076 dex_caches->Set<false>(i, dex_cache); 1077 ++i; 1078 } 1079 } 1080 } 1081 1082 // build an Object[] of the roots needed to restore the runtime 1083 auto image_roots(hs.NewHandle( 1084 ObjectArray<Object>::Alloc(self, object_array_class.Get(), ImageHeader::kImageRootsMax))); 1085 image_roots->Set<false>(ImageHeader::kDexCaches, dex_caches.Get()); 1086 image_roots->Set<false>(ImageHeader::kClassRoots, class_linker->GetClassRoots()); 1087 for (int i = 0; i < ImageHeader::kImageRootsMax; i++) { 1088 CHECK(image_roots->Get(i) != nullptr); 1089 } 1090 return image_roots.Get(); 1091 } 1092 1093 // Walk instance fields of the given Class. Separate function to allow recursion on the super 1094 // class. 1095 void ImageWriter::WalkInstanceFields(mirror::Object* obj, mirror::Class* klass) { 1096 // Visit fields of parent classes first. 1097 StackHandleScope<1> hs(Thread::Current()); 1098 Handle<mirror::Class> h_class(hs.NewHandle(klass)); 1099 mirror::Class* super = h_class->GetSuperClass(); 1100 if (super != nullptr) { 1101 WalkInstanceFields(obj, super); 1102 } 1103 // 1104 size_t num_reference_fields = h_class->NumReferenceInstanceFields(); 1105 MemberOffset field_offset = h_class->GetFirstReferenceInstanceFieldOffset(); 1106 for (size_t i = 0; i < num_reference_fields; ++i) { 1107 mirror::Object* value = obj->GetFieldObject<mirror::Object>(field_offset); 1108 if (value != nullptr) { 1109 WalkFieldsInOrder(value); 1110 } 1111 field_offset = MemberOffset(field_offset.Uint32Value() + 1112 sizeof(mirror::HeapReference<mirror::Object>)); 1113 } 1114 } 1115 1116 // For an unvisited object, visit it then all its children found via fields. 1117 void ImageWriter::WalkFieldsInOrder(mirror::Object* obj) { 1118 if (IsInBootImage(obj)) { 1119 // Object is in the image, don't need to fix it up. 1120 return; 1121 } 1122 // Use our own visitor routine (instead of GC visitor) to get better locality between 1123 // an object and its fields 1124 if (!IsImageBinSlotAssigned(obj)) { 1125 // Walk instance fields of all objects 1126 StackHandleScope<2> hs(Thread::Current()); 1127 Handle<mirror::Object> h_obj(hs.NewHandle(obj)); 1128 Handle<mirror::Class> klass(hs.NewHandle(obj->GetClass())); 1129 // visit the object itself. 1130 CalculateObjectBinSlots(h_obj.Get()); 1131 WalkInstanceFields(h_obj.Get(), klass.Get()); 1132 // Walk static fields of a Class. 1133 if (h_obj->IsClass()) { 1134 size_t num_reference_static_fields = klass->NumReferenceStaticFields(); 1135 MemberOffset field_offset = klass->GetFirstReferenceStaticFieldOffset(target_ptr_size_); 1136 for (size_t i = 0; i < num_reference_static_fields; ++i) { 1137 mirror::Object* value = h_obj->GetFieldObject<mirror::Object>(field_offset); 1138 if (value != nullptr) { 1139 WalkFieldsInOrder(value); 1140 } 1141 field_offset = MemberOffset(field_offset.Uint32Value() + 1142 sizeof(mirror::HeapReference<mirror::Object>)); 1143 } 1144 // Visit and assign offsets for fields and field arrays. 1145 auto* as_klass = h_obj->AsClass(); 1146 mirror::DexCache* dex_cache = as_klass->GetDexCache(); 1147 DCHECK_NE(klass->GetStatus(), mirror::Class::kStatusError); 1148 if (compile_app_image_) { 1149 // Extra sanity, no boot loader classes should be left! 1150 CHECK(!IsBootClassLoaderClass(as_klass)) << PrettyClass(as_klass); 1151 } 1152 LengthPrefixedArray<ArtField>* fields[] = { 1153 as_klass->GetSFieldsPtr(), as_klass->GetIFieldsPtr(), 1154 }; 1155 size_t oat_index = GetOatIndexForDexCache(dex_cache); 1156 ImageInfo& image_info = GetImageInfo(oat_index); 1157 { 1158 // Note: This table is only accessed from the image writer, so the lock is technically 1159 // unnecessary. 1160 WriterMutexLock mu(Thread::Current(), *Locks::classlinker_classes_lock_); 1161 // Insert in the class table for this iamge. 1162 image_info.class_table_->Insert(as_klass); 1163 } 1164 for (LengthPrefixedArray<ArtField>* cur_fields : fields) { 1165 // Total array length including header. 1166 if (cur_fields != nullptr) { 1167 const size_t header_size = LengthPrefixedArray<ArtField>::ComputeSize(0); 1168 // Forward the entire array at once. 1169 auto it = native_object_relocations_.find(cur_fields); 1170 CHECK(it == native_object_relocations_.end()) << "Field array " << cur_fields 1171 << " already forwarded"; 1172 size_t& offset = image_info.bin_slot_sizes_[kBinArtField]; 1173 DCHECK(!IsInBootImage(cur_fields)); 1174 native_object_relocations_.emplace( 1175 cur_fields, 1176 NativeObjectRelocation { 1177 oat_index, offset, kNativeObjectRelocationTypeArtFieldArray 1178 }); 1179 offset += header_size; 1180 // Forward individual fields so that we can quickly find where they belong. 1181 for (size_t i = 0, count = cur_fields->size(); i < count; ++i) { 1182 // Need to forward arrays separate of fields. 1183 ArtField* field = &cur_fields->At(i); 1184 auto it2 = native_object_relocations_.find(field); 1185 CHECK(it2 == native_object_relocations_.end()) << "Field at index=" << i 1186 << " already assigned " << PrettyField(field) << " static=" << field->IsStatic(); 1187 DCHECK(!IsInBootImage(field)); 1188 native_object_relocations_.emplace( 1189 field, 1190 NativeObjectRelocation { oat_index, offset, kNativeObjectRelocationTypeArtField }); 1191 offset += sizeof(ArtField); 1192 } 1193 } 1194 } 1195 // Visit and assign offsets for methods. 1196 size_t num_methods = as_klass->NumMethods(); 1197 if (num_methods != 0) { 1198 bool any_dirty = false; 1199 for (auto& m : as_klass->GetMethods(target_ptr_size_)) { 1200 if (WillMethodBeDirty(&m)) { 1201 any_dirty = true; 1202 break; 1203 } 1204 } 1205 NativeObjectRelocationType type = any_dirty 1206 ? kNativeObjectRelocationTypeArtMethodDirty 1207 : kNativeObjectRelocationTypeArtMethodClean; 1208 Bin bin_type = BinTypeForNativeRelocationType(type); 1209 // Forward the entire array at once, but header first. 1210 const size_t method_alignment = ArtMethod::Alignment(target_ptr_size_); 1211 const size_t method_size = ArtMethod::Size(target_ptr_size_); 1212 const size_t header_size = LengthPrefixedArray<ArtMethod>::ComputeSize(0, 1213 method_size, 1214 method_alignment); 1215 LengthPrefixedArray<ArtMethod>* array = as_klass->GetMethodsPtr(); 1216 auto it = native_object_relocations_.find(array); 1217 CHECK(it == native_object_relocations_.end()) 1218 << "Method array " << array << " already forwarded"; 1219 size_t& offset = image_info.bin_slot_sizes_[bin_type]; 1220 DCHECK(!IsInBootImage(array)); 1221 native_object_relocations_.emplace(array, 1222 NativeObjectRelocation { 1223 oat_index, 1224 offset, 1225 any_dirty ? kNativeObjectRelocationTypeArtMethodArrayDirty 1226 : kNativeObjectRelocationTypeArtMethodArrayClean }); 1227 offset += header_size; 1228 for (auto& m : as_klass->GetMethods(target_ptr_size_)) { 1229 AssignMethodOffset(&m, type, oat_index); 1230 } 1231 (any_dirty ? dirty_methods_ : clean_methods_) += num_methods; 1232 } 1233 // Assign offsets for all runtime methods in the IMT since these may hold conflict tables 1234 // live. 1235 if (as_klass->ShouldHaveEmbeddedImtAndVTable()) { 1236 for (size_t i = 0; i < mirror::Class::kImtSize; ++i) { 1237 ArtMethod* imt_method = as_klass->GetEmbeddedImTableEntry(i, target_ptr_size_); 1238 DCHECK(imt_method != nullptr); 1239 if (imt_method->IsRuntimeMethod() && 1240 !IsInBootImage(imt_method) && 1241 !NativeRelocationAssigned(imt_method)) { 1242 AssignMethodOffset(imt_method, kNativeObjectRelocationTypeRuntimeMethod, oat_index); 1243 } 1244 } 1245 } 1246 } else if (h_obj->IsObjectArray()) { 1247 // Walk elements of an object array. 1248 int32_t length = h_obj->AsObjectArray<mirror::Object>()->GetLength(); 1249 for (int32_t i = 0; i < length; i++) { 1250 mirror::ObjectArray<mirror::Object>* obj_array = h_obj->AsObjectArray<mirror::Object>(); 1251 mirror::Object* value = obj_array->Get(i); 1252 if (value != nullptr) { 1253 WalkFieldsInOrder(value); 1254 } 1255 } 1256 } else if (h_obj->IsClassLoader()) { 1257 // Register the class loader if it has a class table. 1258 // The fake boot class loader should not get registered and we should end up with only one 1259 // class loader. 1260 mirror::ClassLoader* class_loader = h_obj->AsClassLoader(); 1261 if (class_loader->GetClassTable() != nullptr) { 1262 class_loaders_.insert(class_loader); 1263 } 1264 } 1265 } 1266 } 1267 1268 bool ImageWriter::NativeRelocationAssigned(void* ptr) const { 1269 return native_object_relocations_.find(ptr) != native_object_relocations_.end(); 1270 } 1271 1272 void ImageWriter::TryAssignConflictTableOffset(ImtConflictTable* table, size_t oat_index) { 1273 // No offset, or already assigned. 1274 if (table == nullptr || NativeRelocationAssigned(table)) { 1275 return; 1276 } 1277 CHECK(!IsInBootImage(table)); 1278 // If the method is a conflict method we also want to assign the conflict table offset. 1279 ImageInfo& image_info = GetImageInfo(oat_index); 1280 const size_t size = table->ComputeSize(target_ptr_size_); 1281 native_object_relocations_.emplace( 1282 table, 1283 NativeObjectRelocation { 1284 oat_index, 1285 image_info.bin_slot_sizes_[kBinIMTConflictTable], 1286 kNativeObjectRelocationTypeIMTConflictTable}); 1287 image_info.bin_slot_sizes_[kBinIMTConflictTable] += size; 1288 } 1289 1290 void ImageWriter::AssignMethodOffset(ArtMethod* method, 1291 NativeObjectRelocationType type, 1292 size_t oat_index) { 1293 DCHECK(!IsInBootImage(method)); 1294 CHECK(!NativeRelocationAssigned(method)) << "Method " << method << " already assigned " 1295 << PrettyMethod(method); 1296 if (method->IsRuntimeMethod()) { 1297 TryAssignConflictTableOffset(method->GetImtConflictTable(target_ptr_size_), oat_index); 1298 } 1299 ImageInfo& image_info = GetImageInfo(oat_index); 1300 size_t& offset = image_info.bin_slot_sizes_[BinTypeForNativeRelocationType(type)]; 1301 native_object_relocations_.emplace(method, NativeObjectRelocation { oat_index, offset, type }); 1302 offset += ArtMethod::Size(target_ptr_size_); 1303 } 1304 1305 void ImageWriter::WalkFieldsCallback(mirror::Object* obj, void* arg) { 1306 ImageWriter* writer = reinterpret_cast<ImageWriter*>(arg); 1307 DCHECK(writer != nullptr); 1308 writer->WalkFieldsInOrder(obj); 1309 } 1310 1311 void ImageWriter::UnbinObjectsIntoOffsetCallback(mirror::Object* obj, void* arg) { 1312 ImageWriter* writer = reinterpret_cast<ImageWriter*>(arg); 1313 DCHECK(writer != nullptr); 1314 if (!writer->IsInBootImage(obj)) { 1315 writer->UnbinObjectsIntoOffset(obj); 1316 } 1317 } 1318 1319 void ImageWriter::UnbinObjectsIntoOffset(mirror::Object* obj) { 1320 DCHECK(!IsInBootImage(obj)); 1321 CHECK(obj != nullptr); 1322 1323 // We know the bin slot, and the total bin sizes for all objects by now, 1324 // so calculate the object's final image offset. 1325 1326 DCHECK(IsImageBinSlotAssigned(obj)); 1327 BinSlot bin_slot = GetImageBinSlot(obj); 1328 // Change the lockword from a bin slot into an offset 1329 AssignImageOffset(obj, bin_slot); 1330 } 1331 1332 void ImageWriter::CalculateNewObjectOffsets() { 1333 Thread* const self = Thread::Current(); 1334 StackHandleScopeCollection handles(self); 1335 std::vector<Handle<ObjectArray<Object>>> image_roots; 1336 for (size_t i = 0, size = oat_filenames_.size(); i != size; ++i) { 1337 image_roots.push_back(handles.NewHandle(CreateImageRoots(i))); 1338 } 1339 1340 auto* runtime = Runtime::Current(); 1341 auto* heap = runtime->GetHeap(); 1342 1343 // Leave space for the header, but do not write it yet, we need to 1344 // know where image_roots is going to end up 1345 image_objects_offset_begin_ = RoundUp(sizeof(ImageHeader), kObjectAlignment); // 64-bit-alignment 1346 1347 const size_t method_alignment = ArtMethod::Alignment(target_ptr_size_); 1348 // Write the image runtime methods. 1349 image_methods_[ImageHeader::kResolutionMethod] = runtime->GetResolutionMethod(); 1350 image_methods_[ImageHeader::kImtConflictMethod] = runtime->GetImtConflictMethod(); 1351 image_methods_[ImageHeader::kImtUnimplementedMethod] = runtime->GetImtUnimplementedMethod(); 1352 image_methods_[ImageHeader::kCalleeSaveMethod] = runtime->GetCalleeSaveMethod(Runtime::kSaveAll); 1353 image_methods_[ImageHeader::kRefsOnlySaveMethod] = 1354 runtime->GetCalleeSaveMethod(Runtime::kRefsOnly); 1355 image_methods_[ImageHeader::kRefsAndArgsSaveMethod] = 1356 runtime->GetCalleeSaveMethod(Runtime::kRefsAndArgs); 1357 // Visit image methods first to have the main runtime methods in the first image. 1358 for (auto* m : image_methods_) { 1359 CHECK(m != nullptr); 1360 CHECK(m->IsRuntimeMethod()); 1361 DCHECK_EQ(compile_app_image_, IsInBootImage(m)) << "Trampolines should be in boot image"; 1362 if (!IsInBootImage(m)) { 1363 AssignMethodOffset(m, kNativeObjectRelocationTypeRuntimeMethod, GetDefaultOatIndex()); 1364 } 1365 } 1366 1367 // Clear any pre-existing monitors which may have been in the monitor words, assign bin slots. 1368 heap->VisitObjects(WalkFieldsCallback, this); 1369 1370 // Calculate size of the dex cache arrays slot and prepare offsets. 1371 PrepareDexCacheArraySlots(); 1372 1373 // Calculate the sizes of the intern tables and class tables. 1374 for (ImageInfo& image_info : image_infos_) { 1375 // Calculate how big the intern table will be after being serialized. 1376 InternTable* const intern_table = image_info.intern_table_.get(); 1377 CHECK_EQ(intern_table->WeakSize(), 0u) << " should have strong interned all the strings"; 1378 image_info.intern_table_bytes_ = intern_table->WriteToMemory(nullptr); 1379 // Calculate the size of the class table. 1380 ReaderMutexLock mu(self, *Locks::classlinker_classes_lock_); 1381 image_info.class_table_bytes_ += image_info.class_table_->WriteToMemory(nullptr); 1382 } 1383 1384 // Calculate bin slot offsets. 1385 for (ImageInfo& image_info : image_infos_) { 1386 size_t bin_offset = image_objects_offset_begin_; 1387 for (size_t i = 0; i != kBinSize; ++i) { 1388 switch (i) { 1389 case kBinArtMethodClean: 1390 case kBinArtMethodDirty: { 1391 bin_offset = RoundUp(bin_offset, method_alignment); 1392 break; 1393 } 1394 case kBinIMTConflictTable: { 1395 bin_offset = RoundUp(bin_offset, target_ptr_size_); 1396 break; 1397 } 1398 default: { 1399 // Normal alignment. 1400 } 1401 } 1402 image_info.bin_slot_offsets_[i] = bin_offset; 1403 bin_offset += image_info.bin_slot_sizes_[i]; 1404 } 1405 // NOTE: There may be additional padding between the bin slots and the intern table. 1406 DCHECK_EQ(image_info.image_end_, 1407 GetBinSizeSum(image_info, kBinMirrorCount) + image_objects_offset_begin_); 1408 } 1409 1410 // Calculate image offsets. 1411 size_t image_offset = 0; 1412 for (ImageInfo& image_info : image_infos_) { 1413 image_info.image_begin_ = global_image_begin_ + image_offset; 1414 image_info.image_offset_ = image_offset; 1415 ImageSection unused_sections[ImageHeader::kSectionCount]; 1416 image_info.image_size_ = RoundUp(image_info.CreateImageSections(unused_sections), kPageSize); 1417 // There should be no gaps until the next image. 1418 image_offset += image_info.image_size_; 1419 } 1420 1421 // Transform each object's bin slot into an offset which will be used to do the final copy. 1422 heap->VisitObjects(UnbinObjectsIntoOffsetCallback, this); 1423 1424 // DCHECK_EQ(image_end_, GetBinSizeSum(kBinMirrorCount) + image_objects_offset_begin_); 1425 1426 size_t i = 0; 1427 for (ImageInfo& image_info : image_infos_) { 1428 image_info.image_roots_address_ = PointerToLowMemUInt32(GetImageAddress(image_roots[i].Get())); 1429 i++; 1430 } 1431 1432 // Update the native relocations by adding their bin sums. 1433 for (auto& pair : native_object_relocations_) { 1434 NativeObjectRelocation& relocation = pair.second; 1435 Bin bin_type = BinTypeForNativeRelocationType(relocation.type); 1436 ImageInfo& image_info = GetImageInfo(relocation.oat_index); 1437 relocation.offset += image_info.bin_slot_offsets_[bin_type]; 1438 } 1439 1440 // Note that image_info.image_end_ is left at end of used mirror object section. 1441 } 1442 1443 size_t ImageWriter::ImageInfo::CreateImageSections(ImageSection* out_sections) const { 1444 DCHECK(out_sections != nullptr); 1445 1446 // Do not round up any sections here that are represented by the bins since it will break 1447 // offsets. 1448 1449 // Objects section 1450 ImageSection* objects_section = &out_sections[ImageHeader::kSectionObjects]; 1451 *objects_section = ImageSection(0u, image_end_); 1452 1453 // Add field section. 1454 ImageSection* field_section = &out_sections[ImageHeader::kSectionArtFields]; 1455 *field_section = ImageSection(bin_slot_offsets_[kBinArtField], bin_slot_sizes_[kBinArtField]); 1456 CHECK_EQ(bin_slot_offsets_[kBinArtField], field_section->Offset()); 1457 1458 // Add method section. 1459 ImageSection* methods_section = &out_sections[ImageHeader::kSectionArtMethods]; 1460 *methods_section = ImageSection( 1461 bin_slot_offsets_[kBinArtMethodClean], 1462 bin_slot_sizes_[kBinArtMethodClean] + bin_slot_sizes_[kBinArtMethodDirty]); 1463 1464 // Conflict tables section. 1465 ImageSection* imt_conflict_tables_section = &out_sections[ImageHeader::kSectionIMTConflictTables]; 1466 *imt_conflict_tables_section = ImageSection(bin_slot_offsets_[kBinIMTConflictTable], 1467 bin_slot_sizes_[kBinIMTConflictTable]); 1468 1469 // Runtime methods section. 1470 ImageSection* runtime_methods_section = &out_sections[ImageHeader::kSectionRuntimeMethods]; 1471 *runtime_methods_section = ImageSection(bin_slot_offsets_[kBinRuntimeMethod], 1472 bin_slot_sizes_[kBinRuntimeMethod]); 1473 1474 // Add dex cache arrays section. 1475 ImageSection* dex_cache_arrays_section = &out_sections[ImageHeader::kSectionDexCacheArrays]; 1476 *dex_cache_arrays_section = ImageSection(bin_slot_offsets_[kBinDexCacheArray], 1477 bin_slot_sizes_[kBinDexCacheArray]); 1478 1479 // Round up to the alignment the string table expects. See HashSet::WriteToMemory. 1480 size_t cur_pos = RoundUp(dex_cache_arrays_section->End(), sizeof(uint64_t)); 1481 // Calculate the size of the interned strings. 1482 ImageSection* interned_strings_section = &out_sections[ImageHeader::kSectionInternedStrings]; 1483 *interned_strings_section = ImageSection(cur_pos, intern_table_bytes_); 1484 cur_pos = interned_strings_section->End(); 1485 // Round up to the alignment the class table expects. See HashSet::WriteToMemory. 1486 cur_pos = RoundUp(cur_pos, sizeof(uint64_t)); 1487 // Calculate the size of the class table section. 1488 ImageSection* class_table_section = &out_sections[ImageHeader::kSectionClassTable]; 1489 *class_table_section = ImageSection(cur_pos, class_table_bytes_); 1490 cur_pos = class_table_section->End(); 1491 // Image end goes right before the start of the image bitmap. 1492 return cur_pos; 1493 } 1494 1495 void ImageWriter::CreateHeader(size_t oat_index) { 1496 ImageInfo& image_info = GetImageInfo(oat_index); 1497 const uint8_t* oat_file_begin = image_info.oat_file_begin_; 1498 const uint8_t* oat_file_end = oat_file_begin + image_info.oat_loaded_size_; 1499 const uint8_t* oat_data_end = image_info.oat_data_begin_ + image_info.oat_size_; 1500 1501 // Create the image sections. 1502 ImageSection sections[ImageHeader::kSectionCount]; 1503 const size_t image_end = image_info.CreateImageSections(sections); 1504 1505 // Finally bitmap section. 1506 const size_t bitmap_bytes = image_info.image_bitmap_->Size(); 1507 auto* bitmap_section = §ions[ImageHeader::kSectionImageBitmap]; 1508 *bitmap_section = ImageSection(RoundUp(image_end, kPageSize), RoundUp(bitmap_bytes, kPageSize)); 1509 if (VLOG_IS_ON(compiler)) { 1510 LOG(INFO) << "Creating header for " << oat_filenames_[oat_index]; 1511 size_t idx = 0; 1512 for (const ImageSection& section : sections) { 1513 LOG(INFO) << static_cast<ImageHeader::ImageSections>(idx) << " " << section; 1514 ++idx; 1515 } 1516 LOG(INFO) << "Methods: clean=" << clean_methods_ << " dirty=" << dirty_methods_; 1517 LOG(INFO) << "Image roots address=" << std::hex << image_info.image_roots_address_ << std::dec; 1518 LOG(INFO) << "Image begin=" << std::hex << reinterpret_cast<uintptr_t>(global_image_begin_) 1519 << " Image offset=" << image_info.image_offset_ << std::dec; 1520 LOG(INFO) << "Oat file begin=" << std::hex << reinterpret_cast<uintptr_t>(oat_file_begin) 1521 << " Oat data begin=" << reinterpret_cast<uintptr_t>(image_info.oat_data_begin_) 1522 << " Oat data end=" << reinterpret_cast<uintptr_t>(oat_data_end) 1523 << " Oat file end=" << reinterpret_cast<uintptr_t>(oat_file_end); 1524 } 1525 // Store boot image info for app image so that we can relocate. 1526 uint32_t boot_image_begin = 0; 1527 uint32_t boot_image_end = 0; 1528 uint32_t boot_oat_begin = 0; 1529 uint32_t boot_oat_end = 0; 1530 gc::Heap* const heap = Runtime::Current()->GetHeap(); 1531 heap->GetBootImagesSize(&boot_image_begin, &boot_image_end, &boot_oat_begin, &boot_oat_end); 1532 1533 // Create the header, leave 0 for data size since we will fill this in as we are writing the 1534 // image. 1535 new (image_info.image_->Begin()) ImageHeader(PointerToLowMemUInt32(image_info.image_begin_), 1536 image_end, 1537 sections, 1538 image_info.image_roots_address_, 1539 image_info.oat_checksum_, 1540 PointerToLowMemUInt32(oat_file_begin), 1541 PointerToLowMemUInt32(image_info.oat_data_begin_), 1542 PointerToLowMemUInt32(oat_data_end), 1543 PointerToLowMemUInt32(oat_file_end), 1544 boot_image_begin, 1545 boot_image_end - boot_image_begin, 1546 boot_oat_begin, 1547 boot_oat_end - boot_oat_begin, 1548 target_ptr_size_, 1549 compile_pic_, 1550 /*is_pic*/compile_app_image_, 1551 image_storage_mode_, 1552 /*data_size*/0u); 1553 } 1554 1555 ArtMethod* ImageWriter::GetImageMethodAddress(ArtMethod* method) { 1556 auto it = native_object_relocations_.find(method); 1557 CHECK(it != native_object_relocations_.end()) << PrettyMethod(method) << " @ " << method; 1558 size_t oat_index = GetOatIndex(method->GetDexCache()); 1559 ImageInfo& image_info = GetImageInfo(oat_index); 1560 CHECK_GE(it->second.offset, image_info.image_end_) << "ArtMethods should be after Objects"; 1561 return reinterpret_cast<ArtMethod*>(image_info.image_begin_ + it->second.offset); 1562 } 1563 1564 class FixupRootVisitor : public RootVisitor { 1565 public: 1566 explicit FixupRootVisitor(ImageWriter* image_writer) : image_writer_(image_writer) { 1567 } 1568 1569 void VisitRoots(mirror::Object*** roots, size_t count, const RootInfo& info ATTRIBUTE_UNUSED) 1570 OVERRIDE SHARED_REQUIRES(Locks::mutator_lock_) { 1571 for (size_t i = 0; i < count; ++i) { 1572 *roots[i] = image_writer_->GetImageAddress(*roots[i]); 1573 } 1574 } 1575 1576 void VisitRoots(mirror::CompressedReference<mirror::Object>** roots, size_t count, 1577 const RootInfo& info ATTRIBUTE_UNUSED) 1578 OVERRIDE SHARED_REQUIRES(Locks::mutator_lock_) { 1579 for (size_t i = 0; i < count; ++i) { 1580 roots[i]->Assign(image_writer_->GetImageAddress(roots[i]->AsMirrorPtr())); 1581 } 1582 } 1583 1584 private: 1585 ImageWriter* const image_writer_; 1586 }; 1587 1588 void ImageWriter::CopyAndFixupImtConflictTable(ImtConflictTable* orig, ImtConflictTable* copy) { 1589 const size_t count = orig->NumEntries(target_ptr_size_); 1590 for (size_t i = 0; i < count; ++i) { 1591 ArtMethod* interface_method = orig->GetInterfaceMethod(i, target_ptr_size_); 1592 ArtMethod* implementation_method = orig->GetImplementationMethod(i, target_ptr_size_); 1593 copy->SetInterfaceMethod(i, target_ptr_size_, NativeLocationInImage(interface_method)); 1594 copy->SetImplementationMethod(i, 1595 target_ptr_size_, 1596 NativeLocationInImage(implementation_method)); 1597 } 1598 } 1599 1600 void ImageWriter::CopyAndFixupNativeData(size_t oat_index) { 1601 const ImageInfo& image_info = GetImageInfo(oat_index); 1602 // Copy ArtFields and methods to their locations and update the array for convenience. 1603 for (auto& pair : native_object_relocations_) { 1604 NativeObjectRelocation& relocation = pair.second; 1605 // Only work with fields and methods that are in the current oat file. 1606 if (relocation.oat_index != oat_index) { 1607 continue; 1608 } 1609 auto* dest = image_info.image_->Begin() + relocation.offset; 1610 DCHECK_GE(dest, image_info.image_->Begin() + image_info.image_end_); 1611 DCHECK(!IsInBootImage(pair.first)); 1612 switch (relocation.type) { 1613 case kNativeObjectRelocationTypeArtField: { 1614 memcpy(dest, pair.first, sizeof(ArtField)); 1615 reinterpret_cast<ArtField*>(dest)->SetDeclaringClass( 1616 GetImageAddress(reinterpret_cast<ArtField*>(pair.first)->GetDeclaringClass())); 1617 break; 1618 } 1619 case kNativeObjectRelocationTypeRuntimeMethod: 1620 case kNativeObjectRelocationTypeArtMethodClean: 1621 case kNativeObjectRelocationTypeArtMethodDirty: { 1622 CopyAndFixupMethod(reinterpret_cast<ArtMethod*>(pair.first), 1623 reinterpret_cast<ArtMethod*>(dest), 1624 image_info); 1625 break; 1626 } 1627 // For arrays, copy just the header since the elements will get copied by their corresponding 1628 // relocations. 1629 case kNativeObjectRelocationTypeArtFieldArray: { 1630 memcpy(dest, pair.first, LengthPrefixedArray<ArtField>::ComputeSize(0)); 1631 break; 1632 } 1633 case kNativeObjectRelocationTypeArtMethodArrayClean: 1634 case kNativeObjectRelocationTypeArtMethodArrayDirty: { 1635 size_t size = ArtMethod::Size(target_ptr_size_); 1636 size_t alignment = ArtMethod::Alignment(target_ptr_size_); 1637 memcpy(dest, pair.first, LengthPrefixedArray<ArtMethod>::ComputeSize(0, size, alignment)); 1638 // Clear padding to avoid non-deterministic data in the image (and placate valgrind). 1639 reinterpret_cast<LengthPrefixedArray<ArtMethod>*>(dest)->ClearPadding(size, alignment); 1640 break; 1641 } 1642 case kNativeObjectRelocationTypeDexCacheArray: 1643 // Nothing to copy here, everything is done in FixupDexCache(). 1644 break; 1645 case kNativeObjectRelocationTypeIMTConflictTable: { 1646 auto* orig_table = reinterpret_cast<ImtConflictTable*>(pair.first); 1647 CopyAndFixupImtConflictTable( 1648 orig_table, 1649 new(dest)ImtConflictTable(orig_table->NumEntries(target_ptr_size_), target_ptr_size_)); 1650 break; 1651 } 1652 } 1653 } 1654 // Fixup the image method roots. 1655 auto* image_header = reinterpret_cast<ImageHeader*>(image_info.image_->Begin()); 1656 for (size_t i = 0; i < ImageHeader::kImageMethodsCount; ++i) { 1657 ArtMethod* method = image_methods_[i]; 1658 CHECK(method != nullptr); 1659 if (!IsInBootImage(method)) { 1660 method = NativeLocationInImage(method); 1661 } 1662 image_header->SetImageMethod(static_cast<ImageHeader::ImageMethod>(i), method); 1663 } 1664 FixupRootVisitor root_visitor(this); 1665 1666 // Write the intern table into the image. 1667 if (image_info.intern_table_bytes_ > 0) { 1668 const ImageSection& intern_table_section = image_header->GetImageSection( 1669 ImageHeader::kSectionInternedStrings); 1670 InternTable* const intern_table = image_info.intern_table_.get(); 1671 uint8_t* const intern_table_memory_ptr = 1672 image_info.image_->Begin() + intern_table_section.Offset(); 1673 const size_t intern_table_bytes = intern_table->WriteToMemory(intern_table_memory_ptr); 1674 CHECK_EQ(intern_table_bytes, image_info.intern_table_bytes_); 1675 // Fixup the pointers in the newly written intern table to contain image addresses. 1676 InternTable temp_intern_table; 1677 // Note that we require that ReadFromMemory does not make an internal copy of the elements so that 1678 // the VisitRoots() will update the memory directly rather than the copies. 1679 // This also relies on visit roots not doing any verification which could fail after we update 1680 // the roots to be the image addresses. 1681 temp_intern_table.AddTableFromMemory(intern_table_memory_ptr); 1682 CHECK_EQ(temp_intern_table.Size(), intern_table->Size()); 1683 temp_intern_table.VisitRoots(&root_visitor, kVisitRootFlagAllRoots); 1684 } 1685 // Write the class table(s) into the image. class_table_bytes_ may be 0 if there are multiple 1686 // class loaders. Writing multiple class tables into the image is currently unsupported. 1687 if (image_info.class_table_bytes_ > 0u) { 1688 const ImageSection& class_table_section = image_header->GetImageSection( 1689 ImageHeader::kSectionClassTable); 1690 uint8_t* const class_table_memory_ptr = 1691 image_info.image_->Begin() + class_table_section.Offset(); 1692 ReaderMutexLock mu(Thread::Current(), *Locks::classlinker_classes_lock_); 1693 1694 ClassTable* table = image_info.class_table_.get(); 1695 CHECK(table != nullptr); 1696 const size_t class_table_bytes = table->WriteToMemory(class_table_memory_ptr); 1697 CHECK_EQ(class_table_bytes, image_info.class_table_bytes_); 1698 // Fixup the pointers in the newly written class table to contain image addresses. See 1699 // above comment for intern tables. 1700 ClassTable temp_class_table; 1701 temp_class_table.ReadFromMemory(class_table_memory_ptr); 1702 CHECK_EQ(temp_class_table.NumZygoteClasses(), table->NumNonZygoteClasses() + 1703 table->NumZygoteClasses()); 1704 BufferedRootVisitor<kDefaultBufferedRootCount> buffered_visitor(&root_visitor, 1705 RootInfo(kRootUnknown)); 1706 temp_class_table.VisitRoots(buffered_visitor); 1707 } 1708 } 1709 1710 void ImageWriter::CopyAndFixupObjects() { 1711 gc::Heap* heap = Runtime::Current()->GetHeap(); 1712 heap->VisitObjects(CopyAndFixupObjectsCallback, this); 1713 // Fix up the object previously had hash codes. 1714 for (const auto& hash_pair : saved_hashcode_map_) { 1715 Object* obj = hash_pair.first; 1716 DCHECK_EQ(obj->GetLockWord<kVerifyNone>(false).ReadBarrierState(), 0U); 1717 obj->SetLockWord<kVerifyNone>(LockWord::FromHashCode(hash_pair.second, 0U), false); 1718 } 1719 saved_hashcode_map_.clear(); 1720 } 1721 1722 void ImageWriter::CopyAndFixupObjectsCallback(Object* obj, void* arg) { 1723 DCHECK(obj != nullptr); 1724 DCHECK(arg != nullptr); 1725 reinterpret_cast<ImageWriter*>(arg)->CopyAndFixupObject(obj); 1726 } 1727 1728 void ImageWriter::FixupPointerArray(mirror::Object* dst, mirror::PointerArray* arr, 1729 mirror::Class* klass, Bin array_type) { 1730 CHECK(klass->IsArrayClass()); 1731 CHECK(arr->IsIntArray() || arr->IsLongArray()) << PrettyClass(klass) << " " << arr; 1732 // Fixup int and long pointers for the ArtMethod or ArtField arrays. 1733 const size_t num_elements = arr->GetLength(); 1734 dst->SetClass(GetImageAddress(arr->GetClass())); 1735 auto* dest_array = down_cast<mirror::PointerArray*>(dst); 1736 for (size_t i = 0, count = num_elements; i < count; ++i) { 1737 void* elem = arr->GetElementPtrSize<void*>(i, target_ptr_size_); 1738 if (elem != nullptr && !IsInBootImage(elem)) { 1739 auto it = native_object_relocations_.find(elem); 1740 if (UNLIKELY(it == native_object_relocations_.end())) { 1741 if (it->second.IsArtMethodRelocation()) { 1742 auto* method = reinterpret_cast<ArtMethod*>(elem); 1743 LOG(FATAL) << "No relocation entry for ArtMethod " << PrettyMethod(method) << " @ " 1744 << method << " idx=" << i << "/" << num_elements << " with declaring class " 1745 << PrettyClass(method->GetDeclaringClass()); 1746 } else { 1747 CHECK_EQ(array_type, kBinArtField); 1748 auto* field = reinterpret_cast<ArtField*>(elem); 1749 LOG(FATAL) << "No relocation entry for ArtField " << PrettyField(field) << " @ " 1750 << field << " idx=" << i << "/" << num_elements << " with declaring class " 1751 << PrettyClass(field->GetDeclaringClass()); 1752 } 1753 UNREACHABLE(); 1754 } else { 1755 ImageInfo& image_info = GetImageInfo(it->second.oat_index); 1756 elem = image_info.image_begin_ + it->second.offset; 1757 } 1758 } 1759 dest_array->SetElementPtrSize<false, true>(i, elem, target_ptr_size_); 1760 } 1761 } 1762 1763 void ImageWriter::CopyAndFixupObject(Object* obj) { 1764 if (IsInBootImage(obj)) { 1765 return; 1766 } 1767 size_t offset = GetImageOffset(obj); 1768 size_t oat_index = GetOatIndex(obj); 1769 ImageInfo& image_info = GetImageInfo(oat_index); 1770 auto* dst = reinterpret_cast<Object*>(image_info.image_->Begin() + offset); 1771 DCHECK_LT(offset, image_info.image_end_); 1772 const auto* src = reinterpret_cast<const uint8_t*>(obj); 1773 1774 image_info.image_bitmap_->Set(dst); // Mark the obj as live. 1775 1776 const size_t n = obj->SizeOf(); 1777 DCHECK_LE(offset + n, image_info.image_->Size()); 1778 memcpy(dst, src, n); 1779 1780 // Write in a hash code of objects which have inflated monitors or a hash code in their monitor 1781 // word. 1782 const auto it = saved_hashcode_map_.find(obj); 1783 dst->SetLockWord(it != saved_hashcode_map_.end() ? 1784 LockWord::FromHashCode(it->second, 0u) : LockWord::Default(), false); 1785 FixupObject(obj, dst); 1786 } 1787 1788 // Rewrite all the references in the copied object to point to their image address equivalent 1789 class FixupVisitor { 1790 public: 1791 FixupVisitor(ImageWriter* image_writer, Object* copy) : image_writer_(image_writer), copy_(copy) { 1792 } 1793 1794 // Ignore class roots since we don't have a way to map them to the destination. These are handled 1795 // with other logic. 1796 void VisitRootIfNonNull(mirror::CompressedReference<mirror::Object>* root ATTRIBUTE_UNUSED) 1797 const {} 1798 void VisitRoot(mirror::CompressedReference<mirror::Object>* root ATTRIBUTE_UNUSED) const {} 1799 1800 1801 void operator()(Object* obj, MemberOffset offset, bool is_static ATTRIBUTE_UNUSED) const 1802 REQUIRES(Locks::mutator_lock_, Locks::heap_bitmap_lock_) { 1803 Object* ref = obj->GetFieldObject<Object, kVerifyNone>(offset); 1804 // Use SetFieldObjectWithoutWriteBarrier to avoid card marking since we are writing to the 1805 // image. 1806 copy_->SetFieldObjectWithoutWriteBarrier<false, true, kVerifyNone>( 1807 offset, 1808 image_writer_->GetImageAddress(ref)); 1809 } 1810 1811 // java.lang.ref.Reference visitor. 1812 void operator()(mirror::Class* klass ATTRIBUTE_UNUSED, mirror::Reference* ref) const 1813 SHARED_REQUIRES(Locks::mutator_lock_) REQUIRES(Locks::heap_bitmap_lock_) { 1814 copy_->SetFieldObjectWithoutWriteBarrier<false, true, kVerifyNone>( 1815 mirror::Reference::ReferentOffset(), 1816 image_writer_->GetImageAddress(ref->GetReferent())); 1817 } 1818 1819 protected: 1820 ImageWriter* const image_writer_; 1821 mirror::Object* const copy_; 1822 }; 1823 1824 class FixupClassVisitor FINAL : public FixupVisitor { 1825 public: 1826 FixupClassVisitor(ImageWriter* image_writer, Object* copy) : FixupVisitor(image_writer, copy) { 1827 } 1828 1829 void operator()(Object* obj, MemberOffset offset, bool is_static ATTRIBUTE_UNUSED) const 1830 REQUIRES(Locks::mutator_lock_, Locks::heap_bitmap_lock_) { 1831 DCHECK(obj->IsClass()); 1832 FixupVisitor::operator()(obj, offset, /*is_static*/false); 1833 } 1834 1835 void operator()(mirror::Class* klass ATTRIBUTE_UNUSED, 1836 mirror::Reference* ref ATTRIBUTE_UNUSED) const 1837 SHARED_REQUIRES(Locks::mutator_lock_) REQUIRES(Locks::heap_bitmap_lock_) { 1838 LOG(FATAL) << "Reference not expected here."; 1839 } 1840 }; 1841 1842 uintptr_t ImageWriter::NativeOffsetInImage(void* obj) { 1843 DCHECK(obj != nullptr); 1844 DCHECK(!IsInBootImage(obj)); 1845 auto it = native_object_relocations_.find(obj); 1846 CHECK(it != native_object_relocations_.end()) << obj << " spaces " 1847 << Runtime::Current()->GetHeap()->DumpSpaces(); 1848 const NativeObjectRelocation& relocation = it->second; 1849 return relocation.offset; 1850 } 1851 1852 template <typename T> 1853 T* ImageWriter::NativeLocationInImage(T* obj) { 1854 if (obj == nullptr || IsInBootImage(obj)) { 1855 return obj; 1856 } else { 1857 auto it = native_object_relocations_.find(obj); 1858 CHECK(it != native_object_relocations_.end()) << obj << " spaces " 1859 << Runtime::Current()->GetHeap()->DumpSpaces(); 1860 const NativeObjectRelocation& relocation = it->second; 1861 ImageInfo& image_info = GetImageInfo(relocation.oat_index); 1862 return reinterpret_cast<T*>(image_info.image_begin_ + relocation.offset); 1863 } 1864 } 1865 1866 template <typename T> 1867 T* ImageWriter::NativeCopyLocation(T* obj, mirror::DexCache* dex_cache) { 1868 if (obj == nullptr || IsInBootImage(obj)) { 1869 return obj; 1870 } else { 1871 size_t oat_index = GetOatIndexForDexCache(dex_cache); 1872 ImageInfo& image_info = GetImageInfo(oat_index); 1873 return reinterpret_cast<T*>(image_info.image_->Begin() + NativeOffsetInImage(obj)); 1874 } 1875 } 1876 1877 class NativeLocationVisitor { 1878 public: 1879 explicit NativeLocationVisitor(ImageWriter* image_writer) : image_writer_(image_writer) {} 1880 1881 template <typename T> 1882 T* operator()(T* ptr) const SHARED_REQUIRES(Locks::mutator_lock_) { 1883 return image_writer_->NativeLocationInImage(ptr); 1884 } 1885 1886 private: 1887 ImageWriter* const image_writer_; 1888 }; 1889 1890 void ImageWriter::FixupClass(mirror::Class* orig, mirror::Class* copy) { 1891 orig->FixupNativePointers(copy, target_ptr_size_, NativeLocationVisitor(this)); 1892 FixupClassVisitor visitor(this, copy); 1893 static_cast<mirror::Object*>(orig)->VisitReferences(visitor, visitor); 1894 1895 // Remove the clinitThreadId. This is required for image determinism. 1896 copy->SetClinitThreadId(static_cast<pid_t>(0)); 1897 } 1898 1899 void ImageWriter::FixupObject(Object* orig, Object* copy) { 1900 DCHECK(orig != nullptr); 1901 DCHECK(copy != nullptr); 1902 if (kUseBakerOrBrooksReadBarrier) { 1903 orig->AssertReadBarrierPointer(); 1904 if (kUseBrooksReadBarrier) { 1905 // Note the address 'copy' isn't the same as the image address of 'orig'. 1906 copy->SetReadBarrierPointer(GetImageAddress(orig)); 1907 DCHECK_EQ(copy->GetReadBarrierPointer(), GetImageAddress(orig)); 1908 } 1909 } 1910 auto* klass = orig->GetClass(); 1911 if (klass->IsIntArrayClass() || klass->IsLongArrayClass()) { 1912 // Is this a native pointer array? 1913 auto it = pointer_arrays_.find(down_cast<mirror::PointerArray*>(orig)); 1914 if (it != pointer_arrays_.end()) { 1915 // Should only need to fixup every pointer array exactly once. 1916 FixupPointerArray(copy, down_cast<mirror::PointerArray*>(orig), klass, it->second); 1917 pointer_arrays_.erase(it); 1918 return; 1919 } 1920 } 1921 if (orig->IsClass()) { 1922 FixupClass(orig->AsClass<kVerifyNone>(), down_cast<mirror::Class*>(copy)); 1923 } else { 1924 if (klass == mirror::Method::StaticClass() || klass == mirror::Constructor::StaticClass()) { 1925 // Need to go update the ArtMethod. 1926 auto* dest = down_cast<mirror::AbstractMethod*>(copy); 1927 auto* src = down_cast<mirror::AbstractMethod*>(orig); 1928 ArtMethod* src_method = src->GetArtMethod(); 1929 auto it = native_object_relocations_.find(src_method); 1930 CHECK(it != native_object_relocations_.end()) 1931 << "Missing relocation for AbstractMethod.artMethod " << PrettyMethod(src_method); 1932 dest->SetArtMethod( 1933 reinterpret_cast<ArtMethod*>(global_image_begin_ + it->second.offset)); 1934 } else if (!klass->IsArrayClass()) { 1935 ClassLinker* class_linker = Runtime::Current()->GetClassLinker(); 1936 if (klass == class_linker->GetClassRoot(ClassLinker::kJavaLangDexCache)) { 1937 FixupDexCache(down_cast<mirror::DexCache*>(orig), down_cast<mirror::DexCache*>(copy)); 1938 } else if (klass->IsClassLoaderClass()) { 1939 mirror::ClassLoader* copy_loader = down_cast<mirror::ClassLoader*>(copy); 1940 // If src is a ClassLoader, set the class table to null so that it gets recreated by the 1941 // ClassLoader. 1942 copy_loader->SetClassTable(nullptr); 1943 // Also set allocator to null to be safe. The allocator is created when we create the class 1944 // table. We also never expect to unload things in the image since they are held live as 1945 // roots. 1946 copy_loader->SetAllocator(nullptr); 1947 } 1948 } 1949 FixupVisitor visitor(this, copy); 1950 orig->VisitReferences(visitor, visitor); 1951 } 1952 } 1953 1954 1955 class ImageAddressVisitor { 1956 public: 1957 explicit ImageAddressVisitor(ImageWriter* image_writer) : image_writer_(image_writer) {} 1958 1959 template <typename T> 1960 T* operator()(T* ptr) const SHARED_REQUIRES(Locks::mutator_lock_) { 1961 return image_writer_->GetImageAddress(ptr); 1962 } 1963 1964 private: 1965 ImageWriter* const image_writer_; 1966 }; 1967 1968 1969 void ImageWriter::FixupDexCache(mirror::DexCache* orig_dex_cache, 1970 mirror::DexCache* copy_dex_cache) { 1971 // Though the DexCache array fields are usually treated as native pointers, we set the full 1972 // 64-bit values here, clearing the top 32 bits for 32-bit targets. The zero-extension is 1973 // done by casting to the unsigned type uintptr_t before casting to int64_t, i.e. 1974 // static_cast<int64_t>(reinterpret_cast<uintptr_t>(image_begin_ + offset))). 1975 GcRoot<mirror::String>* orig_strings = orig_dex_cache->GetStrings(); 1976 if (orig_strings != nullptr) { 1977 copy_dex_cache->SetFieldPtrWithSize<false>(mirror::DexCache::StringsOffset(), 1978 NativeLocationInImage(orig_strings), 1979 /*pointer size*/8u); 1980 orig_dex_cache->FixupStrings(NativeCopyLocation(orig_strings, orig_dex_cache), 1981 ImageAddressVisitor(this)); 1982 } 1983 GcRoot<mirror::Class>* orig_types = orig_dex_cache->GetResolvedTypes(); 1984 if (orig_types != nullptr) { 1985 copy_dex_cache->SetFieldPtrWithSize<false>(mirror::DexCache::ResolvedTypesOffset(), 1986 NativeLocationInImage(orig_types), 1987 /*pointer size*/8u); 1988 orig_dex_cache->FixupResolvedTypes(NativeCopyLocation(orig_types, orig_dex_cache), 1989 ImageAddressVisitor(this)); 1990 } 1991 ArtMethod** orig_methods = orig_dex_cache->GetResolvedMethods(); 1992 if (orig_methods != nullptr) { 1993 copy_dex_cache->SetFieldPtrWithSize<false>(mirror::DexCache::ResolvedMethodsOffset(), 1994 NativeLocationInImage(orig_methods), 1995 /*pointer size*/8u); 1996 ArtMethod** copy_methods = NativeCopyLocation(orig_methods, orig_dex_cache); 1997 for (size_t i = 0, num = orig_dex_cache->NumResolvedMethods(); i != num; ++i) { 1998 ArtMethod* orig = mirror::DexCache::GetElementPtrSize(orig_methods, i, target_ptr_size_); 1999 // NativeLocationInImage also handles runtime methods since these have relocation info. 2000 ArtMethod* copy = NativeLocationInImage(orig); 2001 mirror::DexCache::SetElementPtrSize(copy_methods, i, copy, target_ptr_size_); 2002 } 2003 } 2004 ArtField** orig_fields = orig_dex_cache->GetResolvedFields(); 2005 if (orig_fields != nullptr) { 2006 copy_dex_cache->SetFieldPtrWithSize<false>(mirror::DexCache::ResolvedFieldsOffset(), 2007 NativeLocationInImage(orig_fields), 2008 /*pointer size*/8u); 2009 ArtField** copy_fields = NativeCopyLocation(orig_fields, orig_dex_cache); 2010 for (size_t i = 0, num = orig_dex_cache->NumResolvedFields(); i != num; ++i) { 2011 ArtField* orig = mirror::DexCache::GetElementPtrSize(orig_fields, i, target_ptr_size_); 2012 ArtField* copy = NativeLocationInImage(orig); 2013 mirror::DexCache::SetElementPtrSize(copy_fields, i, copy, target_ptr_size_); 2014 } 2015 } 2016 2017 // Remove the DexFile pointers. They will be fixed up when the runtime loads the oat file. Leaving 2018 // compiler pointers in here will make the output non-deterministic. 2019 copy_dex_cache->SetDexFile(nullptr); 2020 } 2021 2022 const uint8_t* ImageWriter::GetOatAddress(OatAddress type) const { 2023 DCHECK_LT(type, kOatAddressCount); 2024 // If we are compiling an app image, we need to use the stubs of the boot image. 2025 if (compile_app_image_) { 2026 // Use the current image pointers. 2027 const std::vector<gc::space::ImageSpace*>& image_spaces = 2028 Runtime::Current()->GetHeap()->GetBootImageSpaces(); 2029 DCHECK(!image_spaces.empty()); 2030 const OatFile* oat_file = image_spaces[0]->GetOatFile(); 2031 CHECK(oat_file != nullptr); 2032 const OatHeader& header = oat_file->GetOatHeader(); 2033 switch (type) { 2034 // TODO: We could maybe clean this up if we stored them in an array in the oat header. 2035 case kOatAddressQuickGenericJNITrampoline: 2036 return static_cast<const uint8_t*>(header.GetQuickGenericJniTrampoline()); 2037 case kOatAddressInterpreterToInterpreterBridge: 2038 return static_cast<const uint8_t*>(header.GetInterpreterToInterpreterBridge()); 2039 case kOatAddressInterpreterToCompiledCodeBridge: 2040 return static_cast<const uint8_t*>(header.GetInterpreterToCompiledCodeBridge()); 2041 case kOatAddressJNIDlsymLookup: 2042 return static_cast<const uint8_t*>(header.GetJniDlsymLookup()); 2043 case kOatAddressQuickIMTConflictTrampoline: 2044 return static_cast<const uint8_t*>(header.GetQuickImtConflictTrampoline()); 2045 case kOatAddressQuickResolutionTrampoline: 2046 return static_cast<const uint8_t*>(header.GetQuickResolutionTrampoline()); 2047 case kOatAddressQuickToInterpreterBridge: 2048 return static_cast<const uint8_t*>(header.GetQuickToInterpreterBridge()); 2049 default: 2050 UNREACHABLE(); 2051 } 2052 } 2053 const ImageInfo& primary_image_info = GetImageInfo(0); 2054 return GetOatAddressForOffset(primary_image_info.oat_address_offsets_[type], primary_image_info); 2055 } 2056 2057 const uint8_t* ImageWriter::GetQuickCode(ArtMethod* method, 2058 const ImageInfo& image_info, 2059 bool* quick_is_interpreted) { 2060 DCHECK(!method->IsResolutionMethod()) << PrettyMethod(method); 2061 DCHECK_NE(method, Runtime::Current()->GetImtConflictMethod()) << PrettyMethod(method); 2062 DCHECK(!method->IsImtUnimplementedMethod()) << PrettyMethod(method); 2063 DCHECK(method->IsInvokable()) << PrettyMethod(method); 2064 DCHECK(!IsInBootImage(method)) << PrettyMethod(method); 2065 2066 // Use original code if it exists. Otherwise, set the code pointer to the resolution 2067 // trampoline. 2068 2069 // Quick entrypoint: 2070 const void* quick_oat_entry_point = 2071 method->GetEntryPointFromQuickCompiledCodePtrSize(target_ptr_size_); 2072 const uint8_t* quick_code; 2073 2074 if (UNLIKELY(IsInBootImage(method->GetDeclaringClass()))) { 2075 DCHECK(method->IsCopied()); 2076 // If the code is not in the oat file corresponding to this image (e.g. default methods) 2077 quick_code = reinterpret_cast<const uint8_t*>(quick_oat_entry_point); 2078 } else { 2079 uint32_t quick_oat_code_offset = PointerToLowMemUInt32(quick_oat_entry_point); 2080 quick_code = GetOatAddressForOffset(quick_oat_code_offset, image_info); 2081 } 2082 2083 *quick_is_interpreted = false; 2084 if (quick_code != nullptr && (!method->IsStatic() || method->IsConstructor() || 2085 method->GetDeclaringClass()->IsInitialized())) { 2086 // We have code for a non-static or initialized method, just use the code. 2087 } else if (quick_code == nullptr && method->IsNative() && 2088 (!method->IsStatic() || method->GetDeclaringClass()->IsInitialized())) { 2089 // Non-static or initialized native method missing compiled code, use generic JNI version. 2090 quick_code = GetOatAddress(kOatAddressQuickGenericJNITrampoline); 2091 } else if (quick_code == nullptr && !method->IsNative()) { 2092 // We don't have code at all for a non-native method, use the interpreter. 2093 quick_code = GetOatAddress(kOatAddressQuickToInterpreterBridge); 2094 *quick_is_interpreted = true; 2095 } else { 2096 CHECK(!method->GetDeclaringClass()->IsInitialized()); 2097 // We have code for a static method, but need to go through the resolution stub for class 2098 // initialization. 2099 quick_code = GetOatAddress(kOatAddressQuickResolutionTrampoline); 2100 } 2101 if (!IsInBootOatFile(quick_code)) { 2102 // DCHECK_GE(quick_code, oat_data_begin_); 2103 } 2104 return quick_code; 2105 } 2106 2107 void ImageWriter::CopyAndFixupMethod(ArtMethod* orig, 2108 ArtMethod* copy, 2109 const ImageInfo& image_info) { 2110 memcpy(copy, orig, ArtMethod::Size(target_ptr_size_)); 2111 2112 copy->SetDeclaringClass(GetImageAddress(orig->GetDeclaringClassUnchecked())); 2113 ArtMethod** orig_resolved_methods = orig->GetDexCacheResolvedMethods(target_ptr_size_); 2114 copy->SetDexCacheResolvedMethods(NativeLocationInImage(orig_resolved_methods), target_ptr_size_); 2115 GcRoot<mirror::Class>* orig_resolved_types = orig->GetDexCacheResolvedTypes(target_ptr_size_); 2116 copy->SetDexCacheResolvedTypes(NativeLocationInImage(orig_resolved_types), target_ptr_size_); 2117 2118 // OatWriter replaces the code_ with an offset value. Here we re-adjust to a pointer relative to 2119 // oat_begin_ 2120 2121 // The resolution method has a special trampoline to call. 2122 Runtime* runtime = Runtime::Current(); 2123 if (orig->IsRuntimeMethod()) { 2124 ImtConflictTable* orig_table = orig->GetImtConflictTable(target_ptr_size_); 2125 if (orig_table != nullptr) { 2126 // Special IMT conflict method, normal IMT conflict method or unimplemented IMT method. 2127 copy->SetEntryPointFromQuickCompiledCodePtrSize( 2128 GetOatAddress(kOatAddressQuickIMTConflictTrampoline), target_ptr_size_); 2129 copy->SetImtConflictTable(NativeLocationInImage(orig_table), target_ptr_size_); 2130 } else if (UNLIKELY(orig == runtime->GetResolutionMethod())) { 2131 copy->SetEntryPointFromQuickCompiledCodePtrSize( 2132 GetOatAddress(kOatAddressQuickResolutionTrampoline), target_ptr_size_); 2133 } else { 2134 bool found_one = false; 2135 for (size_t i = 0; i < static_cast<size_t>(Runtime::kLastCalleeSaveType); ++i) { 2136 auto idx = static_cast<Runtime::CalleeSaveType>(i); 2137 if (runtime->HasCalleeSaveMethod(idx) && runtime->GetCalleeSaveMethod(idx) == orig) { 2138 found_one = true; 2139 break; 2140 } 2141 } 2142 CHECK(found_one) << "Expected to find callee save method but got " << PrettyMethod(orig); 2143 CHECK(copy->IsRuntimeMethod()); 2144 } 2145 } else { 2146 // We assume all methods have code. If they don't currently then we set them to the use the 2147 // resolution trampoline. Abstract methods never have code and so we need to make sure their 2148 // use results in an AbstractMethodError. We use the interpreter to achieve this. 2149 if (UNLIKELY(!orig->IsInvokable())) { 2150 copy->SetEntryPointFromQuickCompiledCodePtrSize( 2151 GetOatAddress(kOatAddressQuickToInterpreterBridge), target_ptr_size_); 2152 } else { 2153 bool quick_is_interpreted; 2154 const uint8_t* quick_code = GetQuickCode(orig, image_info, &quick_is_interpreted); 2155 copy->SetEntryPointFromQuickCompiledCodePtrSize(quick_code, target_ptr_size_); 2156 2157 // JNI entrypoint: 2158 if (orig->IsNative()) { 2159 // The native method's pointer is set to a stub to lookup via dlsym. 2160 // Note this is not the code_ pointer, that is handled above. 2161 copy->SetEntryPointFromJniPtrSize( 2162 GetOatAddress(kOatAddressJNIDlsymLookup), target_ptr_size_); 2163 } 2164 } 2165 } 2166 } 2167 2168 size_t ImageWriter::GetBinSizeSum(ImageWriter::ImageInfo& image_info, ImageWriter::Bin up_to) const { 2169 DCHECK_LE(up_to, kBinSize); 2170 return std::accumulate(&image_info.bin_slot_sizes_[0], 2171 &image_info.bin_slot_sizes_[up_to], 2172 /*init*/0); 2173 } 2174 2175 ImageWriter::BinSlot::BinSlot(uint32_t lockword) : lockword_(lockword) { 2176 // These values may need to get updated if more bins are added to the enum Bin 2177 static_assert(kBinBits == 3, "wrong number of bin bits"); 2178 static_assert(kBinShift == 27, "wrong number of shift"); 2179 static_assert(sizeof(BinSlot) == sizeof(LockWord), "BinSlot/LockWord must have equal sizes"); 2180 2181 DCHECK_LT(GetBin(), kBinSize); 2182 DCHECK_ALIGNED(GetIndex(), kObjectAlignment); 2183 } 2184 2185 ImageWriter::BinSlot::BinSlot(Bin bin, uint32_t index) 2186 : BinSlot(index | (static_cast<uint32_t>(bin) << kBinShift)) { 2187 DCHECK_EQ(index, GetIndex()); 2188 } 2189 2190 ImageWriter::Bin ImageWriter::BinSlot::GetBin() const { 2191 return static_cast<Bin>((lockword_ & kBinMask) >> kBinShift); 2192 } 2193 2194 uint32_t ImageWriter::BinSlot::GetIndex() const { 2195 return lockword_ & ~kBinMask; 2196 } 2197 2198 ImageWriter::Bin ImageWriter::BinTypeForNativeRelocationType(NativeObjectRelocationType type) { 2199 switch (type) { 2200 case kNativeObjectRelocationTypeArtField: 2201 case kNativeObjectRelocationTypeArtFieldArray: 2202 return kBinArtField; 2203 case kNativeObjectRelocationTypeArtMethodClean: 2204 case kNativeObjectRelocationTypeArtMethodArrayClean: 2205 return kBinArtMethodClean; 2206 case kNativeObjectRelocationTypeArtMethodDirty: 2207 case kNativeObjectRelocationTypeArtMethodArrayDirty: 2208 return kBinArtMethodDirty; 2209 case kNativeObjectRelocationTypeDexCacheArray: 2210 return kBinDexCacheArray; 2211 case kNativeObjectRelocationTypeRuntimeMethod: 2212 return kBinRuntimeMethod; 2213 case kNativeObjectRelocationTypeIMTConflictTable: 2214 return kBinIMTConflictTable; 2215 } 2216 UNREACHABLE(); 2217 } 2218 2219 size_t ImageWriter::GetOatIndex(mirror::Object* obj) const { 2220 if (compile_app_image_) { 2221 return GetDefaultOatIndex(); 2222 } else { 2223 mirror::DexCache* dex_cache = 2224 obj->IsDexCache() ? obj->AsDexCache() 2225 : obj->IsClass() ? obj->AsClass()->GetDexCache() 2226 : obj->GetClass()->GetDexCache(); 2227 return GetOatIndexForDexCache(dex_cache); 2228 } 2229 } 2230 2231 size_t ImageWriter::GetOatIndexForDexFile(const DexFile* dex_file) const { 2232 if (compile_app_image_) { 2233 return GetDefaultOatIndex(); 2234 } else { 2235 auto it = dex_file_oat_index_map_.find(dex_file); 2236 DCHECK(it != dex_file_oat_index_map_.end()) << dex_file->GetLocation(); 2237 return it->second; 2238 } 2239 } 2240 2241 size_t ImageWriter::GetOatIndexForDexCache(mirror::DexCache* dex_cache) const { 2242 if (dex_cache == nullptr) { 2243 return GetDefaultOatIndex(); 2244 } else { 2245 return GetOatIndexForDexFile(dex_cache->GetDexFile()); 2246 } 2247 } 2248 2249 void ImageWriter::UpdateOatFileLayout(size_t oat_index, 2250 size_t oat_loaded_size, 2251 size_t oat_data_offset, 2252 size_t oat_data_size) { 2253 const uint8_t* images_end = image_infos_.back().image_begin_ + image_infos_.back().image_size_; 2254 for (const ImageInfo& info : image_infos_) { 2255 DCHECK_LE(info.image_begin_ + info.image_size_, images_end); 2256 } 2257 DCHECK(images_end != nullptr); // Image space must be ready. 2258 2259 ImageInfo& cur_image_info = GetImageInfo(oat_index); 2260 cur_image_info.oat_file_begin_ = images_end + cur_image_info.oat_offset_; 2261 cur_image_info.oat_loaded_size_ = oat_loaded_size; 2262 cur_image_info.oat_data_begin_ = cur_image_info.oat_file_begin_ + oat_data_offset; 2263 cur_image_info.oat_size_ = oat_data_size; 2264 2265 if (compile_app_image_) { 2266 CHECK_EQ(oat_filenames_.size(), 1u) << "App image should have no next image."; 2267 return; 2268 } 2269 2270 // Update the oat_offset of the next image info. 2271 if (oat_index + 1u != oat_filenames_.size()) { 2272 // There is a following one. 2273 ImageInfo& next_image_info = GetImageInfo(oat_index + 1u); 2274 next_image_info.oat_offset_ = cur_image_info.oat_offset_ + oat_loaded_size; 2275 } 2276 } 2277 2278 void ImageWriter::UpdateOatFileHeader(size_t oat_index, const OatHeader& oat_header) { 2279 ImageInfo& cur_image_info = GetImageInfo(oat_index); 2280 cur_image_info.oat_checksum_ = oat_header.GetChecksum(); 2281 2282 if (oat_index == GetDefaultOatIndex()) { 2283 // Primary oat file, read the trampolines. 2284 cur_image_info.oat_address_offsets_[kOatAddressInterpreterToInterpreterBridge] = 2285 oat_header.GetInterpreterToInterpreterBridgeOffset(); 2286 cur_image_info.oat_address_offsets_[kOatAddressInterpreterToCompiledCodeBridge] = 2287 oat_header.GetInterpreterToCompiledCodeBridgeOffset(); 2288 cur_image_info.oat_address_offsets_[kOatAddressJNIDlsymLookup] = 2289 oat_header.GetJniDlsymLookupOffset(); 2290 cur_image_info.oat_address_offsets_[kOatAddressQuickGenericJNITrampoline] = 2291 oat_header.GetQuickGenericJniTrampolineOffset(); 2292 cur_image_info.oat_address_offsets_[kOatAddressQuickIMTConflictTrampoline] = 2293 oat_header.GetQuickImtConflictTrampolineOffset(); 2294 cur_image_info.oat_address_offsets_[kOatAddressQuickResolutionTrampoline] = 2295 oat_header.GetQuickResolutionTrampolineOffset(); 2296 cur_image_info.oat_address_offsets_[kOatAddressQuickToInterpreterBridge] = 2297 oat_header.GetQuickToInterpreterBridgeOffset(); 2298 } 2299 } 2300 2301 ImageWriter::ImageWriter( 2302 const CompilerDriver& compiler_driver, 2303 uintptr_t image_begin, 2304 bool compile_pic, 2305 bool compile_app_image, 2306 ImageHeader::StorageMode image_storage_mode, 2307 const std::vector<const char*>& oat_filenames, 2308 const std::unordered_map<const DexFile*, size_t>& dex_file_oat_index_map) 2309 : compiler_driver_(compiler_driver), 2310 global_image_begin_(reinterpret_cast<uint8_t*>(image_begin)), 2311 image_objects_offset_begin_(0), 2312 compile_pic_(compile_pic), 2313 compile_app_image_(compile_app_image), 2314 target_ptr_size_(InstructionSetPointerSize(compiler_driver_.GetInstructionSet())), 2315 image_infos_(oat_filenames.size()), 2316 dirty_methods_(0u), 2317 clean_methods_(0u), 2318 image_storage_mode_(image_storage_mode), 2319 oat_filenames_(oat_filenames), 2320 dex_file_oat_index_map_(dex_file_oat_index_map) { 2321 CHECK_NE(image_begin, 0U); 2322 std::fill_n(image_methods_, arraysize(image_methods_), nullptr); 2323 CHECK_EQ(compile_app_image, !Runtime::Current()->GetHeap()->GetBootImageSpaces().empty()) 2324 << "Compiling a boot image should occur iff there are no boot image spaces loaded"; 2325 } 2326 2327 ImageWriter::ImageInfo::ImageInfo() 2328 : intern_table_(new InternTable), 2329 class_table_(new ClassTable) {} 2330 2331 } // namespace art 2332