Home | History | Annotate | Download | only in nanotool
      1 /*
      2  * Copyright (C) 2016 The Android Open Source Project
      3  *
      4  * Licensed under the Apache License, Version 2.0 (the "License");
      5  * you may not use this file except in compliance with the License.
      6  * You may obtain a copy of the License at
      7  *
      8  *      http://www.apache.org/licenses/LICENSE-2.0
      9  *
     10  * Unless required by applicable law or agreed to in writing, software
     11  * distributed under the License is distributed on an "AS IS" BASIS,
     12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     13  * See the License for the specific language governing permissions and
     14  * limitations under the License.
     15  */
     16 
     17 #include "sensorevent.h"
     18 
     19 #include <inttypes.h>
     20 #include <string.h>
     21 
     22 #include "contexthub.h"
     23 #include "log.h"
     24 
     25 namespace android {
     26 
     27 constexpr float kCompressedSampleRatio(8.0f * 9.81f / 32768.0f);
     28 
     29 /* SensorEvent ****************************************************************/
     30 
     31 std::unique_ptr<SensorEvent> SensorEvent::FromBytes(
     32         const std::vector<uint8_t>& buffer) {
     33     SensorEvent *sensor_event = nullptr;
     34 
     35     SensorType sensor_type = static_cast<SensorType>(
     36         ReadEventResponse::EventTypeFromBuffer(buffer) -
     37         static_cast<uint32_t>(EventType::FirstSensorEvent));
     38 
     39     switch (sensor_type) {
     40       case SensorType::Accel:
     41       case SensorType::Gyro:
     42       case SensorType::GyroUncal:
     43       case SensorType::Magnetometer:
     44       case SensorType::MagnetometerUncal:
     45       case SensorType::Orientation:
     46       case SensorType::Gravity:
     47       case SensorType::LinearAccel:
     48       case SensorType::RotationVector:
     49       case SensorType::GeomagneticRotationVector:
     50       case SensorType::GameRotationVector:
     51         sensor_event = new TripleAxisSensorEvent();
     52         break;
     53 
     54       case SensorType::Barometer:
     55       case SensorType::Temperature:
     56       case SensorType::AmbientLightSensor:
     57       case SensorType::Proximity:
     58         sensor_event = new SingleAxisSensorEvent();
     59         break;
     60 
     61       // TODO: Activity uses a special struct, it should have its own class
     62       case SensorType::Activity:
     63       case SensorType::AnyMotion:
     64       case SensorType::NoMotion:
     65       case SensorType::SignificantMotion:
     66       case SensorType::Flat:
     67       case SensorType::WindowOrientation:
     68       case SensorType::Tilt:
     69       case SensorType::Hall:
     70       case SensorType::HeartRateECG: // Heart rates not implemented, guessing
     71       case SensorType::HeartRatePPG: // data type here...
     72       case SensorType::StepCount:
     73       case SensorType::StepDetect:
     74       case SensorType::Gesture:
     75       case SensorType::DoubleTwist:
     76       case SensorType::DoubleTap:
     77       case SensorType::Vsync:
     78           sensor_event = new SingleAxisIntSensorEvent();
     79           break;
     80 
     81       case SensorType::CompressedAccel:
     82           sensor_event = new CompressedTripleAxisSensorEvent();
     83           break;
     84 
     85     default:
     86         LOGW("Can't create SensorEvent for unknown/invalid sensor type %d",
     87              static_cast<int>(sensor_type));
     88     }
     89 
     90     if (sensor_event &&
     91         (!sensor_event->Populate(buffer) || !sensor_event->SizeIsValid())) {
     92         LOGW("Couldn't populate sensor event, or invalid size");
     93         delete sensor_event;
     94         sensor_event = nullptr;
     95     }
     96 
     97     return std::unique_ptr<SensorEvent>(sensor_event);
     98 }
     99 
    100 SensorType SensorEvent::GetSensorType() const {
    101     return static_cast<SensorType>(
    102         GetEventType() - static_cast<uint32_t>(EventType::FirstSensorEvent));
    103 }
    104 
    105 /* TimestampedSensorEvent *****************************************************/
    106 
    107 uint8_t TimestampedSensorEvent::GetNumSamples() const {
    108     // Perform size check, but don't depend on SizeIsValid since it will call us
    109     if (event_data.size() < (sizeof(struct SensorEventHeader) +
    110                              sizeof(struct SensorFirstSample))) {
    111         LOGW("Short/invalid timestamped sensor event; length %zu",
    112              event_data.size());
    113         return 0;
    114     }
    115 
    116     const struct SensorFirstSample *first_sample_header =
    117         reinterpret_cast<const struct SensorFirstSample *>(
    118             event_data.data() + sizeof(struct SensorEventHeader));
    119 
    120     return first_sample_header->numSamples;
    121 }
    122 
    123 uint64_t TimestampedSensorEvent::GetReferenceTime() const {
    124     if (!SizeIsValid()) {
    125         return 0;
    126     }
    127     const struct SensorEventHeader *header =
    128         reinterpret_cast<const struct SensorEventHeader *>(event_data.data());
    129     return header->reference_time;
    130 }
    131 
    132 uint64_t TimestampedSensorEvent::GetSampleTime(uint8_t index) const {
    133     const SensorSampleHeader *sample;
    134     uint64_t sample_time = GetReferenceTime();
    135 
    136     // For index 0, the sample time is the reference time. For each subsequent
    137     // sample, sum the delta to the previous sample to get the sample time.
    138     for (uint8_t i = 1; i <= index; i++) {
    139         sample = GetSampleAtIndex(index);
    140         sample_time += sample->delta_time;
    141     }
    142 
    143     return sample_time;
    144 }
    145 
    146 std::string TimestampedSensorEvent::GetSampleTimeStr(uint8_t index) const {
    147     uint64_t sample_time = GetSampleTime(index);
    148 
    149     char buffer[32];
    150     snprintf(buffer, sizeof(buffer), "%" PRIu64 ".%06" PRIu64 " ms",
    151              sample_time / 1000000, sample_time % 1000000);
    152 
    153     return std::string(buffer);
    154 }
    155 
    156 const SensorSampleHeader *TimestampedSensorEvent::GetSampleAtIndex(
    157         uint8_t index) const {
    158     if (index >= GetNumSamples()) {
    159         LOGW("Requested sample at invalid index %u", index);
    160         return nullptr;
    161     }
    162 
    163     unsigned int offset = (sizeof(struct SensorEventHeader) +
    164         index * GetSampleDataSize());
    165     return reinterpret_cast<const struct SensorSampleHeader *>(
    166         event_data.data() + offset);
    167 }
    168 
    169 std::string TimestampedSensorEvent::ToString() const {
    170     uint8_t num_samples = GetNumSamples();
    171     char buffer[64];
    172     snprintf(buffer, sizeof(buffer),
    173              "Event from sensor %d (%s) with %d sample%s\n",
    174              static_cast<int>(GetSensorType()),
    175              ContextHub::SensorTypeToAbbrevName(GetSensorType()).c_str(),
    176              num_samples, (num_samples != 1) ? "s" : "");
    177 
    178     return std::string(buffer) + StringForAllSamples();
    179 }
    180 
    181 bool TimestampedSensorEvent::SizeIsValid() const {
    182     unsigned int min_size = (sizeof(struct SensorEventHeader) +
    183         GetNumSamples() * GetSampleDataSize());
    184     if (event_data.size() < min_size) {
    185         LOGW("Got short sensor event with %zu bytes, expected >= %u",
    186              event_data.size(), min_size);
    187         return false;
    188     }
    189 
    190     return true;
    191 }
    192 
    193 std::string TimestampedSensorEvent::StringForAllSamples() const {
    194     std::string str;
    195     for (unsigned int i = 0; i < GetNumSamples(); i++) {
    196         str += StringForSample(i);
    197     }
    198     return str;
    199 }
    200 
    201 /* SingleAxisSensorEvent ******************************************************/
    202 
    203 std::string SingleAxisSensorEvent::StringForSample(uint8_t index) const {
    204     const SingleAxisDataPoint *sample =
    205         reinterpret_cast<const SingleAxisDataPoint *>(GetSampleAtIndex(index));
    206 
    207     char buffer[64];
    208     snprintf(buffer, sizeof(buffer), "  %f @ %s\n",
    209              sample->fdata, GetSampleTimeStr(index).c_str());
    210 
    211     return std::string(buffer);
    212 }
    213 
    214 uint8_t SingleAxisSensorEvent::GetSampleDataSize() const {
    215     return sizeof(struct SingleAxisDataPoint);
    216 }
    217 
    218 /* SingleAxisIntSensorEvent ***************************************************/
    219 
    220 std::string SingleAxisIntSensorEvent::StringForSample(uint8_t index) const {
    221     const SingleAxisDataPoint *sample =
    222         reinterpret_cast<const SingleAxisDataPoint *>(GetSampleAtIndex(index));
    223 
    224     char buffer[64];
    225     snprintf(buffer, sizeof(buffer), "  %d @ %s\n",
    226              sample->idata, GetSampleTimeStr(index).c_str());
    227 
    228     return std::string(buffer);
    229 }
    230 
    231 /* TripleAxisSensorEvent ******************************************************/
    232 
    233 std::string TripleAxisSensorEvent::StringForSample(uint8_t index) const {
    234     const TripleAxisDataPoint *sample =
    235         reinterpret_cast<const TripleAxisDataPoint *>(
    236             GetSampleAtIndex(index));
    237 
    238     const struct SensorFirstSample *first_sample =
    239         reinterpret_cast<const struct SensorFirstSample *>(
    240             event_data.data() + sizeof(struct SensorEventHeader));
    241     bool is_bias_sample = first_sample->biasPresent
    242         && first_sample->biasSample == index;
    243 
    244     char buffer[128];
    245     snprintf(buffer, sizeof(buffer), "  X:%f Y:%f Z:%f @ %s%s\n",
    246              sample->x, sample->y, sample->z, GetSampleTimeStr(index).c_str(),
    247              is_bias_sample ? " (Bias Sample)" : "");
    248 
    249     return std::string(buffer);
    250 }
    251 
    252 uint8_t TripleAxisSensorEvent::GetSampleDataSize() const {
    253     return sizeof(struct TripleAxisDataPoint);
    254 }
    255 
    256 /* CompressedTripleAxisSensorEvent ********************************************/
    257 
    258 std::string CompressedTripleAxisSensorEvent::StringForSample(
    259         uint8_t index) const {
    260     const CompressedTripleAxisDataPoint *sample =
    261         reinterpret_cast<const CompressedTripleAxisDataPoint *>(
    262             GetSampleAtIndex(index));
    263 
    264     const struct SensorFirstSample *first_sample =
    265         reinterpret_cast<const struct SensorFirstSample *>(
    266             event_data.data() + sizeof(struct SensorEventHeader));
    267     bool is_bias_sample = first_sample->biasPresent
    268         && first_sample->biasSample == index;
    269 
    270     float x = sample->ix * kCompressedSampleRatio;
    271     float y = sample->iy * kCompressedSampleRatio;
    272     float z = sample->iz * kCompressedSampleRatio;
    273 
    274     char buffer[128];
    275     snprintf(buffer, sizeof(buffer), "  X:%f Y:%f Z:%f @ %s%s\n",
    276              x, y, z, GetSampleTimeStr(index).c_str(),
    277              is_bias_sample ? " (Bias Sample)" : "");
    278 
    279     return std::string(buffer);
    280 }
    281 
    282 uint8_t CompressedTripleAxisSensorEvent::GetSampleDataSize() const {
    283     return sizeof(CompressedTripleAxisDataPoint);
    284 }
    285 
    286 }  // namespace android
    287