1 /////////////////////////////////////////////////////////////////////////// 2 // 3 // Copyright (c) 2002, Industrial Light & Magic, a division of Lucas 4 // Digital Ltd. LLC 5 // 6 // All rights reserved. 7 // 8 // Redistribution and use in source and binary forms, with or without 9 // modification, are permitted provided that the following conditions are 10 // met: 11 // * Redistributions of source code must retain the above copyright 12 // notice, this list of conditions and the following disclaimer. 13 // * Redistributions in binary form must reproduce the above 14 // copyright notice, this list of conditions and the following disclaimer 15 // in the documentation and/or other materials provided with the 16 // distribution. 17 // * Neither the name of Industrial Light & Magic nor the names of 18 // its contributors may be used to endorse or promote products derived 19 // from this software without specific prior written permission. 20 // 21 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 22 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 23 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 24 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 25 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 26 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 27 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 28 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 29 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 30 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 31 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 32 // 33 /////////////////////////////////////////////////////////////////////////// 34 35 // Primary authors: 36 // Florian Kainz <kainz (at) ilm.com> 37 // Rod Bogart <rgb (at) ilm.com> 38 39 //--------------------------------------------------------------------------- 40 // 41 // half -- a 16-bit floating point number class: 42 // 43 // Type half can represent positive and negative numbers whose 44 // magnitude is between roughly 6.1e-5 and 6.5e+4 with a relative 45 // error of 9.8e-4; numbers smaller than 6.1e-5 can be represented 46 // with an absolute error of 6.0e-8. All integers from -2048 to 47 // +2048 can be represented exactly. 48 // 49 // Type half behaves (almost) like the built-in C++ floating point 50 // types. In arithmetic expressions, half, float and double can be 51 // mixed freely. Here are a few examples: 52 // 53 // half a (3.5); 54 // float b (a + sqrt (a)); 55 // a += b; 56 // b += a; 57 // b = a + 7; 58 // 59 // Conversions from half to float are lossless; all half numbers 60 // are exactly representable as floats. 61 // 62 // Conversions from float to half may not preserve a float's value 63 // exactly. If a float is not representable as a half, then the 64 // float value is rounded to the nearest representable half. If a 65 // float value is exactly in the middle between the two closest 66 // representable half values, then the float value is rounded to 67 // the closest half whose least significant bit is zero. 68 // 69 // Overflows during float-to-half conversions cause arithmetic 70 // exceptions. An overflow occurs when the float value to be 71 // converted is too large to be represented as a half, or if the 72 // float value is an infinity or a NAN. 73 // 74 // The implementation of type half makes the following assumptions 75 // about the implementation of the built-in C++ types: 76 // 77 // float is an IEEE 754 single-precision number 78 // sizeof (float) == 4 79 // sizeof (unsigned int) == sizeof (float) 80 // alignof (unsigned int) == alignof (float) 81 // sizeof (unsigned short) == 2 82 // 83 //--------------------------------------------------------------------------- 84 85 #ifndef _HALF_H_ 86 #define _HALF_H_ 87 88 #include <iostream> 89 90 #if defined(OPENEXR_DLL) 91 #if defined(HALF_EXPORTS) 92 #define HALF_EXPORT __declspec(dllexport) 93 #else 94 #define HALF_EXPORT __declspec(dllimport) 95 #endif 96 #define HALF_EXPORT_CONST 97 #else 98 #define HALF_EXPORT 99 #define HALF_EXPORT_CONST const 100 #endif 101 102 class HALF_EXPORT half 103 { 104 public: 105 106 //------------- 107 // Constructors 108 //------------- 109 110 half (); // no initialization 111 half (float f); 112 113 114 //-------------------- 115 // Conversion to float 116 //-------------------- 117 118 operator float () const; 119 120 121 //------------ 122 // Unary minus 123 //------------ 124 125 half operator - () const; 126 127 128 //----------- 129 // Assignment 130 //----------- 131 132 half & operator = (half h); 133 half & operator = (float f); 134 135 half & operator += (half h); 136 half & operator += (float f); 137 138 half & operator -= (half h); 139 half & operator -= (float f); 140 141 half & operator *= (half h); 142 half & operator *= (float f); 143 144 half & operator /= (half h); 145 half & operator /= (float f); 146 147 148 //--------------------------------------------------------- 149 // Round to n-bit precision (n should be between 0 and 10). 150 // After rounding, the significand's 10-n least significant 151 // bits will be zero. 152 //--------------------------------------------------------- 153 154 half round (unsigned int n) const; 155 156 157 //-------------------------------------------------------------------- 158 // Classification: 159 // 160 // h.isFinite() returns true if h is a normalized number, 161 // a denormalized number or zero 162 // 163 // h.isNormalized() returns true if h is a normalized number 164 // 165 // h.isDenormalized() returns true if h is a denormalized number 166 // 167 // h.isZero() returns true if h is zero 168 // 169 // h.isNan() returns true if h is a NAN 170 // 171 // h.isInfinity() returns true if h is a positive 172 // or a negative infinity 173 // 174 // h.isNegative() returns true if the sign bit of h 175 // is set (negative) 176 //-------------------------------------------------------------------- 177 178 bool isFinite () const; 179 bool isNormalized () const; 180 bool isDenormalized () const; 181 bool isZero () const; 182 bool isNan () const; 183 bool isInfinity () const; 184 bool isNegative () const; 185 186 187 //-------------------------------------------- 188 // Special values 189 // 190 // posInf() returns +infinity 191 // 192 // negInf() returns -infinity 193 // 194 // qNan() returns a NAN with the bit 195 // pattern 0111111111111111 196 // 197 // sNan() returns a NAN with the bit 198 // pattern 0111110111111111 199 //-------------------------------------------- 200 201 static half posInf (); 202 static half negInf (); 203 static half qNan (); 204 static half sNan (); 205 206 207 //-------------------------------------- 208 // Access to the internal representation 209 //-------------------------------------- 210 211 unsigned short bits () const; 212 void setBits (unsigned short bits); 213 214 215 public: 216 217 union uif 218 { 219 unsigned int i; 220 float f; 221 }; 222 223 private: 224 225 static short convert (int i); 226 static float overflow (); 227 228 unsigned short _h; 229 230 static HALF_EXPORT_CONST uif _toFloat[1 << 16]; 231 static HALF_EXPORT_CONST unsigned short _eLut[1 << 9]; 232 }; 233 234 //----------- 235 // Stream I/O 236 //----------- 237 238 HALF_EXPORT std::ostream & operator << (std::ostream &os, half h); 239 HALF_EXPORT std::istream & operator >> (std::istream &is, half &h); 240 241 242 //---------- 243 // Debugging 244 //---------- 245 246 HALF_EXPORT void printBits (std::ostream &os, half h); 247 HALF_EXPORT void printBits (std::ostream &os, float f); 248 HALF_EXPORT void printBits (char c[19], half h); 249 HALF_EXPORT void printBits (char c[35], float f); 250 251 252 //------------------------------------------------------------------------- 253 // Limits 254 // 255 // Visual C++ will complain if HALF_MIN, HALF_NRM_MIN etc. are not float 256 // constants, but at least one other compiler (gcc 2.96) produces incorrect 257 // results if they are. 258 //------------------------------------------------------------------------- 259 260 #if (defined _WIN32 || defined _WIN64) && defined _MSC_VER 261 262 #define HALF_MIN 5.96046448e-08f // Smallest positive half 263 264 #define HALF_NRM_MIN 6.10351562e-05f // Smallest positive normalized half 265 266 #define HALF_MAX 65504.0f // Largest positive half 267 268 #define HALF_EPSILON 0.00097656f // Smallest positive e for which 269 // half (1.0 + e) != half (1.0) 270 #else 271 272 #define HALF_MIN 5.96046448e-08 // Smallest positive half 273 274 #define HALF_NRM_MIN 6.10351562e-05 // Smallest positive normalized half 275 276 #define HALF_MAX 65504.0 // Largest positive half 277 278 #define HALF_EPSILON 0.00097656 // Smallest positive e for which 279 // half (1.0 + e) != half (1.0) 280 #endif 281 282 283 #define HALF_MANT_DIG 11 // Number of digits in mantissa 284 // (significand + hidden leading 1) 285 286 #define HALF_DIG 2 // Number of base 10 digits that 287 // can be represented without change 288 289 #define HALF_RADIX 2 // Base of the exponent 290 291 #define HALF_MIN_EXP -13 // Minimum negative integer such that 292 // HALF_RADIX raised to the power of 293 // one less than that integer is a 294 // normalized half 295 296 #define HALF_MAX_EXP 16 // Maximum positive integer such that 297 // HALF_RADIX raised to the power of 298 // one less than that integer is a 299 // normalized half 300 301 #define HALF_MIN_10_EXP -4 // Minimum positive integer such 302 // that 10 raised to that power is 303 // a normalized half 304 305 #define HALF_MAX_10_EXP 4 // Maximum positive integer such 306 // that 10 raised to that power is 307 // a normalized half 308 309 310 //--------------------------------------------------------------------------- 311 // 312 // Implementation -- 313 // 314 // Representation of a float: 315 // 316 // We assume that a float, f, is an IEEE 754 single-precision 317 // floating point number, whose bits are arranged as follows: 318 // 319 // 31 (msb) 320 // | 321 // | 30 23 322 // | | | 323 // | | | 22 0 (lsb) 324 // | | | | | 325 // X XXXXXXXX XXXXXXXXXXXXXXXXXXXXXXX 326 // 327 // s e m 328 // 329 // S is the sign-bit, e is the exponent and m is the significand. 330 // 331 // If e is between 1 and 254, f is a normalized number: 332 // 333 // s e-127 334 // f = (-1) * 2 * 1.m 335 // 336 // If e is 0, and m is not zero, f is a denormalized number: 337 // 338 // s -126 339 // f = (-1) * 2 * 0.m 340 // 341 // If e and m are both zero, f is zero: 342 // 343 // f = 0.0 344 // 345 // If e is 255, f is an "infinity" or "not a number" (NAN), 346 // depending on whether m is zero or not. 347 // 348 // Examples: 349 // 350 // 0 00000000 00000000000000000000000 = 0.0 351 // 0 01111110 00000000000000000000000 = 0.5 352 // 0 01111111 00000000000000000000000 = 1.0 353 // 0 10000000 00000000000000000000000 = 2.0 354 // 0 10000000 10000000000000000000000 = 3.0 355 // 1 10000101 11110000010000000000000 = -124.0625 356 // 0 11111111 00000000000000000000000 = +infinity 357 // 1 11111111 00000000000000000000000 = -infinity 358 // 0 11111111 10000000000000000000000 = NAN 359 // 1 11111111 11111111111111111111111 = NAN 360 // 361 // Representation of a half: 362 // 363 // Here is the bit-layout for a half number, h: 364 // 365 // 15 (msb) 366 // | 367 // | 14 10 368 // | | | 369 // | | | 9 0 (lsb) 370 // | | | | | 371 // X XXXXX XXXXXXXXXX 372 // 373 // s e m 374 // 375 // S is the sign-bit, e is the exponent and m is the significand. 376 // 377 // If e is between 1 and 30, h is a normalized number: 378 // 379 // s e-15 380 // h = (-1) * 2 * 1.m 381 // 382 // If e is 0, and m is not zero, h is a denormalized number: 383 // 384 // S -14 385 // h = (-1) * 2 * 0.m 386 // 387 // If e and m are both zero, h is zero: 388 // 389 // h = 0.0 390 // 391 // If e is 31, h is an "infinity" or "not a number" (NAN), 392 // depending on whether m is zero or not. 393 // 394 // Examples: 395 // 396 // 0 00000 0000000000 = 0.0 397 // 0 01110 0000000000 = 0.5 398 // 0 01111 0000000000 = 1.0 399 // 0 10000 0000000000 = 2.0 400 // 0 10000 1000000000 = 3.0 401 // 1 10101 1111000001 = -124.0625 402 // 0 11111 0000000000 = +infinity 403 // 1 11111 0000000000 = -infinity 404 // 0 11111 1000000000 = NAN 405 // 1 11111 1111111111 = NAN 406 // 407 // Conversion: 408 // 409 // Converting from a float to a half requires some non-trivial bit 410 // manipulations. In some cases, this makes conversion relatively 411 // slow, but the most common case is accelerated via table lookups. 412 // 413 // Converting back from a half to a float is easier because we don't 414 // have to do any rounding. In addition, there are only 65536 415 // different half numbers; we can convert each of those numbers once 416 // and store the results in a table. Later, all conversions can be 417 // done using only simple table lookups. 418 // 419 //--------------------------------------------------------------------------- 420 421 422 //-------------------- 423 // Simple constructors 424 //-------------------- 425 426 inline 427 half::half () 428 { 429 // no initialization 430 } 431 432 433 //---------------------------- 434 // Half-from-float constructor 435 //---------------------------- 436 437 inline 438 half::half (float f) 439 { 440 uif x; 441 442 x.f = f; 443 444 if (f == 0) 445 { 446 // 447 // Common special case - zero. 448 // Preserve the zero's sign bit. 449 // 450 451 _h = (x.i >> 16); 452 } 453 else 454 { 455 // 456 // We extract the combined sign and exponent, e, from our 457 // floating-point number, f. Then we convert e to the sign 458 // and exponent of the half number via a table lookup. 459 // 460 // For the most common case, where a normalized half is produced, 461 // the table lookup returns a non-zero value; in this case, all 462 // we have to do is round f's significand to 10 bits and combine 463 // the result with e. 464 // 465 // For all other cases (overflow, zeroes, denormalized numbers 466 // resulting from underflow, infinities and NANs), the table 467 // lookup returns zero, and we call a longer, non-inline function 468 // to do the float-to-half conversion. 469 // 470 471 register int e = (x.i >> 23) & 0x000001ff; 472 473 e = _eLut[e]; 474 475 if (e) 476 { 477 // 478 // Simple case - round the significand, m, to 10 479 // bits and combine it with the sign and exponent. 480 // 481 482 register int m = x.i & 0x007fffff; 483 _h = e + ((m + 0x00000fff + ((m >> 13) & 1)) >> 13); 484 } 485 else 486 { 487 // 488 // Difficult case - call a function. 489 // 490 491 _h = convert (x.i); 492 } 493 } 494 } 495 496 497 //------------------------------------------ 498 // Half-to-float conversion via table lookup 499 //------------------------------------------ 500 501 inline 502 half::operator float () const 503 { 504 return _toFloat[_h].f; 505 } 506 507 508 //------------------------- 509 // Round to n-bit precision 510 //------------------------- 511 512 inline half 513 half::round (unsigned int n) const 514 { 515 // 516 // Parameter check. 517 // 518 519 if (n >= 10) 520 return *this; 521 522 // 523 // Disassemble h into the sign, s, 524 // and the combined exponent and significand, e. 525 // 526 527 unsigned short s = _h & 0x8000; 528 unsigned short e = _h & 0x7fff; 529 530 // 531 // Round the exponent and significand to the nearest value 532 // where ones occur only in the (10-n) most significant bits. 533 // Note that the exponent adjusts automatically if rounding 534 // up causes the significand to overflow. 535 // 536 537 e >>= 9 - n; 538 e += e & 1; 539 e <<= 9 - n; 540 541 // 542 // Check for exponent overflow. 543 // 544 545 if (e >= 0x7c00) 546 { 547 // 548 // Overflow occurred -- truncate instead of rounding. 549 // 550 551 e = _h; 552 e >>= 10 - n; 553 e <<= 10 - n; 554 } 555 556 // 557 // Put the original sign bit back. 558 // 559 560 half h; 561 h._h = s | e; 562 563 return h; 564 } 565 566 567 //----------------------- 568 // Other inline functions 569 //----------------------- 570 571 inline half 572 half::operator - () const 573 { 574 half h; 575 h._h = _h ^ 0x8000; 576 return h; 577 } 578 579 580 inline half & 581 half::operator = (half h) 582 { 583 _h = h._h; 584 return *this; 585 } 586 587 588 inline half & 589 half::operator = (float f) 590 { 591 *this = half (f); 592 return *this; 593 } 594 595 596 inline half & 597 half::operator += (half h) 598 { 599 *this = half (float (*this) + float (h)); 600 return *this; 601 } 602 603 604 inline half & 605 half::operator += (float f) 606 { 607 *this = half (float (*this) + f); 608 return *this; 609 } 610 611 612 inline half & 613 half::operator -= (half h) 614 { 615 *this = half (float (*this) - float (h)); 616 return *this; 617 } 618 619 620 inline half & 621 half::operator -= (float f) 622 { 623 *this = half (float (*this) - f); 624 return *this; 625 } 626 627 628 inline half & 629 half::operator *= (half h) 630 { 631 *this = half (float (*this) * float (h)); 632 return *this; 633 } 634 635 636 inline half & 637 half::operator *= (float f) 638 { 639 *this = half (float (*this) * f); 640 return *this; 641 } 642 643 644 inline half & 645 half::operator /= (half h) 646 { 647 *this = half (float (*this) / float (h)); 648 return *this; 649 } 650 651 652 inline half & 653 half::operator /= (float f) 654 { 655 *this = half (float (*this) / f); 656 return *this; 657 } 658 659 660 inline bool 661 half::isFinite () const 662 { 663 unsigned short e = (_h >> 10) & 0x001f; 664 return e < 31; 665 } 666 667 668 inline bool 669 half::isNormalized () const 670 { 671 unsigned short e = (_h >> 10) & 0x001f; 672 return e > 0 && e < 31; 673 } 674 675 676 inline bool 677 half::isDenormalized () const 678 { 679 unsigned short e = (_h >> 10) & 0x001f; 680 unsigned short m = _h & 0x3ff; 681 return e == 0 && m != 0; 682 } 683 684 685 inline bool 686 half::isZero () const 687 { 688 return (_h & 0x7fff) == 0; 689 } 690 691 692 inline bool 693 half::isNan () const 694 { 695 unsigned short e = (_h >> 10) & 0x001f; 696 unsigned short m = _h & 0x3ff; 697 return e == 31 && m != 0; 698 } 699 700 701 inline bool 702 half::isInfinity () const 703 { 704 unsigned short e = (_h >> 10) & 0x001f; 705 unsigned short m = _h & 0x3ff; 706 return e == 31 && m == 0; 707 } 708 709 710 inline bool 711 half::isNegative () const 712 { 713 return (_h & 0x8000) != 0; 714 } 715 716 717 inline half 718 half::posInf () 719 { 720 half h; 721 h._h = 0x7c00; 722 return h; 723 } 724 725 726 inline half 727 half::negInf () 728 { 729 half h; 730 h._h = 0xfc00; 731 return h; 732 } 733 734 735 inline half 736 half::qNan () 737 { 738 half h; 739 h._h = 0x7fff; 740 return h; 741 } 742 743 744 inline half 745 half::sNan () 746 { 747 half h; 748 h._h = 0x7dff; 749 return h; 750 } 751 752 753 inline unsigned short 754 half::bits () const 755 { 756 return _h; 757 } 758 759 760 inline void 761 half::setBits (unsigned short bits) 762 { 763 _h = bits; 764 } 765 766 #endif 767