1 /*M/////////////////////////////////////////////////////////////////////////////////////// 2 // 3 // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. 4 // 5 // By downloading, copying, installing or using the software you agree to this license. 6 // If you do not agree to this license, do not download, install, 7 // copy or use the software. 8 // 9 // 10 // Intel License Agreement 11 // For Open Source Computer Vision Library 12 // 13 // Copyright (C) 2000, Intel Corporation, all rights reserved. 14 // Third party copyrights are property of their respective owners. 15 // 16 // Redistribution and use in source and binary forms, with or without modification, 17 // are permitted provided that the following conditions are met: 18 // 19 // * Redistribution's of source code must retain the above copyright notice, 20 // this list of conditions and the following disclaimer. 21 // 22 // * Redistribution's in binary form must reproduce the above copyright notice, 23 // this list of conditions and the following disclaimer in the documentation 24 // and/or other materials provided with the distribution. 25 // 26 // * The name of Intel Corporation may not be used to endorse or promote products 27 // derived from this software without specific prior written permission. 28 // 29 // This software is provided by the copyright holders and contributors "as is" and 30 // any express or implied warranties, including, but not limited to, the implied 31 // warranties of merchantability and fitness for a particular purpose are disclaimed. 32 // In no event shall the Intel Corporation or contributors be liable for any direct, 33 // indirect, incidental, special, exemplary, or consequential damages 34 // (including, but not limited to, procurement of substitute goods or services; 35 // loss of use, data, or profits; or business interruption) however caused 36 // and on any theory of liability, whether in contract, strict liability, 37 // or tort (including negligence or otherwise) arising in any way out of 38 // the use of this software, even if advised of the possibility of such damage. 39 // 40 //M*/ 41 #include "precomp.hpp" 42 #include "opencl_kernels_imgproc.hpp" 43 44 namespace cv 45 { 46 47 // The function calculates center of gravity and the central second order moments 48 static void completeMomentState( Moments* moments ) 49 { 50 double cx = 0, cy = 0; 51 double mu20, mu11, mu02; 52 double inv_m00 = 0.0; 53 assert( moments != 0 ); 54 55 if( fabs(moments->m00) > DBL_EPSILON ) 56 { 57 inv_m00 = 1. / moments->m00; 58 cx = moments->m10 * inv_m00; 59 cy = moments->m01 * inv_m00; 60 } 61 62 // mu20 = m20 - m10*cx 63 mu20 = moments->m20 - moments->m10 * cx; 64 // mu11 = m11 - m10*cy 65 mu11 = moments->m11 - moments->m10 * cy; 66 // mu02 = m02 - m01*cy 67 mu02 = moments->m02 - moments->m01 * cy; 68 69 moments->mu20 = mu20; 70 moments->mu11 = mu11; 71 moments->mu02 = mu02; 72 73 // mu30 = m30 - cx*(3*mu20 + cx*m10) 74 moments->mu30 = moments->m30 - cx * (3 * mu20 + cx * moments->m10); 75 mu11 += mu11; 76 // mu21 = m21 - cx*(2*mu11 + cx*m01) - cy*mu20 77 moments->mu21 = moments->m21 - cx * (mu11 + cx * moments->m01) - cy * mu20; 78 // mu12 = m12 - cy*(2*mu11 + cy*m10) - cx*mu02 79 moments->mu12 = moments->m12 - cy * (mu11 + cy * moments->m10) - cx * mu02; 80 // mu03 = m03 - cy*(3*mu02 + cy*m01) 81 moments->mu03 = moments->m03 - cy * (3 * mu02 + cy * moments->m01); 82 83 84 double inv_sqrt_m00 = std::sqrt(std::abs(inv_m00)); 85 double s2 = inv_m00*inv_m00, s3 = s2*inv_sqrt_m00; 86 87 moments->nu20 = moments->mu20*s2; moments->nu11 = moments->mu11*s2; moments->nu02 = moments->mu02*s2; 88 moments->nu30 = moments->mu30*s3; moments->nu21 = moments->mu21*s3; moments->nu12 = moments->mu12*s3; moments->nu03 = moments->mu03*s3; 89 90 } 91 92 93 static Moments contourMoments( const Mat& contour ) 94 { 95 Moments m; 96 int lpt = contour.checkVector(2); 97 int is_float = contour.depth() == CV_32F; 98 const Point* ptsi = contour.ptr<Point>(); 99 const Point2f* ptsf = contour.ptr<Point2f>(); 100 101 CV_Assert( contour.depth() == CV_32S || contour.depth() == CV_32F ); 102 103 if( lpt == 0 ) 104 return m; 105 106 double a00 = 0, a10 = 0, a01 = 0, a20 = 0, a11 = 0, a02 = 0, a30 = 0, a21 = 0, a12 = 0, a03 = 0; 107 double xi, yi, xi2, yi2, xi_1, yi_1, xi_12, yi_12, dxy, xii_1, yii_1; 108 109 if( !is_float ) 110 { 111 xi_1 = ptsi[lpt-1].x; 112 yi_1 = ptsi[lpt-1].y; 113 } 114 else 115 { 116 xi_1 = ptsf[lpt-1].x; 117 yi_1 = ptsf[lpt-1].y; 118 } 119 120 xi_12 = xi_1 * xi_1; 121 yi_12 = yi_1 * yi_1; 122 123 for( int i = 0; i < lpt; i++ ) 124 { 125 if( !is_float ) 126 { 127 xi = ptsi[i].x; 128 yi = ptsi[i].y; 129 } 130 else 131 { 132 xi = ptsf[i].x; 133 yi = ptsf[i].y; 134 } 135 136 xi2 = xi * xi; 137 yi2 = yi * yi; 138 dxy = xi_1 * yi - xi * yi_1; 139 xii_1 = xi_1 + xi; 140 yii_1 = yi_1 + yi; 141 142 a00 += dxy; 143 a10 += dxy * xii_1; 144 a01 += dxy * yii_1; 145 a20 += dxy * (xi_1 * xii_1 + xi2); 146 a11 += dxy * (xi_1 * (yii_1 + yi_1) + xi * (yii_1 + yi)); 147 a02 += dxy * (yi_1 * yii_1 + yi2); 148 a30 += dxy * xii_1 * (xi_12 + xi2); 149 a03 += dxy * yii_1 * (yi_12 + yi2); 150 a21 += dxy * (xi_12 * (3 * yi_1 + yi) + 2 * xi * xi_1 * yii_1 + 151 xi2 * (yi_1 + 3 * yi)); 152 a12 += dxy * (yi_12 * (3 * xi_1 + xi) + 2 * yi * yi_1 * xii_1 + 153 yi2 * (xi_1 + 3 * xi)); 154 xi_1 = xi; 155 yi_1 = yi; 156 xi_12 = xi2; 157 yi_12 = yi2; 158 } 159 160 if( fabs(a00) > FLT_EPSILON ) 161 { 162 double db1_2, db1_6, db1_12, db1_24, db1_20, db1_60; 163 164 if( a00 > 0 ) 165 { 166 db1_2 = 0.5; 167 db1_6 = 0.16666666666666666666666666666667; 168 db1_12 = 0.083333333333333333333333333333333; 169 db1_24 = 0.041666666666666666666666666666667; 170 db1_20 = 0.05; 171 db1_60 = 0.016666666666666666666666666666667; 172 } 173 else 174 { 175 db1_2 = -0.5; 176 db1_6 = -0.16666666666666666666666666666667; 177 db1_12 = -0.083333333333333333333333333333333; 178 db1_24 = -0.041666666666666666666666666666667; 179 db1_20 = -0.05; 180 db1_60 = -0.016666666666666666666666666666667; 181 } 182 183 // spatial moments 184 m.m00 = a00 * db1_2; 185 m.m10 = a10 * db1_6; 186 m.m01 = a01 * db1_6; 187 m.m20 = a20 * db1_12; 188 m.m11 = a11 * db1_24; 189 m.m02 = a02 * db1_12; 190 m.m30 = a30 * db1_20; 191 m.m21 = a21 * db1_60; 192 m.m12 = a12 * db1_60; 193 m.m03 = a03 * db1_20; 194 195 completeMomentState( &m ); 196 } 197 return m; 198 } 199 200 201 /****************************************************************************************\ 202 * Spatial Raster Moments * 203 \****************************************************************************************/ 204 205 template<typename T, typename WT, typename MT> 206 struct MomentsInTile_SIMD 207 { 208 int operator() (const T *, int, WT &, WT &, WT &, MT &) 209 { 210 return 0; 211 } 212 }; 213 214 #if CV_SSE2 215 216 template <> 217 struct MomentsInTile_SIMD<uchar, int, int> 218 { 219 MomentsInTile_SIMD() 220 { 221 useSIMD = checkHardwareSupport(CV_CPU_SSE2); 222 } 223 224 int operator() (const uchar * ptr, int len, int & x0, int & x1, int & x2, int & x3) 225 { 226 int x = 0; 227 228 if( useSIMD ) 229 { 230 __m128i qx_init = _mm_setr_epi16(0, 1, 2, 3, 4, 5, 6, 7); 231 __m128i dx = _mm_set1_epi16(8); 232 __m128i z = _mm_setzero_si128(), qx0 = z, qx1 = z, qx2 = z, qx3 = z, qx = qx_init; 233 234 for( ; x <= len - 8; x += 8 ) 235 { 236 __m128i p = _mm_unpacklo_epi8(_mm_loadl_epi64((const __m128i*)(ptr + x)), z); 237 __m128i sx = _mm_mullo_epi16(qx, qx); 238 239 qx0 = _mm_add_epi32(qx0, _mm_sad_epu8(p, z)); 240 qx1 = _mm_add_epi32(qx1, _mm_madd_epi16(p, qx)); 241 qx2 = _mm_add_epi32(qx2, _mm_madd_epi16(p, sx)); 242 qx3 = _mm_add_epi32(qx3, _mm_madd_epi16( _mm_mullo_epi16(p, qx), sx)); 243 244 qx = _mm_add_epi16(qx, dx); 245 } 246 247 _mm_store_si128((__m128i*)buf, qx0); 248 x0 = buf[0] + buf[1] + buf[2] + buf[3]; 249 _mm_store_si128((__m128i*)buf, qx1); 250 x1 = buf[0] + buf[1] + buf[2] + buf[3]; 251 _mm_store_si128((__m128i*)buf, qx2); 252 x2 = buf[0] + buf[1] + buf[2] + buf[3]; 253 _mm_store_si128((__m128i*)buf, qx3); 254 x3 = buf[0] + buf[1] + buf[2] + buf[3]; 255 } 256 257 return x; 258 } 259 260 int CV_DECL_ALIGNED(16) buf[4]; 261 bool useSIMD; 262 }; 263 264 #elif CV_NEON 265 266 template <> 267 struct MomentsInTile_SIMD<uchar, int, int> 268 { 269 MomentsInTile_SIMD() 270 { 271 ushort CV_DECL_ALIGNED(8) init[4] = { 0, 1, 2, 3 }; 272 qx_init = vld1_u16(init); 273 v_step = vdup_n_u16(4); 274 } 275 276 int operator() (const uchar * ptr, int len, int & x0, int & x1, int & x2, int & x3) 277 { 278 int x = 0; 279 280 uint32x4_t v_z = vdupq_n_u32(0), v_x0 = v_z, v_x1 = v_z, 281 v_x2 = v_z, v_x3 = v_z; 282 uint16x4_t qx = qx_init; 283 284 for( ; x <= len - 8; x += 8 ) 285 { 286 uint16x8_t v_src = vmovl_u8(vld1_u8(ptr + x)); 287 288 // first part 289 uint32x4_t v_qx = vmovl_u16(qx); 290 uint16x4_t v_p = vget_low_u16(v_src); 291 uint32x4_t v_px = vmull_u16(qx, v_p); 292 293 v_x0 = vaddw_u16(v_x0, v_p); 294 v_x1 = vaddq_u32(v_x1, v_px); 295 v_px = vmulq_u32(v_px, v_qx); 296 v_x2 = vaddq_u32(v_x2, v_px); 297 v_x3 = vaddq_u32(v_x3, vmulq_u32(v_px, v_qx)); 298 qx = vadd_u16(qx, v_step); 299 300 // second part 301 v_qx = vmovl_u16(qx); 302 v_p = vget_high_u16(v_src); 303 v_px = vmull_u16(qx, v_p); 304 305 v_x0 = vaddw_u16(v_x0, v_p); 306 v_x1 = vaddq_u32(v_x1, v_px); 307 v_px = vmulq_u32(v_px, v_qx); 308 v_x2 = vaddq_u32(v_x2, v_px); 309 v_x3 = vaddq_u32(v_x3, vmulq_u32(v_px, v_qx)); 310 311 qx = vadd_u16(qx, v_step); 312 } 313 314 vst1q_u32(buf, v_x0); 315 x0 = buf[0] + buf[1] + buf[2] + buf[3]; 316 vst1q_u32(buf, v_x1); 317 x1 = buf[0] + buf[1] + buf[2] + buf[3]; 318 vst1q_u32(buf, v_x2); 319 x2 = buf[0] + buf[1] + buf[2] + buf[3]; 320 vst1q_u32(buf, v_x3); 321 x3 = buf[0] + buf[1] + buf[2] + buf[3]; 322 323 return x; 324 } 325 326 uint CV_DECL_ALIGNED(16) buf[4]; 327 uint16x4_t qx_init, v_step; 328 }; 329 330 #endif 331 332 #if CV_SSE4_1 333 334 template <> 335 struct MomentsInTile_SIMD<ushort, int, int64> 336 { 337 MomentsInTile_SIMD() 338 { 339 useSIMD = checkHardwareSupport(CV_CPU_SSE4_1); 340 } 341 342 int operator() (const ushort * ptr, int len, int & x0, int & x1, int & x2, int64 & x3) 343 { 344 int x = 0; 345 346 if (useSIMD) 347 { 348 __m128i vx_init0 = _mm_setr_epi32(0, 1, 2, 3), vx_init1 = _mm_setr_epi32(4, 5, 6, 7), 349 v_delta = _mm_set1_epi32(8), v_zero = _mm_setzero_si128(), v_x0 = v_zero, 350 v_x1 = v_zero, v_x2 = v_zero, v_x3 = v_zero, v_ix0 = vx_init0, v_ix1 = vx_init1; 351 352 for( ; x <= len - 8; x += 8 ) 353 { 354 __m128i v_src = _mm_loadu_si128((const __m128i *)(ptr + x)); 355 __m128i v_src0 = _mm_unpacklo_epi16(v_src, v_zero), v_src1 = _mm_unpackhi_epi16(v_src, v_zero); 356 357 v_x0 = _mm_add_epi32(v_x0, _mm_add_epi32(v_src0, v_src1)); 358 __m128i v_x1_0 = _mm_mullo_epi32(v_src0, v_ix0), v_x1_1 = _mm_mullo_epi32(v_src1, v_ix1); 359 v_x1 = _mm_add_epi32(v_x1, _mm_add_epi32(v_x1_0, v_x1_1)); 360 361 __m128i v_2ix0 = _mm_mullo_epi32(v_ix0, v_ix0), v_2ix1 = _mm_mullo_epi32(v_ix1, v_ix1); 362 v_x2 = _mm_add_epi32(v_x2, _mm_add_epi32(_mm_mullo_epi32(v_2ix0, v_src0), _mm_mullo_epi32(v_2ix1, v_src1))); 363 364 __m128i t = _mm_add_epi32(_mm_mullo_epi32(v_2ix0, v_x1_0), _mm_mullo_epi32(v_2ix1, v_x1_1)); 365 v_x3 = _mm_add_epi64(v_x3, _mm_add_epi64(_mm_unpacklo_epi32(t, v_zero), _mm_unpackhi_epi32(t, v_zero))); 366 367 v_ix0 = _mm_add_epi32(v_ix0, v_delta); 368 v_ix1 = _mm_add_epi32(v_ix1, v_delta); 369 } 370 371 _mm_store_si128((__m128i*)buf, v_x0); 372 x0 = buf[0] + buf[1] + buf[2] + buf[3]; 373 _mm_store_si128((__m128i*)buf, v_x1); 374 x1 = buf[0] + buf[1] + buf[2] + buf[3]; 375 _mm_store_si128((__m128i*)buf, v_x2); 376 x2 = buf[0] + buf[1] + buf[2] + buf[3]; 377 378 _mm_store_si128((__m128i*)buf64, v_x3); 379 x3 = buf64[0] + buf64[1]; 380 } 381 382 return x; 383 } 384 385 int CV_DECL_ALIGNED(16) buf[4]; 386 int64 CV_DECL_ALIGNED(16) buf64[2]; 387 bool useSIMD; 388 }; 389 390 #endif 391 392 template<typename T, typename WT, typename MT> 393 #if defined __GNUC__ && __GNUC__ == 4 && __GNUC_MINOR__ >= 5 && __GNUC_MINOR__ < 9 394 // Workaround for http://gcc.gnu.org/bugzilla/show_bug.cgi?id=60196 395 __attribute__((optimize("no-tree-vectorize"))) 396 #endif 397 static void momentsInTile( const Mat& img, double* moments ) 398 { 399 Size size = img.size(); 400 int x, y; 401 MT mom[10] = {0,0,0,0,0,0,0,0,0,0}; 402 MomentsInTile_SIMD<T, WT, MT> vop; 403 404 for( y = 0; y < size.height; y++ ) 405 { 406 const T* ptr = img.ptr<T>(y); 407 WT x0 = 0, x1 = 0, x2 = 0; 408 MT x3 = 0; 409 x = vop(ptr, size.width, x0, x1, x2, x3); 410 411 for( ; x < size.width; x++ ) 412 { 413 WT p = ptr[x]; 414 WT xp = x * p, xxp; 415 416 x0 += p; 417 x1 += xp; 418 xxp = xp * x; 419 x2 += xxp; 420 x3 += xxp * x; 421 } 422 423 WT py = y * x0, sy = y*y; 424 425 mom[9] += ((MT)py) * sy; // m03 426 mom[8] += ((MT)x1) * sy; // m12 427 mom[7] += ((MT)x2) * y; // m21 428 mom[6] += x3; // m30 429 mom[5] += x0 * sy; // m02 430 mom[4] += x1 * y; // m11 431 mom[3] += x2; // m20 432 mom[2] += py; // m01 433 mom[1] += x1; // m10 434 mom[0] += x0; // m00 435 } 436 437 for( x = 0; x < 10; x++ ) 438 moments[x] = (double)mom[x]; 439 } 440 441 typedef void (*MomentsInTileFunc)(const Mat& img, double* moments); 442 443 Moments::Moments() 444 { 445 m00 = m10 = m01 = m20 = m11 = m02 = m30 = m21 = m12 = m03 = 446 mu20 = mu11 = mu02 = mu30 = mu21 = mu12 = mu03 = 447 nu20 = nu11 = nu02 = nu30 = nu21 = nu12 = nu03 = 0.; 448 } 449 450 Moments::Moments( double _m00, double _m10, double _m01, double _m20, double _m11, 451 double _m02, double _m30, double _m21, double _m12, double _m03 ) 452 { 453 m00 = _m00; m10 = _m10; m01 = _m01; 454 m20 = _m20; m11 = _m11; m02 = _m02; 455 m30 = _m30; m21 = _m21; m12 = _m12; m03 = _m03; 456 457 double cx = 0, cy = 0, inv_m00 = 0; 458 if( std::abs(m00) > DBL_EPSILON ) 459 { 460 inv_m00 = 1./m00; 461 cx = m10*inv_m00; cy = m01*inv_m00; 462 } 463 464 mu20 = m20 - m10*cx; 465 mu11 = m11 - m10*cy; 466 mu02 = m02 - m01*cy; 467 468 mu30 = m30 - cx*(3*mu20 + cx*m10); 469 mu21 = m21 - cx*(2*mu11 + cx*m01) - cy*mu20; 470 mu12 = m12 - cy*(2*mu11 + cy*m10) - cx*mu02; 471 mu03 = m03 - cy*(3*mu02 + cy*m01); 472 473 double inv_sqrt_m00 = std::sqrt(std::abs(inv_m00)); 474 double s2 = inv_m00*inv_m00, s3 = s2*inv_sqrt_m00; 475 476 nu20 = mu20*s2; nu11 = mu11*s2; nu02 = mu02*s2; 477 nu30 = mu30*s3; nu21 = mu21*s3; nu12 = mu12*s3; nu03 = mu03*s3; 478 } 479 480 #ifdef HAVE_OPENCL 481 482 static bool ocl_moments( InputArray _src, Moments& m, bool binary) 483 { 484 const int TILE_SIZE = 32; 485 const int K = 10; 486 487 ocl::Kernel k = ocl::Kernel("moments", ocl::imgproc::moments_oclsrc, 488 format("-D TILE_SIZE=%d%s", 489 TILE_SIZE, 490 binary ? " -D OP_MOMENTS_BINARY" : "")); 491 492 if( k.empty() ) 493 return false; 494 495 UMat src = _src.getUMat(); 496 Size sz = src.size(); 497 int xtiles = (sz.width + TILE_SIZE-1)/TILE_SIZE; 498 int ytiles = (sz.height + TILE_SIZE-1)/TILE_SIZE; 499 int ntiles = xtiles*ytiles; 500 UMat umbuf(1, ntiles*K, CV_32S); 501 502 size_t globalsize[] = {xtiles, sz.height}, localsize[] = {1, TILE_SIZE}; 503 bool ok = k.args(ocl::KernelArg::ReadOnly(src), 504 ocl::KernelArg::PtrWriteOnly(umbuf), 505 xtiles).run(2, globalsize, localsize, true); 506 if(!ok) 507 return false; 508 Mat mbuf = umbuf.getMat(ACCESS_READ); 509 for( int i = 0; i < ntiles; i++ ) 510 { 511 double x = (i % xtiles)*TILE_SIZE, y = (i / xtiles)*TILE_SIZE; 512 const int* mom = mbuf.ptr<int>() + i*K; 513 double xm = x * mom[0], ym = y * mom[0]; 514 515 // accumulate moments computed in each tile 516 517 // + m00 ( = m00' ) 518 m.m00 += mom[0]; 519 520 // + m10 ( = m10' + x*m00' ) 521 m.m10 += mom[1] + xm; 522 523 // + m01 ( = m01' + y*m00' ) 524 m.m01 += mom[2] + ym; 525 526 // + m20 ( = m20' + 2*x*m10' + x*x*m00' ) 527 m.m20 += mom[3] + x * (mom[1] * 2 + xm); 528 529 // + m11 ( = m11' + x*m01' + y*m10' + x*y*m00' ) 530 m.m11 += mom[4] + x * (mom[2] + ym) + y * mom[1]; 531 532 // + m02 ( = m02' + 2*y*m01' + y*y*m00' ) 533 m.m02 += mom[5] + y * (mom[2] * 2 + ym); 534 535 // + m30 ( = m30' + 3*x*m20' + 3*x*x*m10' + x*x*x*m00' ) 536 m.m30 += mom[6] + x * (3. * mom[3] + x * (3. * mom[1] + xm)); 537 538 // + m21 ( = m21' + x*(2*m11' + 2*y*m10' + x*m01' + x*y*m00') + y*m20') 539 m.m21 += mom[7] + x * (2 * (mom[4] + y * mom[1]) + x * (mom[2] + ym)) + y * mom[3]; 540 541 // + m12 ( = m12' + y*(2*m11' + 2*x*m01' + y*m10' + x*y*m00') + x*m02') 542 m.m12 += mom[8] + y * (2 * (mom[4] + x * mom[2]) + y * (mom[1] + xm)) + x * mom[5]; 543 544 // + m03 ( = m03' + 3*y*m02' + 3*y*y*m01' + y*y*y*m00' ) 545 m.m03 += mom[9] + y * (3. * mom[5] + y * (3. * mom[2] + ym)); 546 } 547 548 return true; 549 } 550 551 #endif 552 553 } 554 555 556 cv::Moments cv::moments( InputArray _src, bool binary ) 557 { 558 const int TILE_SIZE = 32; 559 MomentsInTileFunc func = 0; 560 uchar nzbuf[TILE_SIZE*TILE_SIZE]; 561 Moments m; 562 int type = _src.type(), depth = CV_MAT_DEPTH(type), cn = CV_MAT_CN(type); 563 Size size = _src.size(); 564 565 if( size.width <= 0 || size.height <= 0 ) 566 return m; 567 568 #ifdef HAVE_OPENCL 569 if( !(ocl::useOpenCL() && type == CV_8UC1 && 570 _src.isUMat() && ocl_moments(_src, m, binary)) ) 571 #endif 572 { 573 Mat mat = _src.getMat(); 574 if( mat.checkVector(2) >= 0 && (depth == CV_32F || depth == CV_32S)) 575 return contourMoments(mat); 576 577 if( cn > 1 ) 578 CV_Error( CV_StsBadArg, "Invalid image type (must be single-channel)" ); 579 580 #if IPP_VERSION_X100 >= 801 && 0 581 CV_IPP_CHECK() 582 { 583 if (!binary) 584 { 585 IppiSize roi = { mat.cols, mat.rows }; 586 IppiMomentState_64f * moment = NULL; 587 // ippiMomentInitAlloc_64f, ippiMomentFree_64f are deprecated in 8.1, but there are not another way 588 // to initialize IppiMomentState_64f. When GetStateSize and Init functions will appear we have to 589 // change our code. 590 CV_SUPPRESS_DEPRECATED_START 591 if (ippiMomentInitAlloc_64f(&moment, ippAlgHintAccurate) >= 0) 592 { 593 typedef IppStatus (CV_STDCALL * ippiMoments)(const void * pSrc, int srcStep, IppiSize roiSize, IppiMomentState_64f* pCtx); 594 ippiMoments ippFunc = 595 type == CV_8UC1 ? (ippiMoments)ippiMoments64f_8u_C1R : 596 type == CV_16UC1 ? (ippiMoments)ippiMoments64f_16u_C1R : 597 type == CV_32FC1? (ippiMoments)ippiMoments64f_32f_C1R : 0; 598 599 if (ippFunc) 600 { 601 if (ippFunc(mat.data, (int)mat.step, roi, moment) >= 0) 602 { 603 IppiPoint point = { 0, 0 }; 604 ippiGetSpatialMoment_64f(moment, 0, 0, 0, point, &m.m00); 605 ippiGetSpatialMoment_64f(moment, 1, 0, 0, point, &m.m10); 606 ippiGetSpatialMoment_64f(moment, 0, 1, 0, point, &m.m01); 607 608 ippiGetSpatialMoment_64f(moment, 2, 0, 0, point, &m.m20); 609 ippiGetSpatialMoment_64f(moment, 1, 1, 0, point, &m.m11); 610 ippiGetSpatialMoment_64f(moment, 0, 2, 0, point, &m.m02); 611 612 ippiGetSpatialMoment_64f(moment, 3, 0, 0, point, &m.m30); 613 ippiGetSpatialMoment_64f(moment, 2, 1, 0, point, &m.m21); 614 ippiGetSpatialMoment_64f(moment, 1, 2, 0, point, &m.m12); 615 ippiGetSpatialMoment_64f(moment, 0, 3, 0, point, &m.m03); 616 ippiGetCentralMoment_64f(moment, 2, 0, 0, &m.mu20); 617 ippiGetCentralMoment_64f(moment, 1, 1, 0, &m.mu11); 618 ippiGetCentralMoment_64f(moment, 0, 2, 0, &m.mu02); 619 ippiGetCentralMoment_64f(moment, 3, 0, 0, &m.mu30); 620 ippiGetCentralMoment_64f(moment, 2, 1, 0, &m.mu21); 621 ippiGetCentralMoment_64f(moment, 1, 2, 0, &m.mu12); 622 ippiGetCentralMoment_64f(moment, 0, 3, 0, &m.mu03); 623 ippiGetNormalizedCentralMoment_64f(moment, 2, 0, 0, &m.nu20); 624 ippiGetNormalizedCentralMoment_64f(moment, 1, 1, 0, &m.nu11); 625 ippiGetNormalizedCentralMoment_64f(moment, 0, 2, 0, &m.nu02); 626 ippiGetNormalizedCentralMoment_64f(moment, 3, 0, 0, &m.nu30); 627 ippiGetNormalizedCentralMoment_64f(moment, 2, 1, 0, &m.nu21); 628 ippiGetNormalizedCentralMoment_64f(moment, 1, 2, 0, &m.nu12); 629 ippiGetNormalizedCentralMoment_64f(moment, 0, 3, 0, &m.nu03); 630 631 ippiMomentFree_64f(moment); 632 CV_IMPL_ADD(CV_IMPL_IPP); 633 return m; 634 } 635 setIppErrorStatus(); 636 } 637 ippiMomentFree_64f(moment); 638 } 639 else 640 setIppErrorStatus(); 641 CV_SUPPRESS_DEPRECATED_END 642 } 643 } 644 #endif 645 646 if( binary || depth == CV_8U ) 647 func = momentsInTile<uchar, int, int>; 648 else if( depth == CV_16U ) 649 func = momentsInTile<ushort, int, int64>; 650 else if( depth == CV_16S ) 651 func = momentsInTile<short, int, int64>; 652 else if( depth == CV_32F ) 653 func = momentsInTile<float, double, double>; 654 else if( depth == CV_64F ) 655 func = momentsInTile<double, double, double>; 656 else 657 CV_Error( CV_StsUnsupportedFormat, "" ); 658 659 Mat src0(mat); 660 661 for( int y = 0; y < size.height; y += TILE_SIZE ) 662 { 663 Size tileSize; 664 tileSize.height = std::min(TILE_SIZE, size.height - y); 665 666 for( int x = 0; x < size.width; x += TILE_SIZE ) 667 { 668 tileSize.width = std::min(TILE_SIZE, size.width - x); 669 Mat src(src0, cv::Rect(x, y, tileSize.width, tileSize.height)); 670 671 if( binary ) 672 { 673 cv::Mat tmp(tileSize, CV_8U, nzbuf); 674 cv::compare( src, 0, tmp, CV_CMP_NE ); 675 src = tmp; 676 } 677 678 double mom[10]; 679 func( src, mom ); 680 681 if(binary) 682 { 683 double s = 1./255; 684 for( int k = 0; k < 10; k++ ) 685 mom[k] *= s; 686 } 687 688 double xm = x * mom[0], ym = y * mom[0]; 689 690 // accumulate moments computed in each tile 691 692 // + m00 ( = m00' ) 693 m.m00 += mom[0]; 694 695 // + m10 ( = m10' + x*m00' ) 696 m.m10 += mom[1] + xm; 697 698 // + m01 ( = m01' + y*m00' ) 699 m.m01 += mom[2] + ym; 700 701 // + m20 ( = m20' + 2*x*m10' + x*x*m00' ) 702 m.m20 += mom[3] + x * (mom[1] * 2 + xm); 703 704 // + m11 ( = m11' + x*m01' + y*m10' + x*y*m00' ) 705 m.m11 += mom[4] + x * (mom[2] + ym) + y * mom[1]; 706 707 // + m02 ( = m02' + 2*y*m01' + y*y*m00' ) 708 m.m02 += mom[5] + y * (mom[2] * 2 + ym); 709 710 // + m30 ( = m30' + 3*x*m20' + 3*x*x*m10' + x*x*x*m00' ) 711 m.m30 += mom[6] + x * (3. * mom[3] + x * (3. * mom[1] + xm)); 712 713 // + m21 ( = m21' + x*(2*m11' + 2*y*m10' + x*m01' + x*y*m00') + y*m20') 714 m.m21 += mom[7] + x * (2 * (mom[4] + y * mom[1]) + x * (mom[2] + ym)) + y * mom[3]; 715 716 // + m12 ( = m12' + y*(2*m11' + 2*x*m01' + y*m10' + x*y*m00') + x*m02') 717 m.m12 += mom[8] + y * (2 * (mom[4] + x * mom[2]) + y * (mom[1] + xm)) + x * mom[5]; 718 719 // + m03 ( = m03' + 3*y*m02' + 3*y*y*m01' + y*y*y*m00' ) 720 m.m03 += mom[9] + y * (3. * mom[5] + y * (3. * mom[2] + ym)); 721 } 722 } 723 } 724 725 completeMomentState( &m ); 726 return m; 727 } 728 729 730 void cv::HuMoments( const Moments& m, double hu[7] ) 731 { 732 double t0 = m.nu30 + m.nu12; 733 double t1 = m.nu21 + m.nu03; 734 735 double q0 = t0 * t0, q1 = t1 * t1; 736 737 double n4 = 4 * m.nu11; 738 double s = m.nu20 + m.nu02; 739 double d = m.nu20 - m.nu02; 740 741 hu[0] = s; 742 hu[1] = d * d + n4 * m.nu11; 743 hu[3] = q0 + q1; 744 hu[5] = d * (q0 - q1) + n4 * t0 * t1; 745 746 t0 *= q0 - 3 * q1; 747 t1 *= 3 * q0 - q1; 748 749 q0 = m.nu30 - 3 * m.nu12; 750 q1 = 3 * m.nu21 - m.nu03; 751 752 hu[2] = q0 * q0 + q1 * q1; 753 hu[4] = q0 * t0 + q1 * t1; 754 hu[6] = q1 * t0 - q0 * t1; 755 } 756 757 void cv::HuMoments( const Moments& m, OutputArray _hu ) 758 { 759 _hu.create(7, 1, CV_64F); 760 Mat hu = _hu.getMat(); 761 CV_Assert( hu.isContinuous() ); 762 HuMoments(m, hu.ptr<double>()); 763 } 764 765 766 CV_IMPL void cvMoments( const CvArr* arr, CvMoments* moments, int binary ) 767 { 768 const IplImage* img = (const IplImage*)arr; 769 cv::Mat src; 770 if( CV_IS_IMAGE(arr) && img->roi && img->roi->coi > 0 ) 771 cv::extractImageCOI(arr, src, img->roi->coi-1); 772 else 773 src = cv::cvarrToMat(arr); 774 cv::Moments m = cv::moments(src, binary != 0); 775 CV_Assert( moments != 0 ); 776 *moments = m; 777 } 778 779 780 CV_IMPL double cvGetSpatialMoment( CvMoments * moments, int x_order, int y_order ) 781 { 782 int order = x_order + y_order; 783 784 if( !moments ) 785 CV_Error( CV_StsNullPtr, "" ); 786 if( (x_order | y_order) < 0 || order > 3 ) 787 CV_Error( CV_StsOutOfRange, "" ); 788 789 return (&(moments->m00))[order + (order >> 1) + (order > 2) * 2 + y_order]; 790 } 791 792 793 CV_IMPL double cvGetCentralMoment( CvMoments * moments, int x_order, int y_order ) 794 { 795 int order = x_order + y_order; 796 797 if( !moments ) 798 CV_Error( CV_StsNullPtr, "" ); 799 if( (x_order | y_order) < 0 || order > 3 ) 800 CV_Error( CV_StsOutOfRange, "" ); 801 802 return order >= 2 ? (&(moments->m00))[4 + order * 3 + y_order] : 803 order == 0 ? moments->m00 : 0; 804 } 805 806 807 CV_IMPL double cvGetNormalizedCentralMoment( CvMoments * moments, int x_order, int y_order ) 808 { 809 int order = x_order + y_order; 810 811 double mu = cvGetCentralMoment( moments, x_order, y_order ); 812 double m00s = moments->inv_sqrt_m00; 813 814 while( --order >= 0 ) 815 mu *= m00s; 816 return mu * m00s * m00s; 817 } 818 819 820 CV_IMPL void cvGetHuMoments( CvMoments * mState, CvHuMoments * HuState ) 821 { 822 if( !mState || !HuState ) 823 CV_Error( CV_StsNullPtr, "" ); 824 825 double m00s = mState->inv_sqrt_m00, m00 = m00s * m00s, s2 = m00 * m00, s3 = s2 * m00s; 826 827 double nu20 = mState->mu20 * s2, 828 nu11 = mState->mu11 * s2, 829 nu02 = mState->mu02 * s2, 830 nu30 = mState->mu30 * s3, 831 nu21 = mState->mu21 * s3, nu12 = mState->mu12 * s3, nu03 = mState->mu03 * s3; 832 833 double t0 = nu30 + nu12; 834 double t1 = nu21 + nu03; 835 836 double q0 = t0 * t0, q1 = t1 * t1; 837 838 double n4 = 4 * nu11; 839 double s = nu20 + nu02; 840 double d = nu20 - nu02; 841 842 HuState->hu1 = s; 843 HuState->hu2 = d * d + n4 * nu11; 844 HuState->hu4 = q0 + q1; 845 HuState->hu6 = d * (q0 - q1) + n4 * t0 * t1; 846 847 t0 *= q0 - 3 * q1; 848 t1 *= 3 * q0 - q1; 849 850 q0 = nu30 - 3 * nu12; 851 q1 = 3 * nu21 - nu03; 852 853 HuState->hu3 = q0 * q0 + q1 * q1; 854 HuState->hu5 = q0 * t0 + q1 * t1; 855 HuState->hu7 = q1 * t0 - q0 * t1; 856 } 857 858 859 /* End of file. */ 860