Home | History | Annotate | Download | only in Scalar
      1 //===- LoopLoadElimination.cpp - Loop Load Elimination Pass ---------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implement a loop-aware load elimination pass.
     11 //
     12 // It uses LoopAccessAnalysis to identify loop-carried dependences with a
     13 // distance of one between stores and loads.  These form the candidates for the
     14 // transformation.  The source value of each store then propagated to the user
     15 // of the corresponding load.  This makes the load dead.
     16 //
     17 // The pass can also version the loop and add memchecks in order to prove that
     18 // may-aliasing stores can't change the value in memory before it's read by the
     19 // load.
     20 //
     21 //===----------------------------------------------------------------------===//
     22 
     23 #include "llvm/ADT/Statistic.h"
     24 #include "llvm/Analysis/LoopAccessAnalysis.h"
     25 #include "llvm/Analysis/LoopInfo.h"
     26 #include "llvm/Analysis/ScalarEvolutionExpander.h"
     27 #include "llvm/IR/Dominators.h"
     28 #include "llvm/IR/Module.h"
     29 #include "llvm/Pass.h"
     30 #include "llvm/Support/Debug.h"
     31 #include "llvm/Transforms/Utils/LoopVersioning.h"
     32 #include <forward_list>
     33 
     34 #define LLE_OPTION "loop-load-elim"
     35 #define DEBUG_TYPE LLE_OPTION
     36 
     37 using namespace llvm;
     38 
     39 static cl::opt<unsigned> CheckPerElim(
     40     "runtime-check-per-loop-load-elim", cl::Hidden,
     41     cl::desc("Max number of memchecks allowed per eliminated load on average"),
     42     cl::init(1));
     43 
     44 static cl::opt<unsigned> LoadElimSCEVCheckThreshold(
     45     "loop-load-elimination-scev-check-threshold", cl::init(8), cl::Hidden,
     46     cl::desc("The maximum number of SCEV checks allowed for Loop "
     47              "Load Elimination"));
     48 
     49 
     50 STATISTIC(NumLoopLoadEliminted, "Number of loads eliminated by LLE");
     51 
     52 namespace {
     53 
     54 /// \brief Represent a store-to-forwarding candidate.
     55 struct StoreToLoadForwardingCandidate {
     56   LoadInst *Load;
     57   StoreInst *Store;
     58 
     59   StoreToLoadForwardingCandidate(LoadInst *Load, StoreInst *Store)
     60       : Load(Load), Store(Store) {}
     61 
     62   /// \brief Return true if the dependence from the store to the load has a
     63   /// distance of one.  E.g. A[i+1] = A[i]
     64   bool isDependenceDistanceOfOne(PredicatedScalarEvolution &PSE) const {
     65     Value *LoadPtr = Load->getPointerOperand();
     66     Value *StorePtr = Store->getPointerOperand();
     67     Type *LoadPtrType = LoadPtr->getType();
     68     Type *LoadType = LoadPtrType->getPointerElementType();
     69 
     70     assert(LoadPtrType->getPointerAddressSpace() ==
     71                StorePtr->getType()->getPointerAddressSpace() &&
     72            LoadType == StorePtr->getType()->getPointerElementType() &&
     73            "Should be a known dependence");
     74 
     75     auto &DL = Load->getParent()->getModule()->getDataLayout();
     76     unsigned TypeByteSize = DL.getTypeAllocSize(const_cast<Type *>(LoadType));
     77 
     78     auto *LoadPtrSCEV = cast<SCEVAddRecExpr>(PSE.getSCEV(LoadPtr));
     79     auto *StorePtrSCEV = cast<SCEVAddRecExpr>(PSE.getSCEV(StorePtr));
     80 
     81     // We don't need to check non-wrapping here because forward/backward
     82     // dependence wouldn't be valid if these weren't monotonic accesses.
     83     auto *Dist = cast<SCEVConstant>(
     84         PSE.getSE()->getMinusSCEV(StorePtrSCEV, LoadPtrSCEV));
     85     const APInt &Val = Dist->getAPInt();
     86     return Val.abs() == TypeByteSize;
     87   }
     88 
     89   Value *getLoadPtr() const { return Load->getPointerOperand(); }
     90 
     91 #ifndef NDEBUG
     92   friend raw_ostream &operator<<(raw_ostream &OS,
     93                                  const StoreToLoadForwardingCandidate &Cand) {
     94     OS << *Cand.Store << " -->\n";
     95     OS.indent(2) << *Cand.Load << "\n";
     96     return OS;
     97   }
     98 #endif
     99 };
    100 
    101 /// \brief Check if the store dominates all latches, so as long as there is no
    102 /// intervening store this value will be loaded in the next iteration.
    103 bool doesStoreDominatesAllLatches(BasicBlock *StoreBlock, Loop *L,
    104                                   DominatorTree *DT) {
    105   SmallVector<BasicBlock *, 8> Latches;
    106   L->getLoopLatches(Latches);
    107   return std::all_of(Latches.begin(), Latches.end(),
    108                      [&](const BasicBlock *Latch) {
    109                        return DT->dominates(StoreBlock, Latch);
    110                      });
    111 }
    112 
    113 /// \brief The per-loop class that does most of the work.
    114 class LoadEliminationForLoop {
    115 public:
    116   LoadEliminationForLoop(Loop *L, LoopInfo *LI, const LoopAccessInfo &LAI,
    117                          DominatorTree *DT)
    118       : L(L), LI(LI), LAI(LAI), DT(DT), PSE(LAI.PSE) {}
    119 
    120   /// \brief Look through the loop-carried and loop-independent dependences in
    121   /// this loop and find store->load dependences.
    122   ///
    123   /// Note that no candidate is returned if LAA has failed to analyze the loop
    124   /// (e.g. if it's not bottom-tested, contains volatile memops, etc.)
    125   std::forward_list<StoreToLoadForwardingCandidate>
    126   findStoreToLoadDependences(const LoopAccessInfo &LAI) {
    127     std::forward_list<StoreToLoadForwardingCandidate> Candidates;
    128 
    129     const auto *Deps = LAI.getDepChecker().getDependences();
    130     if (!Deps)
    131       return Candidates;
    132 
    133     // Find store->load dependences (consequently true dep).  Both lexically
    134     // forward and backward dependences qualify.  Disqualify loads that have
    135     // other unknown dependences.
    136 
    137     SmallSet<Instruction *, 4> LoadsWithUnknownDepedence;
    138 
    139     for (const auto &Dep : *Deps) {
    140       Instruction *Source = Dep.getSource(LAI);
    141       Instruction *Destination = Dep.getDestination(LAI);
    142 
    143       if (Dep.Type == MemoryDepChecker::Dependence::Unknown) {
    144         if (isa<LoadInst>(Source))
    145           LoadsWithUnknownDepedence.insert(Source);
    146         if (isa<LoadInst>(Destination))
    147           LoadsWithUnknownDepedence.insert(Destination);
    148         continue;
    149       }
    150 
    151       if (Dep.isBackward())
    152         // Note that the designations source and destination follow the program
    153         // order, i.e. source is always first.  (The direction is given by the
    154         // DepType.)
    155         std::swap(Source, Destination);
    156       else
    157         assert(Dep.isForward() && "Needs to be a forward dependence");
    158 
    159       auto *Store = dyn_cast<StoreInst>(Source);
    160       if (!Store)
    161         continue;
    162       auto *Load = dyn_cast<LoadInst>(Destination);
    163       if (!Load)
    164         continue;
    165       Candidates.emplace_front(Load, Store);
    166     }
    167 
    168     if (!LoadsWithUnknownDepedence.empty())
    169       Candidates.remove_if([&](const StoreToLoadForwardingCandidate &C) {
    170         return LoadsWithUnknownDepedence.count(C.Load);
    171       });
    172 
    173     return Candidates;
    174   }
    175 
    176   /// \brief Return the index of the instruction according to program order.
    177   unsigned getInstrIndex(Instruction *Inst) {
    178     auto I = InstOrder.find(Inst);
    179     assert(I != InstOrder.end() && "No index for instruction");
    180     return I->second;
    181   }
    182 
    183   /// \brief If a load has multiple candidates associated (i.e. different
    184   /// stores), it means that it could be forwarding from multiple stores
    185   /// depending on control flow.  Remove these candidates.
    186   ///
    187   /// Here, we rely on LAA to include the relevant loop-independent dependences.
    188   /// LAA is known to omit these in the very simple case when the read and the
    189   /// write within an alias set always takes place using the *same* pointer.
    190   ///
    191   /// However, we know that this is not the case here, i.e. we can rely on LAA
    192   /// to provide us with loop-independent dependences for the cases we're
    193   /// interested.  Consider the case for example where a loop-independent
    194   /// dependece S1->S2 invalidates the forwarding S3->S2.
    195   ///
    196   ///         A[i]   = ...   (S1)
    197   ///         ...    = A[i]  (S2)
    198   ///         A[i+1] = ...   (S3)
    199   ///
    200   /// LAA will perform dependence analysis here because there are two
    201   /// *different* pointers involved in the same alias set (&A[i] and &A[i+1]).
    202   void removeDependencesFromMultipleStores(
    203       std::forward_list<StoreToLoadForwardingCandidate> &Candidates) {
    204     // If Store is nullptr it means that we have multiple stores forwarding to
    205     // this store.
    206     typedef DenseMap<LoadInst *, const StoreToLoadForwardingCandidate *>
    207         LoadToSingleCandT;
    208     LoadToSingleCandT LoadToSingleCand;
    209 
    210     for (const auto &Cand : Candidates) {
    211       bool NewElt;
    212       LoadToSingleCandT::iterator Iter;
    213 
    214       std::tie(Iter, NewElt) =
    215           LoadToSingleCand.insert(std::make_pair(Cand.Load, &Cand));
    216       if (!NewElt) {
    217         const StoreToLoadForwardingCandidate *&OtherCand = Iter->second;
    218         // Already multiple stores forward to this load.
    219         if (OtherCand == nullptr)
    220           continue;
    221 
    222         // Handle the very basic of case when the two stores are in the same
    223         // block so deciding which one forwards is easy.  The later one forwards
    224         // as long as they both have a dependence distance of one to the load.
    225         if (Cand.Store->getParent() == OtherCand->Store->getParent() &&
    226             Cand.isDependenceDistanceOfOne(PSE) &&
    227             OtherCand->isDependenceDistanceOfOne(PSE)) {
    228           // They are in the same block, the later one will forward to the load.
    229           if (getInstrIndex(OtherCand->Store) < getInstrIndex(Cand.Store))
    230             OtherCand = &Cand;
    231         } else
    232           OtherCand = nullptr;
    233       }
    234     }
    235 
    236     Candidates.remove_if([&](const StoreToLoadForwardingCandidate &Cand) {
    237       if (LoadToSingleCand[Cand.Load] != &Cand) {
    238         DEBUG(dbgs() << "Removing from candidates: \n" << Cand
    239                      << "  The load may have multiple stores forwarding to "
    240                      << "it\n");
    241         return true;
    242       }
    243       return false;
    244     });
    245   }
    246 
    247   /// \brief Given two pointers operations by their RuntimePointerChecking
    248   /// indices, return true if they require an alias check.
    249   ///
    250   /// We need a check if one is a pointer for a candidate load and the other is
    251   /// a pointer for a possibly intervening store.
    252   bool needsChecking(unsigned PtrIdx1, unsigned PtrIdx2,
    253                      const SmallSet<Value *, 4> &PtrsWrittenOnFwdingPath,
    254                      const std::set<Value *> &CandLoadPtrs) {
    255     Value *Ptr1 =
    256         LAI.getRuntimePointerChecking()->getPointerInfo(PtrIdx1).PointerValue;
    257     Value *Ptr2 =
    258         LAI.getRuntimePointerChecking()->getPointerInfo(PtrIdx2).PointerValue;
    259     return ((PtrsWrittenOnFwdingPath.count(Ptr1) && CandLoadPtrs.count(Ptr2)) ||
    260             (PtrsWrittenOnFwdingPath.count(Ptr2) && CandLoadPtrs.count(Ptr1)));
    261   }
    262 
    263   /// \brief Return pointers that are possibly written to on the path from a
    264   /// forwarding store to a load.
    265   ///
    266   /// These pointers need to be alias-checked against the forwarding candidates.
    267   SmallSet<Value *, 4> findPointersWrittenOnForwardingPath(
    268       const SmallVectorImpl<StoreToLoadForwardingCandidate> &Candidates) {
    269     // From FirstStore to LastLoad neither of the elimination candidate loads
    270     // should overlap with any of the stores.
    271     //
    272     // E.g.:
    273     //
    274     // st1 C[i]
    275     // ld1 B[i] <-------,
    276     // ld0 A[i] <----,  |              * LastLoad
    277     // ...           |  |
    278     // st2 E[i]      |  |
    279     // st3 B[i+1] -- | -'              * FirstStore
    280     // st0 A[i+1] ---'
    281     // st4 D[i]
    282     //
    283     // st0 forwards to ld0 if the accesses in st4 and st1 don't overlap with
    284     // ld0.
    285 
    286     LoadInst *LastLoad =
    287         std::max_element(Candidates.begin(), Candidates.end(),
    288                          [&](const StoreToLoadForwardingCandidate &A,
    289                              const StoreToLoadForwardingCandidate &B) {
    290                            return getInstrIndex(A.Load) < getInstrIndex(B.Load);
    291                          })
    292             ->Load;
    293     StoreInst *FirstStore =
    294         std::min_element(Candidates.begin(), Candidates.end(),
    295                          [&](const StoreToLoadForwardingCandidate &A,
    296                              const StoreToLoadForwardingCandidate &B) {
    297                            return getInstrIndex(A.Store) <
    298                                   getInstrIndex(B.Store);
    299                          })
    300             ->Store;
    301 
    302     // We're looking for stores after the first forwarding store until the end
    303     // of the loop, then from the beginning of the loop until the last
    304     // forwarded-to load.  Collect the pointer for the stores.
    305     SmallSet<Value *, 4> PtrsWrittenOnFwdingPath;
    306 
    307     auto InsertStorePtr = [&](Instruction *I) {
    308       if (auto *S = dyn_cast<StoreInst>(I))
    309         PtrsWrittenOnFwdingPath.insert(S->getPointerOperand());
    310     };
    311     const auto &MemInstrs = LAI.getDepChecker().getMemoryInstructions();
    312     std::for_each(MemInstrs.begin() + getInstrIndex(FirstStore) + 1,
    313                   MemInstrs.end(), InsertStorePtr);
    314     std::for_each(MemInstrs.begin(), &MemInstrs[getInstrIndex(LastLoad)],
    315                   InsertStorePtr);
    316 
    317     return PtrsWrittenOnFwdingPath;
    318   }
    319 
    320   /// \brief Determine the pointer alias checks to prove that there are no
    321   /// intervening stores.
    322   SmallVector<RuntimePointerChecking::PointerCheck, 4> collectMemchecks(
    323       const SmallVectorImpl<StoreToLoadForwardingCandidate> &Candidates) {
    324 
    325     SmallSet<Value *, 4> PtrsWrittenOnFwdingPath =
    326         findPointersWrittenOnForwardingPath(Candidates);
    327 
    328     // Collect the pointers of the candidate loads.
    329     // FIXME: SmallSet does not work with std::inserter.
    330     std::set<Value *> CandLoadPtrs;
    331     std::transform(Candidates.begin(), Candidates.end(),
    332                    std::inserter(CandLoadPtrs, CandLoadPtrs.begin()),
    333                    std::mem_fn(&StoreToLoadForwardingCandidate::getLoadPtr));
    334 
    335     const auto &AllChecks = LAI.getRuntimePointerChecking()->getChecks();
    336     SmallVector<RuntimePointerChecking::PointerCheck, 4> Checks;
    337 
    338     std::copy_if(AllChecks.begin(), AllChecks.end(), std::back_inserter(Checks),
    339                  [&](const RuntimePointerChecking::PointerCheck &Check) {
    340                    for (auto PtrIdx1 : Check.first->Members)
    341                      for (auto PtrIdx2 : Check.second->Members)
    342                        if (needsChecking(PtrIdx1, PtrIdx2,
    343                                          PtrsWrittenOnFwdingPath, CandLoadPtrs))
    344                          return true;
    345                    return false;
    346                  });
    347 
    348     DEBUG(dbgs() << "\nPointer Checks (count: " << Checks.size() << "):\n");
    349     DEBUG(LAI.getRuntimePointerChecking()->printChecks(dbgs(), Checks));
    350 
    351     return Checks;
    352   }
    353 
    354   /// \brief Perform the transformation for a candidate.
    355   void
    356   propagateStoredValueToLoadUsers(const StoreToLoadForwardingCandidate &Cand,
    357                                   SCEVExpander &SEE) {
    358     //
    359     // loop:
    360     //      %x = load %gep_i
    361     //         = ... %x
    362     //      store %y, %gep_i_plus_1
    363     //
    364     // =>
    365     //
    366     // ph:
    367     //      %x.initial = load %gep_0
    368     // loop:
    369     //      %x.storeforward = phi [%x.initial, %ph] [%y, %loop]
    370     //      %x = load %gep_i            <---- now dead
    371     //         = ... %x.storeforward
    372     //      store %y, %gep_i_plus_1
    373 
    374     Value *Ptr = Cand.Load->getPointerOperand();
    375     auto *PtrSCEV = cast<SCEVAddRecExpr>(PSE.getSCEV(Ptr));
    376     auto *PH = L->getLoopPreheader();
    377     Value *InitialPtr = SEE.expandCodeFor(PtrSCEV->getStart(), Ptr->getType(),
    378                                           PH->getTerminator());
    379     Value *Initial =
    380         new LoadInst(InitialPtr, "load_initial", PH->getTerminator());
    381     PHINode *PHI = PHINode::Create(Initial->getType(), 2, "store_forwarded",
    382                                    &L->getHeader()->front());
    383     PHI->addIncoming(Initial, PH);
    384     PHI->addIncoming(Cand.Store->getOperand(0), L->getLoopLatch());
    385 
    386     Cand.Load->replaceAllUsesWith(PHI);
    387   }
    388 
    389   /// \brief Top-level driver for each loop: find store->load forwarding
    390   /// candidates, add run-time checks and perform transformation.
    391   bool processLoop() {
    392     DEBUG(dbgs() << "\nIn \"" << L->getHeader()->getParent()->getName()
    393                  << "\" checking " << *L << "\n");
    394     // Look for store-to-load forwarding cases across the
    395     // backedge. E.g.:
    396     //
    397     // loop:
    398     //      %x = load %gep_i
    399     //         = ... %x
    400     //      store %y, %gep_i_plus_1
    401     //
    402     // =>
    403     //
    404     // ph:
    405     //      %x.initial = load %gep_0
    406     // loop:
    407     //      %x.storeforward = phi [%x.initial, %ph] [%y, %loop]
    408     //      %x = load %gep_i            <---- now dead
    409     //         = ... %x.storeforward
    410     //      store %y, %gep_i_plus_1
    411 
    412     // First start with store->load dependences.
    413     auto StoreToLoadDependences = findStoreToLoadDependences(LAI);
    414     if (StoreToLoadDependences.empty())
    415       return false;
    416 
    417     // Generate an index for each load and store according to the original
    418     // program order.  This will be used later.
    419     InstOrder = LAI.getDepChecker().generateInstructionOrderMap();
    420 
    421     // To keep things simple for now, remove those where the load is potentially
    422     // fed by multiple stores.
    423     removeDependencesFromMultipleStores(StoreToLoadDependences);
    424     if (StoreToLoadDependences.empty())
    425       return false;
    426 
    427     // Filter the candidates further.
    428     SmallVector<StoreToLoadForwardingCandidate, 4> Candidates;
    429     unsigned NumForwarding = 0;
    430     for (const StoreToLoadForwardingCandidate Cand : StoreToLoadDependences) {
    431       DEBUG(dbgs() << "Candidate " << Cand);
    432       // Make sure that the stored values is available everywhere in the loop in
    433       // the next iteration.
    434       if (!doesStoreDominatesAllLatches(Cand.Store->getParent(), L, DT))
    435         continue;
    436 
    437       // Check whether the SCEV difference is the same as the induction step,
    438       // thus we load the value in the next iteration.
    439       if (!Cand.isDependenceDistanceOfOne(PSE))
    440         continue;
    441 
    442       ++NumForwarding;
    443       DEBUG(dbgs()
    444             << NumForwarding
    445             << ". Valid store-to-load forwarding across the loop backedge\n");
    446       Candidates.push_back(Cand);
    447     }
    448     if (Candidates.empty())
    449       return false;
    450 
    451     // Check intervening may-alias stores.  These need runtime checks for alias
    452     // disambiguation.
    453     SmallVector<RuntimePointerChecking::PointerCheck, 4> Checks =
    454         collectMemchecks(Candidates);
    455 
    456     // Too many checks are likely to outweigh the benefits of forwarding.
    457     if (Checks.size() > Candidates.size() * CheckPerElim) {
    458       DEBUG(dbgs() << "Too many run-time checks needed.\n");
    459       return false;
    460     }
    461 
    462     if (LAI.PSE.getUnionPredicate().getComplexity() >
    463         LoadElimSCEVCheckThreshold) {
    464       DEBUG(dbgs() << "Too many SCEV run-time checks needed.\n");
    465       return false;
    466     }
    467 
    468     // Point of no-return, start the transformation.  First, version the loop if
    469     // necessary.
    470     if (!Checks.empty() || !LAI.PSE.getUnionPredicate().isAlwaysTrue()) {
    471       LoopVersioning LV(LAI, L, LI, DT, PSE.getSE(), false);
    472       LV.setAliasChecks(std::move(Checks));
    473       LV.setSCEVChecks(LAI.PSE.getUnionPredicate());
    474       LV.versionLoop();
    475     }
    476 
    477     // Next, propagate the value stored by the store to the users of the load.
    478     // Also for the first iteration, generate the initial value of the load.
    479     SCEVExpander SEE(*PSE.getSE(), L->getHeader()->getModule()->getDataLayout(),
    480                      "storeforward");
    481     for (const auto &Cand : Candidates)
    482       propagateStoredValueToLoadUsers(Cand, SEE);
    483     NumLoopLoadEliminted += NumForwarding;
    484 
    485     return true;
    486   }
    487 
    488 private:
    489   Loop *L;
    490 
    491   /// \brief Maps the load/store instructions to their index according to
    492   /// program order.
    493   DenseMap<Instruction *, unsigned> InstOrder;
    494 
    495   // Analyses used.
    496   LoopInfo *LI;
    497   const LoopAccessInfo &LAI;
    498   DominatorTree *DT;
    499   PredicatedScalarEvolution PSE;
    500 };
    501 
    502 /// \brief The pass.  Most of the work is delegated to the per-loop
    503 /// LoadEliminationForLoop class.
    504 class LoopLoadElimination : public FunctionPass {
    505 public:
    506   LoopLoadElimination() : FunctionPass(ID) {
    507     initializeLoopLoadEliminationPass(*PassRegistry::getPassRegistry());
    508   }
    509 
    510   bool runOnFunction(Function &F) override {
    511     auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
    512     auto *LAA = &getAnalysis<LoopAccessAnalysis>();
    513     auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
    514 
    515     // Build up a worklist of inner-loops to vectorize. This is necessary as the
    516     // act of distributing a loop creates new loops and can invalidate iterators
    517     // across the loops.
    518     SmallVector<Loop *, 8> Worklist;
    519 
    520     for (Loop *TopLevelLoop : *LI)
    521       for (Loop *L : depth_first(TopLevelLoop))
    522         // We only handle inner-most loops.
    523         if (L->empty())
    524           Worklist.push_back(L);
    525 
    526     // Now walk the identified inner loops.
    527     bool Changed = false;
    528     for (Loop *L : Worklist) {
    529       const LoopAccessInfo &LAI = LAA->getInfo(L, ValueToValueMap());
    530       // The actual work is performed by LoadEliminationForLoop.
    531       LoadEliminationForLoop LEL(L, LI, LAI, DT);
    532       Changed |= LEL.processLoop();
    533     }
    534 
    535     // Process each loop nest in the function.
    536     return Changed;
    537   }
    538 
    539   void getAnalysisUsage(AnalysisUsage &AU) const override {
    540     AU.addRequired<LoopInfoWrapperPass>();
    541     AU.addPreserved<LoopInfoWrapperPass>();
    542     AU.addRequired<LoopAccessAnalysis>();
    543     AU.addRequired<ScalarEvolutionWrapperPass>();
    544     AU.addRequired<DominatorTreeWrapperPass>();
    545     AU.addPreserved<DominatorTreeWrapperPass>();
    546   }
    547 
    548   static char ID;
    549 };
    550 }
    551 
    552 char LoopLoadElimination::ID;
    553 static const char LLE_name[] = "Loop Load Elimination";
    554 
    555 INITIALIZE_PASS_BEGIN(LoopLoadElimination, LLE_OPTION, LLE_name, false, false)
    556 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
    557 INITIALIZE_PASS_DEPENDENCY(LoopAccessAnalysis)
    558 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
    559 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
    560 INITIALIZE_PASS_END(LoopLoadElimination, LLE_OPTION, LLE_name, false, false)
    561 
    562 namespace llvm {
    563 FunctionPass *createLoopLoadEliminationPass() {
    564   return new LoopLoadElimination();
    565 }
    566 }
    567